

Report No.: EED32P81261601 Page 1 of 36

TEST REPORT

Product Dongle Trade mark bambulab Model/Type reference MH002-1

Serial Number N/A

Report Number EED32P81261601

FCC ID : 2A6J8-MH0021 Date of Issue Aug. 24, 2023

Test Standards 47 CFR Part 15 Subpart C

Test result **PASS**

Prepared for:

Shenzhen Tuozhu Technology Co., Ltd. Room 201, Building A, No. 1 First Qianwan Road, Qianhai Shengang **Cooperation Zone, Shenzhen**

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Report Seal

mark chen

Reviewed by:

Tom Chen

Mark Chen CLUON

Date:

Aug. 24, 2023

Aaron Ma

Check No.: 3313070823

Page 2 of 36 Report No.: EED32P81261601

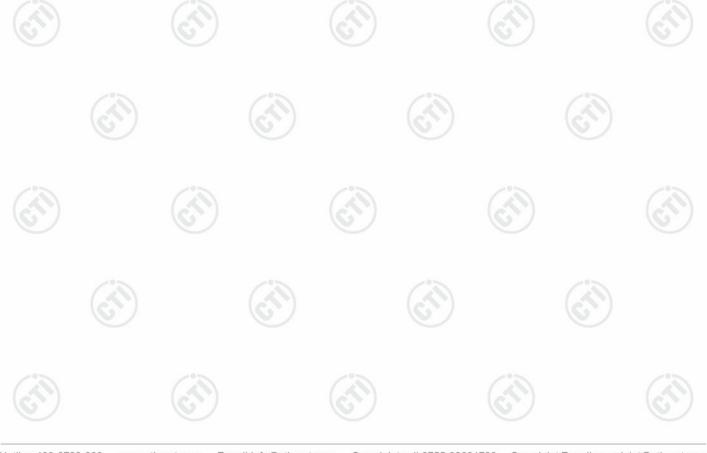
Content

1 COVER PAGE	1
2 CONTENT	
3 VERSION	3
4 TEST SUMMARY	4
5 GENERAL INFORMATION	
5.1 CLIENT INFORMATION 5.2 GENERAL DESCRIPTION OF EUT 5.3 TEST CONFIGURATION 5.4 TEST ENVIRONMENT 5.5 DESCRIPTION OF SUPPORT UNITS 5.6 TEST LOCATION 5.7 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
6 EQUIPMENT LIST	9
7 TEST RESULTS AND MEASUREMENT DATA	12
7.1 ANTENNA REQUIREMENT	
8 APPENDIX 2.4G	28
9 PHOTOGRAPHS OF TEST SETUP	29
10 DUOTOGDADUS OF FUT CONSTRUCTIONAL DETAILS	21

Report No.: EED32P81261601

3 Version

Version No.	Date	6	Description	
00	Aug. 24, 2023		Original	
	C'S		_°	15
- ((50)	(42)	(62)	(67)


Report No. : EED32P81261601 Page 4 of 36

4 Test Summary

Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	N/A	
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	
		1 4 5 1	

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Report No. : EED32P81261601 Page 5 of 36

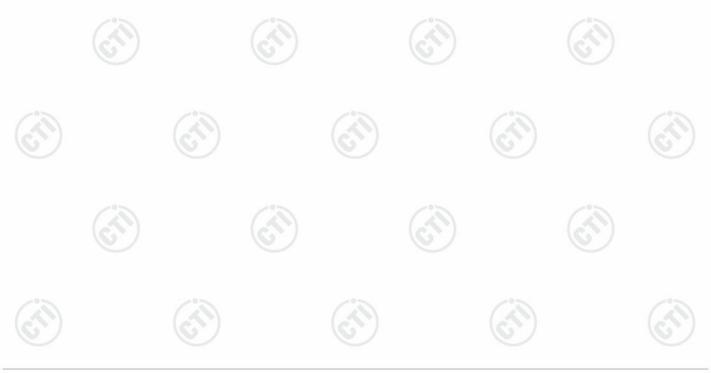
5 General Information

5.1 Client Information

Applicant:	Shenzhen Tuozhu Technology Co., Ltd.			
Address of Applicant:	Room 201, Building A, No. 1 First Qianwan Road, Qianhai Shengang Cooperation Zone, Shenzhen			
Manufacturer:	Shenzhen Tuozhu Technology Co., Ltd.			
Address of Manufacturer:	Room 201, Building A, No. 1 First Qianwan Road, Qianhai Shengang Cooperation Zone, Shenzhen			

5.2 General Description of EUT

	- 0 h	- 0 h		
Product Name:	Dongle		(41)	
Model No.:	MH002-1			
Trade mark:	bambulab			
Product Type:	☐ Mobile ☐ Portable			
Test software of EUT:	EMI_Test_Tool			
Operation Frequency:	2402MHz~2480MHz	(0.)		6.
Modulation Type:	GFSK			
Number of Channel:	40			
Antenna Type:	PCB Antenna			
Antenna Gain:	2.97dBi	(0,	(0,)	
Power Supply:	DC 5V			
Test Voltage:	DC 5V			
Sample Received Date:	Aug. 11, 2023			(3)
Sample tested Date:	Aug. 11, 2023 to Aug. 21, 2	2023		(6)

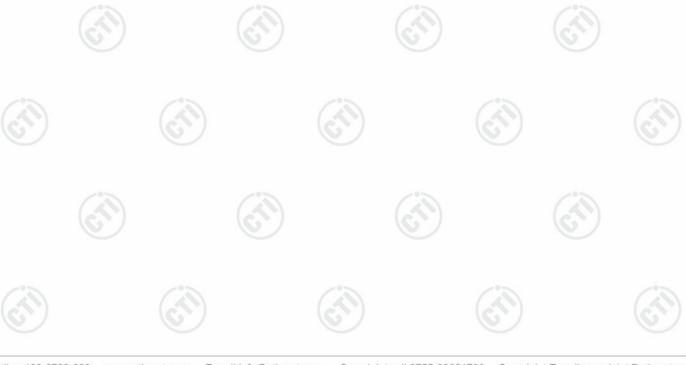


Page 6 of 36 Report No.: EED32P81261601

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz


Report No. : EED32P81261601 Page 7 of 36

5.3 Test Configuration

EUT Test Software Settings:						
Software: EMI_Test_Tool						
EUT Power Grade:	Class2 (Power level is bu selected)	Class2 (Power level is built-in set parameters and cannot be changed ar selected)				
Use test software to set the transmitting of the EUT.	e lowest frequency, the middle f	requency and the highes	t frequency keep			
Test Mode	Modulation	Channel	Frequency(MHz)			
Mode a	GFSK	CH0	2402			
Mode b	GFSK	CH19	2440			
Mode c	GFSK	CH39	2480			

5.4 Test Environment

Operating Environmen	t:			
Radiated Spurious Emi	ssions:			
Temperature:	22~25.0 °C			.)
Humidity:	50~55 % RH	(0,)	(0,)
Atmospheric Pressure:	1010mbar			
RF Conducted:				
Temperature:	22~25.0 °C			(:5)
Humidity:	50~55 % RH		(57)	(6,7,2)
Atmospheric Pressure:	1010mbar			

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

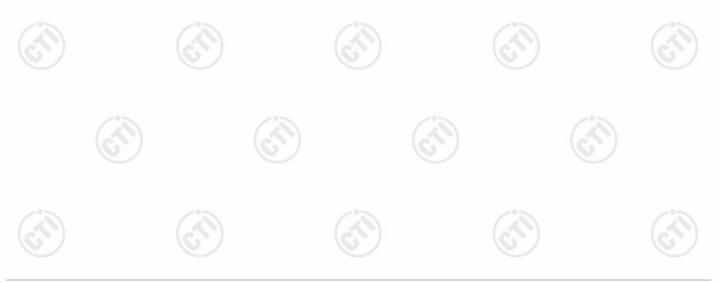
1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	DELL	Latitude 3490	FCC&CE	СТІ

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

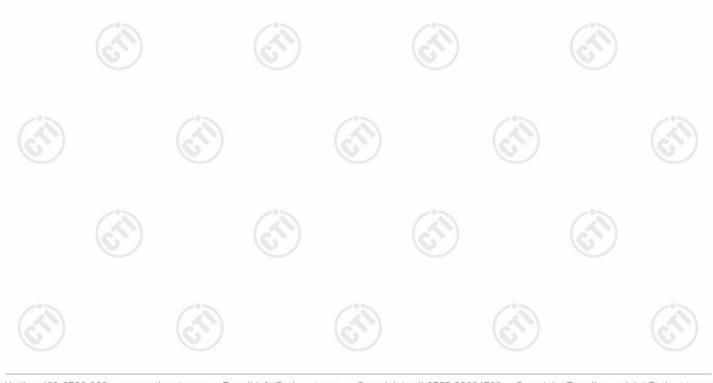

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

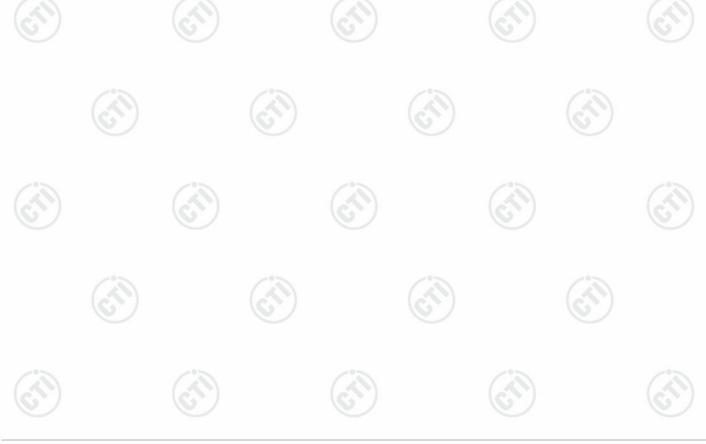
5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	DE nower conducted	0.46dB (30MHz-1GHz)	
	RF power, conducted	0.55dB (1GHz-40GHz)	
		3.3dB (9kHz-30MHz)	
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)	
3		4.5dB (1GHz-18GHz)	
		3.4dB (18GHz-40GHz)	
4	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	



Report No. : EED32P81261601 Page 9 of 36

6 Equipment List


RF test system						
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date	
Communication tset set	R&S	CMW500	107929	06-28-2023	06-27-2024	
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-09-2022	09-08-2023	
Spectrum Analyzer	R&S	FSV40	101200	07-25-2023	07-24-2024	
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	06-28-2023	06-27-2024	
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-19-2022	12-18-2023	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-01-2023	05-31-2024	
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	2.0.0.0	(cri)		

Page 10 of 36 Report No.: EED32P81261601

	3M Semi-ar	nechoic Chamber (2)-	Radiated disturb	ance Test		
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date	
3M Chamber & Accessory Equipment	TDK	SAC-3	- (2)	05/22/2022	05/21/2025	
Receiver	R&S	ESCI7	100938-003	09/28/2022	09/27/2023	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618 05/22/2022		05/21/2025	
Loop Antenna	Schwarzbeck	FMZB 1519B 1519B-076		04/15/2021	04/14/2024	
Multi device Controller	maturo	NCD/070/10711112	<u> </u>			
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024	
Microwave Preamplifier	Agilent	8449B	3008A02425 06/20/2023		06/19/2024	
Test software	Fara	EZ-EMC	EMEC-3A1-Pre		(C)	

Report No. : EED32P81261601 Page 11 of 36

		(1)			
		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		- 6
Receiver	Keysight	N9038A	MY57290136	02-27-2023	02-26-2024
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-21-2023	02-20-2024
Spectrum Analyzer TRILOG	Keysight	N9030B	MY57140871	02-21-2023	02-20-2024
Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-13-2023	04-12-2024
Preamplifier	EMCI	EMC001330	980563	03-28-2023	03-27-2024
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-25-2023	07-24-2024
Communication test set	R&S	CMW500	102898	12-23-2022	12-22-2023
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2023	04-10-2024
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	(D
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		(2
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	(C)	©
Cable line	Times	EMC104-NMNM-1000	SN160710		
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	/	<i>(</i>
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	(D
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		
Cable line	Times	HF160-KMKM-3.00M	393493-0001		(2

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Report No. : EED32P81261601 Page 12 of 36

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

The antenna is PCB antenna. The best case gain of the antenna is 2.97dBi.

7.2 Maximum Conducted Output Power

nt: 47 CFR Part 15C Section 15.247 ((b)(3)
ANSI C63.10 2013	
Control Computer Power Supply Potent Table	RF test System Instrument
Remark: Offset=Cable loss+ atten	uation factor.
a) Set the RBW ≥ DTS bandwidthb) Set VBW ≥ 3 × RBW.	h. (C)
 c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to de 	etermine the peak amplitude level.
	(1)
Refer to clause 5.3	(25)
Refer to Appendix 2.4G	
	ANSI C63.10 2013 Control Control Control Control Control Control Power Supply Actening Power Power Power Supply Actening Power Pow

Report No.: EED32P81261601 Page 14 of 36

7.3 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Control Control Power Supph Power Supph Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix 2.4G

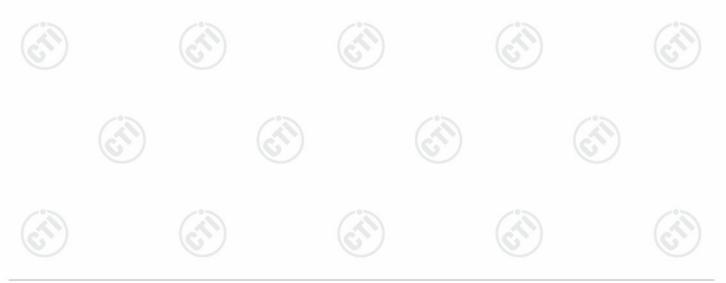


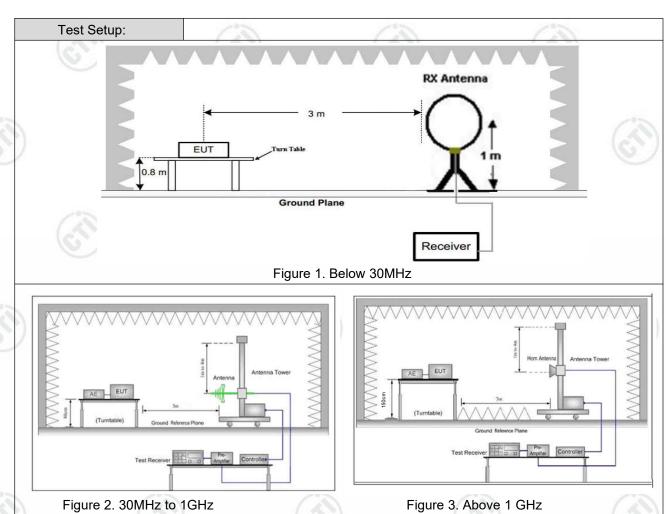
7.4 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)	
Test Method:	ANSI C63.10 2013	,
Test Setup:		(ci)
	Control Control Control Control Power Supply Power TEMPERATURE CABNET	RF test System Instrument
	Remark: Offset=Cable loss+ attenua	ation factor.
Test Procedure:	within the RBW.	S bandwidth.
Limit:	≤8.00dBm/3kHz	
Test Mode:	Refer to clause 5.3	-05
Test Results:	Refer to Appendix 2.4G	

7.5 Band Edge measurements and Conducted Spurious Emission

	Test Requirement:	47 CFR Part 15C Section 15.247 (d)
	Test Method:	ANSI C63.10 2013
	Test Setup:	Control Control Control Power Power Poort Table RF test System Instrument
0.1		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
	Test Mode:	Refer to clause 5.3
	Test Results:	Refer to Appendix 2.4G

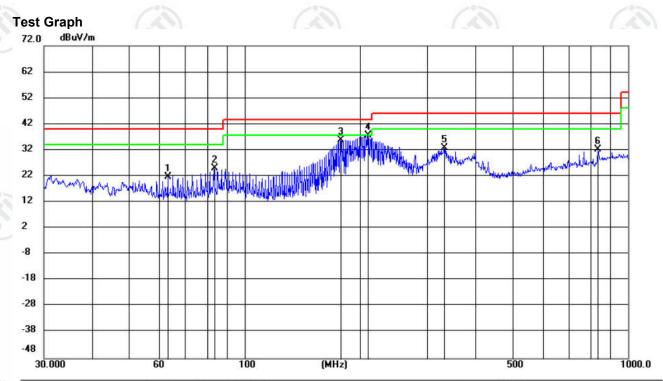



7.6 Radiated Spurious Emission & Restricted bands

16.7	165		163		16.	<i></i>
Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205		
Test Method:	ANSI C63.10 2013					
Test Site:	Measurement Distance	ber)	-0.5			
Receiver Setup:	Frequency	10	Detector	RBW	VBW	Remark
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	30MHz-1GHz Quasi-peak				Quasi-peak
	Above 1GHz		Peak	1MHz	3MHz	Peak
			Peak	1MHz	10kHz	Average
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m
	0.009MHz-0.490MHz	2400/F(kHz)		-	-/0>	300
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	(A)	30
	1.705MHz-30MHz		30	-	-	30
	30MHz-88MHz		100	40.0	Quasi-peak	3
	88MHz-216MHz		150	43.5	Quasi-peak	3
	216MHz-960MHz	6	200	46.0	Quasi-peak	3
	960MHz-1GHz	/	500	54.0	Quasi-peak	3
	Above 1GHz		500	54.0	Average	3
	Note: 15.35(b), frequency emissions is limit applicable to the epeak emission level race	20d quip	IB above the imment under t	maximum est. This p	permitted ave	erage emission

Report No.: EED32P81261601 Page 19 of 36

Test Procedure:	meters above the		top of a rotating table 0.8 ni-anechoic camber. The table position of the highest
	meters above the was rotated 360 d radiation.	·	
	Place the measure determined to be a distance, while ke of emissions at ea oriented for maxin to be higher or low	ement antenna away from a source of emissions at eping the measurement ch frequency of signification response. The measurer than the EUT, deper	om each area of the EUT the specified measurement antenna aimed at the source ant emissions, with polarization asurement antenna may have ading on the radiation pattern of ission source for receiving the
	maximum signal. which maximizes for maximum emis	The final measurement and the measurement in the me	antenna elevation shall be that surement antenna elevation I to a range of heights of from
		3 meters away from the as mounted on the top o	interference-receiving f a variable-height antenna
	ground to determine	ne the maximum value o	eter to four meters above the of the field strength. Both antenna are set to make the
	and then the anter the test frequency meter) and the rot	nna was tuned to height	as arranged to its worst case s from 1 meter to 4 meters (for ntenna was tuned to heights 1 from 0 degrees to 360
		system was set to Peak aximum Hold Mode.	Detect Function and Specified
	limit specified, the EUT would be rep margin would be r	n testing could be stopp	•
		e lowest channel (2402 ghest channel (2480MH	MHz),the middle channel z)
	h. The radiation mea	surements are performe	ed in X, Y, Z axis positioning kis positioning which it is the
	i. Repeat above pro	cedures until all frequer	cies measured was complete.
Test Mode:	Refer to clause 5.3	(6,7,)	(6,2,)
Test Results:	Pass		



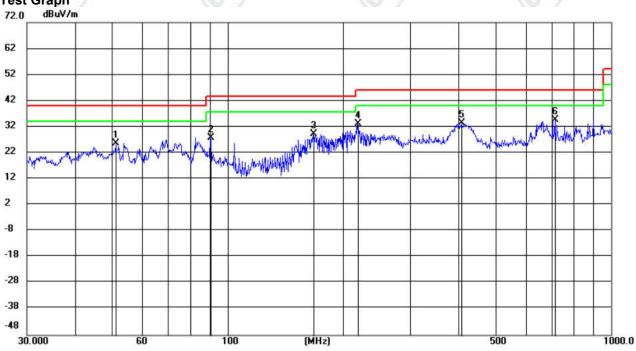
Report No.: EED32P81261601 Page 20 of 36

Radiated Spurious Emission below 1GHz:

During the test, the Radiated Spurious Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of 2.4G was recorded in the report.

Horizontal:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		63.2355	9.26	12.44	21.70	40.00	-18.30	peak	199	260	
2		83.2882	14.24	10.75	24.99	40.00	-15.01	peak	199	270	
3		177.6336	24.44	11.29	35.73	43.50	-7.77	peak	199	91	
4	*	209.7905	23.61	14.12	37.73	43.50	-5.77	peak	100	248	
5		332.2855	14.99	17.94	32.93	46.00	-13.07	peak	100	352	
6		836.2443	5.12	27.12	32.24	46.00	-13.76	peak	100	269	
								000			



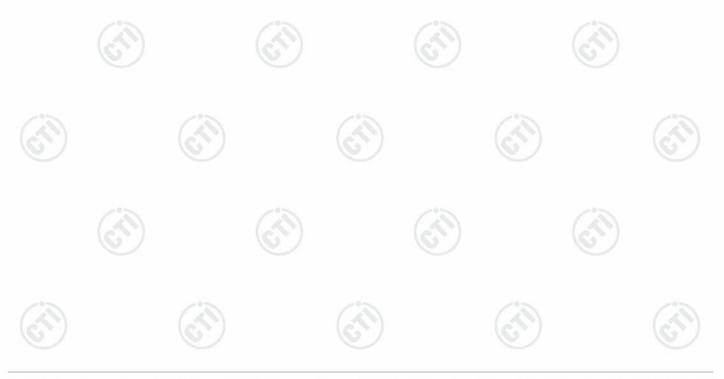
Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		51.1926	11.54	14.18	25.72	40.00	-14.28	peak	100	177	
2	(90.4739	15.12	12.73	27.85	43.50	-15.65	peak	100	7	
3		167.6477	18.30	10.92	29.22	43.50	-14.28	peak	100	81	
4	9	218.5765	18.69	14.42	33.11	46.00	-12.89	peak	100	7	
5		408.2295	13.79	19.57	33.36	46.00	-12.64	peak	100	113	
6	*	714.6743	9.56	24.99	34.55	46.00	-11.45	peak	200	7	

Radiated Spurious Emission above 1GHz:

Mode:			2.4G Transmitti	ng	Channel:				2402 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1461.0461	1.44	38.39	39.83	74.00	34.17	Pass	Н	PK	
2	2039.3039	4.68	37.95	42.63	74.00	31.37	Pass	Н	PK	
3	4804.1203	-16.23	66.64	50.41	74.00	23.59	Pass	Н	PK	
4	7206.2804	-11.83	65.80	53.97	74.00	20.03	Pass	Н	PK	
5	9607.4405	-7.37	51.49	44.12	74.00	29.88	Pass	Н	PK	
6	12011.6008	-5.32	52.78	47.46	74.00	26.54	Pass	Н	PK	
7	1467.6468	1.45	38.74	40.19	74.00	33.81	Pass	V	PK	
8	1853.6854	3.68	37.99	41.67	74.00	32.33	Pass	V	PK	
9	4803.1202	-16.23	68.77	52.54	74.00	21.46	Pass	V	PK	
10	7206.2804	-11.83	58.61	46.78	74.00	27.22	Pass	V	PK	
11	9607.4405	-7.37	53.89	46.52	74.00	27.48	Pass	V	PK	
12	12008.6006	-5.30	50.04	44.74	74.00	29.26	Pass	V	PK	

N	/lode	:		2.4G Transmitt	ing	Channel:			2440 MHz	
1	VO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1618.6619	2.41	37.75	40.16	74.00	33.84	Pass	Н	PK
	2	2106.1106	4.81	37.39	42.20	74.00	31.80	Pass	Н	PK
	3	4880.1253	-16.21	65.48	49.27	74.00	24.73	Pass	Н	PK
	4	7320.288	-11.65	67.93	56.28	74.00	17.72	Pass	Н	PK
	5	7321.2881	-11.65	62.12	50.47	54.00	3.53	Pass	Н	AV
	6	9759.4506	-7.52	52.83	45.31	74.00	28.69	Pass	Н	PK
	7	12199.6133	-5.12	51.73	46.61	74.00	27.39	Pass	Н	PK
	8	1596.4596	2.26	41.19	43.45	74.00	30.55	Pass	V	PK
	9	2110.7111	4.76	37.58	42.34	74.00	31.66	Pass	V	PK
	10	4880.1253	-16.21	65.17	48.96	74.00	25.04	Pass	V	PK
10	11	7320.288	-11.65	64.85	53.20	74.00	20.80	Pass	V	PK
-	12	9760.4507	-7.51	55.15	47.64	74.00	26.36	Pass	V	PK
	13	12199.6133	-5.12	50.54	45.42	74.00	28.58	Pass	V	PK

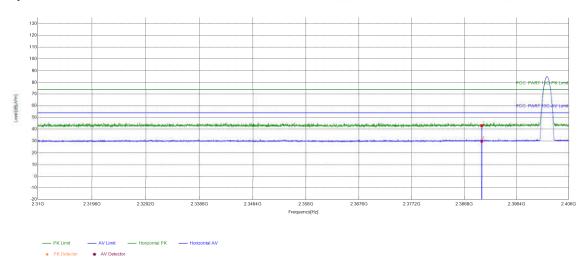


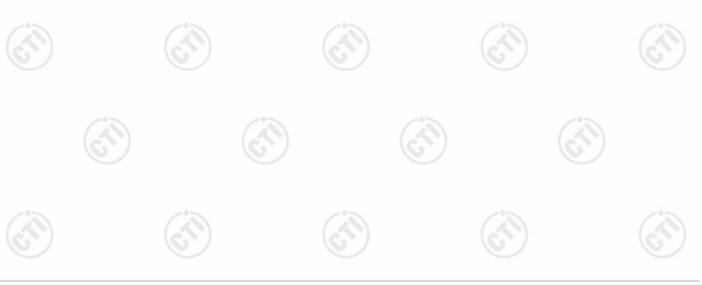
Report No.: EED32P81261601 Page 23 of 36

20%			20%			50%				
Mode	:		2.4G Transmitting			Channel:		2480 MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1426.8427	1.41	38.57	39.98	74.00	34.02	Pass	Н	PK	
2	2108.1108	4.79	37.66	42.45	74.00	31.55	Pass	Н	PK	
3	3432.0288	-20.15	57.21	37.06	74.00	36.94	Pass	Н	PK	
4	4960.1307	-15.97	67.91	51.94	74.00	22.06	Pass	Н	PK	
5	7440.296	-11.34	68.17	56.83	74.00	17.17	Pass	Н	PK	
6	7441.2961	-11.34	62.62	51.28	54.00	2.72	Pass	Н	AV	
7	12399.6266	-4.69	51.75	47.06	74.00	26.94	Pass	Н	PK	
8	1327.8328	1.15	39.52	40.67	74.00	33.33	Pass	V	PK	
9	2106.1106	4.81	38.09	42.90	74.00	31.10	Pass	V	PK	
10	4960.1307	-15.97	65.90	49.93	74.00	24.07	Pass	V	PK	
11	6000.2	-12.96	57.25	44.29	74.00	29.71	Pass	V	PK	
12	7440.296	-11.34	65.72	54.38	74.00	19.62	Pass	V	PK	
13	7441.2961	-11.34	62.19	50.85	54.00	3.15	Pass	V	AV	
14	12399.6266	-4.69	52.10	47.41	74.00	26.59	Pass	V	PK	

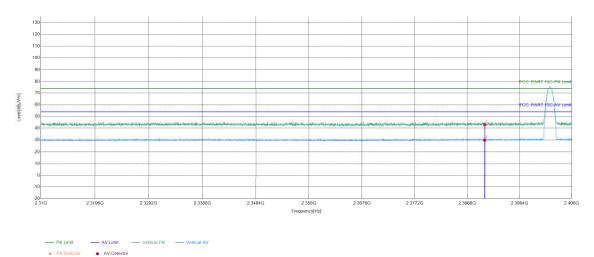
Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.




Restricted bands:

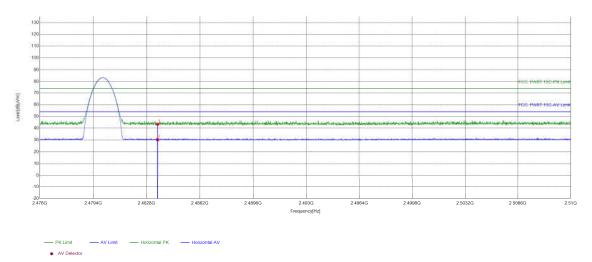
Test plot as follows:

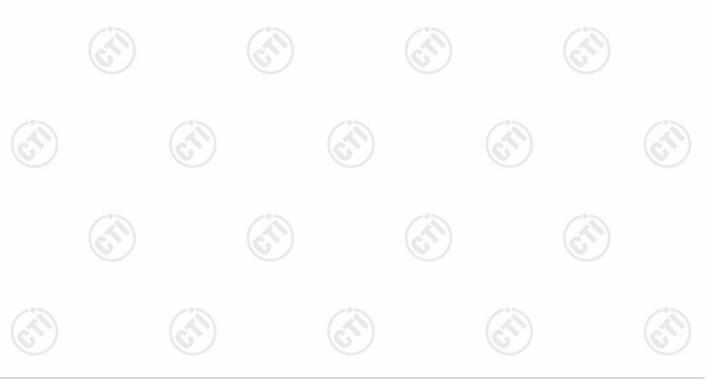

Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	5.77	37.31	43.08	74.00	30.92	PASS	Horizontal	PK
	2	2390	5.77	24.17	29.94	54.00	24.06	PASS	Horizontal	AV

Page 25 of 36 Report No.: EED32P81261601

Mode:	2.4G Transmitting	19	Channel:	2402MHz
Remark:		•		

Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
3	1	2390	5.77	37.35	43.12	74.00	30.88	PASS	Vertical	PK
	2	2390	5.77	24.16	29.93	54.00	24.07	PASS	Vertical	AV

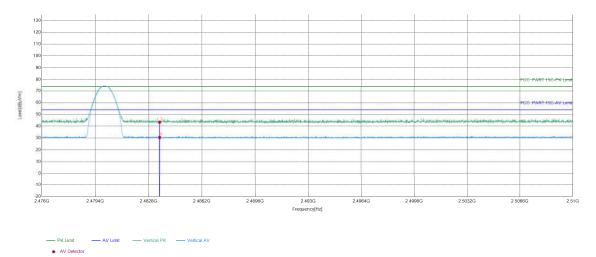



Report No.: EED32P81261601

Page 26 of 36

Mode:	2.4G Transmitting	Channel:	2480MHz
Remark:		-22	

	Suspected List									
-	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	6.57	36.89	43.46	74.00	30.54	PASS	Horizontal	PK
	2	2483.5	6.57	23.68	30.25	54.00	23.75	PASS	Horizontal	AV



Report No.: EED32P81261601 Page 27 of 36

Mode:	2.4G Transmitting	10	Channel:	2480MHz
Remark:		•		

Test Graph

	Suspected List										
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	2483.5	6.57	36.85	43.42	74.00	30.58	PASS	Vertical	PK	
	2	2483.5	6.57	23.90	30.47	54.00	23.53	PASS	Vertical	AV	

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix 2.4G

