

FCC Test Report

Application No.:	DNT241089R1546-3785
Applicant:	Shenzhen Zhichuang All Technology Co., Ltd
Address of	31st Floor, West Tower of Xinghe Twin Towers, No. 8 Yaxing Rd, Bantian
Applicant:	St,Longgang Dist, Shenzhen, China
EUT Description:	bluetooth headset
Model No.:	sanag G36S
FCC ID:	2A6MS-G36S
Power Supply:	DC 3.7V From Battery
Charging Voltage:	DC 5V
Trade Mark:	sanag
	47 CFR FCC Part 2, Subpart J
Standards:	47 CFR Part 15, Subpart C
	ANSI C63.10: 2013
Date of Receipt:	2024/5/25
Date of Test:	2024/5/26 to 2024/6/3
Date of Issue:	2024/6/4
Test Result:	PASS

Prepared By: Reviewed By: Approved By:

Wayne . Jon (Testing Engineer) (Project Engineer) (Manager)

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383

 E-mail: service@dn-testing.com

Date: June 4, 2024 Page: 2 / 65

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0		Jun.4, 2024	Valid	Original Report

1

Report No.: DNT241089R1546-3785

Date: June 4, 2024

Page: 3 / 65

Test Summary

Test Item	Test Requirement	Test Method	Test Result	Result
Antenna Requirement	15.203/247(b)		Clause 3.1	PASS
20dB Emission Bandwidth	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.2	PASS
Conducted Peak Output Power	15.247 (b)(1)	ANSI C63.10 (2013)	Clause 3.3	PASS
Carrier Frequencies Separation	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.4	PASS
Dwell Time	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.5	PASS
Hopping Channel Number	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.6	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10 (2013)	Clause 3.7	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10 (2013)	Clause 3.8	PASS
Radiated Spurious emissions	15.247(d); 15.205/15.209	ANSI C63.10 (2013)	Clause 3.9	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d); 15.205/15.209	ANSI C63.10 (2013)	Clause 3.10	PASS
AC Power Line Conducted Emission	15.207	ANSI C63.10 (2013)	Clause 3.11	NA

Note:

1. "N/A" denotes test is not applicable in this test report.

Date: June 4, 2024

Page: 4/65

Contents

1	Test S	ummary	
2	Genera	al Information	5
	2.1	Test Location	5
	2.2	General Description of EUT	6
	2.3	Channel List	7
	2.4	Test Environment and Mode	8
	2.5	Power Setting of Test Software	9
	2.6	Description of Support Units	9
	2.7	Test Facility	9
	2.8	Measurement Uncertainty (95% confidence levels, k=2)	10
	2.9	Equipment List	11
	2.10	Assistant equipment used for test	12
3	Test re	esults and Measurement Data	13
	3.1	Antenna Requirement	13
	3.2	20dB Emission Bandwidth	14
	3.3	Conducted Output Power	
	3.4	Carrier Frequencies Separationy	16
	3.5	Dwell Time	17
	3.6	Hopping Channel Number	
	3.7	Band-edge for RF Conducted Emissions	19
	3.8	RF Conducted Spurious Emissions	20
	3.9	Radiated Spurious Emissions	
	3.10	Restricted bands around fundamental frequency	
	3.11	AC Power Line Conducted Emissions	33
4	Appen	dix	
	Append	dix A: 20dB Emission Bandwidth	
	Append	dix B: Maximum conducted output power	
	Append	dix C: Carrier frequency separation	43
	Append	dix D: Dwell Time	45
	Append	dix F: Number of hopping channels	49
	Append	dix F: Band edge measurements	
	Append	dix F: Conducted Spurious Emission	56

Date: June 4, 2024

Page: 5/65

2 General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China
Test engineer:	Wayne Lin

Date: June 4, 2024

Page: 6/65

2.2 General Description of EUT

Manufacturer:	Dongguan Chiyuan Jizhi Electronic Technology Co., Ltd		
Address of Manufacturer:	Room 3228, No. 50 Weimin Road, Dongcheng Street, Dongguan City, Guangdong Province		
Test EUT Description:	bluetooth headset		
Model No.:	sanag G36S		
Additional Model(s):			
Chip Type:	7003D8		
Serial number:	PR241089R1546		
Power Supply:	DC 3.7V From Battery		
Charging Voltage:	DC 5V		
Trade Mark:	sanag		
Hardware Version:	V1.0		
Software Version:	V1.0		
Operation Frequency:	2402 MHz to 2480 MHz		
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)		
Type of Modulation:	GFSK,π/4-DQPSK,8DPSK		
Sample Type:	☑ Portable Device, ☐ Module, ☐ Mobile Device		
Antenna Type:	□ External, ⊠ Integrated		
Antenna Ports:	⊠ Ant 1, □ Ant 2, □ Ant 3		
Antenna Gain*:	Provided by applicant		
Antenna Gain".	-3.63dBi		
	Provided by applicant		
RF Cable*:	0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4GHz); 1.8dB(4.4~6GHz);		

Remark:

*Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information , DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

2.3 Channel List

	Operation Frequency of each channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
_ 12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz	\mathcal{F}	\sim

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Date: June 4, 2024

Page: 8/65

2.4 5Test Environment and Mode

Operating Environment:				
Temperature:	20~25.0 °C			
Humidity:	45~56 % RH			
Atmospheric Pressure:	101.0~101.30 KPa			
Test mode:				
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.			

Date: June 4, 2024 Page: 9 / 65

2.5 Power Setting of Test Software

J			
Software Name	\bigcirc \bigcirc \bigcirc	FCC_assist_1.0.3	\bigcirc \bigcirc \bigcirc \bigcirc
Frequency(MHz)	2402	2441	2480
GFSK Setting	10	10	10
π/4-DQPSK Setting	10	10	10
8DPSK	10	10	10

2.6 Description of Support Units

The EUT has been tested independent unit.

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

• FCC, USA

Designation Number: CN1348

A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 7050.01.

Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory.

IC#: 31026.

Date: June 4, 2024

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	20dB Emission Bandwidth	±0.0196%
2	Carrier Frequency Separation	±1.9%
3	Number of Hopping Channel	±1.9%
4	Time of Occupancy	±0.028%
5	Max Peak Conducted Output Power	±0.743 dB
6	Band-edge Spurious Emission	±1.328 dB
7	Conducted RF Spurious Emission	9KHz-1GHz:±0.746dB 1GHz-26GHz:±1.328dB

No.	Item	Measurement Uncertainty
1	Conduction Emission	± 3.0dB (150kHz to 30MHz)
\circ	O, O , O , O , O , O	± 4.8dB (Below 1GHz)
0	Dedicted Emission	± 4.8dB (1GHz to 6GHz)
2	Radiated Emission	± 4.5dB (6GHz to 18GHz)
		± 5.02dB (Above 18GHz)

2.9 Equipment List

For Connect EUT Antenna Terminal Test					
Description	Manufacturer	Model	Serial Number	Cal date	Due date
Signal Generator	Keysight	N5181A-6G	MY48180415	2023-10-25	2024-10-24
Signal Generator	Keysight	N5182B	MY57300617	2023-10-25	2024-10-24
Power supply	Keysight	E3640A	ZB2022656	2023-10-25	2024-10-24
Radio Communication Tester	R&S	CMW500	105082	2023-10-25	2024-10-24
Spectrum Analyzer	Aglient	N9010A	MY52221458	2023-10-25	2024-10-24
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA	NA
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA
Power Sensor	Anritsu	ML2495A	2129005	2023-10-25	2024-10-24
Pulse Power Sensor	Anritsu	MA2411B	1911397	2023-10-25	2024-10-24
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2023-10-25	2024-10-24

	Test Equipment for Conducted Emission							
Description	Description Manufacturer Model Serial Number Cal Date Due Date							
Receiver	R&S	ESCI3	101152	2023-10-24	2024-10-23			
LISN	R&S	ENV216	102874	2023-10-24	2024-10-23			
ISN	ISN R&S ENY81-CA6 1309.8590.03 2023-10-24 2024-10-23							

Test Ec	quipment for F	Radiated Emis	sion(30MHz	-1000MH	z)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Receiver	R&S	ESR7	102497	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TILE-FULL	NA	NA	NA
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2023-10-24	2024-10-23
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2023-10-24	2024-10-23

Date: June 4, 2024

Page: 12/65

🕥 Test E	Test Equipment for Radiated Emission(Above 1000MHz)						
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date		
Frequency analyser	Keysight	N9010A	MY52221458	2023-10-24	2024-10-23		
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23		
Horn Antenna	ETS-LINDGREN	3117	00252567	2023-10-24	2024-10-23		
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2023-10-24	2024-10-23		
Test Software	ETS-LINDGREN	TILE-FULL	NA	NA	NA		
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2023-10-24	2024-10-23		
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2023-10-24	2024-10-23		

2.10 Assistant equipment used for test

Code	Equipment	Manufacturer	Model No.	Equipment No.
1	Computer	acer	N22C8	EMC notebook01
2	Adapter	HUAWEI	HW-100225C00	NA

3 Test results and Measurement Data

3.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -3.63dBi.

3.2 20dB Emission Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 Section 7.8.7
Test Setup:	Spectrum Analyzer E.U.T
	Non-Conducted Table
	Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	NA
Test Results:	Pass

The detailed test data see: Appendix A

Date: June 4, 2024

3.3 Conducted Output Power

The detailed test data see: Appendix B

3.4 Carrier Frequencies Separationy

The detailed test data see: Appendix C

3.5 Dwell Time

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013 Section 7.8.4	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table	0, 0, 0,
	Ground Reference Plane	
Instruments Used:	Refer to section 2.9 for details	\bigcirc
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.	
Limit:	0.4 Second	<
Test Results:	Pass	~

The detailed test data see: Appendix D

Date: June 4, 2024

3.6 Hopping Channel Number

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 Section 7.8.3		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	In the the	0, 0, 0,
Instruments Used:	Refer to section 2.9 for details		~
Test Mode:	Hopping transmitting with all kind of modulation	\rightarrow	$\overline{\mathbf{O}}$
			· ·
Limit:	At least 15 channels		
Test Results:	Pass		

The detailed test data see: Appendix E

3.7 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 Section 7.8.6
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table
Instruments Used:	Ground Reference Plane Refer to section 2.9 for details
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Results:	Pass

The detailed test data see: Appendix F

3.8 RF Conducted Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)			
Test Method:	ANSI C63.10: 2013 Section 11.11			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Instruments Used:	Refer to section 2.9 for details			
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates			
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test Results:	Pass			

The detailed test data see: Appendix G

Date: June 4, 2024

Page: 21/65

3.9 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Sectio	n 15.209 and 15.20)5	×	\sim \sim		
Test Method:	ANSI C63.10: 2013 Sect	ANSI C63.10: 2013 Section 11.12					
Test Site:	Measurement Distance:	3m or 10m (Semi-/	Anechoic Ch	amber)			
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark		
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak		
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average		
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak		
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak		
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average		
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak		
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak		
		Peak	1MHz	3MHz	Peak		
	Above 1GHz	Peak	1MHz	10Hz (DC≥0.98)	Average		
	× ×	$\langle \langle \rangle$	~	≥1/T (DC<0.98)	4		
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m)		
	0.009MHz-0.490MHz	2400/F(kHz)	- 🔨	~	300		
	0.490MHz-1.705MHz	24000/F(kHz)		<u></u> `	30		
	1.705MHz-30MHz	30	<u> </u>	\sim -	30		
	30MHz-88MHz	100	40.0	Quasi-peak	3		
	88MHz-216MHz	150	43.5	Quasi-peak	3		
	216MHz-960MHz	200	46.0	Quasi-peak	3		
	960MHz-1GHz	500	54.0	Quasi-peak	3		
	Above 1GHz	500	54.0	Average	3		
	Remark: 15.35(b),Unless emissions is 20dB above applicable to the equipm emission level radiated b	e the maximum per ent under test. This	mitted avera	ge emission lir	nit		

Report No.	: DNT241089R1546-3785	Date: June 4, 2024	Page: 23 / 65
Test Configuration:	Measurements Below 1000MI • RBW = 120 kHz • VBW = 300 kHz • Detector = Peak • Trace mode = max hold Peak Measurements Above 10 • RBW = 1 MHz • VBW ≥ 3 MHz • Detector = Peak • Sweep time = auto • Trace mode = max hold Average Measurements Above • RBW = 1 MHz • VBW ≥ 1 MHz • VBW = 10 Hz, when duty cycle • VBW ≥ 1/T, when duty cycle transmission duration over whi maximum power control level f	D00 MHz e 1000MHz cle is no less than 98 percent. e is less than 98 percent where ich the transmitter is on and is	e T is the minimum transmitting at its
Exploratory Test Mode:	Transmitting with all kind of mo Charge+Transmitting mode.	odulations, data rates.	\mathcal{O}
Final Test Mode:	Pretest the EUT at Transmitting Through Pre-scan, find the DH type.	•	e of All modulation
Instruments Used:	Refer to section 2.9 for details	1 1	
Test Results:	Pass	<u> </u>	

Test data For 30-1000MHz

Vertical:

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/ m]	Margin [dB]	Height [cm]	Angle [°]	Remark
	1	33.83	30.25	-9.42	20.83	40.00	19.17	100	5	QP
	2	57.32	31.17	-8.50	22.67	40.00	17.33	100	67	QP
	3	94.76	34.57	-13.39	21.18	43.50	22.32	100	12	QP
	4	112.65	38.64	-10.92	27.72	43.50	15.78	100	64	QP
	5	181.49	31.28	-9.52	21.76	43.50	21.74	100	143	QP
1	6	230.36	32.18	-10.33	21.85	46.00	24.15	100	360	QP

Horizontal :

QP Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	52.39	24.92	-8.13	16.79	40.00	23.21	100	249	QP
2	119.43	30.06	-10.32	19.74	43.50	23.76	100	191	QP
3	233.34	35.49	-9.94	25.55	46.00	20.45	100	78	QP
4	467.78	25.24	-2.37	22.87	46.00	23.13	100	80	QP
5	687.15	27.39	2.16	29.55	46.00	16.45	100	143	QP
6	934.45	26.22	6.08	32.30	46.00	13.70	100	14	QP

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

For above 1GHz DH5 2402MHz

Vertical:

AV Detector

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Heigh t [cm]	Angle [°]	Remark
	1	4804.59	50.26	-4.61	45.65	74.00	28.35	150	6	Peak
~	2	7206.21	50.82	-1.76	49.06	74.00	24.94	150	6	Peak
	3	9607.83	47.35	0.87	48.22	74.00	25.78	150	1	Peak
	4	4804.59	45.43	-4.61	40.82	54.00	13.18	150	36	AV
C	5	7206.96	45.65	-1.76	43.89	54.00	10.11	150	21	AV
	6	9608.58	41.85	0.88	42.73	54.00	11.27	150	6	AV

Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4803.84	46.47	-1.11	45.36	74.00	28.64	150	72	Peak
2	7206.21	51.14	2.39	53.53	74.00	20.47	150	95	Peak
3	9607.83	46.15	5.23	51.38	74.00	22.62	150	84	Peak
4	4804.59	41.63	-1.10	40.53	54.00	13.47	150	182	AV
5	7206.96	46.11	2.40	48.51	54.00	5.49	150	95	AV
6	9608.58	44.34	5.23	49.57	54.00	4.43	150	84	AV

Dongguan DN Testing Co., Ltd.

Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

Web: www.dn-testing.com

Tel:+86-769-88087383

E-mail: service@dn-testing.com

DH5 2441MHz

Vertical:

AV Detector

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
	1	4881.84	53.26	-4.72	48.54	74.00	25.46	150	93	Peak
	2	7323.21	48.05	-1.49	46.56	74.00	27.44	150	11	Peak
4	3	9763.83	45.22	1.64	46.86	74.00	27.14	150	0	Peak
\lor	4	4882.59	47.35	-4.72	42.63	54.00	11.37	150	150	AV
	5	7323.96	41.41	-1.49	39.92	54.00	14.08	150	39	AV
	6	9764.58	40.78	1.64	42.42	54.00	11.58	150	2	AV

Horizontal:

AV	Detector	

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4881.84	62.51	-4.72	57.79	74.00	16.21	150	63	Peak
2	7322.46	56.01	-1.49	54.52	74.00	19.48	150	151	Peak
3	9763.83	49.07	1.64	50.71	74.00	23.29	150	36	Peak
4	4882.59	50.45	-4.72	45.73	54.00	8.27	150	120	AV
5	7323.96	49.82	-1.49	48.33	54.00	5.67	150	151	AV
6	9764.58	45.24	1.64	46.88	54.00	7.12	150	36	AV

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

DH5 2480MHz

Vertical:

AV Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4959.84	54.16	-4.86	49.30	74.00	24.70	150	165	Peak
2	7440.22	48.14	-1.34	46.80	74.00	27.20	150	21	Peak
3	9919.84	46.01	2.26	48.27	74.00	25.73	150	1	Peak
4	4957.59	49.26	-4.86	44.40	54.00	9.60	150	165	AV
5	7440.97	42.11	-1.34	40.77	54.00	13.23	150	21	AV
6	9920.59	40.21	2.27	42.48	54.00	11.52	150	8	AV

Horizontal:

AV Detector

N	0.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
	1	4959.84	61.82	-4.86	56.96	74.00	17.04	150	58	Peak
	2	7440.22	53.64	-1.34	52.30	74.00	21.70	150	150	Peak
3	3	9919.84	53.96	2.26	56.22	74.00	17.78	150	101	Peak
4	1	4960.59	52.00	-4.86	47.14	54.00	6.86	150	133	AV
ł	5	7440.97	48.46	-1.34	47.12	54.00	6.88	150	150	AV
6	3	9921.34	43.54	2.27	45.81	54.00	8.19	150	115	AV

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)

2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.

4. All channels had been pre-test,DH5 is the worst case. only the worst case was reported.

Date: June 4, 2024

Page: 29/65

3.10 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	5.209 and 15.205	O, O , O	
Test Method:	ANSI C63.10: 2013 Section	11.12	, ,	
Test Site:	Measurement Distance: 3m	or 10m (Semi-Anechoic	Chamber)	
Limit:	Frequency	Limit (dBuV/m)	Remark	
	30MHz-88MHz	40.0	Quasi-peak	
	88MHz-216MHz	43.5	Quasi-peak	
	216MHz-960MHz	46.0	Quasi-peak	
	960MHz-1GHz	54.0	Quasi-peak	
		54.0	Average Value	
	Above 1GHz	74.0	Peak Value	

Test Setup:

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383

 E-mail: service@dn-testing.com

22	Report No.: D	NT241089R1546-3785	Date: June 4, 2024	Page: 30 / 65
		 RBW = 120 kHz VBW = 300 kHz Detector = Deck 		5 6 V
		 Detector = Peak Trace mode = max Peak Measurements A 		
		• RBW = 1 MHz • VBW ≥ 3 MHz		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		 Detector = Peak Sweep time = auto 		
		 Trace mode = max I Average Measuremen RBW = 1 MHz VBW = 10 Hz when 		nercent
		• VBW \ge 1/T, when a minimum	duty cycle is less than 98 percention the transmitter is on and i	ent where T is the
			for the tested mode of operat	
Ex	ploratory Test Mode:	Transmitting with all kind of m Transmitting mode.	nodulations, data rates.	
Fir	nal Test Mode:	Pretest the EUT Transmitting Through Pre-scan, find the D type. Only the worst case is record	H5 of data type is the worst ca	ase of all modulation
Ins	struments Used:	Refer to section 2.9 for detail	s	
Те	st Results:	Pass	2 2 Y	

Test Date DH5 2402MHz

Vertical:

AV Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2385.77	52.70	-0.81	51.89	74.00	22.11	150	213	Peak
2	2390.01	50.51	-0.80	49.71	74.00	24.29	150	202	Peak
3	2385.30	42.07	-0.81	41.26	54.00	12.74	150	348	AV
4	2390.01	41.11	-0.80	40.31	54.00	13.69	150	302	AV

Horizontal:

AV Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2386.03	53.03	-0.81	52.22	74.00	21.78	150	116	Peak
2	2390.01	50.42	-0.80	49.62	74.00	24.38	150	70	Peak
3	2388.18	42.22	-0.80	41.42	54.00	12.58	150	105	AV
4	2390.01	41.15	-0.80	40.35	54.00	13.65	150	105	AV
4	2390.01	41.15	-0.80	40.35	54.00	13.65	150	105	A

DH5 2480MHz

Horizontal:

\langle	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
	1	2483.51	48.20	-0.29	47.91	74.00	26.09	150	302	Peak
	2	2483.87	52.07	-0.28	51.79	74.00	22.21	150	325	Peak
	3	2483.51	39.57	-0.29	39.28	54.00	14.72	150	338	AV
	4	2484.36	40.40	-0.28	40.12	54.00	13.88	150	325	AV

i ici		
AV	Detector	

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2483.50	49.06	-0.29	48.77	74.00	25.23	150	118	Peak
2	2486.25	51.53	-0.26	51.27	74.00	22.73	150	276	Peak
3	2483.50	39.49	-0.29	39.20	54.00	14.80	150	95	AV
4	2485.97	40.57	-0.27	40.30	54.00	13.70	150	263	AV

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe

including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor ,Cable Factor etc.

2.All channels had been pre-test, only the worst case was reported.

Date: June 4, 2024

Page: 33/65

Test Requirement:	47 CFR Part 15C Section 1	5.207	\land
Test Method:	ANSI C63.10: 2013	<u>~ 7 7 7</u>	2 2 2
Test Frequency Range:	150kHz to 30MHz		
_imit:		🔨 📈 Limit (d	BuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logari	thm of the frequency.	
Test Setup:	room. 2) The EUT was connected Impedance Stabilization Net impedance. The power call a second LISN 2, which was plane in the same way as the multiple socket outlet strip of single LISN provided the rat 3) The tabletop EUT was provided the rational ground reference plane. And placed on the horizontal ground reference plane. And placed on the horizontal ground reference plane. The LISN unit under test and bonded mounted on top of the ground between the closest points the EUT and associated executed In order to find the maximume equipment and all of the interval ANSI C63.10 2013 on conderval 10 The test was performed to the secuted of the secuted to the secu	etwork) which provides a 50 oles of all other units of the is bonded to the ground ref he LISN 1 for the unit being was used to connect multip ting of the LISN was not ex- olaced upon a non-metallic of for floor-standing arrang ound reference plane, with a vertical ground refe rom the vertical ground refe lane was bonded to the ho 1 was placed 0.8 m from th to a ground reference plane ind reference plane. This d of the LISN 1 and the EUT upment was at least 0.8 m m emission, the relative po-	$D\Omega/50\mu H + 5\Omega$ linear EUT were connected ference g measured. A ble power cables to a xceeded. table 0.8m above the ement, the EUT was rence plane. The rear erence plane. The rear erence plane. The rizontal ground he boundary of the he for LISNs istance was T. All other units of h from the LISN 2. ositions of
rest Selup.	Shielding Room		Test Receiver
			台 日 日
	AC Mains		Mains

3.11 AC Power Line Conducted Emissions

 Report No.: DNT241089R1546-3785
 Date: June 4, 2024
 Page: 34 / 65

 Exploratory Test Mode:
 Transmitting with all kind of modulations, data rates at lowest, middle and highest channel. Charge + Transmitting mode.

 Final Test Mode:
 Through Pre-scan, find the the worst case.

 Instruments Used:
 Refer to section 2.9 for details

 Test Results:
 PASS

Note: The wireless function does not work while the prototype is charging

4 Appendix

Appendix A: 20dB Emission Bandwidth

Test Result		\bigcirc		\bigcirc			
Test Mode	Antenna	Freq(MHz)	20dB EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	~	2402	1.032	2401.502	2402.534	🔨	
DH5	Ant1	2441	0.984	2440.511	2441.495		
		2480	0.999	2479.517	2480.516		
	\sim	2402	1.281	2401.391	2402.672		
2DH5	Ant1	2441	1.305	2440.367	2441.672		
		2480	1.332	2479.355	2480.687	🔨	
		2402	1.320	2401.367	2402.687		
3DH5	Ant1	2441	1.305	2440.373	2441.678		
		2480	1.317	2479.367	2480.684		

Test Graphs

DH5_Ant1_2441

DH5_Ant1_2480

Agilent Spectr	rum Analyzer - Sw RF 50 ຊ			SENSE	PULSE	4	ALIGN OFF	05:55:09 A	M May 29, 2024	-
Center F	req 2.48000	00000 GH	lz 0:Wide ↔	Trig: Free	Run	#Avg Typ Avg Hold:	e: RMS	TRAJ	E 1 2 3 4 5 6	Frequency
			Gain:Low	#Atten: 40	dB			3	TPPPPP	Auto Tune
10 dB/div	Ref Offset 12 Ref 30.00							∆Mkr3 s -0	999 kHz 775 dB	
.og 20.0										Center Free
10.0					() ²			-		2.480000000 GHz
0.00			1	N	M	• 3	Δ1			
20.0			Jam			M.			-18.78 dBm	Start Fred 2.478500000 GHz
40.0		N	~				m			
40.0 50.0	mark	w.					<i>۰</i>	N. Some	mm	Stop Fred
60.0										2.481500000 GH:
	480000 GHz								.000 MHz	CF Step
Res BW		×	#VBW	100 kHz	FID		sweep :	3.200 ms (1001 pts)	300.000 kH; Auto Mar
1 N 1 2 N 1	f	2.479 517		-18.804 dB	m					
3 Δ1 1 4	f (Δ)		9 kHz (Δ)	-0.775 c						Freq Offse
6						_				
7 8 9						_			_	
10						-				
()										
sg		_					STATU	s 🔀 Align N	ow, All requi	red

Date: June 4, 2024

Page: 37 / 65

2DH5_Ant1_2441

2DH5_Ant1_2480

	rum Analyzer - Sv									
Center F	req 2.4800	00000 GH	Z 0:Wide ↔		EPULSE	#Avg Typ AvalHold		TRAC	M May 29, 2024 28 1 2 3 4 5 6 PE M WWWWWW	Frequency
10 dB/div	Ref Offset 1: Ref 30.00	IFG 2.31 dB	U: Wide 🕶 iain:Low	#Atten: 4				⊓ 1kr3 1.3	32 MHz	Auto Tune
20.0					2					Center Freq 2.480000000 GHz
-10.0 -20.0 -30.0		2		m	Source -	mm	3∆1-		-20.07 dBm	Start Freq 2.478500000 GHz
-40.0 -50.0 -60.0	Sum Apres	nammer /					Jun	-	www.	Stop Freq 2.481500000 GHz
#Res BW			#VBV	V 100 kHz			Sweep 3	.200 ms (CF Step 300.000 kHz Auto Man
MXS MODE T 1 N 2 N 2 N 3 Δ1 4 6 6 6 6 7 7 8 9 9 10 11 11	RC SCL	× 2.479 365 2.480 003 1.332		-20.350 di -0.066 di -0.046	3m 3m	CTIDN FUX	ACTION WIDTH	FUNCTIO		Freq Offset 0 Hz
MSG							STATUS	Align N	ow, All requi	red

Date: June 4, 2024

Page: 38/65

3DH5_Ant1_2441

Center Freq 2.4410	PNO: Wide Trig: Free Run	ALIGN OFF 04:50:21 AM May 29, 2024 #Avg Type: RMS TRACE 12 3 4 5 6 AvgHold: 100/100 Type MWWWW bet P P P P P P	Frequency
Ref Offset 1 10 dB/div Ref 30.00	2.31 dB	ΔMkr3 1.305 MHz 0.036 dB	Auto Tune
20.0 10.0	2		Center Free 2.441000000 GH:
0.00	- Area and a second	3∆1	Start Free 2.439500000 GH:
40.0			Stop Free 2.442500000 GH:
Center 2.441000 GHz Res BW 30 kHz	#VBW 100 kHz	Span 3.000 MHz Sweep 3.200 ms (1001 pts)	CF Step 300.000 kH Auto Mar
1 N 1 f 2 N 1 f 3 Δ1 1 f (Δ)	2.440 373 GHz -18.623 dBm 2.441 009 GHz 1.485 dBm 1.305 MHz (Δ) 0.036 dB		FreqOffse
4 5 7 8 9 10			0 H

3DH5_Ant1_2480

	rum Analyzer - S									
Center F	RF 50 req 2.4800	Ω DC 000000 GH	IZ 0:Wide ↔		Bun	#Avg Typ AvgHold		TRAC	M May 29, 2024 28 1 2 3 4 5 6 PE M WANNAW	Frequency
10 dB/div	Ref Offset Ref 30.00	IFG 12.31 dB	io: wide 🕶 Jain:Low	#Atten: 4				⊓ 1kr3 1.3	17 MHz 255 dB	Auto Tune
20.0 10.0										Center Freq 2.480000000 GHz
-10.0 -20.0 -30.0		2	J.M		month	m	3 ∆1−		-20.08 dBm	Start Freq 2.478500000 GHz
-40.0 -50.0 -60.0	www	m						~~~	annar a	Stop Freq 2.481500000 GHz
Center 2. #Res BW	480000 GH 30 kHz	z	#VBV	/ 100 kHz		1	Sweep 3	Span 3 .200 ms (.000 MHz 1001 pts)	CF Step 300.000 kHz Auto Man
MXX MODE 1 N 2 N 2 N 3 Δ1 4 5 6 6 7 7 8 9 10 11 1 4 5 10 11 4 5 5 6 6 7 7 8 9 10 11 4 4 5 11 4 11 11 4 11 11 4 11 <th11< th=""> <th11< th=""> <th11< th=""></th11<></th11<></th11<>	RC SCL	× 2.479 361 2.480 183 1.311		-20.471 dB -0.076 dB 0.255	3m	FUN	ACTION WADTH	FUNCTIO		Freq Offset 0 Hz
MSG							STATUS	🛛 🕄 Align N	ow, All requi	red

Report No.: DNT241089R1546-3785 🧹

Date: June 4, 2024

Page: 39/65

Appendix B: Maximum conducted output power

Test Result					
Test Mode	Antenna	Freq(MHz)	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	Verdict
		2402	4.80	≤20.97	PASS
DH5	Ant1	2441	4.85	≤20.97	PASS
		2480	4.07	≤20.97	PASS
		2402	5.62	≤20.97	PASS
2DH5	Ant1	2441	5.47	≤20.97	PASS
		2480	4.47	≤20.97	PASS
		2402	6.00	≤20.97	PASS
3DH5	Ant1	2441	5.78	≤20.97	PASS
		2480	4.88	≤20.97	PASS

Test Graphs

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

Date: June 4, 2024

Page: 41/65

Frequency	04:36:09 AM May 29, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P P P P P P	ALIGN OFF #Avg Type: RMS Avg Hold: 100/100	: Fast 🛶 Trig: Free Run	rum Analyzer - Swept SA RF 50 Ω DC req 2.402000000 GI F	RL
Auto Tur	2.402 078 GHz 5.615 dBm	Mkr	in:Low #Atten: 40 dB	Ref Offset 12.31 dB Ref 30.00 dBm	0 dB/div
Center Fre 2.402000000 GF					20.0
Start Fro 2.399000000 GI			<u> </u>		0.00
Stop Fr 2.405000000 G	And the second s				10.0 20.0
CF Ste 600.000 k <u>Auto</u> M					10.0
Freq Offs 0					50.0
					60.0
	Span 6.000 MHz .000 ms (1001 pts)	Sweep	#VBW 6.0 MHz	402000 GHz 2.0 MHz	Center 2.4 Res BW

2DH5_Ant1_2441

X RL	RF 50Ω DC		SENSE:PULSE	ALIGN OFF	04:41:14 AM May 29, 2024	Frequency
Center F	req 2.441000000	PNO: Fast +++ IFGain:Low	Trig: Free Run #Atten: 40 dB	#Avg Type: RMS Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P P P P P	Frequency
10 dB/div	Ref Offset 12.31 dB Ref 30.00 dBm			Mkr	Auto Tune	
20.0						Center Free 2.441000000 GH:
10.0			•• ¹			Start Free 2.438000000 GH
-10.0 -20.0	-				-	Stop Free 2.444000000 GH:
-30.0						CF Step 600.000 kH: Auto Mar
-50.0						Freq Offse 0 H
-60.0	441000 GHz				Span 6.000 MHz	
#Res BW		#VBW	6.0 MHz	Sweep	1.000 ms (1001 pts)	
MSG				STATU	s 🔀 Align Now, All requi	red

2DH5_Ant1_2480

Agilent Spectrum Analyzer - Swept SA												
Center F	RF 50 Q DC	0 GHz	SENSE:PULS	#Avg Typ	ALIGN OFF	TRAC	M May 29, 2024 E 1 2 3 4 5 6	Frequency				
10 dB/div	Ref Offset 12.31 dE Ref 30.00 dBm	PNO: Fast ++ IFGain:Low	Trig: Free Run #Atten: 40 dB	AvgjHold		1 2.480 1	50 GHz 66 dBm	Auto Tune				
20.0								Center Freq 2.480000000 GHz				
0.00			∳ ¹					Start Freq 2.477000000 GHz				
-10.0 -20.0	and the second sec						and a second	Stop Freq 2.483000000 GHz				
-30.0								CF Step 600.000 kHz <u>Auto</u> Man				
-50.0								Freq Offset 0 Hz				
Genter 2.	480000 GHz					Span 6	.000 MHz					
#Res BW		#VBW	6.0 MHz		Sweep	1.000 ms (
Istatus 🕄 Align Now, All required												