

SZ2220623-28107E-RF

2A6KKS68

TEST REPORT

Baoan District, Shenzhen, Guangdong, China

SHENZHEN WOPET SMART TECHNOLOGY CO., LTD

923, Baoyuan Huafeng Headquarters Economic Building A, Xixiang,

Applicant Name : Address :

Report Number : FCC ID:

Test Standard (s) FCC PART 15.247

Sample Description

Product Type: Test Model: Trade Mark: Date Received: Date of Test: Report Date: 2.1 CH Soundbar Speaker System S68 WOGREE 2022-06-23 2022-07-07 to 2022-07-20 2022-07-23

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Roger, Ling

Roger.Ling EMC Engineer **Approved By:**

Candy . Li

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk " \star ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

Version 11: 2021-11-09

Page 1 of 63

FCC-BT

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	5
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
Special Accessories Equipment Modifications	
SUPPORT EQUIPMENT LIST AND DETAILS	6
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	10
FCC §1.1310 & §2.1091 -MAXIMUM PERMISSIBLE EXPOSURE (MPE)	11
TEST RESULT:	11
FCC §15.203 – ANTENNA REQUIREMENT	12
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS	13
APPLICABLE STANDARD	
EUT SETUP EMI Test Receiver Setup	
Test Procedure	
FACTOR & MARGIN CALCULATION	14
TEST DATA	
FCC §15.205, §15.209 & §15.247(d) - RADIATED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP EMI Test Receiver & Spectrum Analyzer Setup	
Test Procedure	
FACTOR & MARGIN CALCULATION	18
TEST DATA	
FCC §15.247(a) (1)-CHANNEL SEPARATION TEST	24
APPLICABLE STANDARD	
TEST PROCEDURE TEST DATA	
FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH	
Applicable Standard Test Procedure	
TEST DATA	
FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST	
APPLICABLE STANDARD	

Shenzhen	Accurate	Technol	ogv	Co	Ltd.
S11011011	1 10 0 011 0100		~BJ	<i>~~.,</i>	

Report No.: SZ2220623-28107E-RF

TEST PROCEDURE TEST DATA	
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)	
APPLICABLE STANDARD	41
Test Procedure Test Data	
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	
APPLICABLE STANDARD	51
Test Procedure Test Data	
FCC §15.247(d) - BAND EDGES TESTING	
APPLICABLE STANDARD	
Test Procedure	57
TEST DATA	57

GENERAL INFORMATION

Product	2.1 CH Soundbar Speaker System
Tested Model	S68
Frequency Range	2402~2480MHz
Maximum conducted Peak output power	1.42dBm
Modulation Technique	BDR(GFSK)/EDR(1/4-DQPSK)/EDR(8DPSK)
Antenna Specification*	Internal Antenna: 3.38dBi(provided by the applicant)
Voltage Range	DC18V from adapter
Sample number	SZ2220623-28107E-RF-S1
Sample/EUT Status	Good condition
Adapter Information	Model: KDP-AE180150U Input: 100-240V~50/60Hz 1.0A; Output: 18.0V 1.5A

Product Description for Equipment under Test (EUT)

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Char	nnel Bandwidth	5%
RF output pov	wer, conducted	0.73dB
Unwanted Emission, conducted		1.6dB
AC Power Lines Conducted Emissions		2.72dB
	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz - 18GHz	4.98dB
18GHz - 26.5GHz		5.06dB
Temperature		1°C
Humidity		6%
Supply	voltages	0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

Software "BT-tool"* was used during testing and the power level was Default Power level 7*.

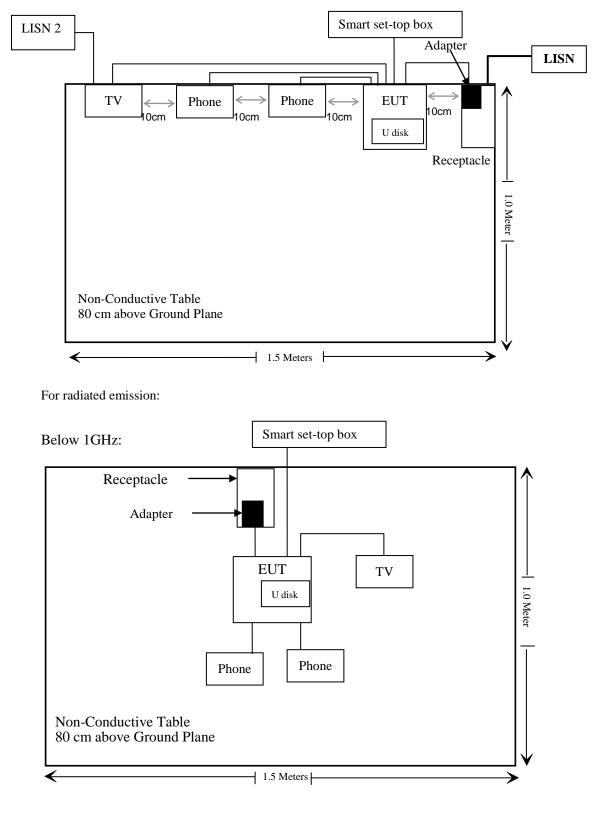
Special Accessories

N/A.

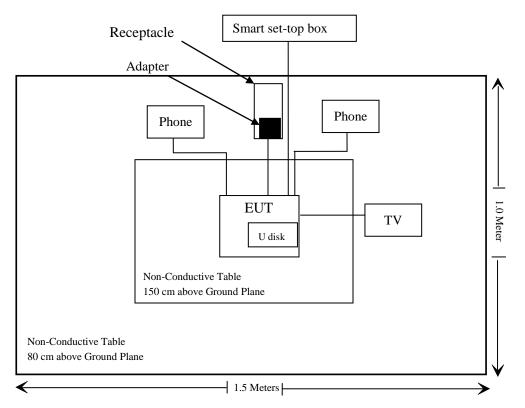
Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
Beijing Xiaomi Electronics Co.,Ltd.	TV	L43M5-ES	25131/114100057334
Hisense	Mobile phone	A5	860372041491400
Lenovo	Mobile phone	ZAL712AA601AB	HGEG78LJ
Kingston	U disk	Datatraveler G3	Unknown
Huawei	Smart set-top box	EC6109-T	9004001720

External I/O Cable


Cable Description	Length (m)	From/Port	То
Un-shielding Detachable DC Cable	1.0	EUT	Adapter
Un-shielding Detachable AUX IN Cable	1.0	EUT	Phone
Un-shielding Detachable Line IN Cable	1.5	EUT	Phone
Shielding Detachable HDMI Cable	2.0	EUT	TV
Un-shielding Detachable optical fiber Cable	1.5	EUT	Smart set-top box

Block Diagram of Test Setup

For conducted emission:

Above 1GHz:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§ 1.1310 & §2.1091	Maximum Permissible Exposure (MPE)	Compliant
§15.203	Antenna Requirement	Compliant
§15.207(a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliant
§15.247(a)(1)	20 dB Emission Bandwidth & 99% Occupied Bandwidth	Compliant
§15.247(a)(1)	Channel Separation Test	Compliant
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant
§15.247(b)(1)	Peak Output Power Measurement	Compliant
§15.247(d)	Band edges	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Conducted Emissions Test						
Rohde & Schwarz	EMI Test Receiver	ESCI	100784	2021/12/13	2022/12/12	
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2021/12/13	2022/12/12	
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2021/12/13	2022/12/12	
Unknown	RF Coaxial Cable	No.17	N0350	2021/12/14	2022/12/13	
	Conducted E		tware: e3 19821b (V9)		
		Radiated Emissi	ons Test			
Rohde & Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12	
Rohde & Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12	
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08	
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2021/11/09	2022/11/08	
Quinstar	Amplifier	QLW-184055 36-J0	15964001002	2021/11/11	2022/11/10	
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05	
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04	
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04	
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.16	N650	2021/12/14	2022/12/13	
	Radiated Er	nission Test Soft	ware: e3 19821b (V	/9)		
		RF Conducted	d Test			
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2021/12/13	2022/12/12	
Rohde & Schwarz	Open Switch and Control Unit	OSP120 + OSP-B157	101244 + 100866	2021/12/13	2022/12/12	
WEINSCHEL	10dB Attenuator	5324	AU 3842	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.33	RF-03	Each time		

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Version 11: 2021-11-09

FCC §1.1310 & §2.1091 –MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to KDB 447498 D04 Interim General RF Exposure Guidance v01, clause 2.1.4 – MPE-Based Exemption:

An alternative to the SAR-based exemption is provided in § 1.1307(b)(3)(i)(C), for a much wider frequency range, from 300 kHz to 100 GHz, applicable for separation distances greater or equal to $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. The MPE-based test exemption condition is in terms of ERP, defined as the product of the maximum antenna gain and the delivered maximum time-averaged power. For this case, a RF source is an RF exempt device if its ERP (watts) is no more than a frequency-dependent value, as detailed tabular form in Appendix B. These limits have been derived based on the basic specifications on Maximum Permissible Exposure (MPE) considered for the FCC rules in § 1.1310(e)(1).

Table to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation

RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	1,920 R ² .
1.34-30	3,450 R ² /f ² .
30-300	3.83 R ² .
300-1,500	0.0128 R ² f.
1,500-100,000	19.2R ² .

f = frequency in MHz;

R = minimum separation distance from the body of a nearby person (appropriate units, e.g., m);

Test Result

For worst case:

Mode	Frequency Range	-	Fune-up Output Power		Antenna Gain		RP	Evaluation Distance	ERP Limit
	(MHz)	(dBm)	(mW)	(dBi)	(dBd)	(dBm)	(mW)	(cm)	(mW)
BDR/EDR	2402-2480	1.5	1.41	3.38	1.23	2.73	1.87	20	768

Note 1: The tune-up power was declared by the applicant. Note 2: 0dBd=2.15dBi.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant.

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one Internal Antenna arrangement, which was permanently attached and the antenna gain is 3.38 dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliant.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Margin Calculation

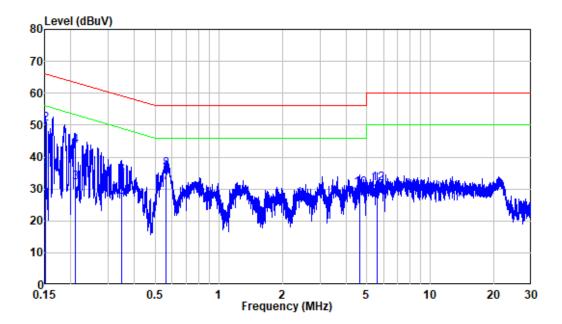
The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Factor = LISN VDF + Cable Loss

The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

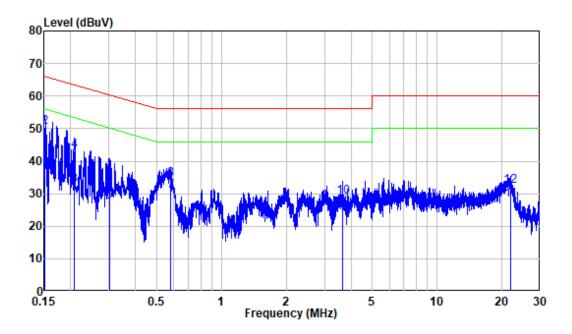
Test Data


Environmental Conditions

Temperature:	24 °C		
Relative Humidity:	43 %		
ATM Pressure:	101.0 kPa		

The testing was performed by Jason Liu on 2022-07-07.

EUT operation mode: BT transmitting


AC 120V/60 Hz, Line

Site	:	Shielding Room
Condition	:	Line
Job No.	:	SZ2220623-28107E-RF
Mode	:	BT Transmitting
Power	:	AC 120V 60Hz

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
		dB	dBuV	dBuV	dBuV	dB	
	MHz						
1	0.152	9.80	25.65	35.45	55.90	-20.45	Average
2	0.152	9.80	40.48	50.28	65.90	-15.62	QP
3	0.209	9.80	22.10	31.90	53.25	-21.35	Average
4	0.209	9.80	33.70	43.50	63.25	-19.75	QP
5	0.346	9.80	17.62	27.42	49.06	-21.64	Average
6	0.346	9.80	24.16	33.96	59.06	-25.10	QP
7	0.560	9.81	22.09	31.90	46.00	-14.10	Average
8	0.560	9.81	26.49	36.30	56.00	-19.70	QP
9	4.638	9.85	17.20	27.05	46.00	-18.95	Average
10	4.638	9.85	20.49	30.34	56.00	-25.66	QP
11	5.623	9.86	18.16	28.02	50.00	-21.98	Average
12	5.623	9.86	21.80	31.66	60.00	-28.34	QP

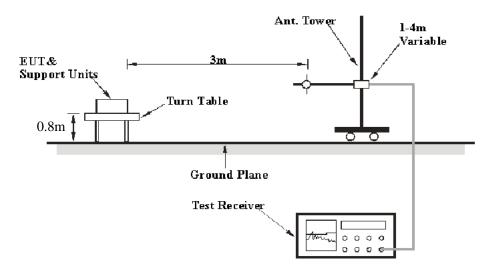
AC 120V/60 Hz, Neutral

Site :	Shielding Room
Condition	Neutral
Job No. :	SZ2220623-28107E-RF
Mode :	BT Transmitting
Power :	AC 120V 60Hz

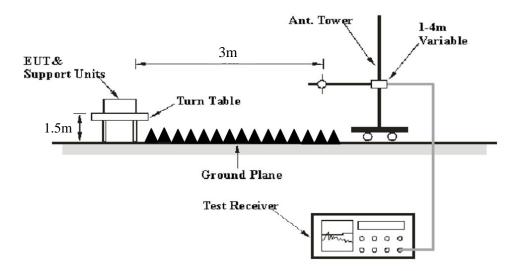
	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.152	9.80	26.95	36.75	55.91	-19.16	Average
2	0.152	9.80	40.57	50.37	65.91	-15.54	QP
3	0.208	9.80	22.85	32.65	53.27	-20.62	Average
4	0.208	9.80	33.46	43.26	63.27	-20.01	QP
5	0.301	9.80	17.77	27.57	50.20	-22.63	Average
6	0.301	9.80	25.59	35.39	60.20	-24.81	QP
7	0.578	9.81	20.94	30.75	46.00	-15.25	Average
8	0.578	9.81	24.72	34.53	56.00	-21.47	QP
9	3.644	9.84	15.18	25.02	46.00	-20.98	Average
10	3.644	9.84	19.05	28.89	56.00	-27.11	QP
11	21.801	10.12	18.03	28.15	50.00	-21.85	Average
12	21.801	10.12	22.24	32.36	60.00	-27.64	QP

Version 11: 2021-11-09

Shenzhen Accurate Technology Co., Ltd.


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	PK
Above I GHZ	1 MHz	10 Hz	/	Average

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

If the maximized peak measured value complies with the limit, then it is unnecessary to perform QP/Average measurement.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

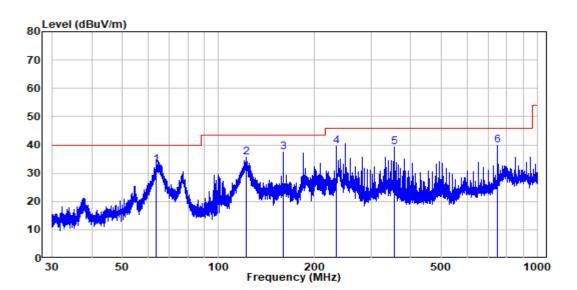
Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

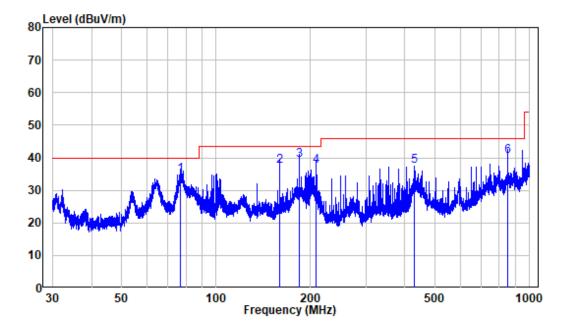
Environmental Conditions


Temperature:	24 °C
Relative Humidity:	61 %
ATM Pressure:	108.0 kPa

The testing was performed by Level Li on 2022-07-13.

EUT operation mode: Transmitting

(Scan with GFSK, $\pi/4$ -DQPSK, 8DPSK mode at X axis, Y axis, Z axis, the worst case is 8DPSK Mode at X axis)


Below 1GHz: 8DPSK Low Channel

Horizontal

Site : chamber Condition: 3m HORIZONTAL Job No. : SZ2220623-28107E-RF Test Mode: Transmitting

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	63.731	-12.06	44.92	32.86	40.00	-7.14	QP
2	121.922	-13.91	49.41	35.50	43.50	-8.00	Peak
3	159.714	-14.23	51.71	37.48	43.50	-6.02	Peak
4	233.451	-11.00	50.46	39.46	46.00	-6.54	Peak
5	356.363	-7.54	46.84	39.30	46.00	-6.70	Peak
6	750.108	-0.87	40.72	39.85	46.00	-6.15	Peak

Vertical

Site : chamber Condition: 3m VERTICAL Job No. : SZ2220623-28107E-RF Test Mode: Transmitting

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	76.781	-16.50	51.07	34.57	40.00	-5.43	QP
2	159.714	-14.23	51.55	37.32	43.50	-6.18	QP
3	184.328	-12.26	51.38	39.12	43.50	-4.38	QP
4	208.946	-11.85	49.24	37.39	43.50	-6.11	QP
5	430.088	-5.78	43.16	37.38	46.00	-8.62	Peak
6	850.290	0.36	40.06	40.42	46.00	-5.58	QP

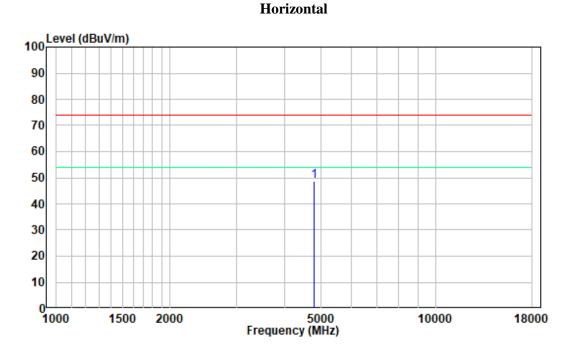
Above 1GHz	(worst case	for 8DPSK):
------------	-------------	-------------

Frequency	Recei	ver	Turntable Angle	Rx An	tenna	Factor	Absolute Level	Limit	Margin
(MHz)	Reading	PK/AV	Degree	Height	Polar	(dB / m)	(dBuV/m)	(dBuV/m)	(dB)
	(dBuV)	ΓΛ/Αν	Degree	(m)	(H/V)		````		
Low Channel									
2310	44.33	PK	331	1.3	Н	-7.23	37.1	74	-36.9
2310	44.98	РК	41	1.5	V	-7.23	37.75	74	-36.25
2390	43.07	РК	8	1.3	Н	-7.21	35.86	74	-38.14
2390	47.1	РК	358	2.2	V	-7.21	39.89	74	-34.11
4804	52.31	РК	336	1.9	Н	-3.52	48.79	74	-25.21
4804	53.29	РК	10	1.4	V	-3.52	49.77	74	-24.23
				Middle C	hannel				
4882	51.92	РК	286	1.7	Н	-3.37	48.55	74	-25.45
4882	47.41	РК	98	1.3	V	-3.37	44.04	74	-29.96
				High Ch	nannel				
2483.5	45.55	РК	178	1.8	Н	-7.2	38.35	74	-35.65
2483.5	45.62	РК	167	1.9	V	-7.2	38.42	74	-35.58
2500	45.5	РК	67	1.2	Н	-7.18	38.32	74	-35.68
2500	45.38	РК	334	1.1	V	-7.18	38.2	74	-35.8
4960	45.15	РК	117	1.6	Н	-3.01	42.14	74	-31.86
4960	46.39	PK	103	2.0	V	-3.01	43.38	74	-30.62

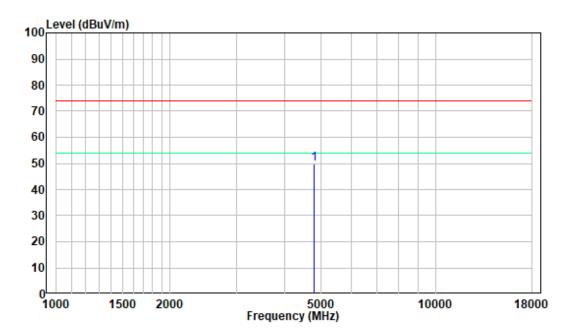
Note:

Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

Absolute Level (Corrected Amplitude) = Factor + Reading


Margin = Absolute Level (Corrected Amplitude) – Limit

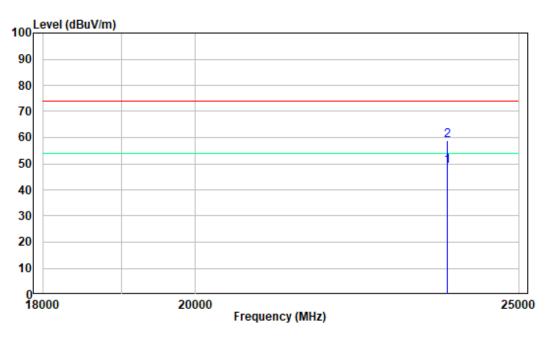
The other spurious emission which is in the noise floor level was not recorded.


For above 1GHz, the test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, so just peak value was recorded.

1 GHz - 18 GHz: (Pre-Scan plots)

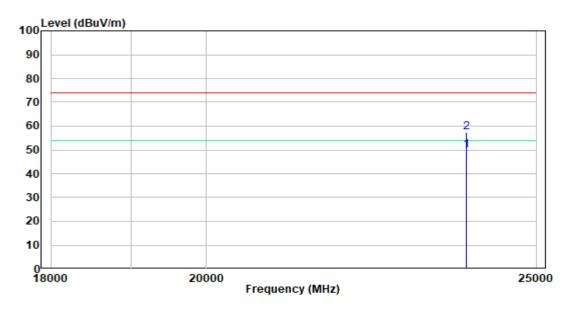
Worst case for 8DPSK Low Channel:

Vertical



Version 11: 2021-11-09

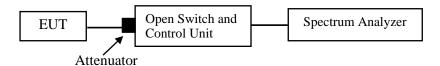
Shenzhen Accurate Technology Co., Ltd.


18-25GHz: (Pre-Scan plots)

Worst case for 8DPSK Low Channel:

Horizontal

Vertical


FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

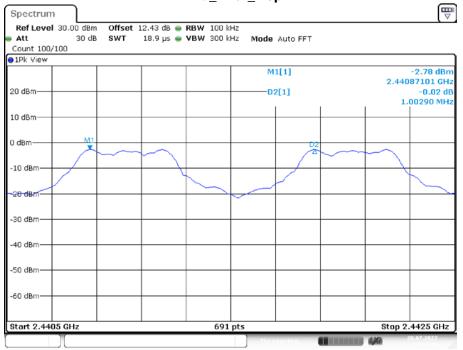
- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	23 °C
Relative Humidity:	51 %
ATM Pressure:	101.1 kPa

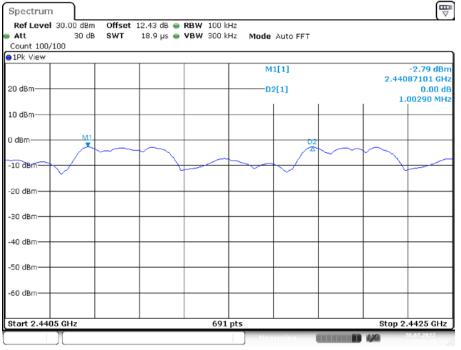
The testing was performed by Glenn Jiang on 2022-07-20.


EUT operation mode: Transmitting

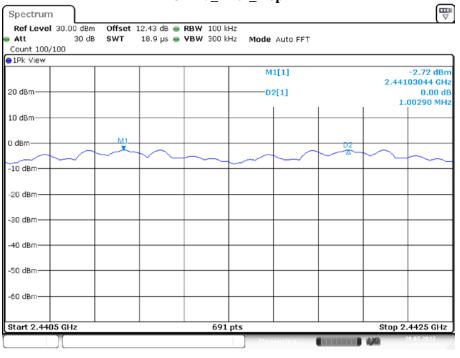
Test Result: Compliant.

TestMode	Antenna	Channel	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	1.003	>=0.474	PASS
2DH5	Ant1	Нор	1.003	>=0.748	PASS
3DH5	Ant1	Нор	1.003	>=0.842	PASS

Note: The limit = (2/3) * 20dB bandwidth


Please refer to the below plots:

DH5_Ant1_Hop


Date: 20.JUL.2022 17:28:09

2DH5_Ant1_Hop

Date: 20.JUL.2022 17:39:55

Shenzhen Accurate Technology Co., Ltd.

3DH5_Ant1_Hop

Date: 20.JUL.2022 17:53:54

FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH

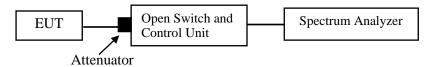
Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.


• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test Data

Environmental Conditions

Temperature:	23 °C	
Relative Humidity:	51 %	
ATM Pressure:	101.1 kPa	

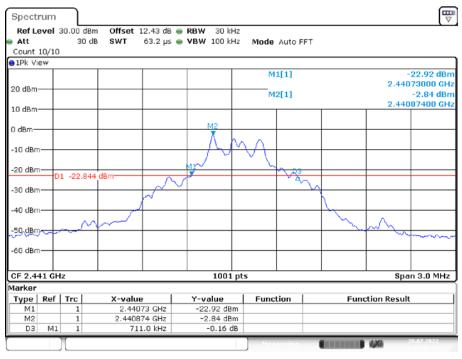
The testing was performed by Glenn Jiang on 2022-07-20.

EUT operation mode: Transmitting

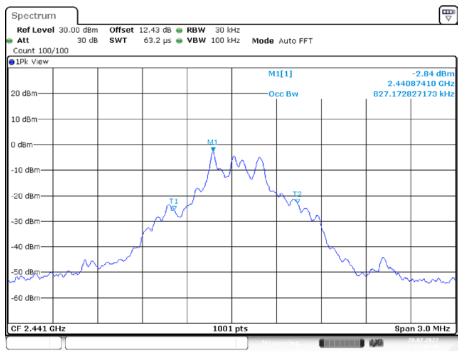
Test Result: Compliant.

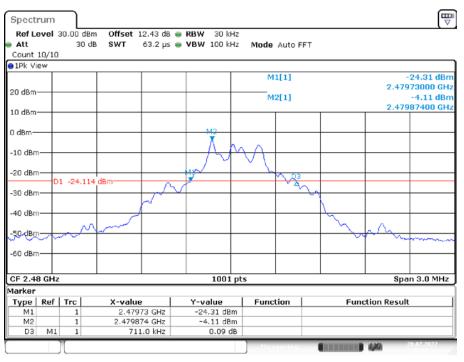
TestMode	Antenna	Channel	20db EBW[MHz]	99% OCCUPIED BANDWIDTH[MHz]	Verdict
DH5	Ant1	2402	0.711	0.824	PASS
		2441	0.711	0.827	PASS
		2480	0.711	0.827	PASS
2DH5	Ant1	2402	1.122	1.079	PASS
		2441	1.122	1.079	PASS
		2480	1.122	1.079	PASS
3DH5	Ant1	2402	1.263	1.157	PASS
		2441	1.263	1.157	PASS
		2480	1.263	1.157	PASS

Please refer to the below plots:

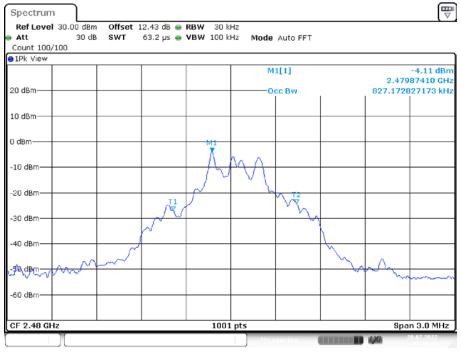

20 dB EMISSION BANDWIDTH_DH5_Ant1_2402

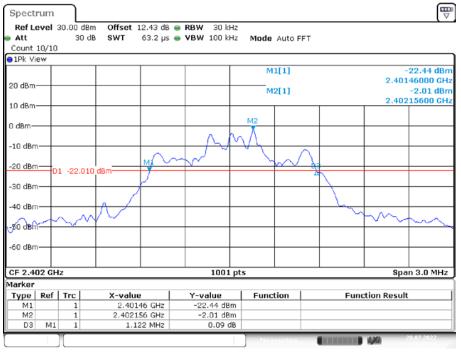
Date: 20.JUL.2022 17:06:26


Date: 20.JUL.2022 17:06:43

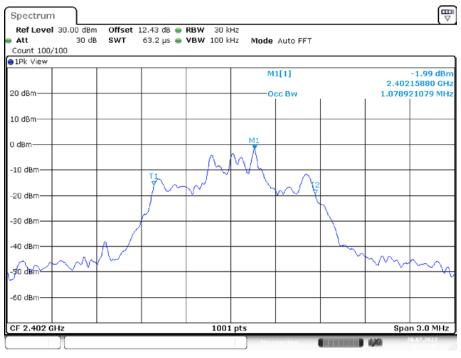

20 dB EMISSION BANDWIDTH_DH5 _Ant1_2441

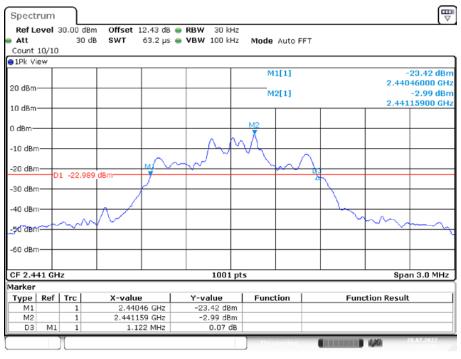
Date: 20.JUL.2022 17:10:29


Date: 20.JUL.2022 17:10:46


20 dB EMISSION BANDWIDTH_DH5 _Ant1_2480

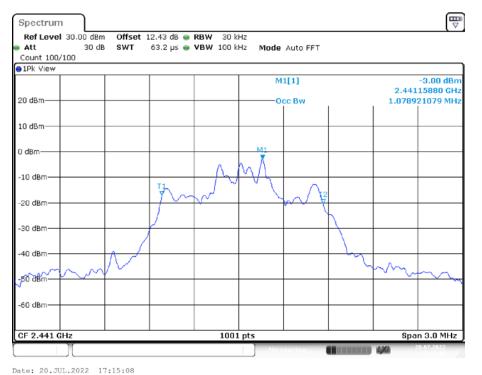
Date: 20.JUL.2022 17:12:11

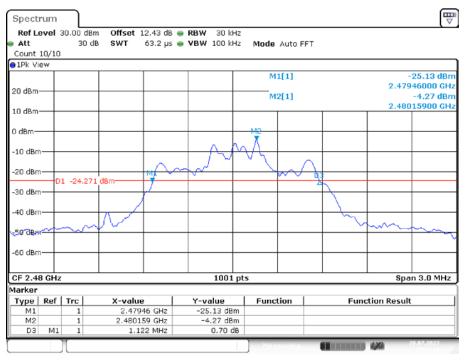

Date: 20.JUL.2022 17:12:28


20 dB EMISSION BANDWIDTH_2DH5 _Ant1_2402

Date: 20.JUL.2022 17:13:39

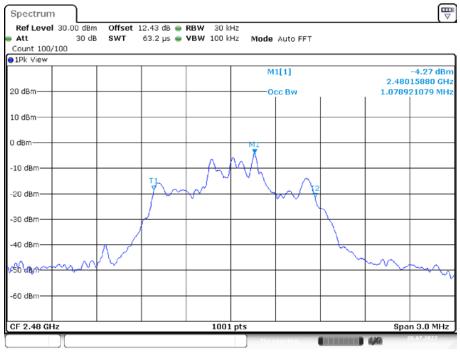
99% OCCUPIED BANDWIDTH_2DH5 _Ant1_2402

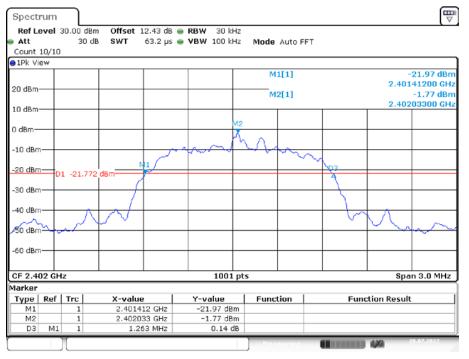

Date: 20.JUL.2022 17:13:56



20 dB EMISSION BANDWIDTH_2DH5 _Ant1_2441

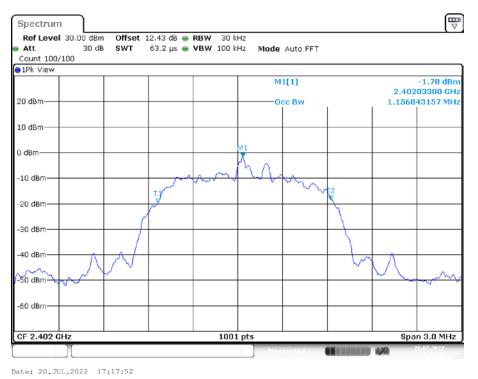
Date: 20.JUL.2022 17:14:51

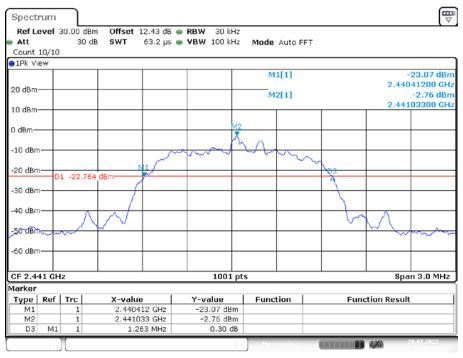



20 dB EMISSION BANDWIDTH _2DH5_Ant1_2480

Date: 20.JUL.2022 17:16:11

99% OCCUPIED BANDWIDTH _2DH5_Ant1_2480

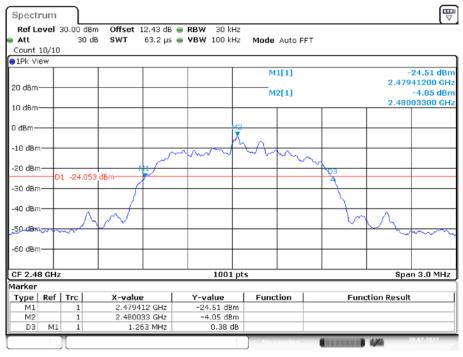

Date: 20.JUL.2022 17:16:28


20 dB EMISSION BANDWIDTH_3DH5_Ant1_2402

Date: 20.JUL.2022 17:17:35

99% OCCUPIED BANDWIDTH_3DH5_Ant1_2402

Version 11: 2021-11-09


20 dB EMISSION BANDWIDTH_3DH5_Ant1_2441

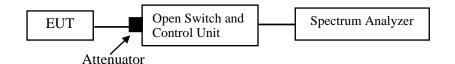
Date: 20.JUL.2022 17:19:54


Date: 20.JUL.2022 17:20:11

20 dB EMISSION BANDWIDTH_3DH5_Ant1_2480

Date: 20.JUL.2022 17:21:13

Date: 20.JUL.2022 17:21:30


FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

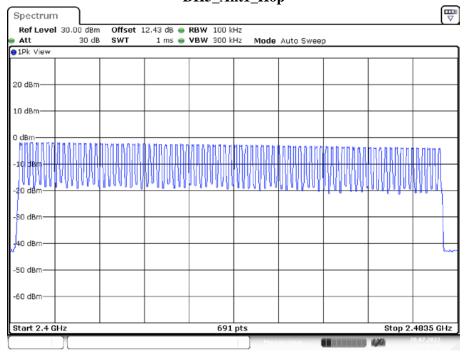
Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

Environmental Conditions

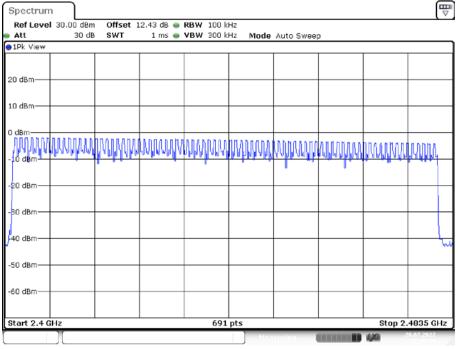
Temperature:	23°C
Relative Humidity:	51%
ATM Pressure:	101.1 kPa


The testing was performed by Glenn Jiang on 2022-07-20.

EUT operation mode: Transmitting

Test Result: Compliant.

TestMode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH5	Ant1	Нор	79	>=15	PASS
2DH5	Ant1	Нор	79	>=15	PASS
3DH5	Ant1	Нор	79	>=15	PASS


Please refer to the below plots:

DH5_Ant1_Hop

Date: 20.JUL.2022 17:30:17

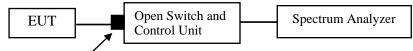
2DH5_Ant1_Hop

Date: 20.JUL.2022 17:45:18

			•			1111_11	P			_
Spectrum										
Ref Level Att	30.00 dBm 30 dB		12.43 dB 🗧 1 ms 🖷		100 kł 300 kł		e Auto Swe	ер		
1Pk View										
20 dBm										
10 dBm										
	M. U. MANANA	10.01.0.0.0	นสุขาวการเ	10666	ከብለል	11,00860	74 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	yuwww		140444
10 dBm	1 (V 1 1 V V V V V V V V V V V V V V V V	քուց թեց այլ ֆ	04000800	40000	ovuvj	chenall	IN NANYON	1 Printer Printer	an kahaaa	-VVVVV
-20 dBm										
30 dBm										
40 dBm										- L
-50 dBm				-						
-60 dBm										
Start 2.4 GI	Hz				691	pts				2.4835 GHz
	Π					M	easuring	CONTRACTOR	120	20.07.2022

3DH5_Ant1_Hop

Date: 20.JUL.2022 17:54:57


FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

Attenuator

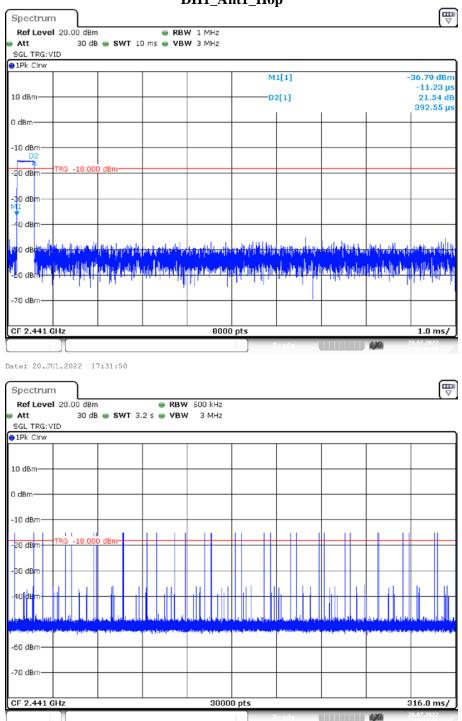
Test Data

Environmental Conditions

Temperature:	23 °C
Relative Humidity:	51 %
ATM Pressure:	101.1 kPa

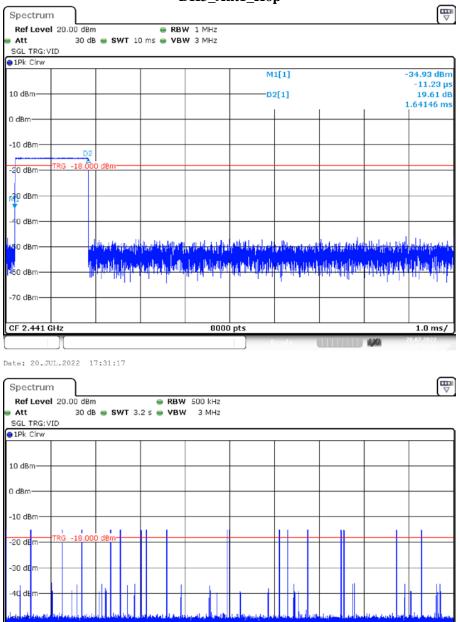
The testing was performed by Glenn Jiang on 2022-07-20.

EUT operation mode: Transmitting


Test Result: Compliant.

TestMode	Antenna	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH5	Ant1	Нор	0.39	320	0.126	<=0.4	PASS
DH3	Ant1	Нор	1.64	180	0.295	<=0.4	PASS
DH5	Ant1	Нор	2.88	130	0.375	<=0.4	PASS
2DH5	Ant1	Нор	0.40	320	0.129	<=0.4	PASS
2DH3	Ant1	Нор	1.65	150	0.247	<=0.4	PASS
2DH5	Ant1	Нор	2.89	100	0.289	<=0.4	PASS
3DH5	Ant1	Нор	0.41	320	0.13	<=0.4	PASS
3DH3	Ant1	Нор	1.65	160	0.264	<=0.4	PASS
3DH5	Ant1	Нор	2.89	120	0.347	<=0.4	PASS

Note 1: A period time=0.4*79=31.6(s), Result=Burst Width*Total Hops


Note 2: Total Hops =Hopping Number in 3.16s*10

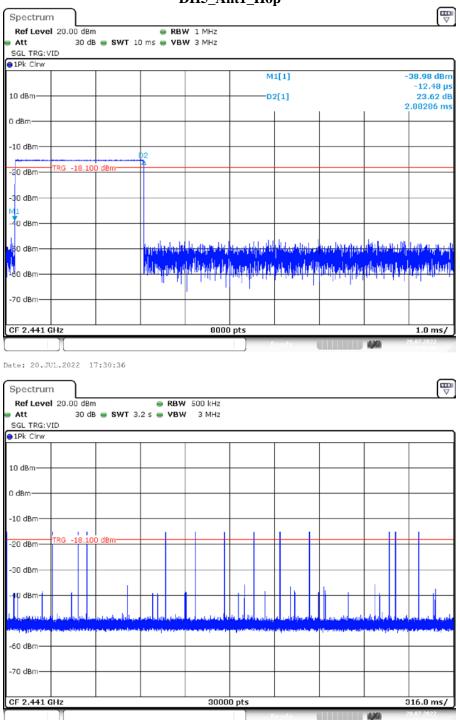
Note 3: Hoping Number in 3.16s=Total of highest signals in 3.16s (Second high signals were other channel)

DH1_Ant1_Hop

Date: 20.JUL.2022 17:31:55

DH3_Ant1_Hop

Date: 20.JUL.2022 17:31:22


-60 dBm-

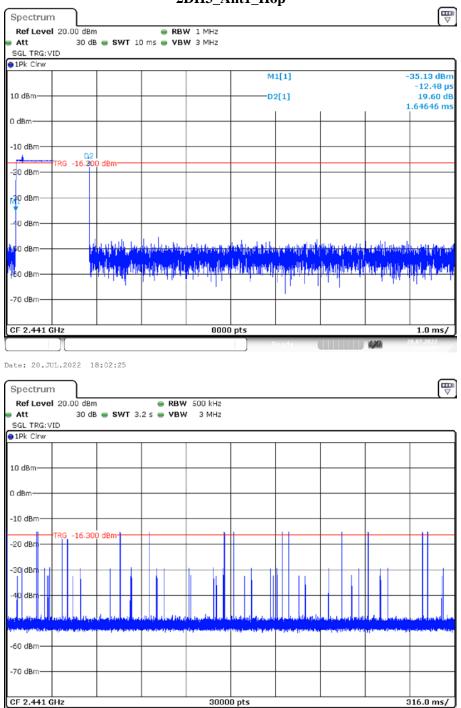
CF 2.441 GHz

Version 11: 2021-11-09


30000 pts

316.0 ms/

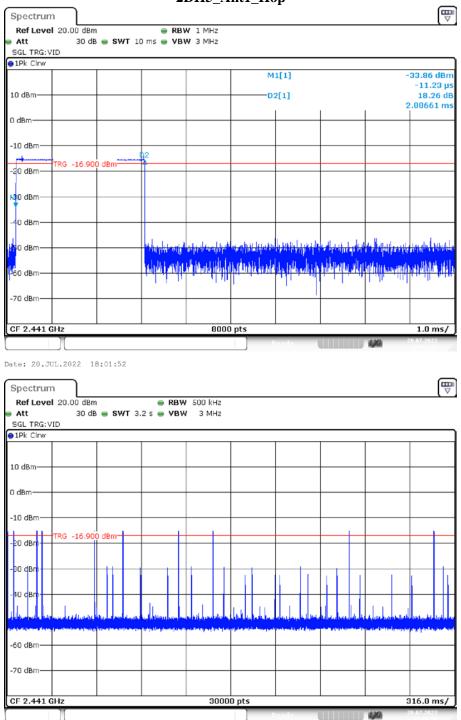
DH5_Ant1_Hop


Date: 20.JUL.2022 17:30:41

2DH1_Ant1_Hop

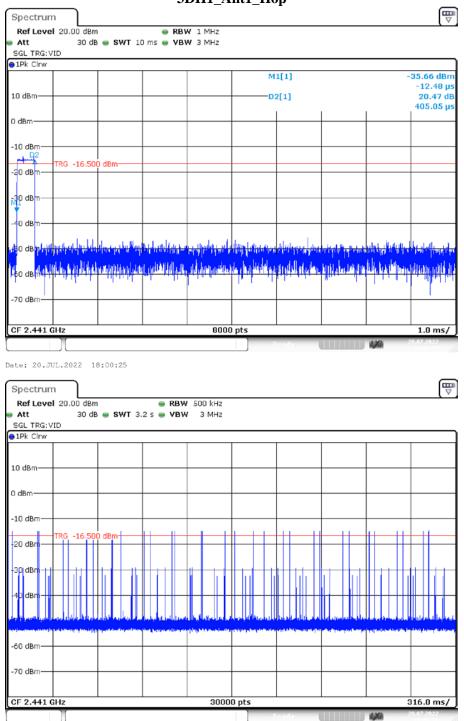
Date: 20.JUL.2022 18:03:03

44



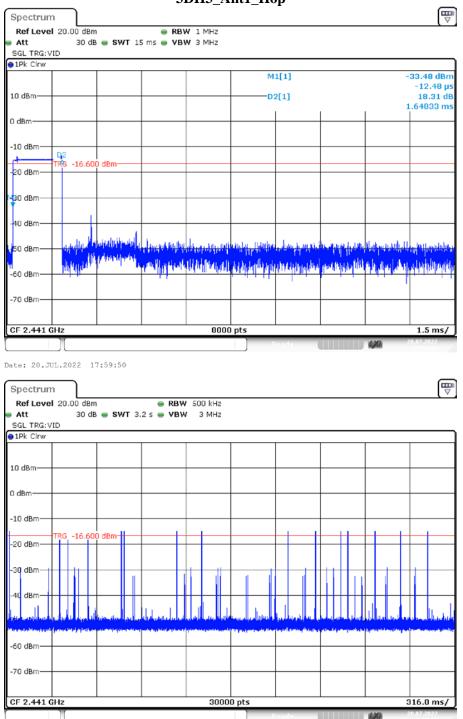
2DH3_Ant1_Hop

Date: 20.JUL.2022 18:02:30


Version 11: 2021-11-09

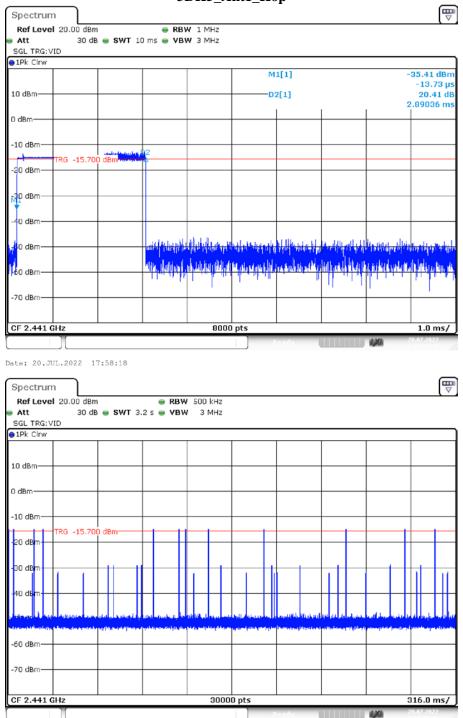
44

2DH5_Ant1_Hop


Date: 20.JUL.2022 18:01:59

3DH1_Ant1_Hop

Date: 20.JUL.2022 18:00:30


Version 11: 2021-11-09

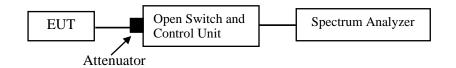
3DH3_Ant1_Hop

Date: 20.JUL.2022 17:59:56

Version 11: 2021-11-09

3DH5_Ant1_Hop

Date: 20.JUL.2022 17:58:24


FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

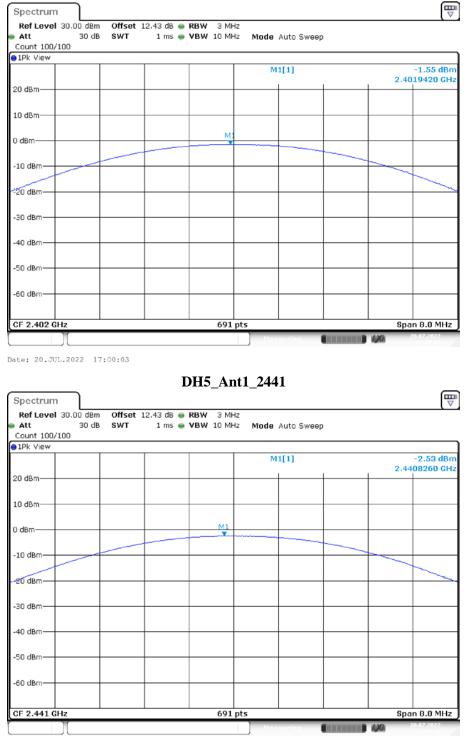
Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	23°C
Relative Humidity:	51 %
ATM Pressure:	101.1 kPa


The testing was performed by Glenn Jiang on 2022-07-20.

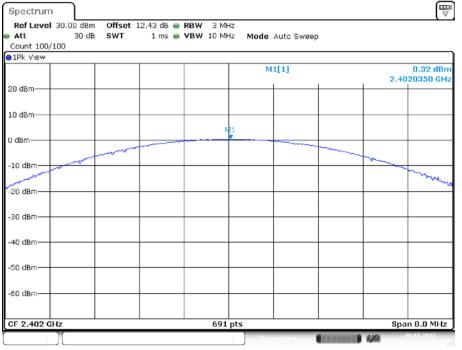
EUT operation mode: Transmitting

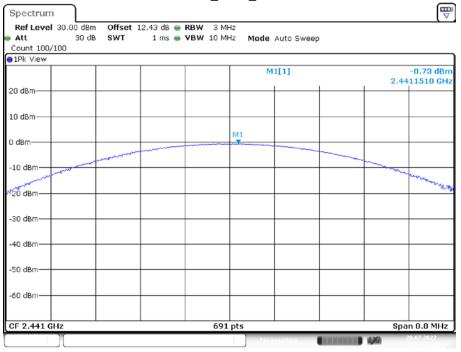
Test Result: Compliant.

TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	-1.55	<=20.97	PASS
DH5	Ant1	2441	-2.53	<=20.97	PASS
		2480	-3.78	<=20.97	PASS
	Ant1	2402	0.32	<=20.97	PASS
2DH5		2441	-0.73	<=20.97	PASS
		2480	-2.01	<=20.97	PASS
		2402	1.42	<=20.97	PASS
3DH5	Ant1	2441	0.33	<=20.97	PASS
		2480	-1	<=20.97	PASS

Please refer to the below plots:

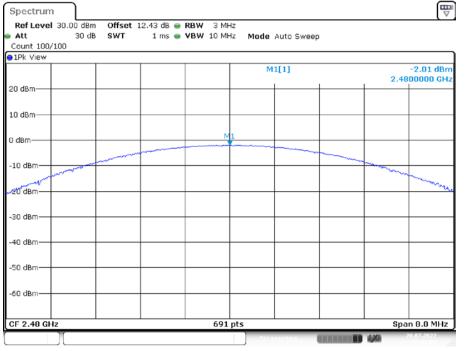
DH5_Ant1_2402

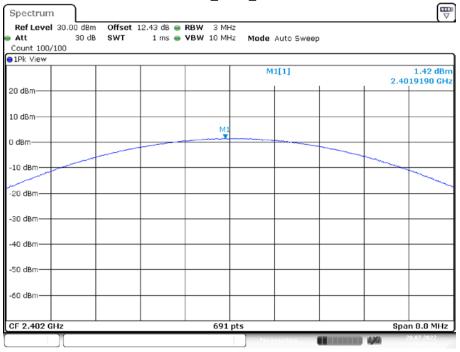

Date: 20.JUL.2022 17:00:49


DH5_Ant1_2480

Date: 20.JUL.2022 17:01:25

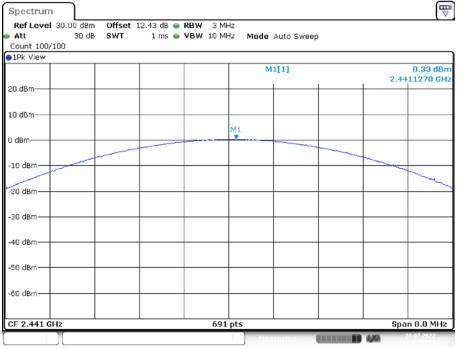
2DH5_Ant1_2402


Date: 20.JUL.2022 17:01:54


2DH5_Ant1_2441

Date: 20.JUL.2022 17:02:31

2DH5_Ant1_2480


Date: 20.JUL.2022 17:03:03

3DH5_Ant1_2402

Date: 20.JUL.2022 17:03:36

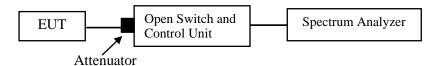
3DH5_Ant1_2441

Date: 20.JUL.2022 17:04:11

12.43 dB 😑 RBW З М	Hz		
1 ms 👄 VBW 10 M	Hz Mode Auto Sweep		
	M1[1]		-1.00 dBm 2.4801850 GHz
	I		2.4801850 GH2
	M1		
691	l pts		Span 8.0 MHz
	Measuring	4/4	20.07.2022
	1 ms • VBW 10 M	M1[1]	1 ms • VBW 10 MHz Mode Auto Sweep

3DH5_Ant1_2480

Date: 20.JUL.2022 17:04:37


FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

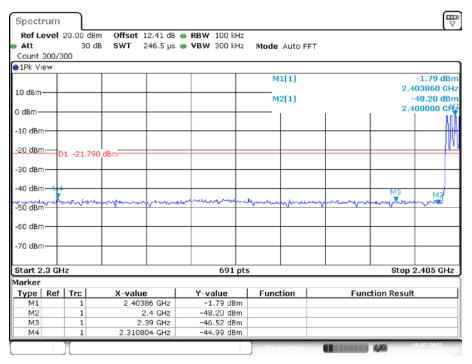
Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	23°C
Relative Humidity:	51 %
ATM Pressure:	101.1kPa


The testing was performed by Glenn Jiang on 2022-07-20.

EUT operation mode: Transmitting

Test Result: Compliant

Please refer to the below plots:

DH5: Band Edge-Left Side Hopping

Date: 20.JUL.2022 17:27:13

Single

Ref L	evel :	20.00 dB	m Offset 12.43 dB	RBW 100 kHz			
Att		30 d	dB SWT 246.5 μs	👄 VBW 300 kHz	Mode Auto I	FT	
Count	300/3	00					
∎1Pk Vi	ew						
					M1[1]		-1.81 dBr
10 dBm							2.401880 GH
20 00.00					M2[1]		-48.01 dBr
0 dBm-							2.400000 ¹ 0H
10 dBr	-		+				
-20 dBm	⊒=□	1 -21.81	0 dBm				
-30 dBm							
-30 UBII	'						
-40 dBm				M4			
							M3 M2
SØ UBri	-pop	والتقاليد والتعال	Ward and an operation of the second	your marine	mandera	a may have a share to be	and we all the second of the s
-60 dBri							
70 dBm							
-70 UBII	-						
Start 2		-		691 pt	-		Stop 2.405 GHz
larker	.5 GH	2		091 pt:	>		atop 2.403 GHz
Type	Ref	Trol	X-value	Y-value	Function	L Euro	ction Result
M1	Kei	1	2.40188 GHz	-1.81 dBm	Function	Fun	ction Result
M2		1	2.4 GHz	-48.01 dBm			
MЗ		1	2.39 GHz	-50.08 dBm			
M4		1	2.350522 GHz	-46.03 dBm			

Date: 20.JUL.2022 17:06:59

			noppi	9		
Spectrum						
Ref Level	20.00 dB	m Offset 12.43 de	3 👄 RBW 100 kHz			
Att	30 d	IB SWT 1.1 ms	5 👄 VBW 300 kHz	Mode Auto S	weep	
Count 300/3	00					
1Pk View						
				M1[1]		-3.72 dBn
10 dBm						2.470870 GH
				M2[1]		-42.57 dBn
dBm —						2.483500 GH
funnunun	UI					
+10 dBm++++	II.					
AN Y CLUCLEUCE	W.					
	1 -23.72	0 dBm				
-30 dBm						
-SO GBIII			MA			
-40 dBm	M2		M3 ^{M4}	and and a second se	-	مر السمود الم
-50 dBm						
-60 dBm						
-70 dBm						
-/0 ubiii						
Start 2.47 G	Hz		691 pts	;		Stop 2.55 GHz
larker						
	Trc	X-value	Y-value	Function	Fund	ion Result
M1	1	2.47087 GHz	-3.72 dBm			
M2 M3	1	2.4835 GHz 2.5 GHz	-42.57 dBm -42.06 dBm			
M3 M4	1	2.5 GHz 2.501652 GHz	-42.06 dBm			
	1	2.001052 GHz	-+0.79 UBIII			

DH5: Band Edge- Right Side Hopping

Date: 20.JUL.2022 17:36:24

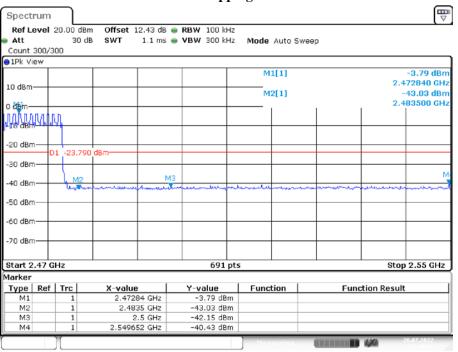
Ref L	evel :	20.00 dB	m Offset 12.43 dB	RBW 100 kHz			
Att		30 0	B SWT 1.1 ms	👄 VBW 300 kHz	Mode Auto S	weep	
Count	300/3	00					
1Pk Vi	ew						
					M1[1]		-4.10 dBn
LO dBm							2.479900 GH
LO UBIII					M2[1]		-43.95 dBn
dBm-		41					2.483500 GH
		¥.					
10 dBr	-+-	- 1					
		Л					
20 dBn		1					
aa da -		1 -24.10	iu asm				
30 dBr							
40 def		M2		13	M4		
A apu	hund	man	moundulan	Turdoman	mummun	mannewe	unementer warra
50 dBm	∩						
60 dBr	∩ − +						
70 dBm							
Start 2	.47 G	Hz		691 pt:	5		Stop 2.55 GHz
larker							
Type	Ref	Trc	X-value	Y-value	Function	Func	tion Result
M1		1	2.4799 GHz	-4.10 dBm			
M2		1	2.4835 GHz	-43.95 dBm			
M3		1	2.5 GHz	-43.21 dBm			
M4		1	2.521246 GHz	-40.99 dBm			

Single

Date: 20.JUL.2022 17:12:43

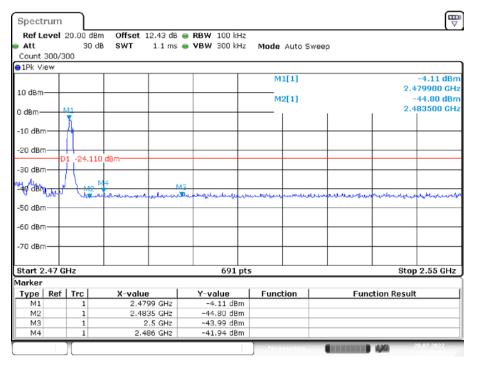
Version 11: 2021-11-09

2DH5: Band Edge-Left Side Hopping


Spectrur	L L	10	10 11 40				∇
Ref Leve				RBW 100 kHz VBW 300 kHz	Mada Auto I		
Count 300		0 UB 3 WI	240.5 µs (• • • • • • • • • • • • • • • • • • •	MODE AUTO P	FFI	
1Pk View	, 300						
					M1[1]		-1.79 dBr
10 dBm							2.403860 GH
					M2[1]		-48.03 dBr
) dBm			_				2.400000 GÅ
							M I
-10 dBm—							
-20 dBm							
20 UBM-	D1 -21	.790 dBm					
30 dBm							
-40 dBm				1014			M3 M2
50 dBm	may	menon	mounder	Marmon M.	monoran	un margin	money tours and
-50 abm							
-60 dBm			_				
-70 dBm		_					
Start 2.3 (Hz			691 pt	s		Stop 2.405 GHz
1arker							
Type Re	f Trc	X-val	ue	Y-value	Function	Fur	nction Result
M1	1	2.4	0386 GHz	-1.79 dBm			
M2	1		2.4 GHz	-48.03 dBm			
M3 M4	1		2.39 GHz	-47.59 dBm			
D/14	1	2.34	1391 GHz	-45.36 dBm			

Date: 20.JUL.2022 17:38:59

Single


	evel 20.	00 dBm	Offset 2	12.43 dB (BRBW 100 kHz				
Att		30 dB	SWT 2	246.5 µs (● VBW 300 kHz	Mode Auto F	FT		
Count	300/300								
1Pk Vi	ew								
						M1[1]			-1.86 dBr
LO dBm-								2.4	01880 GH
LO UBIII						M2[1]			48.09 dBi
) dBm—								2.4	00000
, abiii									- 1
10 dBm								_	A
									I
20 dBm		21.860	dBm		+				
		21.000	Gom						
30 dBm	1								
									- 7
40 dBm		M4						M3	MZ
Se den	under a la	4 June	ab - builder	the sure	my menterson	n nanh Lutanda	and the balance		And
Se abr	14-1-1-1			V					
60 dBm									
60 dBrr	1								
70 dBm	1				601 pt			Ston	2 405 CH
					691 pt:	5		Stop 2	2.405 GHz
70 dBm Start 2 larker	.3 GHz	ro	Y-value						2.405 GH2
70 dBm Start 2 Iarker Type	1		X-value 2 401		Y-value	s Function	Fu	Stop 2 Inction Result	2.405 GHz
70 dBm Start 2 larker Type M1	.3 GHz	1	2.401	88 GHz	Y-value -1.86 dBm		Fu		2.405 GHz
70 dBm Start 2 Iarker Type	.3 GHz		2.401		Y-value		Fu		2.405 GHz

Date: 20.JUL.2022 17:14:11

2DH5: Band Edge- Right Side Hopping

Date: 20.JUL.2022 17:49:42

Single

Date: 20.JUL.2022 17:16:43

Version 11: 2021-11-09

3DH5: Band Edge-Left Side Hopping

Spectrum								
Ref Level			dB 👄 RBW 100					
Att		dB SWT 246.5	µs 👄 VBW 300	kHz Mode	Auto FFT	F		
Count 300/3 1Pk View	300							
DIPK VIEW					[1]			1.00.10
I				IM1	[1]			-1.69 dBn 03100 GH:
10 dBm —					[1]			47.70 dBn
				1712	[1]			00000 GH
) dBm						1	1	AL.
-10 dBm								M
10 UBIII								
20 dBm-		00.40-						
	01 -21.6	90 dBm						
30 dBm —				+				
-40 dBm		- <u>M</u>		+ +			M3	ма
SO abm	moun	und the Manager power	Mummun	manne	ynnese	uman	Juney	man
-50 aBm •								
60 dBm								
-70 dBm		_						
I								
Start 2.3 G	17		69	1 pts			Ston 2	2.405 GHz
larker	12		07	1 pt5			0.00 2	
- arriter	Trc	X-value	Y-value	Funct	ion	Eun	ction Result	
M1	1	2.4031 GF				Fun	ction Result	
M2	1	2.4 GH						
M3	1	2.39 GH						
M4	1	2.321 GH						

Date: 20.JUL.2022 17:50:57

Single

Ref Le Att	evel	20.00 dBi 30 d		■ RBW 100 kHz ■ VBW 300 kHz	Mode Auto F	FFT	
Count :	300/3	00					
1Pk Vi	e₩						
					M1[1]		-1.75 dBr
LO dBm-	\rightarrow						2.402040 GH
					M2[1]		-47.93 dBr
) dBm—	\rightarrow						2.400000 👹
							Ι Ι Λ
10 dBm	-+-		+				
20 dBm	╘═╋╸	1 -21.75	D_dBm				
30 dBm							
40 dBm							
to ubii				M4			M3 M3
So dem	Mar Mary	اسحار يستريه	Same and a state of the second	4 m manution and a	متصفاقهم وسل وحقاهم	ilindre Mariada Wayneson	asperson and a strategy and a strate
60 dBm	+						
70 dBm	+						
Start 2	.3 GH	z		691 pt	s		Stop 2.405 GHz
larker							
Type	Ref	Trc	X-value	Y-value	Function	Euno	tion Result
M1		1	2.40204 GHz	-1.75 dBm			
M2		1	2.4 GHz	-47.93 dBm			
M3		1	2.39 GHz	-48.87 dBm			
141.5			2.342152 GHz	-46.52 dBm			

Date: 20.JUL.2022 17:18:07

3DH5: Band Edge- Right Side Hopping

			F	0		
Spectrum						
Ref Level	20.00 de	m Offset 12.43 dB	RBW 100 kHz			
Att	30	dB SWT 1.1 ms	VBW 300 kHz	Mode Auto S	weep	
Count 300/3	00		-			
1Pk View						
				M1[1]		-3.70 dBn
10 dBm						2.472030 GH
				M2[1]		-44.01 dBn
dia amagina di amag						2.483500 GH
MAMM	<u> </u>					
I						
-20 dBm						
	1 -23.70	JU dBm				
-30 dBm						
-40 dBm	M2		43	M4		
- to abili	and a	mound	Contendor na	mmun	mund	- moundan and working
-50 dBm						
I						
-60 dBm —						
-70 dBm						
Start 2.47 G	Hz		691 pts	:		Stop 2.55 GHz
larker						
Type Ref	Trc	X-value	Y-value	Function	Fun	ction Result
M1	1	2.47203 GHz	-3.70 dBm			
M2	1	2.4835 GHz	-44.01 dBm			
M3	1	2.5 GHz	-44.03 dBm			
M4	1	2.515565 GHz	-41.60 dBm			
	1			Measuring.		20.07.2022

Date: 20.JUL.2022 18:01:04

Single

	evel 2	20.00 dBr									
Att Count	200/20	30 d	B SWT 1.1 m	is 👄 VBW 300) kHz	Mode	Auto S	weep			
1Pk Vi		0									
						M	1[1]				-4.01 dBr
l0 dBm·										2.4	80010 GH
U UBIII						M	2[1]				42.95 dBr
dBm—	N	11			_					2.4	83500 GH
		Ă									
10 dBrr	+	1			+						
20 dBm											
20 080		1 -24.010) dBm								
30 dBm					_						
	11	1									
49 dBm		M2	monument	M3		-		maria	ted a she		
50 dBm											
эо авп											
60 dBm	-				_						
70 dBrr	+				+						
start 2	.47 Gł	Ηz		69	91 pts					Stop	2.55 GHz
larker											
Type	Ref	Trc	X-value	Y-value		Func	tion		Func	tion Result	:
M1		1	2.48001 GHz								
M2		1	2.4835 GHz								
M3		1	2.5 GHz 2.549652 GHz								

Date: 20.JUL.2022 17:21:45

***** END OF REPORT *****

Version 11: 2021-11-09