

Report No. : EED32Q80173001

1 Version

Version No.	Date		Description	6
00	Mar. 05, 2024	(C)	Original	
	1°5	100	(°))	
((1) (1)	(3)	(3)	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

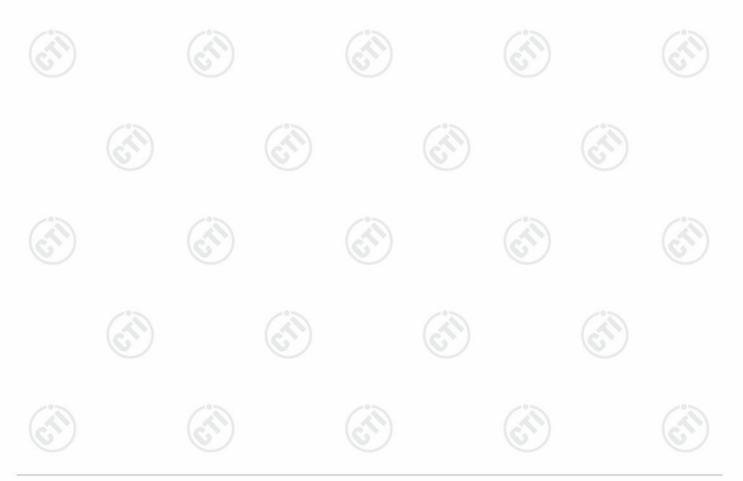
Report No. : EED32Q80173001

2 Test Summary

Test Item	Test Requirement	Test method	Result PASS	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	ANSI C63.10:2013		
AC Power Line Conducted Emission			PASS	
Radiated Emissions	47 CFR Part 15 Subpart C Section 15.209	ANSI C63.10:2013	PASS	

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.



3

EED32080173001

1 VERSION 2 TEST SUMMARY 3 CONTENTS 3 CONTENTS 4 GENERAL INFORMATION 4.1 CLIENT INFORMATION 4.2 GENERAL DESCRIPTION OF EUT 4.3 TEST ENVIRONMENT AND MODE 4.4 DESCRIPTION OF SUPPORT UNITS 4.5 TEST LOCATION 4.6 DEVIATION FROM STANDARDS 4.7 ABNORMALITIES FROM STANDARD CONDITIONS 4.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 4.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVE 5 EQUIPMENT LIST		
3 CONTENTS 4 GENERAL INFORMATION 4.1 CLIENT INFORMATION 4.2 GENERAL DESCRIPTION OF EUT 4.3 TEST ENVIRONMENT AND MODE 4.4 DESCRIPTION OF SUPPORT UNITS 4.5 TEST LOCATION 4.6 DEVIATION FROM STANDARDS 4.7 ABNORMALITIES FROM STANDARD CONDITIONS 4.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 4.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVE		
 4 GENERAL INFORMATION 4.1 CLIENT INFORMATION 4.2 GENERAL DESCRIPTION OF EUT 4.3 TEST ENVIRONMENT AND MODE 4.4 DESCRIPTION OF SUPPORT UNITS 4.5 TEST LOCATION 4.6 DEVIATION FROM STANDARDS 4.7 ABNORMALITIES FROM STANDARD CONDITIONS 4.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER 4.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVE 		
 4.1 CLIENT INFORMATION		
 4.2 GENERAL DESCRIPTION OF EUT		
5 EQUIPMENT LIST	s, к=2)	
		8
6 TEST RESULTS AND MEASUREMENT DATA		
 6.1 ANTENNA REQUIREMENT 6.2 CONDUCTED EMISSIONS 6.3 RADIATED EMISSIONS 	\sim	11
APPENDIX 1 PHOTOGRAPHS OF TEST SETUP	••••••	44

4

Report No. : EED32Q80173001

4.1 Client Information

Applicant:	Shenzhen Tuozhu Technology Co., Ltd.
Address of Applicant:	Room 201, Building A, No. 1 First Qianwan Road, Qianhai Shengang Cooperation Zone.
Manufacturer:	Shenzhen Tuozhu Technology Co., Ltd.
Address of Manufacturer:	Room 201, Building A, No. 1 First Qianwan Road, Qianhai Shengang Cooperation Zone.
Factory:	Shenzhen Telesin Digital Co.,Ltd.
Address of Factory:	Room 526,5/F, Block B, Bairuida Building, Vanke City Community, Bantian Street, Longgang District, Shenzhen, Guangdong, China.

Page 5 of 56

4.2 General Description of EUT

Product Name:	Wireless	charger Kit-K012				
Model No.:	K012					
Trade Mark:	N/A		E C			
Device type:	Desktop a	applications device	5)	G		
Frequency Range:	111kHz-1	40kHz				
Center Frequency:	128kHz					
Modulation Type:	ASK					
Antenna Type:	Coil anter	nna 💽	(cr)			
	Input:	5V/1.5A;9V/1.5A;12V/1.5A	U			
Power Supply:	Output:	5W/7.5W/10W/12W/15W				
Test Power Grade:	Default	(°)	1	20		
Test Software of EUT:	RF test					
Sample Received Date:	Feb. 26, 2	2024	\mathcal{D}	S		
Sample tested Date:	Feb. 26, 2	2024 to Feb. 29, 2024				

Report No. : EED32Q80173001

4.3 Test Environment and Mode

Operating Environmen	t:					
Radiated Spurious Emi	issions:					
Temperature:	22~25.0 °C					
Humidity:	50~55 % RH					
Atmospheric Pressure:	1010mbar					
Conducted Emissions:						
Temperature:	22~25.0 °C					
Humidity:	50~55 % RH					
Atmospheric Pressure:	1010mbar					
Test mode: Transmitting	mode					
Mode a:	Wireless charging mode(Null load)(Connect to adapter)					
Mode b:	Wireless charging mode(33.3% load)(Connect to adapter)					
Mode c:	Wireless charging mode(66.7% load)(Connect to adapter)					
Mode d:	Wireless charging mode(Half load)(Connect to adapter)					
Mode e:	Wireless charging mode(Full load)(Connect to adapter)					
ote:						

Note:

1.Wireless output:5W,7.5W,10W,15W(maximum wireless output 15W during charging);

2.Through Pre-scan, when EUT power by DC 12.0V was the worst case, only the worst case data was recorded in the report.

4.4 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
AC adapter	MI	MDY-11-EF	FCC ID and DOC	СТІ
Intelligent wireless charging full function test kit	YBZ	/	FCC ID and DOC	СТІ

4.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

FCC Designation No.: CN1164

4.6 Deviation from Standards

None.

4.7 Abnormalities from Standard Conditions

None.

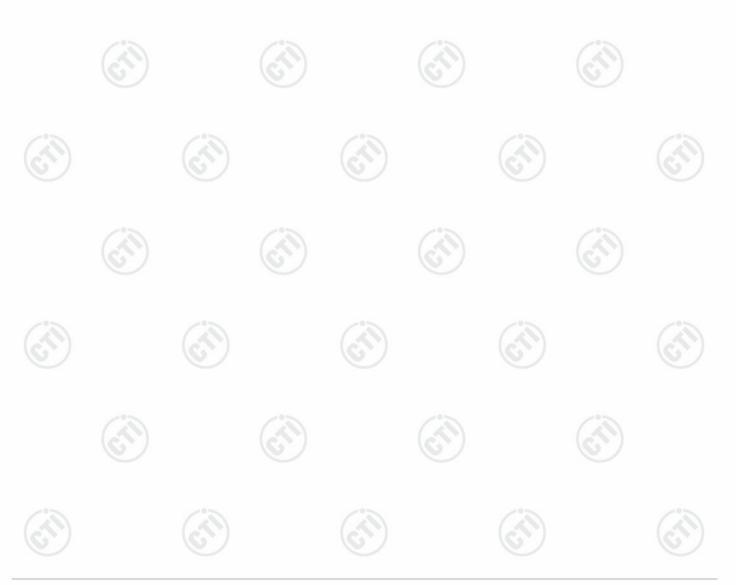
4.8 Other Information Requested by the Customer

None.

4.9 Measurement Uncertainty (95% confidence levels, k=2)

		· /			
No.	Item	Measurement Uncertainty			
1	Radio Frequency	7.9 x 10 ⁻⁸			
2		0.46dB (30MHz-1GHz)			
2	RF power, conducted	0.55dB (1GHz-18GHz)			
		3.3dB (9kHz-30MHz)			
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)			
		4.5dB (1GHz-12.75GHz)			
4	Conduction emission	3.5dB (9kHz to 150kHz)			
4	Conduction emission	3.1dB (150kHz to 30MHz)			
5	Temperature test	0.64°C			
6	Humidity test	3.8%			
7	DC power voltages	0.026%			

5


Equipment List

Page 8 of 56

Equipment	Equipment Manufacturer		Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	04-25-2023	04-24-2024	
Temperature/ Humidity Indicator	Defu	TH128	/	05-04-2023	05-03-2024	
LISN	R&S	ENV216	100098	09-22-2023	09-21-2024	
Barometer	changchun	DYM3	1188		28-	
Test software	Fara	EZ-EMC	EMC-CON 3A1.1		S	
apacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-29-2023	06-28-2024	
ISN	TESEQ	ISN T800	30297	12-14-2023	12-13-2024	

Equipment	Manufacturer	Model	Model Serial No.		Cal. Due date (mm-dd-yyyy 05/21/2025	
3M Chamber & Accessory Equipment	TDK SAC-3	TDK SAC-3		05/22/2022		
Receiver	R&S	ESCI7	100938-003	09/22/2023	09/21/2024	
Spectrum Analyzer	R&S	FSV40	101200	07/25/2023	07/24/2024	
TRILOG Broadband Antenna	RILOG padband schwarzbeck VULB 9163		9163-618	05/22/2022	05/21/2025	
Loop Antenna	p Antenna Schwarzbeck FMZB 15		1519B-076	04/15/2021	04/14/2024	
Microwave Preamplifier	Tonscend EMC0		980380	12/14/2023	12/13/2024	
Horn Antenna	A.H.SYSTEMS	SAS-574	374	05/29/2021	05/28/2024	
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024	
Preamplifier	eamplifier Agilent 11909A		12-1	03/28/2023 03/27/2		
Preamplifier	plifier CD PAP-1840-60		6041.6042	07/03/2023	07/02/2024	
Test software	Test software Fara EZ-EMC		EMEC-3A1-Pre			
Cable line	Fulai(7M)	SF106	5219/6A	6	9	
Cable line	Cable line Fulai(6M) SF106		5220/6A			
Cable line	Fulai(3M)	SF106	5216/6A	(A)-	(6	
Cable line	Fulai(3M)	SF106	5217/6A			

CTI 华 测 检 测 Report No. : EED32Q80173001

6

Page 10 of 56

Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. **EUT Antenna:** Please see Internal photos The antenna is attached on the main PCB and no consideration of replacement.

Page 11 of 56

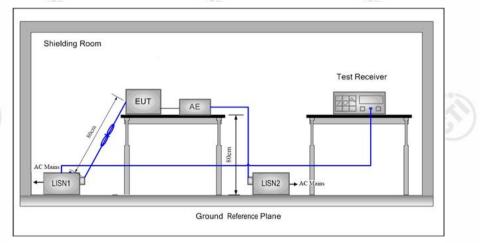
Report No. : EED32Q80173001

6.2 Conducted Emissions

Test Requirement: Test Method: Test Frequency Range: 47 CFR Part 15C Section 15.207 ANSI C63.10: 2013 150kHz to 30MHz

Test Procedure:

 Limit (dBμV)

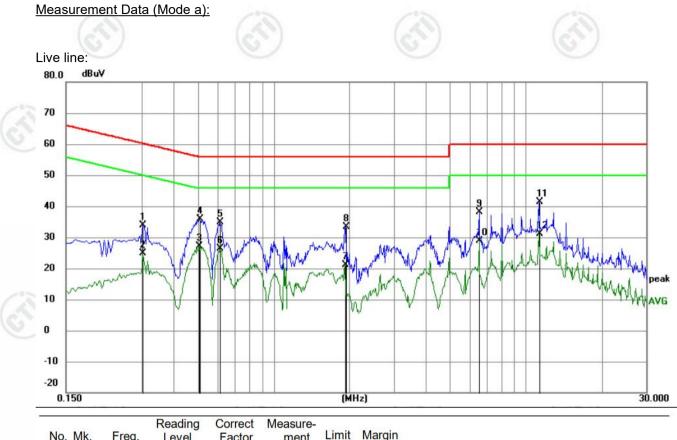

 Quasi-peak
 Average

 0.15-0.5
 66 to 56*
 56 to 46*

 0.5-5
 56
 46

 5-30
 60
 50

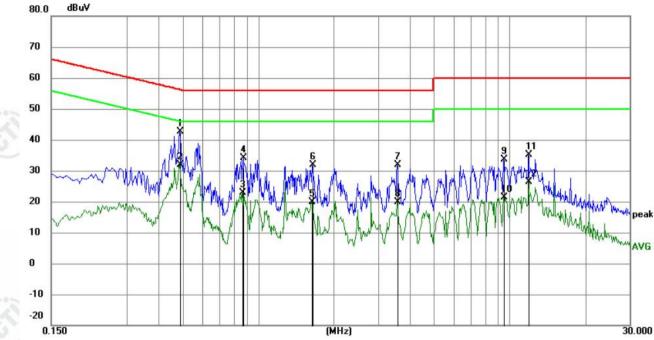
- * Decreases with the logarithm of the frequency.
- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu$ H + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.


Transmitting mode, refer to section 4.3

Pass

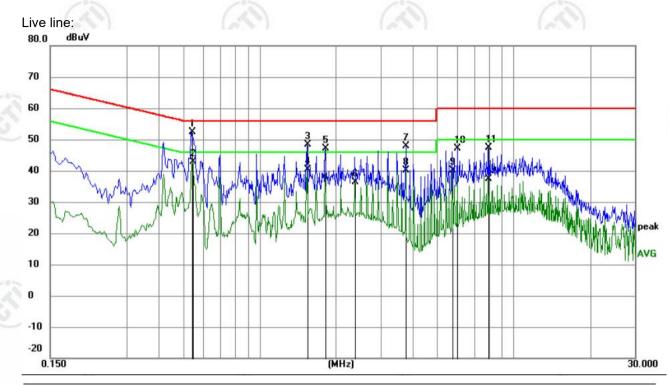
Page 12 of 56

No. Mk.	Freq.	Level	Factor	ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.3030	24.25	9.55	33.80	60.16	-26.36	QP	
2	0.3030	15.38	9.55	24.93	50.16	-25.23	AVG	
3	0.5055	17.43	9.77	27.20	46.00	-18.80	AVG	
4	0.5100	26.08	9.76	35.84	56.00	-20.16	QP	
5	0.6134	25.25	9.65	34.90	56.00	-21.10	QP	
6	0.6134	16.62	9.65	26.27	46.00	-19.73	AVG	
7	1.9184	11.29	9.75	21.04	46.00	-24.96	AVG	
8	1.9319	23.56	9.75	33.31	56.00	-22.69	QP	
9	6.5265	28.33	9.85	38.18	60.00	- <mark>21.8</mark> 2	QP	
10	6.5265	18.99	9.85	28.84	50.00	-21.16	AVG	
11 *	11.2650	31.52	9.84	41.36	60.00	-18.64	QP	
12	11.2650	21.39	9.84	31.23	50.00	-18.77	AVG	


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Report No. : EED32Q80173001

Neutral line:



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.4875	32.76	9.78	42.54	56.21	-13.67	QP	
2		0.4875	22.13	9.78	31.91	46.21	-14.30	AVG	
3		0.8655	13.10	9.80	22.90	46.00	-23.10	AVG	
4		0.8745	24.23	9.80	34.03	56.00	-21.97	QP	
5		1.6305	10.04	9.75	19.79	46.00	- <mark>26.21</mark>	AVG	
6		1.6395	22.13	9.75	31.88	56.00	-24.12	QP	
7		3.5835	22.15	9.80	31.95	56.00	-24.05	QP	
8		3.5835	10.13	9.80	<mark>19.93</mark>	46.00	-26.07	AVG	
9		9.4830	23.92	9.83	33.75	60.00	-26.25	QP	
10		9.4830	11.63	9.83	21.46	50.00	-28.54	AVG	
11		11.9040	25.18	9.84	35.02	60.00	-24.98	QP	
12		11.9040	16.52	9.84	26.36	50.00	-23.64	AVG	

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

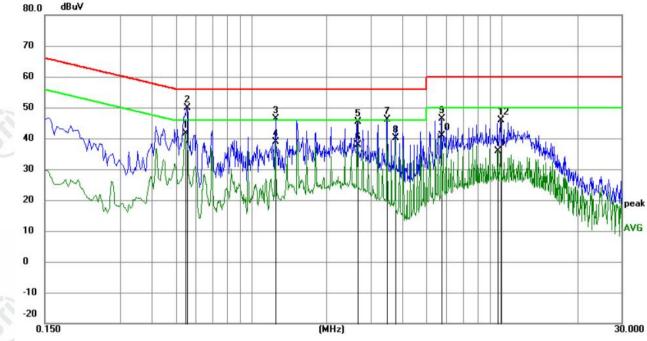
Report No. : EED32Q80173001

Measurement Data (Mode b):

Page 14 of 56

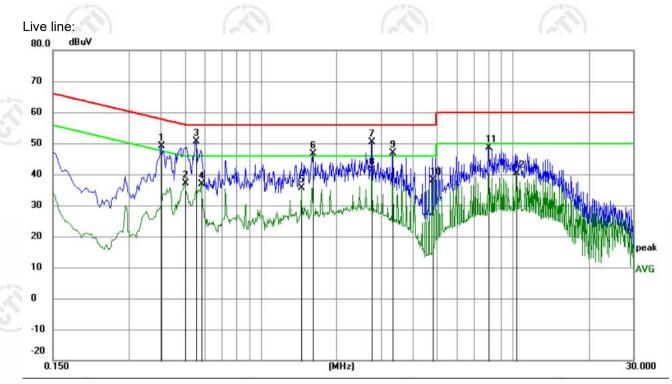
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.5415	42.56	9.70	52.26	56.00	-3.74	QP	
2	*	0.5460	33.16	9.69	42.85	46.00	-3.15	AVG	
3		1.5360	38.65	9.75	48.40	56.00	-7.60	QP	
4		1.5360	30.62	9.75	40.37	46.00	-5.63	AVG	
5		1.8150	37.34	9.75	47.09	56.00	-8.91	QP	
6		2.3730	26.58	9.76	36.34	46.00	-9.66	AVG	
7		3.7680	38.03	9.80	47.83	56.00	-8.17	QP	
8		3.7680	30.27	9.80	40.07	46.00	-5.93	AVG	
9		5.7210	30.20	9.84	40.04	50.00	-9.96	AVG	
10		6.0000	37.34	9.84	47.18	60.00	-12.82	QP	
11		7.9575	37.42	9.84	47.26	60.00	-12.74	QP	
12		7.9575	27.44	9.84	37.28	50.00	-12.72	AVG	

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.


Report No. : EED32Q80173001

Page 15 of 56

Neutral line:



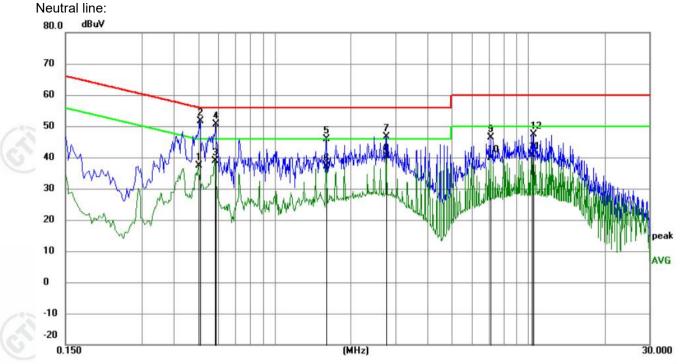
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.5460	31.98	9.69	41.67	46.00	-4.33	AVG	
2		0.5550	40.29	9.68	49.97	56.00	- <mark>6.03</mark>	QP	
3		1.2525	36.56	9.74	46.30	56.00	-9.70	QP	
4		1.2525	29.02	9.74	38.76	46.00	-7.24	AVG	
5		2.6520	35.53	9.77	45.30	56.00	-10.70	QP	
6		2.6520	28.16	9.77	37.93	46.00	-8.07	AVG	
7		3.4890	36.39	9.79	46.18	56.00	-9.82	QP	
8		3.7680	30.28	9.80	40.08	46.00	-5.92	AVG	
9		5.7210	36.57	9.84	46.41	60.00	-13.59	QP	
10	1	5.7210	30.93	9.84	40.77	50.00	-9.23	AVG	
11		9.6270	26.03	9.83	35.86	50.00	-14.14	AVG	
12		9.9060	36.16	9.83	45.99	60.00	-14.01	QP	

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Report No. : EED32Q80173001

Measurement Data (Mode c):

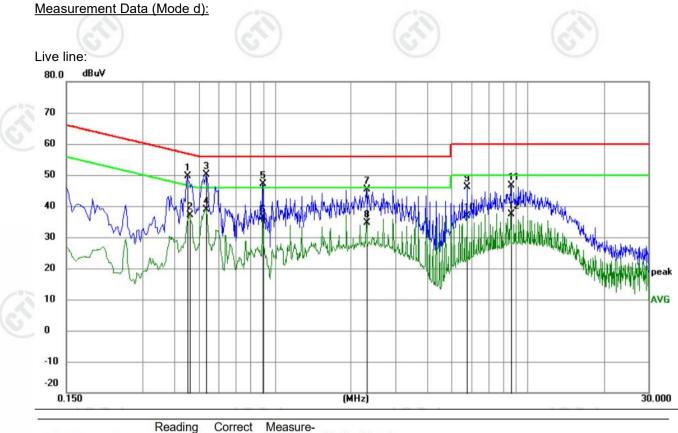
Page 16 of 56


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.4020	39.39	9.79	<mark>49.18</mark>	57.81	-8.63	QP		
2	0.5010	27.39	9.78	37.17	46.00	- <mark>8.83</mark>	AVG		
3	0.5550	41.02	9.68	50.70	56.00	-5.30	QP		
4	0.5820	27.35	9.62	36.97	46.00	-9.03	AVG		
5	1.4550	25.95	9.74	35.69	46.00	-10.31	AVG		
6	1.6035	36.95	9.75	46.70	56.00	-9.30	QP		
7	2.7645	40.54	9.77	50.31	56.00	-5.69	QP		
8 *	2.7645	31.65	9.77	41.42	46.00	-4.58	AVG		
9	3.3450	37.01	9.79	46.80	56.00	-9.20	QP		
10	4.8029	28.41	9.83	38.24	46.00	-7.76	AVG		
11	8.0024	38.68	9.84	48.52	60.00	-11.48	QP		
12	10.3290	30.60	9.83	40.43	50.00	-9.57	AVG		

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

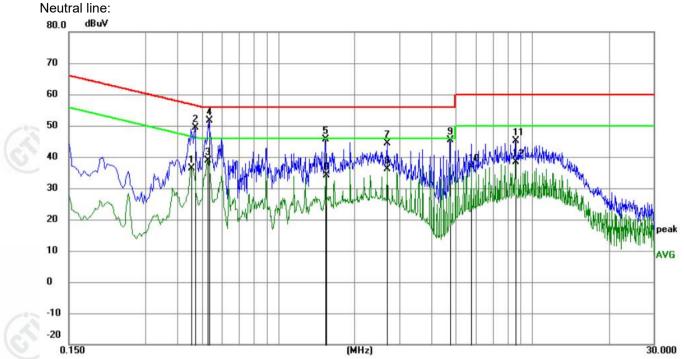
Report No. : EED32Q80173001

Page 17 of 56


No.	<mark>Mk.</mark>	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.5010	27.64	9.78	37.42	46.00	-8.58	AVG	
2	*	0.5100	41.75	9.76	51.51	56.00	-4.49	QP	
3		0.5820	29.14	9.62	38.76	46.00	-7.24	AVG	
4		0.5865	40.96	9.62	50.58	56.00	-5.42	QP	
5		1.5990	36.03	9.75	45.78	56.00	-10.22	QP	
6		1.5990	27.29	9.75	37.04	46.00	-8.96	AVG	
7		2.7645	36.96	9.77	46.73	56.00	-9.27	QP	
8		2.7645	30.64	9.77	40.41	46.00	-5.59	AVG	
9		7.1295	36.42	9.85	46.27	60.00	-13.73	QP	
10		7.1295	29.96	9.85	39.81	50.00	-10.19	AVG	
11		10.3290	30.94	9.83	40.77	50.00	-9.23	AVG	
12		10.4775	37.52	9.83	47.35	60.00	-12.65	QP	

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

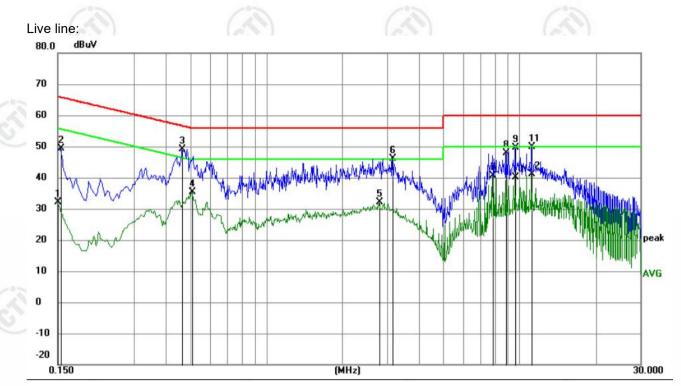
Page 18 of 56


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.4515	39.80	9.78	49.58	56.85	-7.27	QP	
2		0.4605	27.32	9.78	37.10	46.68	-9.58	AVG	
3	*	0.5370	40.34	9.71	50.05	56.00	-5.95	QP	
4		0.5370	29.24	9.71	38.95	46.00	-7.05	AVG	
5		0.8970	37.31	9.81	47.12	56.00	-8.88	QP	
6		0.8970	26.65	9.81	36.46	46.00	-9.54	AVG	
7		2.3055	35.74	9.76	45.50	56.00	-10.50	QP	
8		2.3055	24.97	9.76	34.73	46.00	-11.27	AVG	
9		5.7614	36.34	9.84	46.18	60.00	- <mark>13.8</mark> 2	QP	
10		5.7614	27.02	9.84	36.86	50.00	-13.14	AVG	
11		8.5830	36.81	9.84	46.65	60.00	-13.35	QP	
12		8.5830	27.47	9.84	37.31	50.00	-12.69	AVG	

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Report No. : EED32Q80173001

Page 19 of 56



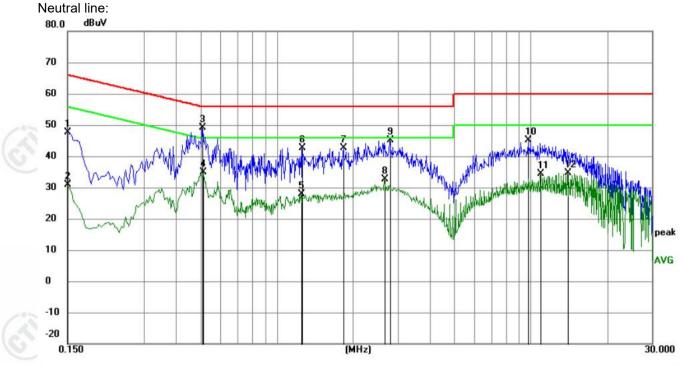
No. N	/k. Free	Reading	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.45	60 26.69	9.78	36.47	46.77	-10.30	AVG		
2	0.46	95 39.70	9.78	49.48	56.52	-7.04	QP		
3	0.52	80 29.03	9.73	38.76	46.00	-7.24	AVG		
4 *	0.53	25 41.91	9.72	51.63	56.00	-4.37	QP		
5	1.53	15 35.94	9.75	45.69	56.00	-10.31	QP		
6	1.53	60 24.40	9.75	34.15	46.00	-11.85	AVG		
7	2.68	80 34.70	9.77	44.47	56.00	-11.53	QP		
8	2.68	80 26.45	9.77	36.22	46.00	-9.78	AVG		
9	4.73	99 35.53	9.83	45.36	56.00	-10.64	QP		
10	5.76	60 26.99	9.84	36.83	50.00	-13.17	AVG		
11	8.58	30 35.25	9.84	45.09	60.00	-14.91	QP		
12	8.58	30 28.50	9.84	38.34	50.00	-11.66	AVG		

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Report No. : EED32Q80173001

Measurement Data (Mode e):

Page 20 of 56


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	22.21	9.87	32.08	56.00	-23.92	AVG	
2		0.1544	39.40	9.87	49.27	65.76	-16.49	QP	
3	*	0.4650	39.39	9.78	49.17	56.60	-7.43	QP	
4		0.5100	25.70	9.76	<mark>35.4</mark> 6	46.00	-10.54	AVG	
5		2.7825	22.42	9.77	32.19	46.00	-13.81	AVG	
6		3.1425	36.38	9.78	46.16	56.00	-9.84	QP	
7		7.8135	30.68	9.84	40.52	50.00	-9.48	AVG	
8		8.8395	38.02	9.84	47.86	60.00	-12.14	QP	
9		9.6090	39.84	9.83	49.67	60.00	-10.33	QP	
10		9.6090	30.33	9.83	40.16	50.00	-9.84	AVG	
11		11.1435	39.93	9.83	49.76	60.00	-10.24	QP	
12		11.1435	31.18	9.83	41.01	50.00	-8.99	AVG	

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Report No. : EED32Q80173001

Page 21 of 56

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	37.85	9.87	47.72	66.00	-18.28	QP	
2	0.1500	20.90	9.87	30.77	56.00	-25.23	AVG	
3 *	0.5100	39.39	9.76	49.15	56.00	-6.85	QP	
4	0.5144	25.20	9.75	34.95	46.00	-11.05	AVG	
5	1.2480	18.13	9.74	27.87	46.00	-18.13	AVG	
6	1.2570	32.91	9.74	42.65	56.00	-13.35	QP	
7	1.8375	32.98	9.75	42.73	56.00	-13.27	QP	
8	2.6610	22.96	9.77	32.73	46.00	-13.27	AVG	
9	2.7825	35.24	9.77	45.01	56.00	-10.99	QP	
10	9.7575	35.19	9.83	45.02	60.00	-14.98	QP	
11	10.9275	24.51	9.83	34.34	50.00	-15.66	AVG	
12	13.9785	24.85	9.85	34.70	50.00	-15.30	AVG	

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 22 of 56

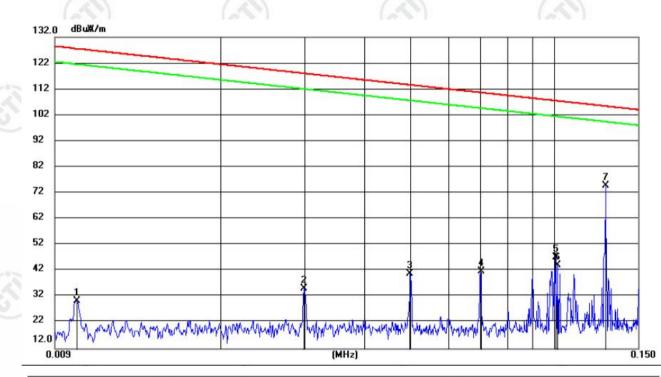
Test Requirement: Test Method: Test Site:	: 47 CFR Part 15C Section 15.231(b) and 15.209 ANSI C63.10 2013 Measurement Distance: 3m (Semi-Anechoic Chamber)								
l'est Site:					Demeril				
		Detector	RBW	VBW	Remark				
	0.009MHz-0.090MHz 0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak				
Receiver Setup:	0.009MHz-0.090MHz 0.090MHz-0.110MHz	Average	10kHz 10kHz	30kHz 30kHz	Average Quasi-peal				
Receiver Setup.	0.110MHz-0.490MHz	Quasi-peak	10kHz	30kHz	Peak				
	0.110MHz-0.490MHz	Peak	10kHz	30kHz					
		Average Oussi posk	10kHz	30kHz	Average				
Test Setup:	0.490MHz -30MHz	Quasi-peak	TUKHZ	30KHZ	Quasi-pea				
	(Turntable) Tes	Cround Relevance Plane,		C					
Test Procedure:	 Below 1GHz test proced a. The EUT was placed of a 3 meter semi-anech the position of the high b. The EUT was set 3 m was mounted on the test of below and the maximular polarizations of the antenna height is determine the maximular polarizations of the antenna was tuned of below 30MHz, the atable was turned from e. The test-receiver system Bandwidth with Maximular f. If the emission level of specified, then testing reported. Otherwise the state of the system of the system of the test of the system of the test of the system of the system of the test of the system of the system of the test of the system of the test of the system of the test of the test of the system of the test of the test of the test of the test of the system of the test of test of the test of test	on the top of a ro oic camber. The hest radiation. eters away from to op of a variable-h varied from one um value of the fire tenna are set to ne mission, the EUT d to heights from antenna was tune 0 degrees to 360 em was set to Pe num Hold Mode. f the EUT in peak could be stopped	table was rot the interferen- neight antenn meter to four eld strength. make the me was arrange 1 meter to 4 d to heights 0 degrees to 1 ak Detect Fu a mode was 1 d and the pea	ated 360 deg ce-receiving a tower. meters abov Both horizon asurement. ed to its wors meters (for t 1 meter) and find the maxi nction and S 0dB lower that values of	grees to deter antenna, whi ve the ground tal and vertica t case and the he test freque the rota table mum reading. Specified nan the limit the EUT would				
	tested one by one using the reported in a data	ng peak, quasi-pe		•					

Limit: (Spurious Emissions)

Report No. : EED32Q80173001

Page 23 of 56

			0	
Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)		- (3	300
0.490MHz-1.705MHz	24000/F(kHz)) -	-6	30
1.705MHz-30MHz	30	_	\sim	30


Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

est Mode: est Results:		radiated by the		

Report No. : EED32Q80173001

9kHz~150kHz:

Measurement Data (Mode a):

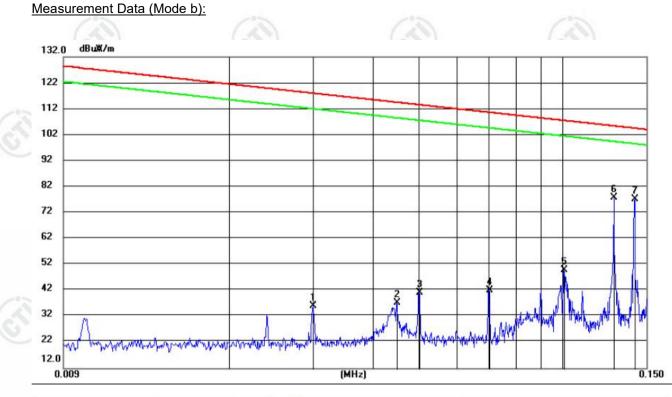
Page 24 of 56

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	0.0100	9.18	21.30	30.48	127.49	-97.01	QP			
2	0.0299	14.33	20.92	35.25	118.01	-82.76	QP			
3	0.0499	20.15	20.90	41.05	113.58	-72.53	QP			
4	0.0702	20.93	20.83	41.76	110.62	-68.86	QP			
5	0.1006	26.50	20.81	47.31	107.51	-60.20	QP			
6	0.1017	23.55	20.81	44.36	107.41	-63.05	QP			
7 *	0.1281	53.87	20.89	74.76	105.41	-30.65	QP			

Remark:

1. According ANSI C63.10-2013 chapter 6.4.6, We tested the parallel, perpendicular, and

ground-parallel of loop antenna, and was recorded the worst parallel data of loop antenna in the report.

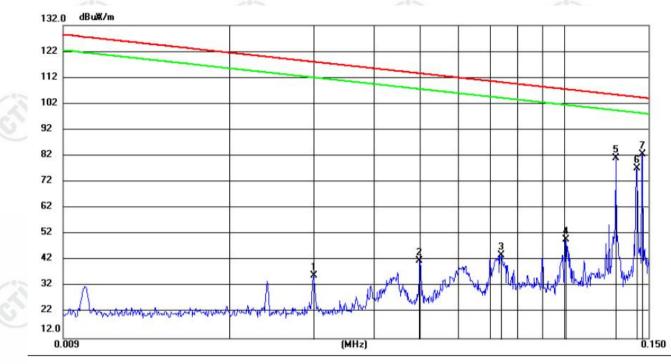

2. The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equati on with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Page 25 of 56

No. N	<mark>Mk.</mark>	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		0.0300	15.21	20.92	36.13	117.98	-81.85	QP			
2		0.0449	16.44	20.90	37.34	114.49	-77.15	QP			
3		0.0501	20.45	20.90	41.35	113.54	-72.19	QP			
4		0.0702	21.24	20.83	42.07	110.62	-68.55	QP			
5		0.1006	29.14	20.81	49.95	107.51	-57.56	QP			
6		0.1281	56.91	20.89	77.80	105.41	-27.61	QP			
7	*	0.1418	56.43	20.90	77.33	104.53	-27.20	QP			

1.According ANSI C63.10-2013 chapter 6.4.6, We tested the parallel, perpendicular, and


ground-parallel of loop antenna, and was recorded the worst parallel data of loop antenna in the report.

2. The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equati on with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Report No. : EED32Q80173001

Measurement Data (Mode c):

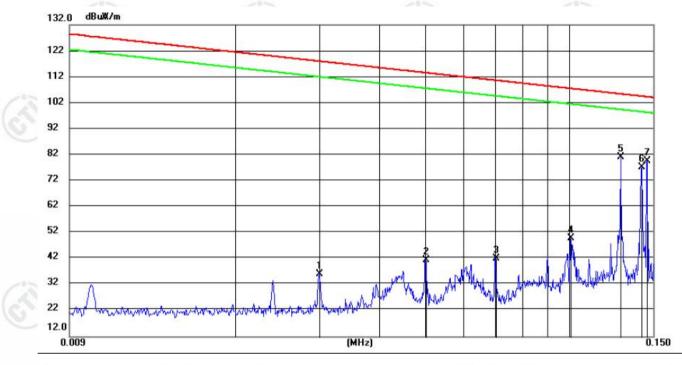
Page 26 of 56

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	0.0300	15.21	20.92	36.13	117.98	-81.85	QP			
2	0.0499	21.04	20.90	41.94	113.58	-71.64	QP			
3	0.0740	23.25	20.82	44.07	110.16	-66.09	QP			
4	0.1006	29.14	20.81	49.95	107.51	-57.56	QP			
5	0.1281	60.31	20.89	81.20	105.41	-24.21	QP			
6	0.1418	56.43	20.90	77.33	104.53	-27.20	QP			
7 *	0.1457	61.65	20.91	82.56	104.30	-21.74	QP			

Remark:

1.According ANSI C63.10-2013 chapter 6.4.6, We tested the parallel, perpendicular, and

ground-parallel of loop antenna, and was recorded the worst parallel data of loop antenna in the report.


2. The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equati

on with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Report No. : EED32Q80173001

Measurement Data (Mode d):

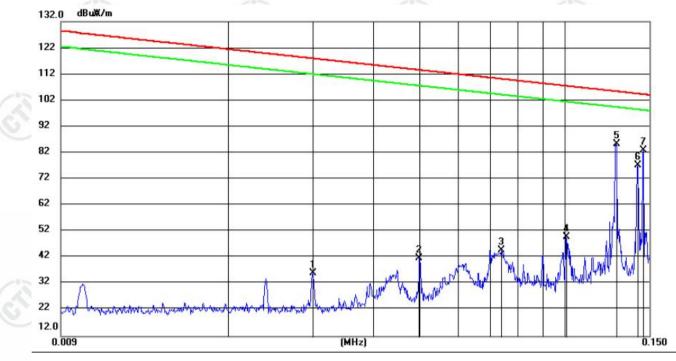
Page 27 of 56

No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		0.0300	15.21	20.92	36.13	117.98	-81.85	QP			
2		0.0501	20.58	20.90	41.48	113.54	-72.06	QP			
3		0.0702	21.24	20.83	42.07	110.62	-68.55	QP			
4		0.1006	29.14	20.81	49.95	107.51	-57.56	QP			
5	*	0.1281	60.25	20.89	81.14	105.41	-24.27	QP			
6		0.1418	56.43	20.90	77.33	104.53	-27.20	QP			
7		0.1457	58.61	20.91	79.52	104.30	-24.78	QP			

Remark:

1.According ANSI C63.10-2013 chapter 6.4.6, We tested the parallel, perpendicular, and

ground-parallel of loop antenna, and was recorded the worst parallel data of loop antenna in the report.


2. The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equati

on with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Report No. : EED32Q80173001

Measurement Data (Mode e):

Page 28 of 56

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		0.0300	15.21	20.92	36.13	117.91	-81.78	QP			
2		0.0499	21.04	20.90	41.94	113.52	-71.58	QP			
3		0.0738	24.10	20.82	44.92	110.14	-65.22	QP			
4		0.1006	29.14	20.81	49.95	107.47	-57.52	QP			
5	*	0.1278	64.50	20.89	85.39	105.40	-20.01	QP			
6		0.1418	56.43	20.90	77.33	104.50	-27.17	QP			
7		0.1457	61.99	20.91	82.90	104.27	-21.37	QP			

Remark:

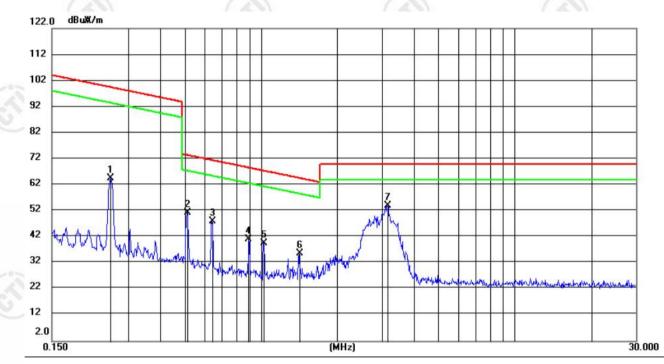
1.According ANSI C63.10-2013 chapter 6.4.6, We tested the parallel, perpendicular, and

ground-parallel of loop antenna, and was recorded the worst parallel data of loop antenna in the report.

2. The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equati

on with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor



Report No. : EED32Q80173001 150kHz~30MHz:

Page 29 of 56

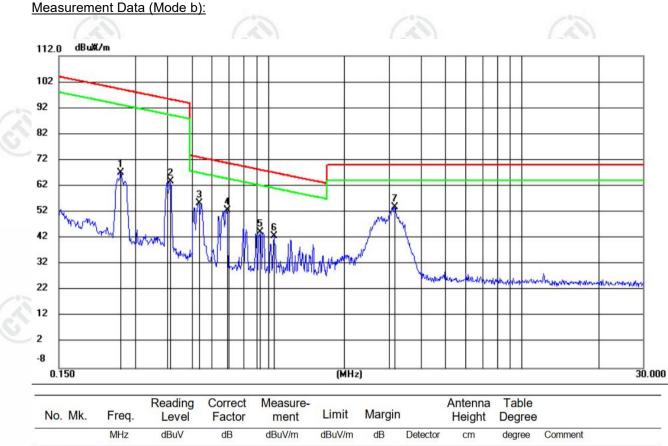
Measurement Data (Mode a):

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	0.2548	43.54	21.03	64.57	99.46	-34.89	QP			
2	0.5128	30.69	20.55	51.24	73.41	-22.17	QP			
3	0.6406	27.61	20.54	48.15	71.48	-23.33	QP			
4	0.8944	20.63	20.51	41.14	68.59	-27.45	QP			
5	1.0211	19.22	20.49	39.71	67.44	-27.73	QP			
6	1.4107	15.37	20.47	35.84	64.64	-28.80	QP			
7 *	3.1397	33.59	20.41	54.00	70.00	-16.00	QP			

Remark:

1.According ANSI C63.10-2013 chapter 6.4.6, We tested the parallel, perpendicular, and

ground-parallel of loop antenna, and was recorded the worst parallel data of loop antenna in the report.

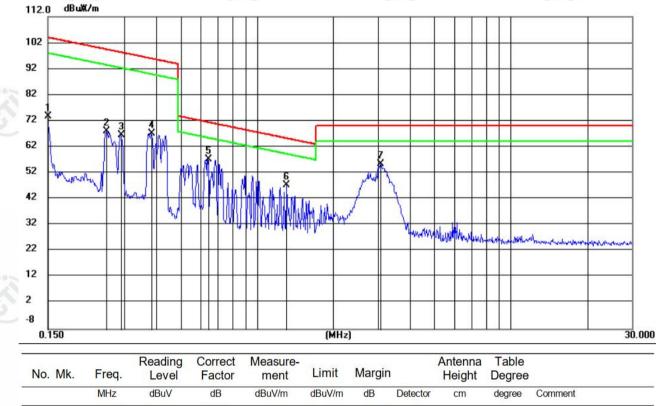

2. The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equati on with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Page 30 of 56

MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
0.2630	46.24	21.01	67.25	99.17	-31.92	QP			
0.4105	43.08	20.73	63.81	95.33	-31.52	QP			
0.5322	34.86	20.55	55.41	73.08	-17.67	QP			
0.6863	32.24	20.53	52.77	70.88	-18.11	QP			
0.9331	23.97	20.51	44.48	68.22	-23.74	QP			
1.0541	22.49	20.49	42.98	67.16	-24.18	QP			
3.1397	33.59	20.41	54.00	70.00	-16.00	QP			
	0.2630 0.4105 0.5322 0.6863 0.9331 1.0541	0.2630 46.24 0.4105 43.08 0.5322 34.86 0.6863 32.24 0.9331 23.97 1.0541 22.49	0.263046.2421.010.410543.0820.730.532234.8620.550.686332.2420.530.933123.9720.511.054122.4920.49	0.263046.2421.0167.250.410543.0820.7363.810.532234.8620.5555.410.686332.2420.5352.770.933123.9720.5144.481.054122.4920.4942.98	0.263046.2421.0167.2599.170.410543.0820.7363.8195.330.532234.8620.5555.4173.080.686332.2420.5352.7770.880.933123.9720.5144.4868.221.054122.4920.4942.9867.16	0.2630 46.24 21.01 67.25 99.17 -31.92 0.4105 43.08 20.73 63.81 95.33 -31.52 0.5322 34.86 20.55 55.41 73.08 -17.67 0.6863 32.24 20.53 52.77 70.88 -18.11 0.9331 23.97 20.51 44.48 68.22 -23.74 1.0541 22.49 20.49 42.98 67.16 -24.18	0.2630 46.24 21.01 67.25 99.17 -31.92 QP 0.4105 43.08 20.73 63.81 95.33 -31.52 QP 0.5322 34.86 20.55 55.41 73.08 -17.67 QP 0.6863 32.24 20.53 52.77 70.88 -18.11 QP 0.9331 23.97 20.51 44.48 68.22 -23.74 QP 1.0541 22.49 20.49 42.98 67.16 -24.18 QP	0.2630 46.24 21.01 67.25 99.17 -31.92 QP 0.4105 43.08 20.73 63.81 95.33 -31.52 QP 0.5322 34.86 20.55 55.41 73.08 -17.67 QP 0.6863 32.24 20.53 52.77 70.88 -18.11 QP 0.9331 23.97 20.51 44.48 68.22 -23.74 QP 1.0541 22.49 20.49 42.98 67.16 -24.18 QP	0.2630 46.24 21.01 67.25 99.17 -31.92 QP 0.4105 43.08 20.73 63.81 95.33 -31.52 QP 0.5322 34.86 20.55 55.41 73.08 -17.67 QP 0.6863 32.24 20.53 52.77 70.88 -18.11 QP 0.9331 23.97 20.51 44.48 68.22 -23.74 QP 1.0541 22.49 20.49 42.98 67.16 -24.18 QP

1.According ANSI C63.10-2013 chapter 6.4.6, We tested the parallel, perpendicular, and


ground-parallel of loop antenna, and was recorded the worst parallel data of loop antenna in the report.

2. The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equati on with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Report No. : EED32Q80173001

Measurement Data (Mode c):

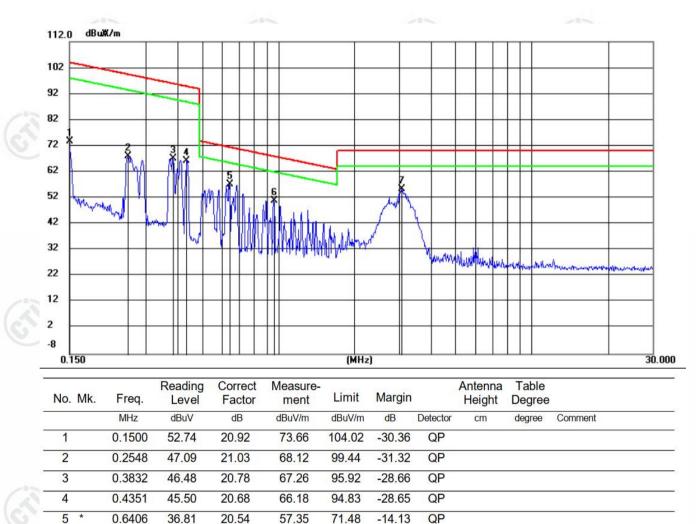
Page 31 of 56

	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	0.1500	52.74	20.92	73.66	104.02	-30.36	QP			
2	0.2548	47.09	21.03	68.12	99.44	-31.32	QP			
3	0.2909	45.57	20.96	66.53	98.30	-31.77	QP			
4	0.3832	46.48	20.78	67.26	95.92	-28.66	QP			
5 *	0.6406	36.81	20.54	57.35	71.48	-14.13	QP			
6	1.3098	26.95	20.48	47.43	65.28	-17.85	QP			
7	3.0738	34.95	20.41	55.36	70.00	-14.64	QP			

Remark:

1.According ANSI C63.10-2013 chapter 6.4.6, We tested the parallel, perpendicular, and

ground-parallel of loop antenna, and was recorded the worst parallel data of loop antenna in the report.


2. The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equati

on with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Report No. : EED32Q80173001

Measurement Data (Mode d):

Page 32 of 56

Remark:

6

7

1.According ANSI C63.10-2013 chapter 6.4.6, We tested the parallel, perpendicular, and

50.84

55.36

ground-parallel of loop antenna, and was recorded the worst parallel data of loop antenna in the report.

67.99

70.00

-17.15

-14.64

QP

QP

2. The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equati

on with a sample calculation is as follows:

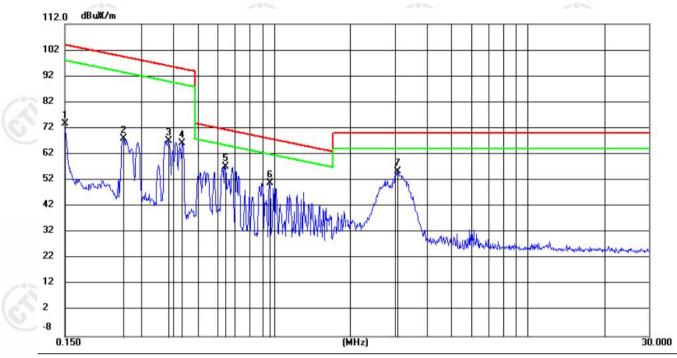
0.9582

3.0738

Final Test Level =Receiver Reading - Correct Factor

30.35

34.95


Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

20.49

20.41

Report No. : EED32Q80173001

Measurement Data (Mode e):

Page 33 of 56

No. N	<mark>٨</mark> k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		0.1500	52.74	20.92	73.66	104.02	-30.36	QP			
2		0.2548	47.09	21.03	68.12	99.44	-31.32	QP			
3		0.3832	46.48	20.78	67.26	95.92	-28.66	QP			
4		0.4351	45.50	20.68	66.18	94.83	-28.65	QP			
5 *	•	0.6406	36.81	20.54	57.35	71.48	-14.13	QP			
6		0.9582	30.35	20.49	50.84	67.99	- <mark>17.1</mark> 5	QP			
7		3.0738	34.95	20.41	55.36	70.00	-14.64	QP			

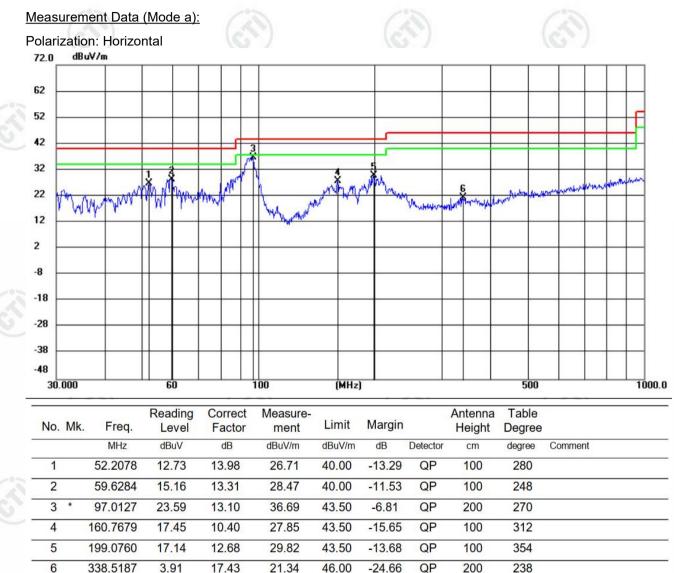
Remark:

1.According ANSI C63.10-2013 chapter 6.4.6, We tested the parallel, perpendicular, and

ground-parallel of loop antenna, and was recorded the worst parallel data of loop antenna in the report.

2. The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equati

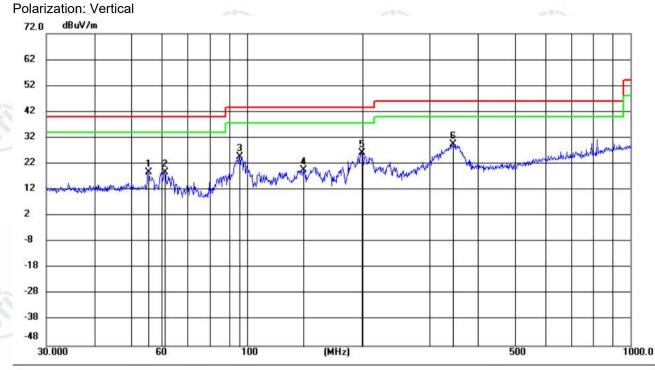
on with a sample calculation is as follows:


Final Test Level =Receiver Reading - Correct Factor

Page 34 of 56

30MHz-1GHz:

Remark:

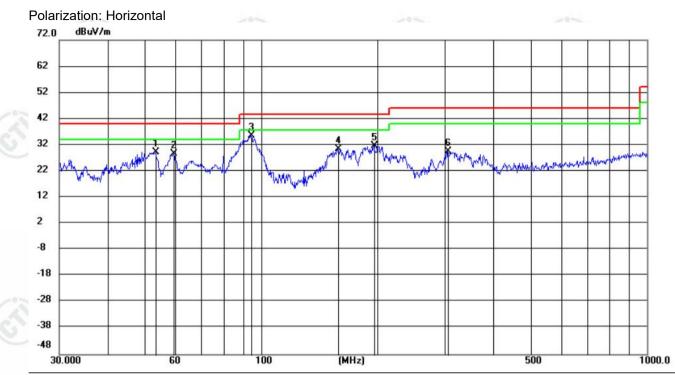

1. The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equati on with a sample calculation is as follows:

- Final Test Level =Receiver Reading Correct Factor
- Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Report No. : EED32Q80173001

Page 35 of 56

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		55.2982	4.92	13.69	18.61	40.00	-21.39	QP	100	0	
2		61.0458	5.87	13.01	18.88	40.00	-21.12	QP	100	332	
3		95.6447	11.72	12.90	24.62	43.50	-18.88	QP	200	342	
4		140.4405	10.05	9.59	19.64	43.50	-23.86	QP	100	208	
5		199.1109	13.56	12.68	26.24	43.50	-17.26	QP	100	30	
6	*	345.2318	12.02	17.57	29.59	46.00	-16.41	QP	200	218	


Remark:

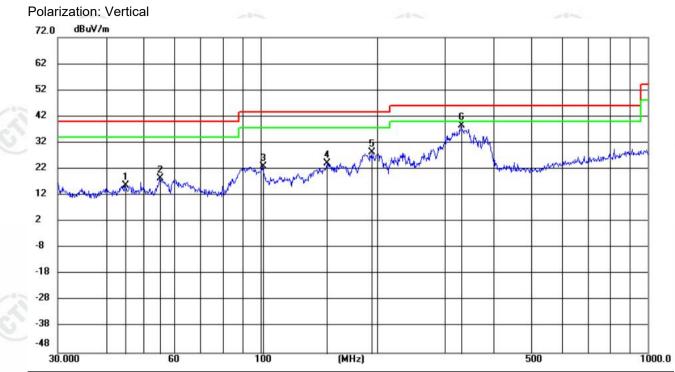
1. The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equati on with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Report No. : EED32Q80173001

Page 36 of 56

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		53.3272	<mark>15.4</mark> 6	13.87	29.33	40.00	-10.67	QP	200	112	
2		59.3259	<mark>15.38</mark>	13.33	28.71	40.00	-11.29	QP	100	345	
3	*	94.2960	22.96	12.69	35.65	43.50	-7.85	QP	100	334	
4		158.2510	20.32	10.19	30.51	43.50	-12.99	QP	200	303	
5		196.5787	19.08	12.60	31.68	43.50	-11.82	QP	100	324	
6		305.3585	12.71	16.78	29.49	46.00	-16.51	QP	100	334	


Remark:

1. The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equati on with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

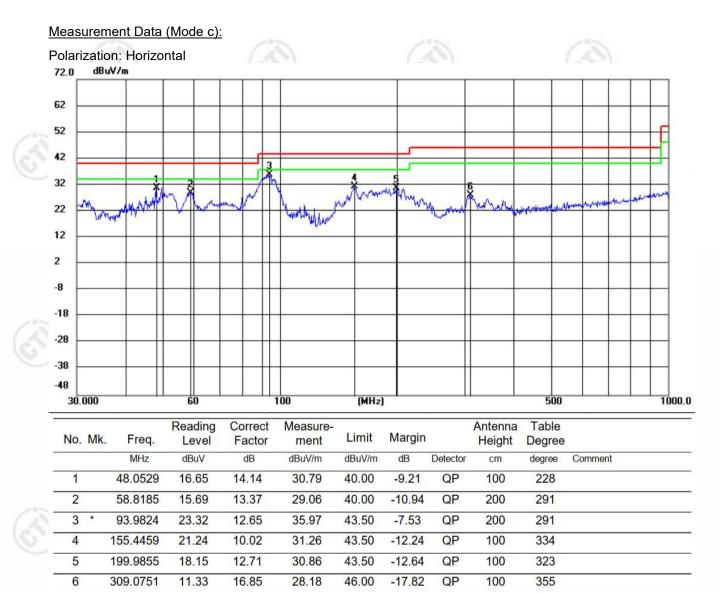
Report No. : EED32Q80173001

Page 37 of 56

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		44.8769	1.79	14.08	15.87	40.00	-24.13	QP	100	184	
2		55.1917	4.63	13.71	18.34	40.00	-21.66	QP	200	300	
3		101.5374	9.39	13.47	22.86	43.50	-20.64	QP	200	352	
4		148.7537	14.45	9.69	24.14	43.50	-19.36	QP	100	227	
5		194.0788	15.83	12.52	28.35	43.50	-15.15	QP	100	237	
6	*	329.5009	21.16	17.26	38.42	46.00	-7.58	QP	100	237	

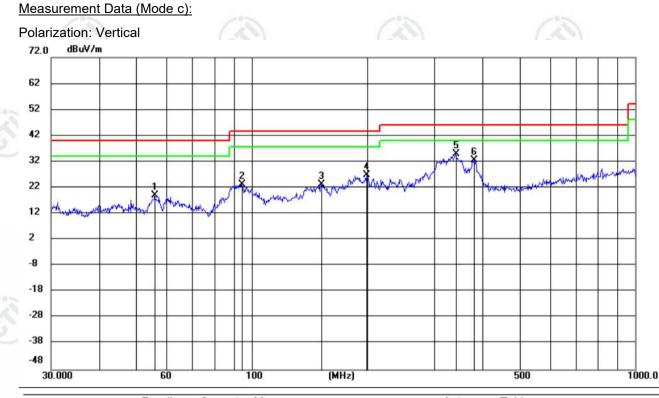
Remark:

1. The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equati on with a sample calculation is as follows:


Final Test Level =Receiver Reading - Correct Factor

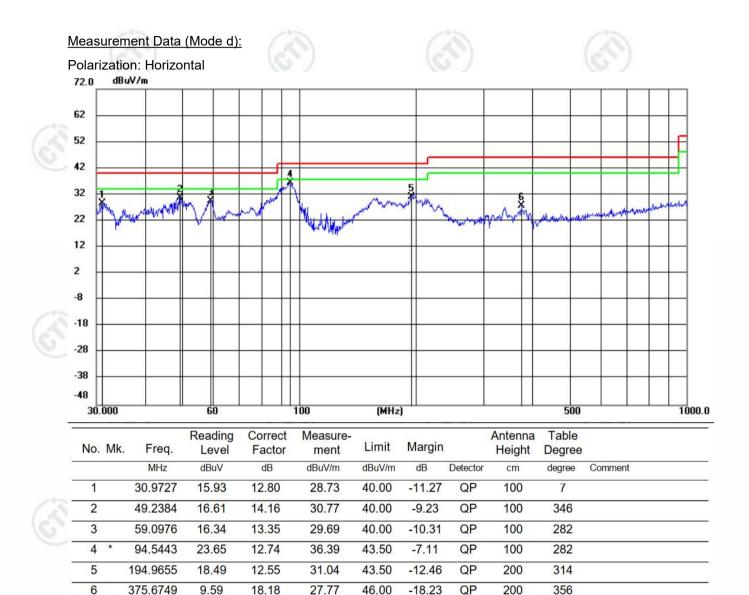
Page 38 of 56

1. The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equati on with a sample calculation is as follows:


Final Test Level =Receiver Reading - Correct Factor

Page 39 of 56

			Level	Factor	ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		55.9909	5.30	13.63	18.93	40.00	-21.07	QP	100	289	
2		94.1474	10.62	12.67	23.29	43.50	-20.21	QP	100	341	
3		152.0231	13.56	9.82	23.38	43.50	-20.12	QP	100	226	
4		199.8454	14.18	12.70	26.88	43.50	-16.62	QP	100	215	
5	*	341.7989	17.31	17.50	34.81	46.00	-11.19	QP	200	258	
6		380.7143	14.37	18.27	32.64	46.00	-13.36	QP	200	58	

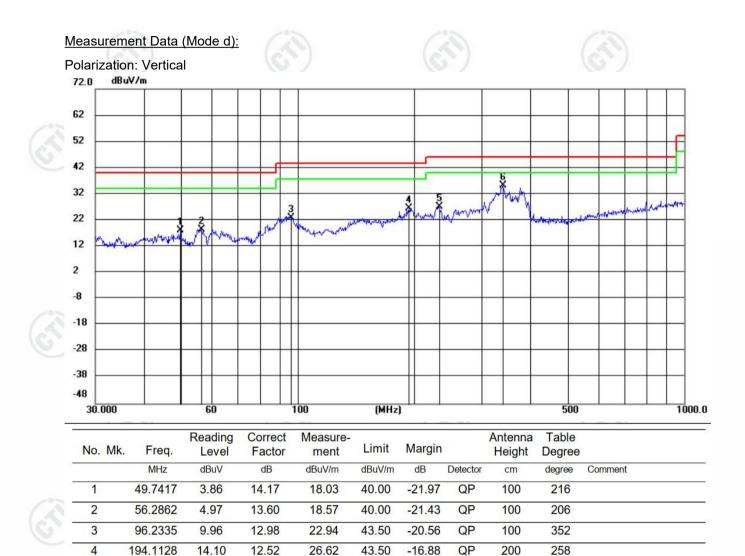

1. The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equati on with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Page 40 of 56

1. The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equati

on with a sample calculation is as follows:


Final Test Level =Receiver Reading - Correct Factor

Page 41 of 56

5

1. The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equati

46.00

46.00

-18.84

-10.79

QP

QP

100

200

237

58

on with a sample calculation is as follows:

231.7585

340.7218

Final Test Level =Receiver Reading - Correct Factor

13.19

17.73

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

13.97

17.48

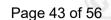
27.16

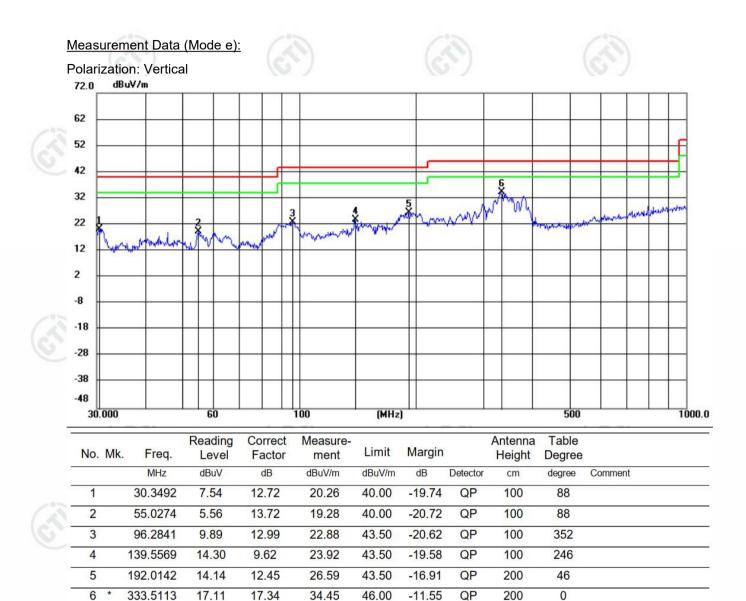
35.21

Page 42 of 56

No.	Mk.	Freq.	Reading Level	Factor	Measure- ment	Limit	Margin		Antenna Height	l able Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		31.0107	15.22	12.80	28.02	40.00	-11.98	QP	100	113	
2		48.7829	16.81	1 <mark>4.14</mark>	30.95	40.00	-9.05	QP	100	360	
3		58.9113	16.78	13.37	30.15	40.00	-9.85	QP	200	307	
4	*	97.5756	22.51	13.19	35.70	43.50	-7.80	QP	100	285	
5		198.2053	20.30	12.65	32.95	43.50	-10.55	QP	200	307	
6		377.9873	9.75	18.23	27.98	46.00	-18.02	QP	100	360	

1. The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equati


on with a sample calculation is as follows:


Final Test Level =Receiver Reading - Correct Factor

1. The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equati on with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

