

TEST REPORT

Product : AMS lite
Trade mark : bambulab
Model/Type reference : SA005
Serial Number : N/A

Report Number : EED32P81159001

FCC ID : 2A6J8-SA005

Date of Issue : Aug. 29, 2023

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Shenzhen Tuozhu Technology Co., Ltd.
Room 201, Building A, No. 1 First Qianwan Road, Qianhai Shengang
Cooperation Zone, Shenzhen

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Approved by:

Report Seal

Firazer. Li

Reviewed by:

Tom Chen

n Ma

Date:

Aug. 29, 2023

Aaron Ma

Check No.:1254270723

Version

Page 2 of 51

Version No.	Date	Descr	iption
00	Aug. 29, 2023	Oriç	ginal
Cin)		Cia Cia	60

Page 3 of 51

Contents

1 VERS	0						Page
	ION						
	ENTS						
	SUMMARY						
	RAL INFORMATIO						
	LIENT INFORMATION ENERAL DESCRIPTION						
	EST ENVIRONMENT &						
	ESCRIPTION OF SUPPOR						
	EST LOCATIONEVIATION FROM STANI						
	BNORMALITIES FROM S						
	THER INFORMATION R EASUREMENT UNCERT						
	PMENT LIST						
•	RESULT AND MEA						
	NTENNA REQUIRMENT						
	LECTRIC FIELD STREN						
	ADIATED EMISSIONS						
_	REQUENCY STABILITY ODB OCCUPIED BAND						
	DIX 1 PHOTOGRAP						
	DIX 2 PHOTOGRAP						
ALL LIVE	DIX 21 HOTOGICAL	110 01 201	•••••••••••	••••••	•••••	•••••••	

Page 4 of 51

3 Test Summary


Test Item	FCC Test Requirement	Test Method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203	ANSI C63.10 2013	Pass
Conducted Emission (150KHz to 30MHz)	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	N/A
Electric Field Strength of Fundamental and Outside the Allocated bands	47 CFR Part 15, Subpart C Section 15.225(a)/(b)/(c)	ANSI C63.10 2013	Pass
Radiated Emission	47 CFR Part 15, Subpart C Section 15.225(d)/15.209	ANSI C63.10 2013	Pass
Frequency Tolerance	47 CFR Part 15, Subpart C Section 15.225(e)	ANSI C63.10 2013	Pass
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.215	ANSI C63.10 2013	Pass

Remark:

N/A:The product is powered by DC.

The product has four antennas, and only one antenna is in operation at a time during normal operation.

Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

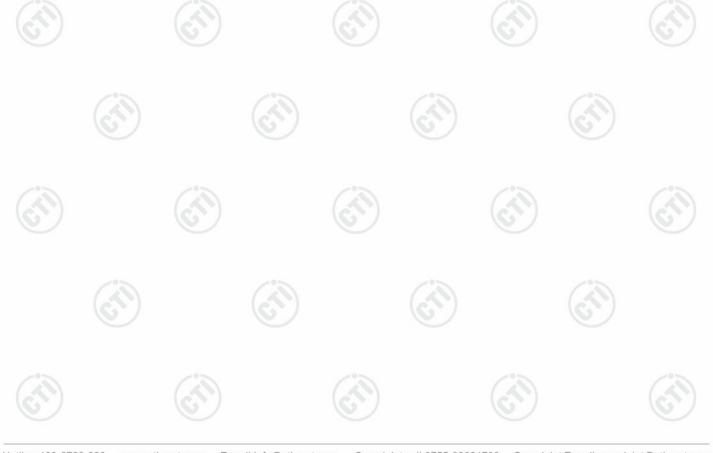
Client Information


19	Applicant:	Shenzhen Tuozhu Technology Co., Ltd.
	Address of Applicant:	Room 201, Building A, No. 1 First Qianwan Road, Qianhai Shengang Cooperation Zone, Shenzhen
	Manufacturer:	Shenzhen Tuozhu Technology Co., Ltd.
	Address of Manufacturer:	Room 201, Building A, No. 1 First Qianwan Road, Qianhai Shengang Cooperation Zone, Shenzhen
	Factory:	Shenzhen Tuozhu Technology Co., Ltd.
	Address of Factory:	Room 201, Building A, No. 1 First Qianwan Road, Qianhai Shengang Cooperation Zone, Shenzhen

General Description of E.U.T.

Product Name:	AMS lite
Model No.(EUT):	SA005
Trade Mark:	bambulab
Product Type:	☐ Mobile ☐ Portable ☒ Fix Location
Operation Frequency:	13.56MHz
Modulation Type:	ASK
Antenna Type:	Coil antenna
Power Supply:	DC 24.0V
Test voltage:	DC 24.0V
Sample Received Date:	Aug. 10, 2023
Sample tested Date:	Aug. 10, 2023 to Aug. 15, 2023

4.3 Test Environment & Test Mode


Operating Environment			
Radiated Emissions:			
Temperature:	24 °C		
Humidity:	64 % RH		
Atmospheric Pressure:	1010mbar	(3)	(3)
Test Mode:			
Test mode:	Keep EUT working in conticution cycle.	inuous transmitting mod	de with 100% duty

4.4 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Direct current source	KEYSIGHT	E3642A	FCC ID and DOC	CTI
(6,47)	(6.77)	(6,7)	(63	(2)

Test Location 4.5

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

4.6 **Deviation from Standards**

None.

4.7 **Abnormalities from Standard Conditions**

None.

Other Information Requested by the Customer 4.8

None.

Page 8 of 51

Measurement Uncertainty (95% confidence levels, k=2) 4.9

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
		3.3dB (9kHz-30MHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
41)		4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Page 9 of 51

Equipment List

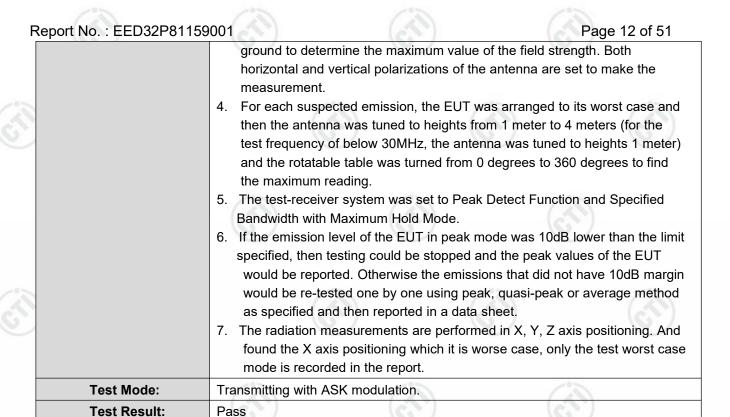
	3M Semi-and	echoic Chamber (2)- Radiated disturb	ance Test	
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber & Accessory Equipment	TDK	SAC-3	(4)	05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938-003	09/28/2022	09/27/2023
Spectrum Analyzer	R&S	FSV40	101200	07/25/2023	07/24/2024
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/15/2021	04/14/2024
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/23/2022	12/23/2023
Horn Antenna	A.H.SYSTEMS	SAS-574	374	05/29/2021	05/28/2024
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024
Preamplifier	Agilent	11909A	12-1	03/28/2023	03/27/2024
Preamplifier	CD	PAP-1840-60	6041.6042	07/03/2023	07/02/2024
Test software	Fara	EZ-EMC	EMEC-3A1-Pre) <u></u>
Cable line	Fulai(7M)	SF106	5219/6A	~~~	/
Cable line	Fulai(6M)	SF106	5220/6A	<u>(1)</u>	
Cable line	Fulai(3M)	SF106	5216/6A		
Cable line	Fulai(3M)	SF106	5217/6A	(6	<u> </u>

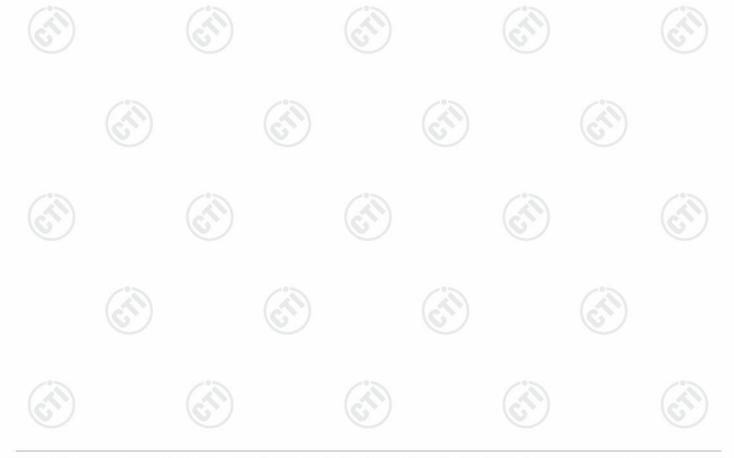
Page 10 of 51

Test Result and Measurement Data

Antenna Requirment

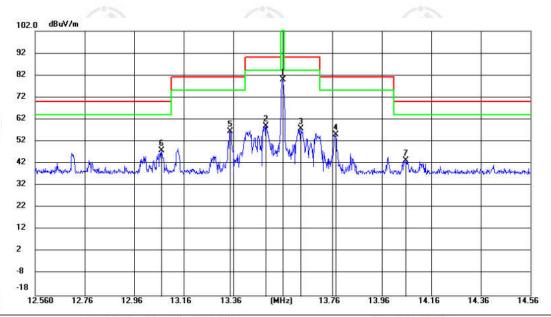
Standard requirement:	47 CFR Part15 C Section 1	15.203	
15.203 requirement:	other than that furnished by device. The use of a perr that uses a unique coupling may design the unit so that	all be designed to ensure t y the responsible party shall to manently attached antenna o g to the intentional radiator, the at a broken antenna can be andard antenna jack or electric	oe used with the r of an antenna ne manufacturer replaced by the
EUT Antenna:	(*)		
The antenna is coil antenn	na and integrated on the main	n PCB and no consideration o	of replacement.




Page 11 of 51

6.2 Electric Field Strength of Fundamental and Outside the Allocated bands

Bullac					
Test Requirement:	47 CFR Part 15, Subpart 0	Section 15.225	(a)/(b)/(c)		
Test Method:	ANSI C63.10: 2013				
Test Site:	3m (Semi-Anechoic Cham	ber)			
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
Limit:	Frequency Range(MHz)	E-field Strengtl @ 30 m (µ\			Strength Limit m (dBµV/m)
	13.560 ± 0.007	15848		(2)	124
	13.410 to 13.553 13.567 to 13.710	334			90
	13.110 to 13.410	106			81
	Note: Where the limits hat measured at another following formula: Extrapolation(dB)=40log10	her, the limits	have bee	en extrapo	plated using
Test Setun:	Note: Where the limits hat measured at another	her, the limits	have bee	en extrapo	plated using
Test Setup:	Note: Where the limits hat measured at another following formula:	her, the limits	have bee	en extrapo	olated using
Test Setup: Test Procedure:	Note: Where the limits hat measured at another following formula: Extrapolation(dB)=40log ₁₀	Ground Plane Figure 1. Beloon the top of a roemi-anechoic car	w 30MHz tating table inber. The table	Receiver 0.8 meter	olated using in Distance)



Page 13 of 51

Antenna 1 Measurement Data:

Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
13.5600	59.50	20.35	79.85	124.00	-44.15	peak			
13.4920	38.68	20.35	59.03	90.00	-30.97	peak			
13.6329	37.44	20.35	57.79	90.00	-32.21	peak			
13.7739	34.77	20.35	55.12	81.00	-25.88	peak			
13.3480	36.31	20.35	56.66	81.00	-24.34	peak			
13.0700	27.55	20.35	47.90	70.00	-22.10	peak			
14.0570	22.91	20.34	43.25	70.00	-26.75	peak			
	MHz 13.5600 13.4920 13.6329 13.7739 13.3480 13.0700	MHz dBuV 13.5600 59.50 13.4920 38.68 13.6329 37.44 13.7739 34.77 13.3480 36.31 13.0700 27.55	Freq. Level Factor MHz dBuV dB 13.5600 59.50 20.35 13.4920 38.68 20.35 13.6329 37.44 20.35 13.7739 34.77 20.35 13.3480 36.31 20.35 13.0700 27.55 20.35	Freq. Level Factor ment MHz dBuV dB dBuV/m 13.5600 59.50 20.35 79.85 13.4920 38.68 20.35 59.03 13.6329 37.44 20.35 57.79 13.7739 34.77 20.35 55.12 13.3480 36.31 20.35 56.66 13.0700 27.55 20.35 47.90	Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 13.5600 59.50 20.35 79.85 124.00 13.4920 38.68 20.35 59.03 90.00 13.6329 37.44 20.35 57.79 90.00 13.7739 34.77 20.35 55.12 81.00 13.3480 36.31 20.35 56.66 81.00 13.0700 27.55 20.35 47.90 70.00	Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB dBuV/m dB dB dBuV/m dB dB dB dB dB dB uV/m dB dB dB dB uV/m dB dB dB uV/m dB dB uV/m uV/m	Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB Detector 13.5600 59.50 20.35 79.85 124.00 -44.15 peak 13.4920 38.68 20.35 59.03 90.00 -30.97 peak 13.6329 37.44 20.35 57.79 90.00 -32.21 peak 13.7739 34.77 20.35 55.12 81.00 -25.88 peak 13.3480 36.31 20.35 56.66 81.00 -24.34 peak 13.0700 27.55 20.35 47.90 70.00 -22.10 peak	Freq. Level Factor ment Limit Margin Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 13.5600 59.50 20.35 79.85 124.00 -44.15 peak 13.4920 38.68 20.35 59.03 90.00 -30.97 peak 13.6329 37.44 20.35 57.79 90.00 -32.21 peak 13.7739 34.77 20.35 55.12 81.00 -25.88 peak 13.3480 36.31 20.35 56.66 81.00 -24.34 peak 13.0700 27.55 20.35 47.90 70.00 -22.10 peak	Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dB dBuV/m dB uV/m dB Detector cm degree 13.5600 59.50 20.35 79.85 124.00 -44.15 peak 13.4920 38.68 20.35 59.03 90.00 -30.97 peak 13.6329 37.44 20.35 57.79 90.00 -32.21 peak 13.7739 34.77 20.35 55.12 81.00 -25.88 peak 13.3480 36.31 20.35 56.66 81.00 -24.34 peak 13.0700 27.55 20.35 47.90 70.00 -22.10 peak

Remark:

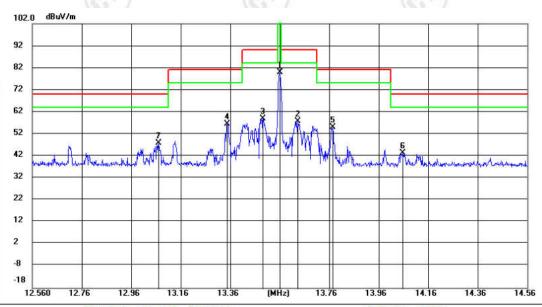
Only the worst case data of X axis positioning was recorded in the report.

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier.

The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,



Antenna 2 Measurement Data:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	13.5600	59.50	20.35	79.85	124.00	-44.15	peak			
2	13.6330	37.44	20.35	57.79	90.00	-32.21	peak			
3	13.4920	38.68	20.35	59.03	90.00	-30.97	peak			
4	13.3480	36.31	20.35	56.66	81.00	-24.34	peak			
5	13.7740	34.77	20.35	55.12	81.00	-25.88	peak			
6	14.0570	22.91	20.34	43.25	70.00	-26.75	peak			
7 *	13.0700	27.55	20.35	47.90	70.00	-22.10	peak			

Remark:

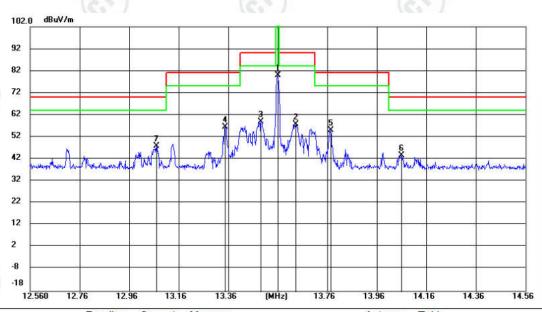
Only the worst case data of X axis positioning was recorded in the report.

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier.

The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,



Antenna 3 Measurement Data:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	13.5600	59.50	20.35	79.85	124.00	-44.15	peak			
2	13.6330	37.44	20.35	57.79	90.00	-32.21	peak			
3	13.4920	38.68	20.35	59.03	90.00	-30.97	peak			
4	13.3480	36.31	20.35	56.66	81.00	-24.34	peak			
5	13.7740	34.77	20.35	55.12	81.00	-25.88	peak			
6	14.0590	23.26	20.34	43.60	70.00	-26.40	peak			
7 *	13.0700	27.55	20.35	47.90	70.00	-22.10	peak			

Remark:

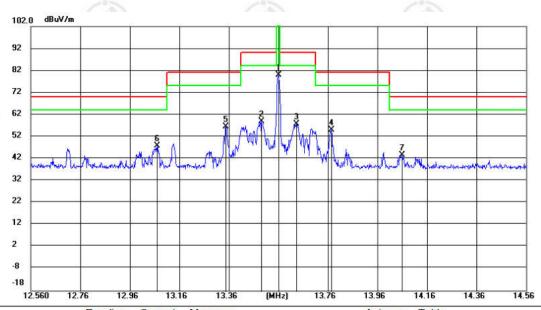
Only the worst case data of X axis positioning was recorded in the report.

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier.

The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,



Page 16 of 51

Antenna 4 Measurement Data:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	13.5600	59.50	20.35	79.85	124.00	-44.15	peak			
2	13.4920	38.68	20.35	59.03	90.00	-30.97	peak			
3	13.6330	37.44	20.35	57.79	90.00	-32.21	peak			.55
4	13.7740	34.77	20.35	55.12	81.00	-25.88	peak			13
5	13.3480	36.31	20.35	56.66	81.00	-24.34	peak			*
6 *	13.0700	27.55	20.35	47.90	70.00	-22.10	peak			10
7	14.0590	23.26	20.34	43.60	70.00	-26.40	peak			-

Remark:

Only the worst case data of X axis positioning was recorded in the report.

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier.

The basic equation with a sample calculation is as follows:

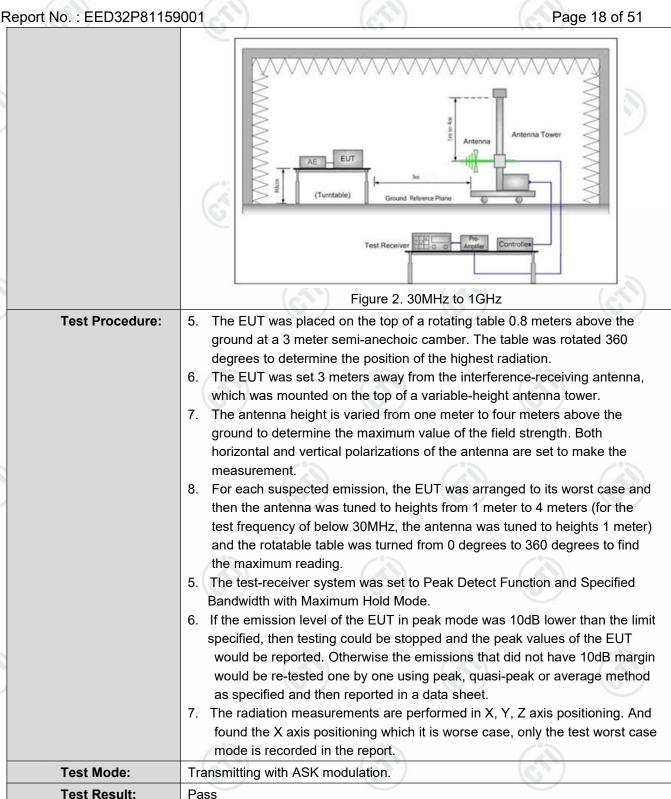
Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

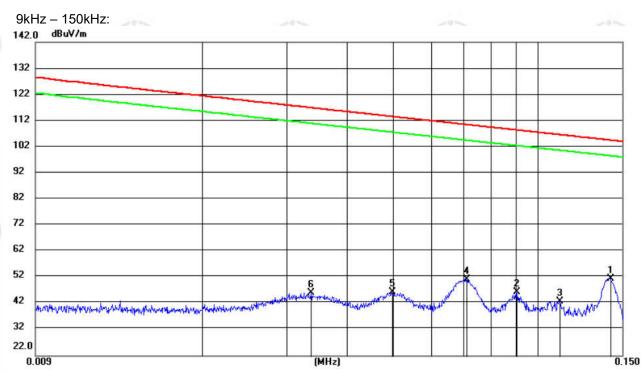
Level = Read Level + Factor,

Page 17 of 51

Radiated Emissions

Radiated Emiss	ions				
Test Requirement:	47 CFR Part 15C Section	on 15.209 and 15.2	25(d),		
Test Method:	ANSI C63.10: 2013				7.5
Test Site:	3m (Semi-Anechoic Cha	amber)	(85)		(27)
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	z Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	z Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	z Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	z Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	z Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Peak	100 kHz	300kHz	Peak
Limit:	Frequency	Field strength (microvolt/mete		it (dBuV/m) @ 3 m	Remark
	0.009MHz-0.490MHz	2400/F(kHz) @3	00m 12	28.5-93.8	Quasi-peak
	0.490MHz-1.705MHz	24000/F(kHz) @3	30m	73.8-63	Quasi-peak
	1.705MHz-30MHz	30 @30m		70	Quasi-peak
	30MHz-88MHz	100 @3m		40.0	Quasi-peak
	88MHz-216MHz	150 @3m		43.5	Quasi-peak
	216MHz-960MHz	200 @3m	(in)	46.0	Quasi-peak
	960MHz-1GHz	500 @3m	(62)	54.0	Quasi-peak
	Note: Where the limits measured at ar following formula Extrapolation(dB)=40lo	nother, the limits	have bee	en extrapo	lated using t
Test Setup:	0.8 m	3 m Turn Table Ground Plane	· · ·	RX Antenna	
		Figure 1. Belo	L www.30MHz		-1





Page 19 of 51

Antenna 1 Measurement Data

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	Į.	Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	0.1416	31.05	20.56	51.61	104.52	-52.91	peak	100	317	
2		0.0902	25.82	20.61	46.43	108.41	-61.98	peak	100	7	
3		0.1113	22.44	20.55	42.99	106.59	-63.60	peak	100	7	
4		0.0710	30.71	20.64	51.35	110.48	-59.13	peak	100	317	
5		0.0497	25.77	20.72	46.49	113.55	-67.06	peak	100	7	
6		0.0337	25.38	20.76	46.14	116.91	-70.77	peak	100	327	

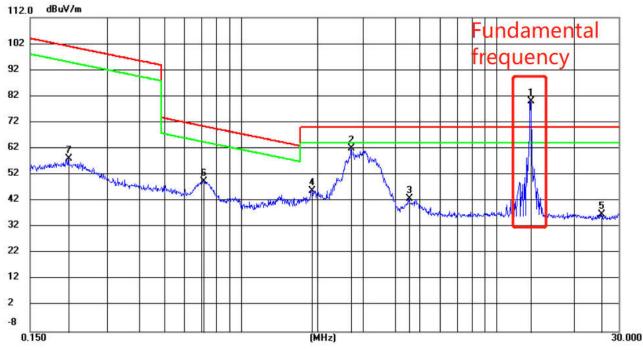
Remark:

Only the worst case data of X axis positioning was recorded in the report.

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,



Page 20 of 51

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	13.5580	59.79	20.35	80.14	70.00	10.14	peak			
2		2.6996	41.77	20.37	62.14	70.00	-7.86	peak			
3		4.5265	22.33	20.38	42.71	70.00	-27.29	peak			
4		1.8979	25.55	20.39	45.94	70.00	-24.06	peak			
5		25.6251	16.37	20.42	36.79	70.00	-33.21	peak			
6		0.7157	28.93	20.43	49.36	70.52	-21.16	peak			
7		0.2121	37.74	20.54	58.28	101.03	-42.75	peak			
								110			

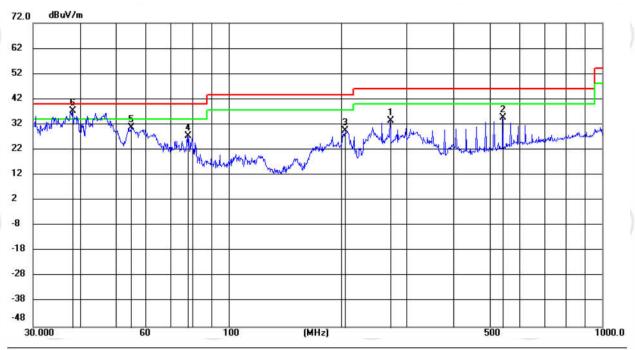
Remark:

Only the worst case data of X axis positioning was recorded in the report.

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,



30MHz-1GHz Horizontal

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		271.2294	17.10	16.25	33.35	46.00	-12.65	peak	199	251	
2		542.4176	12.10	22.60	34.70	46.00	-11.30	peak	100	54	
3		205.1348	15.57	13.95	29.52	43.50	-13.98	peak	199	283	
4		77.8380	17.66	9.85	27.51	40.00	-12.49	peak	199	219	
5		54.9503	16.88	13.92	30.80	40.00	-9.20	peak	100	246	
6	*	38.3126	23.17	14.23	37.40	40.00	-2.60	peak	199	283	

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Page 22 of 51

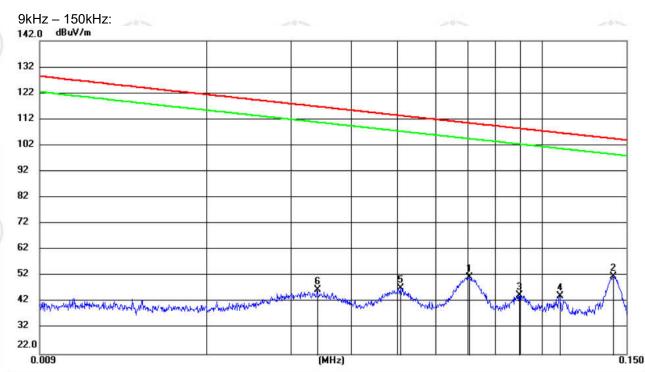
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	38.3194	20.77	14.23	35.00	40.00	-5.00	peak	100	262	
2		123.2438	17.65	10.72	28.37	43.50	-15.13	peak	100	262	
3		239.1473	24.18	15.14	39.32	46.00	-6.68	peak	100	262	
4		542.4176	9.96	22.60	32.56	46.00	-13.44	peak	100	70	
5		54.6812	11.70	13.95	25.65	40.00	-14.35	peak	100	240	
6		352.5723	15.50	18.38	33.88	46.00	-12.12	peak	100	262	

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,



Page 23 of 51

Antenna 2 Measurement Data

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	0.0707	30.80	20.64	51.44	110.51	-59.07	peak	100	299	
2 *	0.1409	31.37	20.56	51.93	104.56	-52.63	peak	100	299	
3	0.0897	24.01	20.61	44.62	108.46	-63.84	peak	100	352	
4	0.1089	23.90	20.54	44.44	106.78	-62.34	peak	100	352	
5	0.0507	26.59	20.72	47.31	113.38	-66.07	peak	100	352	
6	0.0341	26.12	20.76	46.88	116.81	-69.93	peak	100	288	

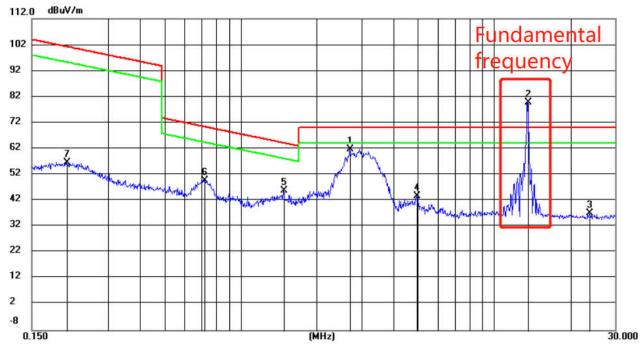
Remark:

Only the worst case data of X axis positioning was recorded in the report.

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,



Page 24 of 51

150kHz-30MHz:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2.6989	41.53	20.37	61.90	70.00	-8.10	peak			
2	*	13.5652	59.51	20.35	79.86	70.00	9.86	peak			
3		23.7238	16.76	20.40	37.16	70.00	-32.84	peak			
4		4.9413	23.43	20.39	43.82	70.00	-26.18	peak			
5		1.4756	25.32	20.40	45.72	64.25	-18.53	peak			
6		0.7165	29.33	20.43	49.76	70.51	-20.75	peak			
7		0.2058	36.18	20.54	56.72	101.29	-44.57	peak			

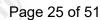
Remark:

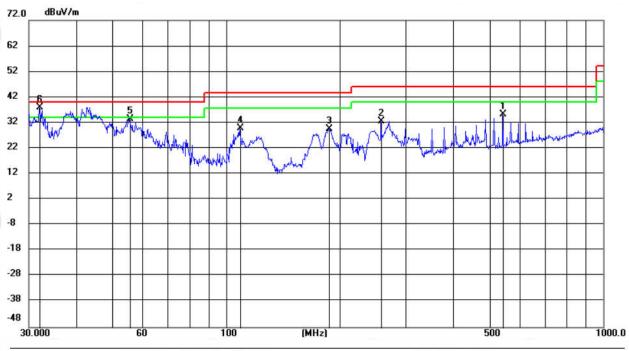
Only the worst case data of X axis positioning was recorded in the report.

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,





30MHz-1GHz Horizontal

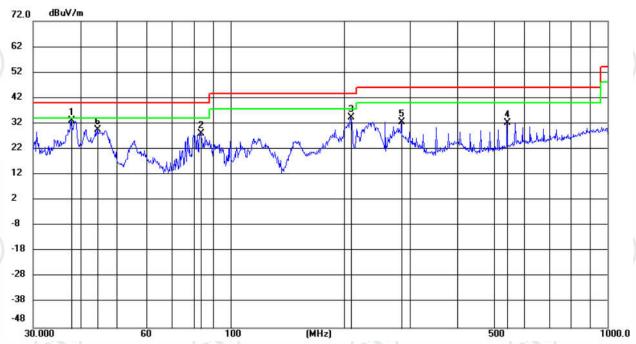
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		542.4176	12.59	22.60	35.19	46.00	-10.81	peak	100	54	
2		257.6479	16.81	15.78	32.59	46.00	-13.41	peak	199	81	
3		187.7200	17.87	11.64	29.51	43.50	-13.99	peak	100	309	
4		108.8949	17.15	12.78	29.93	43.50	-13.57	peak	100	288	
5		55.5119	19.52	13.88	33.40	40.00	-6.60	peak	100	267	
6	*	32.0500	24.90	13.12	38.02	40.00	-1.98	peak	100	320	

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,



Page 26 of 51

Vertical

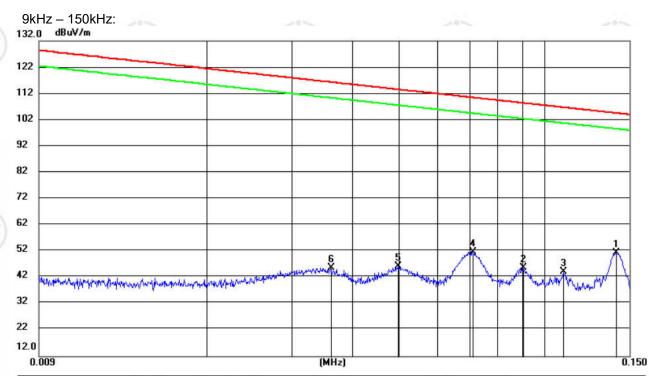
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	37.9383	18.86	14.16	33.02	40.00	-6.98	peak	200	331	
2		83.4051	17.22	10.78	28.00	40.00	-12.00	peak	200	331	
3		208.7998	20.20	14.09	34.29	43.50	-9.21	peak	200	342	
4		542.4176	9.62	22.60	32.22	46.00	-13.78	peak	100	71	
5		284.7769	15.97	16.72	32.69	46.00	-13.31	peak	100	71	
6		44.3373	15.24	14.42	29.66	40.00	-10.34	peak	200	352	

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,



Page 27 of 51

Antenna 3 Measurement Data

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	0.1409	31.00	20.56	51.56	104.56	-53.00	peak	100	314	
2		0.0902	25.11	20.61	45.72	108.41	-62.69	peak	100	7	
3		0.1096	23.62	20.54	44.16	106.73	-62.57	peak	100	360	
4		0.0711	31.11	20.64	51.75	110.46	-58.71	peak	100	314	
5		0.0498	25.58	20.72	46.30	113.54	-67.24	peak	100	360	
6		0.0362	24.90	20.76	45.66	116.29	-70.63	peak	100	336	
			7/1////////////////////////////////////								

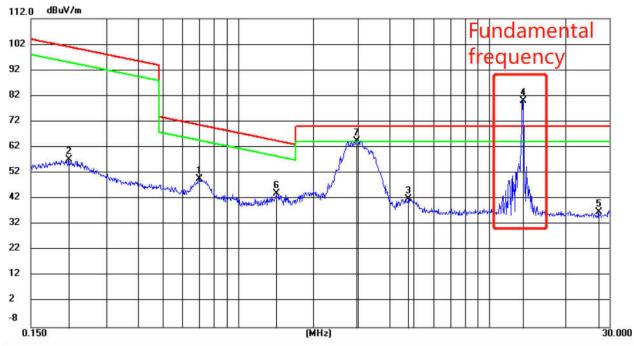
Remark:

Only the worst case data of X axis positioning was recorded in the report.

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,



Page 28 of 51

150kHz-30MHz:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		0.7007	29.20	20.43	49.63	70.70	-21.07	peak	100	50	
2		0.2121	36.59	20.54	57.13	101.03	-43.90	peak	100	317	
3		4.7665	21.63	20.39	42.02	70.00	-27.98	peak	100	264	
4	*	13.5580	59.80	20.35	80.15	70.00	10.15	peak	100	82	
5		27.1701	16.36	20.41	36.77	70.00	-33.23	peak	100	103	
6		1.4211	23.68	20.40	44.08	64.58	-20.50	peak	100	82	
7	ŗ	2.9485	44.06	20.36	64.42	70.00	-5.58	peak	100	125	

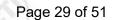
Remark:

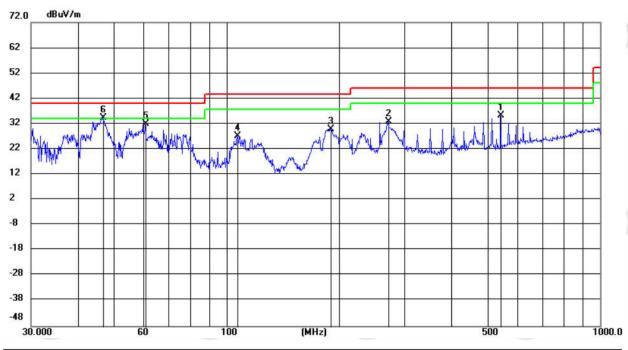
Only the worst case data of X axis positioning was recorded in the report.

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,





30MHz-1GHz Horizontal

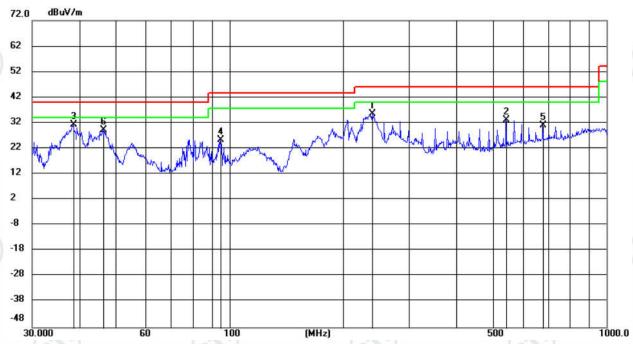
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		542.4176	12.52	22.60	35.12	46.00	-10.88	peak	100	54	
2		271.1818	16.69	16.25	32.94	46.00	-13.06	peak	100	0	
3		190.0048	18.16	11.74	29.90	43.50	-13.60	peak	100	0	
4		107.0961	14.27	13.03	27.30	43.50	-16.20	peak	100	12	
5		60.7150	18.50	13.32	31.82	40.00	-8.18	peak	200	7	
6	*	46.8220	20.09	14.36	34.45	40.00	-5.55	peak	100	0	

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,



Page 30 of 51

Vertical

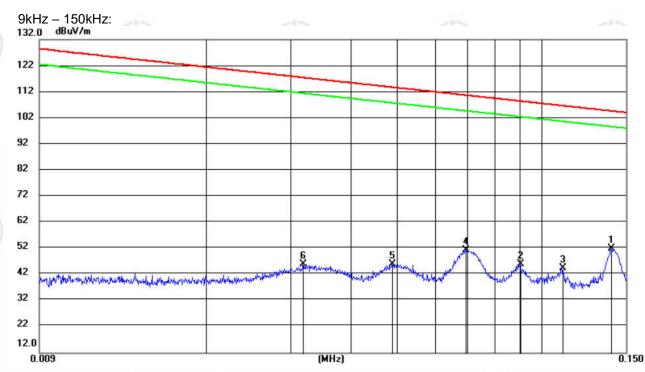
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		239.5250	20.28	15.15	35.43	46.00	-10.57	peak	200	66	
2		542.4176	10.45	22.60	33.05	46.00	-12.95	peak	100	60	
3	*	38.5282	16.98	14.26	31.24	40.00	-8.76	peak	200	12	
4		94.6439	12.16	13.31	25.47	43.50	-18.03	peak	200	0	
5		678.0552	6.53	24.59	31.12	46.00	-14.88	peak	100	241	
6		46.2834	14.85	14.37	29.22	40.00	-10.78	peak	200	2	

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,



Page 31 of 51

Antenna 4 Measurement Data

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1 *	0.1396	31.46	20.57	52.03	104.64	-52.61	peak	100	309	
2	0.0902	25.31	20.61	45.92	108.41	-62.49	peak	100	117	
3	0.1104	24.06	20.54	44.60	106.66	-62.06	peak	100	352	
4	0.0694	30.96	20.64	51.60	110.67	-59.07	peak	100	299	
5	0.0489	25.34	20.72	46.06	113.69	-67.63	peak	100	42	
6	0.0319	25.21	20.77	45.98	117.38	-71.40	peak	100	299	

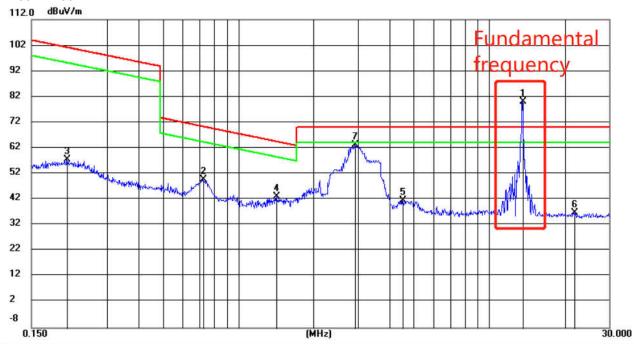
Remark:

Only the worst case data of X axis positioning was recorded in the report.

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,



Page 32 of 51

150kHz-30MHz:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	13.5616	59.76	20.35	80.11	70.00	10.11	peak	100	84	
2		0.7263	29.28	20.43	49.71	70.39	-20.68	peak	100	245	
3		0.2080	37.15	20.54	57.69	101.20	-43.51	peak	100	320	
4		1.4185	22.70	20.40	43.10	64.59	-21.49	peak	100	234	
5		4.5050	21.33	20.38	41.71	70.00	-28.29	peak	100	320	
6		21.7380	16.52	20.36	36.88	70.00	-33.12	peak	100	95	
7		2.9036	42.80	20.36	63.16	70.00	-6.84	peak	100	245	
	1 2 3 4 5	2 3 4 5	MHz 1 * 13.5616 2 0.7263 3 0.2080 4 1.4185 5 4.5050 6 21.7380	No. Mk. Freq. Level MHz dBuV 1 * 13.5616 59.76 2 0.7263 29.28 3 0.2080 37.15 4 1.4185 22.70 5 4.5050 21.33 6 21.7380 16.52	No. Mk. Freq. Level Factor MHz dBuV dB 1 * 13.5616 59.76 20.35 2 0.7263 29.28 20.43 3 0.2080 37.15 20.54 4 1.4185 22.70 20.40 5 4.5050 21.33 20.38 6 21.7380 16.52 20.36	No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 1 * 13.5616 59.76 20.35 80.11 2 0.7263 29.28 20.43 49.71 3 0.2080 37.15 20.54 57.69 4 1.4185 22.70 20.40 43.10 5 4.5050 21.33 20.38 41.71 6 21.7380 16.52 20.36 36.88	No. Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 1 * 13.5616 59.76 20.35 80.11 70.00 2 0.7263 29.28 20.43 49.71 70.39 3 0.2080 37.15 20.54 57.69 101.20 4 1.4185 22.70 20.40 43.10 64.59 5 4.5050 21.33 20.38 41.71 70.00 6 21.7380 16.52 20.36 36.88 70.00	No. Mk. Freq. Level Factor ment Limit Margin 1 * 13.5616 59.76 20.35 80.11 70.00 10.11 2 0.7263 29.28 20.43 49.71 70.39 -20.68 3 0.2080 37.15 20.54 57.69 101.20 -43.51 4 1.4185 22.70 20.40 43.10 64.59 -21.49 5 4.5050 21.33 20.38 41.71 70.00 -28.29 6 21.7380 16.52 20.36 36.88 70.00 -33.12	No. Mk. Freq. Level Factor ment Limit Margin 1 MHz dBuV dB dBuV/m dBuV/m dB uV/m dB uV/m <td>No. Mk. Freq. Level Factor ment Limit Margin Height 1 MHz dBuV dB dBuV/m dBuV/m dB Detector cm 1 * 13.5616 59.76 20.35 80.11 70.00 10.11 peak 100 2 0.7263 29.28 20.43 49.71 70.39 -20.68 peak 100 3 0.2080 37.15 20.54 57.69 101.20 -43.51 peak 100 4 1.4185 22.70 20.40 43.10 64.59 -21.49 peak 100 5 4.5050 21.33 20.38 41.71 70.00 -28.29 peak 100 6 21.7380 16.52 20.36 36.88 70.00 -33.12 peak 100</td> <td>No. Mk. Freq. Level Factor ment Limit Margin Height Degree 1 MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree 1 * 13.5616 59.76 20.35 80.11 70.00 10.11 peak 100 84 2 0.7263 29.28 20.43 49.71 70.39 -20.68 peak 100 245 3 0.2080 37.15 20.54 57.69 101.20 -43.51 peak 100 320 4 1.4185 22.70 20.40 43.10 64.59 -21.49 peak 100 234 5 4.5050 21.33 20.38 41.71 70.00 -28.29 peak 100 320 6 21.7380 16.52 20.36 36.88 70.00 -33.12 peak 100 95</td>	No. Mk. Freq. Level Factor ment Limit Margin Height 1 MHz dBuV dB dBuV/m dBuV/m dB Detector cm 1 * 13.5616 59.76 20.35 80.11 70.00 10.11 peak 100 2 0.7263 29.28 20.43 49.71 70.39 -20.68 peak 100 3 0.2080 37.15 20.54 57.69 101.20 -43.51 peak 100 4 1.4185 22.70 20.40 43.10 64.59 -21.49 peak 100 5 4.5050 21.33 20.38 41.71 70.00 -28.29 peak 100 6 21.7380 16.52 20.36 36.88 70.00 -33.12 peak 100	No. Mk. Freq. Level Factor ment Limit Margin Height Degree 1 MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree 1 * 13.5616 59.76 20.35 80.11 70.00 10.11 peak 100 84 2 0.7263 29.28 20.43 49.71 70.39 -20.68 peak 100 245 3 0.2080 37.15 20.54 57.69 101.20 -43.51 peak 100 320 4 1.4185 22.70 20.40 43.10 64.59 -21.49 peak 100 234 5 4.5050 21.33 20.38 41.71 70.00 -28.29 peak 100 320 6 21.7380 16.52 20.36 36.88 70.00 -33.12 peak 100 95

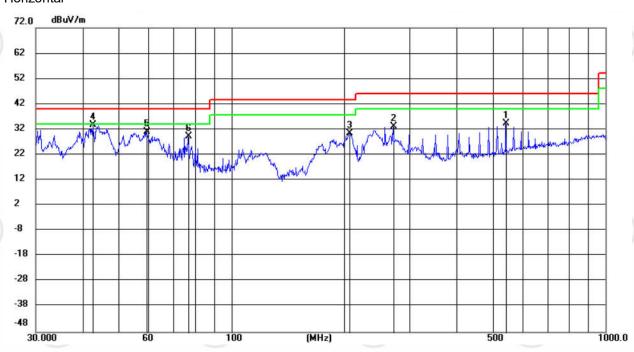
Remark:

Only the worst case data of X axis positioning was recorded in the report.

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,



Page 33 of 51

30MHz-1GHz Horizontal

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		542.4176	11.77	22.60	34.37	46.00	-11.63	peak	100	44	
2		271.1818	16.83	16.25	33.08	46.00	-12.92	peak	200	71	
3		207.0862	16.52	14.03	30.55	43.50	-12.95	peak	200	348	
4	*	42.6971	19.40	14.46	33.86	40.00	-6.14	peak	200	348	
5		59.4196	17.42	13.61	31.03	40.00	-8.97	peak	200	348	
6		76.6194	19.47	9.89	29.36	40.00	-10.64	peak	200	348	

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Page 34 of 51

Vertical

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	1	Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	238.6447	24.82	15.12	39.94	46.00	-6.06	peak	100	264	
2		352.5723	17.54	18.38	35.92	46.00	-10.08	peak	100	296	
3		119.0180	18.00	11.40	29.40	43.50	-14.10	peak	100	274	
4		38.7518	19.47	14.31	33.78	40.00	-6.22	peak	100	274	
5		55.0757	12.54	13.91	26.45	40.00	-13.55	peak	100	264	
6		542.4176	9.91	22.60	32.51	46.00	-13.49	peak	100	71	

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Report No. : EED32P81159001

6.4 Frequency Stability

Test Result:

Page 35 of 51

Test Requirement:	47 CFR Part 15 C Section 15.22	5(e)
Test Method:	ANSI C63.10: 2013	
Test Setup:	Thermal Chamber Coil Antenna EUT	Spectrum Analyzer
Frequency Range:	Operation within the band 13.11	0-14.010 MHz
Requirements:	+/- 0.01% of the operating frequence -20 degrees to +50 degrees C avariation in the primary supply vosupply voltage at a temperature	carrier signal shall be maintained within ency over a temperature variation of at normal supply voltage, and for a bitage from 85% to 115% of the rated of 20 degrees C. For battery operated shall be performed using a new battery
Method of Measurement:	The EUT was placed in an envir	onmental test chamber and powered ed normal voltage and the transmitter

The unit does meet the FCC Part 15 C Section 15.225(e) requirements.

Page 36 of 51

Antenna 1 Measurement Data:

Test Frequency: 13	.56MHz	(°)	Temperature:20°C				
Supply Voltage (V) DC	Test Result (MHz)	Deviation (kHz)	Limit ±0.01% (kHz)	Result			
24.0	13.55955	-0.45	1.3560	Pass			
20.4	13.55959	-0.41	1.3560	Pass			
27.6	13.55951	-0.49	1.3560	Pass			

Test Frequency: 13	al Voltage:24.0Vdc			
Temperature (℃)	Test Result (MHz)	Deviation (kHz)	Limit ±0.01% (kHz)	Result
-20	13.55953	-0.47	1.3560	0
-10	13.55954	-0.46	1.3560	
0	13.55952	-0.48	1.3560	
10	13.55959	-0.41	1.3560	Pass
20	13.55957	-0.43	1.3560	r ass
30	13.55959	-0.41	1.3560	
40	13.55952	-0.48	1.3560	
50	13.55958	-0.42	1.3560	(67)

Page 37 of 51

Antenna 2 Measurement Data:

Test Frequency: 13.56MHz			Temperature:20°C	
Supply Voltage (V) DC	Test Result (MHz)	Deviation (kHz)	Limit \pm 0.01% (kHz)	Result
24.0	13.55958	-0.42	13.55958	Pass
20.4	13.55953	-0.47	13.55953	Pass
27.6	13.55952	-0.48	13.55952	Pass

Test Frequency: 13.56MHz Normal Voltage:24.0Vd					
Temperature (℃)	Test Result (MHz)	Deviation (kHz)	Limit ±0.01% (kHz)	Result	
-20	13.55956	-0.44	1.3560	0	
-10	13.55958	-0.42	1.3560		
0	13.55952	-0.48	1.3560	-0	
10	13.55958	-0.42	1.3560	Pass	
20	13.55958	-0.42	1.3560	Pass	
30	13.55958	-0.42	1.3560		
40	13.55960	-0.40	1.3560		
50	13.55950	-0.50	1.3560	(67)	

Page 38 of 51

Antenna 3 Measurement Data:

Test Frequency: 13.56MHz			Temperature:20°C	
Supply Voltage (V) DC	Test Result (MHz)	Deviation (kHz)	Limit ±0.01% (kHz)	Result
24.0	13.55953	-0.47	1.3560	Pass
20.4	13.55951	-0.49	1.3560	Pass
27.6	13.55952	-0.48	1.3560	Pass

Test Frequency: 13.56MHz Normal Voltage:24.				
Temperature (°C)	Test Result (MHz)	Deviation (kHz)	Limit ±0.01% (kHz)	Result
-20	13.55954	-0.46	1.3560	0
-10	13.55954	-0.46	1.3560	
0	13.55953	-0.47	1.3560	C°
10	13.55954	-0.46	1.3560	Pass
20	13.55955	-0.45	1.3560	Fass
30	13.55952	-0.48	1.3560	
40	13.55960	-0.40	1.3560	
50	13.55959	-0.41	1.3560	(6,7)

Page 39 of 51

Antenna 4 Measurement Data:

Test Frequency: 13.56MHz			Temperature:20°C		
Supply Voltage (V) DC	Test Result (MHz)	Deviation (kHz)	Limit ±0.01% (kHz)	Result	
24.0	13.55956	-0.44	1.3560	Pass	
20.4	13.55957	-0.43	1.3560	Pass	
27.6	13.55953	-0.47	1.3560	Pass	

Test Frequency: 13.56MHz Normal Voltage:24.0V				
Temperature (℃)	Test Result (MHz)	Deviation (kHz)	Limit ±0.01% (kHz)	Result
-20	13.55953	-0.47	1.3560	0
-10	13.55955	-0.45	1.3560	
0	13.55957	-0.43	1.3560	*
10	13.55951	-0.49	1.3560	Pass
20	13.55951	-0.49	1.3560	Pass
30	13.55952	-0.48	1.3560	
40	13.55956	-0.44	1.3560	
50	13.55956	-0.44	1.3560	(6,7)

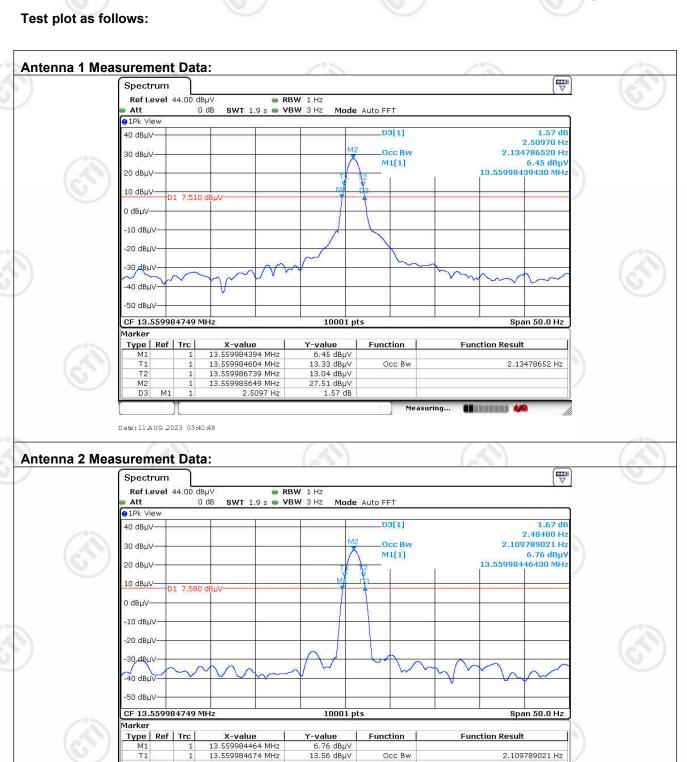
Page 40 of 51

20dB Occupied Bandwidth

Test Requirement:	47 CFR Part 15 C Section 15.215 (C)		
Test Method:	ANSI C63.10: 2013		
Test Setup:	Coil Antenna Spectrum Analyzer		
Frequency Range:	Operation within the band 13.110 – 14.010 MHz		
Requirements:	Operation within the band 13.110 – 14.010 MHz Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §15.217 through §15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the 20 dB bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.		
Limit:	For 13.56 MHz the permitted frequency band is 14kHz, so the limit is 11.2 kHz.		

Test Data:

Antenna	20dB bandwidth (Hz)	Frequency Left (MHz)	Frequency Right (MHz)	Limit (MHz)	Result
1	2.5097	13.559984394	13.559986904	13.110 – 14.010	Pass
2	2.4848	13.559984464	13.559986949	13.110 – 14.010	Pass
3	2.4998	13.559984464	13.559986964	13.110 – 14.010	Pass
4	2.4998	13.559984509	13.559987009	13.110 – 14.010	Pass



Page 41 of 51

Antenna 3 Measurement Data:

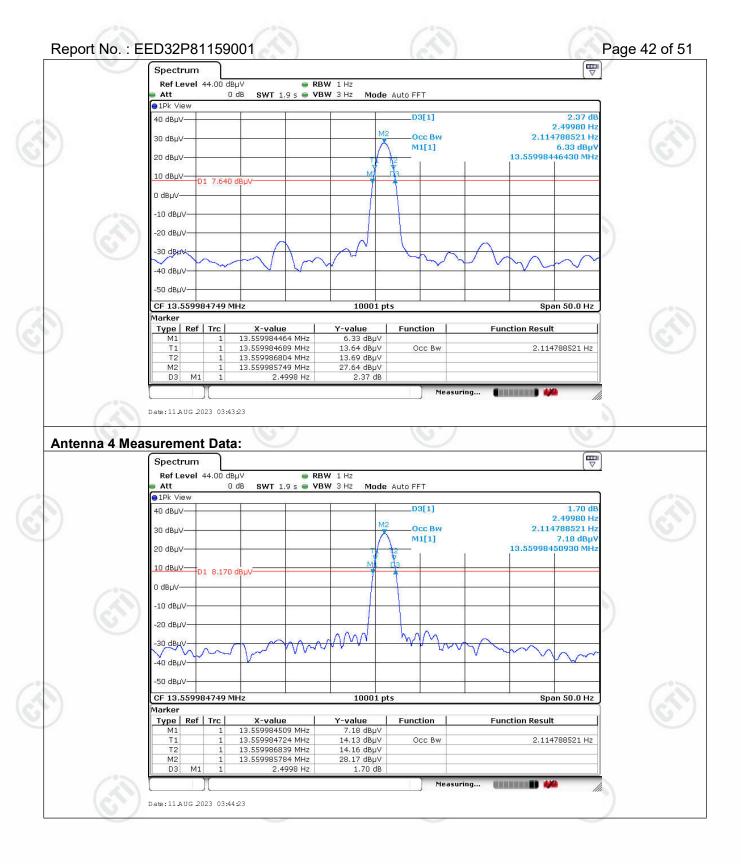
D3 M1

Date: 11 AUG 2023 03:42:39

13.60 dBuV

27.58 dBµV

1.67 dB


Measuring...

13.559986784 MHz

13.559985729 MHz

2,4848 Hz

CTI华测检测

