ANNEX C: Calibration Reports | 0523-EPGO-403 Probe Calibration Report | |--| | SID750 Dipole Calibration Report | | SID835 Dipole Calibration Report | | SID1800 Dipole Calibration Report | | SID1900 Dipole Calibration Report | | SID2450 Dipole Calibration Report | | SID2600 Dipole Calibration Report | | SID3500 Dipole Calibration Report | | SID3700 Dipole Calibration Report | | SID3900 Dipole Calibration Report | | SID5G Dipole Calibration Report | # **EPGO403 Probe Calibration Report** # COMOSAR E-Field Probe Calibration Report Ref: ACR.45.10.23.BES.A # CCIC SOUTHERN TESTING CO., LTD ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD, XILI STREET, NANSHAN DISTRICT SHENZHEN, GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: 0523-EPGO-403 Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 02/14/2023 Accreditations #2-6789 Scope available on www.cofrac.fr The use of the Cofrac brand and the accreditation references is prohibited from any reproduction ### Summary: This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI). Page: 1/10 Ref. ACR 45 10 23 BES.A | | Name | Function | Date | Signature | |------------------------|---------------|-------------------------|-----------|--------------| | Prepared by : | Cyrille ONNEE | Measurement Responsible | 2/14/2023 | 23 | | Checked & approved by: | Jérôme Luc | Technical Manager | 2/14/2023 | J\$ | | Authorized by: | Yann Toutain | Laboratory Director | 2/14/2023 | Yana TOUTANN | Signature numérique de Yann Yann Toutain ID Toutain ID Date: 2023.02.14 17:07:43 +01'00' | | Customer Name | | |---------------|---------------|--| | | CCIC SOUTHERN | | | Distribution: | TESTING CO., | | | | LTD | | | Issue | Name | Date | Modifications | |-------|---------------|-----------|-----------------| | A | Cyrille ONNEE | 2/14/2023 | Initial release | | - " | 1 | | | | | | | | | | - | | | | | | | | Page: 2/10 Ref. ACR 45 10 23 BES.A # TABLE OF CONTENTS | 1 | De | rice Under Test | | |---|-----|-----------------------|---| | 2 | Pro | duct Description | | | | 2.1 | General Information | 4 | | 3 | Me | asurement Method | | | | 3.1 | Sensitivity | 4 | | | 3.2 | Linearity | 5 | | | 3.3 | Isotropy | 5 | | | 3.4 | Boundary Effect | 5 | | 4 | Me | asurement Uncertainty | | | 5 | Cal | ibration Results6 | | | | 5.1 | Calibration in air | 6 | | | 5.2 | Calibration in liquid | 7 | | 6 | Ver | ification Results | | | 7 | Lis | t of Equipment9 | | | | | | | Page: 3/10 Ref. ACR 45 10 23 BES A # 1 DEVICE UNDER TEST | Device Under Test | | | | |---|----------------------------------|--|--| | Device Type | COMOSAR DOSIMETRIC E FIELD PROBE | | | | Manufacturer | MVG | | | | Model | SSE2 | | | | Serial Number | 0523-EPGO-403 | | | | Product Condition (new / used) | New | | | | Frequency Range of Probe | 0.15 GHz-7.5GHz | | | | Resistance of Three Dipoles at Connector | Dipole 1: R1=0.219 MΩ | | | | THE PROPERTY OF THE STATE T | Dipole 2: R2=0.244 MΩ | | | | | Dipole 3: R3=0.226 MΩ | | | ### 2 PRODUCT DESCRIPTION ### 2.1 GENERAL INFORMATION MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. Figure 1 - MVG COMOSAR Dosimetric E field Probe | Probe Length | 330 mm | |--|--------| | Length of Individual Dipoles | 2 mm | | Maximum external diameter | 8 mm | | Probe Tip External Diameter | 2.5 mm | | Distance between dipoles / probe extremity | 1 mm | ### 3 MEASUREMENT METHOD The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their effect. All calibrations / measurements performed meet the fore-mentioned standards. ### 3.1 SENSITIVITY The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards for frequency range 600-7500MHz and using the calorimeter cell method (transfer method) as outlined in the standards for frequency 150-450 MHz. Page: 4/10 Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vL Ref. ACR 45 10 23 BES A ### 3.2 LINEARITY The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg. ### 3.3 ISOTROPY The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°). # 3.4 BOUNDARY EFFECT The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface. The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and d_{be} + d_{sten} along lines that are approximately normal to the surface: SAR uncertainty [%] = $$\delta$$ SAR be $\frac{(d_{be} + d_{atop})^2}{2d_{atop}} \frac{(e^{-d_{be}(\delta \beta_2)})}{\delta/2}$ for $(d_{be} + d_{atop}) < 10$ mm where SAR_{uncertainty} is the uncertainty in percent of the probe boundary effect dbe is the distance between the surface and the closest zoom-scan measurement point, in millimetre Δ_{step} is the separation distance between the first and second measurement points that are closest to the phantom surface, in millimetre, assuming the boundary effect at the second location is negligible δ is the minimum penetration depth in millimetres of the head tissue-equivalent liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz, ASARbe in percent of SAR is the deviation between the measured SAR value, at the distance dbe from the boundary, and the analytical SAR value. The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit, 2%). Page: 5/10 Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vL Ref. ACR 45 10 23 BES A ### 4 MEASUREMENT UNCERTAINTY The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with a SAR probe calibration using the waveguide or calorimetric cell technique depending on the frequency. The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-11% for the frequency range 150-450MHz. The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-14% for the frequency range 600-7500MHz. ### 5 CALIBRATION RESULTS | Ambient condition | | | | |--------------------|-------------|--|--| | Liquid Temperature | 20 +/- 1 °C | | | | Lab Temperature | 20 +/- 1 °C | | | | Lab Humidity | 30-70 % | | | ## 5.1 CALIBRATION IN AIR The following curve represents the measurement in
waveguide of the voltage picked up by the probe toward the E-field generated inside the waveguide. From this curve, the sensitivity in air is calculated using the below formula. $$E^{2} = \sum_{i=1}^{3} \frac{V_{i} \left(1 + \frac{V_{i}}{DCP_{i}}\right)}{Norm_{i}}$$ where Vi=voltage readings on the 3 channels of the probe DCPi=diode compression point given below for the 3 channels of the probe Normi=dipole sensitivity given below for the 3 channels of the probe Page: 6/10 # Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vl. Ref. ACR 45 10 23 BES A | Normx dipole | Normy dipole | Normz dipole | |----------------------------|----------------------------|----------------------------| | 1 (μV/(V/m) ²) | 2 (μV/(V/m) ²) | 3 (μV/(V/m) ²) | | 0.72 | 1.28 | 0.71 | | DCP dipole 1 | DCP dipole 2 | DCP dipole 3 | |--------------|--------------|--------------| | (mV) | (mV) | (mV) | | 116 | 112 | 110 | # 5.2 CALIBRATION IN LIQUID The calorimeter cell or the waveguide is used to determine the calibration in liquid using the formula below. $$ConvF = \frac{E_{liquid}^2}{E_{air}^2}$$ The E-field in the liquid is determined from the SAR measurement according to the below formula. $$E_{liquid}^2 = \frac{\rho \, SAR}{\sigma}$$ where σ=the conductivity of the liquid ρ=the volumetric density of the liquid SAR=the SAR measured from the formula that depends on the setup used. The SAR formulas are given below For the calorimeter cell (150-450 MHz), the formula is: $$SAR = c \frac{dT}{dt}$$ where c=the specific heat for the liquid dT/dt=the temperature rises over the time For the waveguide setup (600-75000 MHz), the formula is: $$SAR = \frac{4p_W}{ab\delta}e^{\frac{-12}{\delta}}$$ where a=the larger cross-sectional of the waveguide b=the smaller cross-sectional of the waveguide δ=the skin depth for the liquid in the waveguide Pw=the power delivered to the liquid Page: 7/10 Template ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vl. Ref. ACR 45 10 23 BES. A The below table summarize the ConvF for the calibrated liquid. The curves give examples for the measured SAR depending on the voltage in some liquid. | Liquid | Frequency
(MHz*) | ConvF | |--------|---------------------|-------| | HL750 | 750 | 2.12 | | HL850 | 835 | 1.99 | | HL1800 | 1800 | 2.08 | | HL1900 | 1900 | 2.22 | | HL2000 | 2000 | 2.37 | | HL2300 | 2300 | 2.45 | | HL2450 | 2450 | 2.32 | | HL2600 | 2600 | 2.27 | | HL3300 | 3300 | 1.81 | | HL3500 | 3500 | 1.88 | | HL3700 | 3700 | 1.85 | | HL3900 | 3900 | 2.01 | | HL4200 | 4200 | 2.09 | | HL4600 | 4600 | 2.02 | | HL5200 | 5200 | 1.38 | | HL5400 | 5400 | 1.50 | | HL5600 | 5600 | 1.56 | | HL5800 | 5800 | 1.48 | (*) Frequency validity is 4/50MHz below 600MHz, 14/100MHz from 600MHz to 6GHz and 4/500MHz above 6GHz # 6 VERIFICATION RESULTS The figures below represent the measured linearity and axial isotropy for this probe. The probe specification is +/-0.2 dB for linearity and +/-0.15 dB for axial isotropy. Linearity +/-1.91% (+/-0.08dB) Page: 8/10 ### Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vL Ref. ACR 45 10 23 BES.A # 7 LIST OF EQUIPMENT | Equipment
Description | Manufacturer /
Model | Identification No. | Current Calibration Date | Next Calibration
Date | |---------------------------------------|----------------------------|---------------------------|---|--| | CALIPROBE Test
Bench | Version 2 | NA | Validated. No cal required. | Validated. No ca
required. | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 08/2021 | 08/2024 | | Network Analyzer | Agilent 8753ES | MY40003210 | 10/2019 | 10/2023 | | Network Analyzer –
Calibration kit | HP 85033D | 3423A08186 | 06/2021 | 06/2027 | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 07/2022 | 07/2025 | | Multimeter | Keithley 2000 | 4013982 | 02/2023 | 02/2026 | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 03/2022 | 03/2025 | | Amplifier | MVG | MODU-023-C-0002 | Characterized prior to test. No cal required. | Characterized prior to
test. No cal required. | | Power Meter | NI-USB 5680 | 170100013 | 06/2021 | 06/2024 | | Power Meter | NI-USB 5680 | 170100013 | 06/2021 | 06/2024 | | Directional Coupler | Krytar 158020 | 131467 | Characterized prior to test. No cal required. | Characterized prior to
test. No cal required. | | Tuoroptic Thermometer | LumaSense Luxtron
812 | 94264 | 09/2022 | 09/2025 | | Coaxial cell | MVG | SN 32/16
COAXCELL_1 | Validated. No cal required. | Validated, No cal
required. | | Waveguide | MVG | SN 32/16 WG2_1 | Validated. No cal required. | Validated. No cal required. | | Liquid transition | MVG | SN 32/16
WGLIQ_0G600_1 | Validated. No cal required. | Validated. No cal
required. | | Waveguide | MVG | SN 32/16 WG4_1 | Validated. No cal required. | Validated. No cal required. | | Liquid transition | MVG | SN 32/16
WGLIQ_0G900_1 | Validated. No cal required. | Validated. No cal
required. | | Waveguide | MVG | SN 32/16 WG6_1 | Validated. No cal required. | Validated, No cal required. | | Liquid transition | MVG | SN 32/16
WGLIQ_1G500_1 | Validated. No cal required. | Validated. No cal required. | Page: 9/10 Ref. ACR 45 10 23 BES.A | Temperature / Humidity
Sensor | Testo 184 H1 | 44225320 | 06/2021 | 06/2024 | |----------------------------------|--------------|----------------------------|--------------------------------|--------------------------------| | Liquid transition | MVG | SN 32/16
WGLIQ_7G000_1 | Validated. No cal
required. | Validated. No cal
required. | | Waveguide | MVG | SN 32/16 WG14_1 | Validated. No cal
required. | Validated. No cal
required. | | Liquid transition | MVG | SN 32/16
WGLIQ_5G000_1 | Validated. No cal
required. | Validated. No cal
required. | | Waveguide | MVG | SN 32/16 WG12_1 | Validated. No cal
required. | Validated, No cal
required. | | Liquid transition | MVG | SN 32/16
WGLIQ_3G500_1 | Validated. No cal
required. | Validated. No cal
required. | | Waveguide | MVG | SN 32/16 WG10_1 | Validated. No cal
required. | Validated. No cal
required. | | Liquid transition | MVG | SN 32/16
WGLIQ_1G800H_1 | Validated. No cal
required. | Validated. No cal
required. | | Liquid transition | MVG | SN 32/16
WGLIQ_1G800B_1 | Validated. No cal
required. | Validated. No cal
required. | | Waveguide | MVG | SN 32/16 WG8_1 | Validated. No cal
required. | Validated. No cal
required. | Page: 10/10 # SID750 Dipole Calibration Report # SAR Reference Dipole Calibration Report Ref: ACR.144.5.23.BES.A # CCIC SOUTHERN TESTING CO., LTD ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD, XILI STREET, NANSHAN DISTRICT SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 750 MHZ SERIAL NO.: SN 23/15 DIP0G750-378 Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 05/24/2023 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr The use of the Cofrac brand and the accreditation references is prohibited from any reproduction # Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. Page: 1/8 Ref. ACR 144.5.23.BES.A. | | Name | Function | Date | Signature | |------------------------|--------------|---------------------|-----------|---------------| | Prepared by : | Jérôme Luc | Technical Manager | 5/24/2023 | JES | | Checked & approved by: | Jérôme Luc | Technical Manager | 5/24/2023 | JE | | Authorized by: | Yann Toutain | Laboratory Director | 5/24/2023 | Yana TOUTHVEL | Yann Signature numérique de Yann Toutain ID Date : 2023.05.24 | | Customer Name | |---------------|--------------------------------------| | Distribution: | CCIC SOUTHERN
TESTING CO.,
LTD | | Issue | Name | Date | Modifications | |-------|------------|----------------------------|------------------------| | A | Jérôme Luc | 5/24/2023 | Initial release | | | | 1112000 500 00000 5000 511 | V 1000 C 1000 C 1000 C | | | | | | | | | | | Page: 2/8 Testero des estimos ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref. ACR 144.5.23.BES.A. # TABLE OF CONTENTS | 7 | mu | outcucit | | |---|-----|----------------------------|---| | 2 | De | vice Under Test4 | | | 3 | | duct Description4 | | | | 3.1 | General Information | 4 | | 4 | Me | asurement Method5 | | | | 4.1 | Mechanical Requirements | 5 | | | 4.2 | S11 parameter Requirements | 5 | | | 4.3 | SAR Requirements | 5 | | 5 | Me | asurement Uncertainty5 | | | | 5.1 | Mechanical dimensions | 5 | | | 5.2 | S11 Parameter_ | 5 | | | 5.3 | SAR | 5 | | 6 | Cal | ibration Results 6 | | | | 6.1 | Mechanical Dimensions | 6 | | | 6.2 | S11 parameter | 6 | | | 6.3 | SAR | 6 | | 7 | Lis | t of Equipment8 | | Page: 3/8 Ref. ACR 144 5 23 BES. A ### INTRODUCTION This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. ### DEVICE UNDER TEST | Device Under Test | | | | | |--------------------------------|----------------------------------|--|--|--| | Device Type | COMOSAR 750 MHz REFERENCE DIPOLE | | | | | Manufacturer | MVG | | | | | Model | SID750 | | | | | Serial Number | SN 23/15 DIP0G750-378 | | | | | Product Condition (new / used) | Used | | | | # PRODUCT DESCRIPTION # 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Page: 4/8 Ref. ACR 144.5.23.BES.A. ### 4 MEASUREMENT METHOD ### 4.1 MECHANICAL
REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. ### 4.2 S11 PARAMETER REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. ### 4.3 SAR REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards. ### 5 MEASUREMENT UNCERTAINTY ### 5.1 MECHANICAL DIMENSIONS For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions. For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions. ## 5.2 S11 PARAMETER The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions. ### 5.3 <u>SAR</u> The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements. The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions. Page: 5/8 Template ACR.DDD,N.YY.MVGBJSSUE SAR Reference Dipole vI. Ref. ACR 144.5.23.BES.A ### 6 CALIBRATION RESULTS ### 6.1 MECHANICAL DIMENSIONS | L | L mm h mm d mm | | h mm | | mm | |----------|----------------|----------|---------------|----------|-------------| | Measured | Required | Measured | Required | Measured | Required | | - | 176.00 +/- 2% | - | 100.00 +/- 2% | 4 | 6.35 +/- 2% | ### 6.2 S11 PARAMETER # 6.2.1 S11 parameter in Head Liquid | Frequency (MHz) | S11 parameter (dB) | Requirement (dB) | Impedance | |-----------------|--------------------|------------------|---------------------------| | 750 | -41.23 | -20 | $50.1\Omega + 0.9j\Omega$ | ### 6.3 SAR The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. # 6.3.1 SAR with Head Liquid The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. Page: 6/8 Template ACR.DDD.N.YY.MV GBJSSUE SAR Reference Dipole vl. Ref. ACR 144.5.23.BES.A | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values: eps': 43.4 sigma: 0.92 | | Distance between dipole center and liquid | 15.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 750 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | | Frequency | | 1g SAR (W/kg) | | | 10g SAR (W/kg) | | | |-----------|----------|---------------------------------|-------------------------------|----------|---------------------------------|-------------------------------|--| | | Measured | Measured
normalized
to 1W | Target
normalized
to 1W | Measured | Measured
normalized
to 1W | Target
normalized
to 1W | | | 750 MHz | 0.86 | 8.65 | 8.49 | 0.56 | 5.62 | 5.55 | | Page: 7/8 Ref. ACR 144.5.23.BES.A # 7 LIST OF EQUIPMENT | | Equipment Summary Sheet | | | | | | | |---------------------------------------|----------------------------|--------------------|---|---|--|--|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | | SAM Phantom | MVG | SN 13/09 SAM68 | Validated. No cal required. | Validated. No ca
required. | | | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No ca
required. | | | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 08/2021 | 08/2024 | | | | | Network Analyzer | Agilent 8753ES | MY40003210 | 10/2019 | 10/2023 | | | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 07/2022 | 07/2025 | | | | | Network Analyzer –
Calibration kit | HP 85033D | 3423A08186 | 06/2021 | 06/2027 | | | | | Calipers | Mitutoyo | SN 0009732 | 11/2022 | 11/2025 | | | | | Reference Probe | MVG | SN 41/18 EPGO333 | 09/2022 | 09/2023 | | | | | Multimeter | Keithley 2000 | 4013982 | 02/2023 | 02/2026 | | | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 03/2022 | 03/2025 | | | | | Amplifier | MVG | MODU-023-C-0002 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | Power Meter | NI-USB 5680 | 170100013 | 06/2021 | 06/2024 | | | | | Power Meter | Keysight U2000A | SN: MY62340002 | 10/2022 | 10/2025 | | | | | Directional Coupler | Krytar 158020 | 131467 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44225320 | 06/2021 | 06/2024 | | | | Page: 8/8 # SID835 Dipole Calibration Report # SAR Reference Dipole Calibration Report Ref: ACR.144.6.23.BES.A # CCIC SOUTHERN TESTING CO., LTD ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD, XILI STREET, NANSHAN DISTRICT SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 835 MHZ SERIAL NO.: SN 09/13 DIP0G835-217 Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 05/24/2023 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr The use of the Cofrac brand and the accreditation references is prohibited from any reproduction ### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. Page: 1/8 Ref ACR 144.6.23 BES A | | Name | Function | Date | Signature | |------------------------|--------------|---------------------|-----------|---------------| | Prepared by : | Jérôme Luc | Technical Manager | 5/24/2023 | JES | | Checked & approved by: | Jérôme Luc | Technical Manager | 5/24/2023 | JES | | Authorized by: | Yann Toutain | Laboratory Director | 5/24/2023 | Yana TOUTHVEL | Signature numérique de Yann Toutain ID Date: 2023.05.24 | | Customer Name | | | |---------------|--------------------------------------|--|--| | Distribution: | CCIC SOUTHERN
TESTING CO.,
LTD | | | | Issue | Name | Date | Modifications | |-------|------------|----------------------------|------------------------| | A | Jérôme Luc | 5/24/2023 | Initial release | | | | 1112000 500 00000 5000 511 | V 1000 C 1000 C 1000 C | | | | | | | | | | | Page: 2/8 Testero des estimos ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref ACR 144.6.23 BES A # TABLE OF CONTENTS | 1 | 11111 | ouccion | | |---|-------|----------------------------|---| | 2 | De | vice Under Test4 | | | 3 | | educt Description4 | | | | 3.1 | General Information | 4 | | 4 | Me | asurement Method5 | | | | 4.1 | Mechanical Requirements | 5 | | | 4.2 | S11 parameter Requirements | 5 | | | 4.3 | SAR Requirements | 5 | | 5 | Me | asurement Uncertainty5 | | | | 5.1 | Mechanical dimensions | 5 | | | 5.2 | S11 Parameter | 5 | | | 5.3 | SAR | 5 | | 6 | Cal | libration Results 6 | | | | 6.1 | Mechanical Dimensions | 6 | | | 6.2 | S11 parameter | 6 | | | 6.3 | SAR | 6 | | 7 | Lis | t of Equipment8 | | Ref ACR 144.6.23 BES A ### INTRODUCTION This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. ### DEVICE UNDER TEST | Device Under Test | | | | | |--------------------------------|----------------------------------|--|--|--| | Device Type | COMOSAR 835 MHz REFERENCE DIPOLE | | | | | Manufacturer | MVG | | | | | Model | SID835 | | | | | Serial Number | SN 09/13 DIP0G835-217 | | | | | Product Condition (new / used) | Used | | | | # PRODUCT DESCRIPTION # 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the
COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Page: 4/8 Ref. ACR 144.6.23.BES.A ### 4 MEASUREMENT METHOD ### 4.1 MECHANICAL REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. ### 4.2 S11 PARAMETER REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. ### 4.3 SAR REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards. ### 5 MEASUREMENT UNCERTAINTY ### 5.1 MECHANICAL DIMENSIONS For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions. For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions. ## 5.2 S11 PARAMETER The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions. ### 5.3 <u>SAR</u> The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements. The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions. Page: 5/8 Template ACR.DDD.N.YY.MVGBJSSUE SAR Reference Dipole vI. Ref. ACR 144.6.23.BES.A ### 6 CALIBRATION RESULTS ### 6.1 MECHANICAL DIMENSIONS | L | Lmm | | mm | d mm | | |----------|---------------|----------|--------------|----------|-------------| | Measured | Required | Measured | Required | Measured | Required | | - | 161.00 +/- 2% | * | 89.80 +/- 2% | 4 | 3.60 +/- 2% | ### 6.2 S11 PARAMETER # 6.2.1 S11 parameter in Head Liquid | Frequency (MHz) | S11 parameter (dB) | Requirement (dB) | Impedance | | |-----------------|--------------------|------------------|---------------------------|---| | 835 | -30.86 | -20 | $52.9\Omega + 0.7j\Omega$ | Ī | ### 6.3 SAR The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. # 6.3.1 SAR with Head Liquid The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. Page: 6/8 Template ACR.DDD.N.YY.MVGBJSSUE SAR Reference Dipole vL Ref ACR 144.6.23.BES.A | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values: eps': 43.4 sigma: 0.96 | | Distance between dipole center and liquid | 15.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 835 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | | Frequency | | 1g SAR (W/kg) 10g SAR (W/kg) | | | 10g SAR (W/kg) | | | |-----------|----------|---------------------------------|-------------------------------|----------|---------------------------------|-------------------------------|--| | | Measured | Measured
normalized
to 1W | Target
normalized
to 1W | Measured | Measured
normalized
to 1W | Target
normalized
to 1W | | | 835 MHz | 0.99 | 9.93 | 9.56 | 0.64 | 6.38 | 6.22 | | Page: 7/8 Ref ACR 144.6.23.BES.A # 7 LIST OF EQUIPMENT | | Equi | pment Summary S | Sheet | | |---------------------------------------|----------------------------|--------------------|---|---| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | SAM Phantom | MVG | SN 13/09 SAM68 | Validated. No cal
required. | Validated. No ca
required. | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No ca
required. | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 08/2021 | 08/2024 | | Network Analyzer | Agilent 8753ES | MY40003210 | 10/2019 | 10/2023 | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 07/2022 | 07/2025 | | Network Analyzer –
Calibration kit | HP 85033D | 3423A08186 | 06/2021 | 06/2027 | | Calipers | Mitutoyo | SN 0009732 | 11/2022 | 11/2025 | | Reference Probe | MVG | SN 41/18 EPGO333 | 09/2022 | 09/2023 | | Multimeter | Keithley 2000 | 4013982 | 02/2023 | 02/2026 | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 03/2022 | 03/2025 | | Amplifier | MVG | MODU-023-C-0002 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Power Meter | NI-USB 5680 | 170100013 | 06/2021 | 06/2024 | | Power Meter | Keysight U2000A | SN: MY62340002 | 10/2022 | 10/2025 | | Directional Coupler | Krytar 158020 | 131467 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Temperature / Humidity
Sensor | Testo 184 H1 | 44225320 | 06/2021 | 06/2024 | Page: 8/8 # SID1800 Dipole Calibration Report # SAR Reference Dipole Calibration Report Ref: ACR.144.9.23.BES.A # CCIC SOUTHERN TESTING CO., LTD ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD, XILI STREET, NANSHAN DISTRICT SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 1800 MHZ SERIAL NO.: SN 09/13 DIP1G800-216 Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 05/24/2023 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr The use of the Cofrac brand and the accreditation references is prohibited from any reproduction ### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. Page: 1/8 Ref ACR 144.9.23.BES.A | | Name | Function | Date | Signature | |------------------------|--------------|---------------------|-----------|--------------| | Prepared by : | Jérôme Luc | Technical Manager | 5/24/2023 | 25 | | Checked & approved by: | Jérôme Luc | Technical Manager | 5/24/2023 | JE | | Authorized by: | Yann Toutain | Laboratory Director | 5/24/2023 | Yann TOUTHAN | Signature Yann numérique de Yann Toutain ID Toutain ID Date: 2023.05.24 15:52:56 +02'00' | | Customer Name | | | |---------------|--------------------------------------|--|--| | Distribution: | CCIC SOUTHERN
TESTING CO.,
LTD | | | | Issue | Name | Date | Modifications | |-------|------------|---------------------|-----------------| | A | Jérôme Luc | 5/24/2023 | Initial release | | | | 1.112-2.2-10.0-10.1 | | | | | | | | | | | | Page: 2/8 Ref. ACR 144.9.23.BES.A. # TABLE OF CONTENTS | 1 | Int | roduction4 | | |---|-----|----------------------------|---| | 2 | De | vice Under Test4 | | | 3 | Pro | oduct Description4 | | | | 3.1 | General Information | - | | 4 | Me | asurement Method | | | | 4.1 | Mechanical Requirements | | | | 4.2 | S11 parameter Requirements | | | | 4.3 | SAR Requirements | | | 5 | Me | asurement Uncertainty | | | | 5.1 | Mechanical dimensions | | | | 5.2 | S11 Parameter | 8 | | | 5.3 | SAR | | | 6 | Ca | libration Results 6 | | | | 6.1 | Mechanical Dimensions | | | | 6.2 | S11 parameter | (| | | 6.3 | SAR | | | 7 | Lis | t of Equipment8 | | Ref ACR 144.9.23 BES A ### INTRODUCTION This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. ### DEVICE UNDER TEST | Device Under Test | | | | | | |--|-----------------------|--|--|--|--| | Device Type COMOSAR 1800 MHz REFERENCE DIPOR | | | | | | | Manufacturer | MVG | | | | | | Model | SID1800 | | | | | | Serial Number | SN 09/13 DIP1G800-216 | | | | | | Product Condition (new / used) | Used | | | | | # PRODUCT DESCRIPTION # 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench
only. Figure 1 - MVG COMOSAR Validation Dipole Page: 4/8 Ref. ACR 144.9.23.BES.A ### 4 MEASUREMENT METHOD ### 4.1 MECHANICAL REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. ### 4.2 S11 PARAMETER REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. ### 4.3 SAR REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards. ### 5 MEASUREMENT UNCERTAINTY ### 5.1 MECHANICAL DIMENSIONS For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions. For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions. ## 5.2 S11 PARAMETER The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions. ### 5.3 <u>SAR</u> The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements. The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions. Page: 5/8 Template ACR.DDD,N.YY.MVGBJSSUE SAR Reference Dipole vI. Ref. ACR 144.9.23.BES.A ### 6 CALIBRATION RESULTS ### 6.1 MECHANICAL DIMENSIONS | L mm | | h mm | | d mm | | |----------|--------------|----------|--------------|----------|-------------| | Measured | Required | Measured | Required | Measured | Required | | - | 72.00 +/- 2% | - | 41.70 +/- 2% | - | 3.60 +/- 2% | ### 6.2 S11 PARAMETER # 6.2.1 S11 parameter in Head Liquid | Frequency (MHz) | S11 parameter (dB) | Requirement (dB) | Impedance | |-----------------|--------------------|------------------|---------------------------| | 1800 | -21.31 | -20 | $43.0\Omega + 3.8j\Omega$ | ### 6.3 SAR The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. # 6.3.1 SAR with Head Liquid The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. Page: 6/8 Template ACR.DDD.N.YY.MV GBJSSUE SAR Reference Dipole vL Ref ACR 144.9.23.BES.A | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values: eps': 41.7 sigma: 1.47 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 1800 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | | Frequency | 1g SAR (W/kg) | | | 10g SAR (W/kg) | | | |-----------|---------------|---------------------------------|-------------------------------|----------------|---------------------------------|-------------------------------| | | Measured | Measured
normalized
to 1W | Target
normalized
to 1W | Measured | Measured
normalized
to 1W | Target
normalized
to 1W | | 1800 MHz | 3.78 | 37.81 | 38.40 | 1.97 | 19.74 | 20.10 | Page: 7/8 Ref. ACR 144.9.23.BES.A. # 7 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | | | |---------------------------------------|----------------------------|--------------------|---|---|--|--|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | | SAM Phantom | MVG | SN 13/09 SAM68 | Validated. No cal required. | Validated. No ca
required. | | | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No ca
required. | | | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 08/2021 | 08/2024 | | | | | Network Analyzer | Agilent 8753ES | MY40003210 | 10/2019 | 10/2023 | | | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 07/2022 | 07/2025 | | | | | Network Analyzer –
Calibration kit | HP 85033D | 3423A08186 | 06/2021 | 06/2027 | | | | | Calipers | Mitutoyo | SN 0009732 | 11/2022 | 11/2025 | | | | | Reference Probe | MVG | SN 41/18 EPGO333 | 09/2022 | 09/2023 | | | | | Multimeter | Keithley 2000 | 4013982 | 02/2023 | 02/2026 | | | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 03/2022 | 03/2025 | | | | | Amplifier | MVG | MODU-023-C-0002 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | Power Meter | NI-USB 5680 | 170100013 | 06/2021 | 06/2024 | | | | | Power Meter | Keysight U2000A | SN: MY62340002 | 10/2022 | 10/2025 | | | | | Directional Coupler | Krytar 158020 | 131467 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44225320 | 06/2021 | 06/2024 | | | | Page: 8/8 # SID1900 Dipole Calibration Report # SAR Reference Dipole Calibration Report Ref: ACR.144.10.23.BES.A # CCIC SOUTHERN TESTING CO., LTD ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD, XILI STREET, NANSHAN DISTRICT SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 1900 MHZ SERIAL NO.: SN 09/13 DIP1G900-218 Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 05/24/2023 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr The use of the Cofrac brand and the accreditation references is prohibited from any reproduction ### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. Page: 1/8 Ref ACR 144 10.23 BES A | | Name | Function | Date | Signature | |------------------------|--------------|---------------------|-----------|--------------| | Prepared by : | Jérôme Luc | Technical Manager | 5/24/2023 | 25 | | Checked & approved by: | Jérôme Luc | Technical Manager | 5/24/2023 | JE | | Authorized by: | Yann Toutain | Laboratory Director | 5/24/2023 | Yann TOUTHAN | Yann Signature numerique de Yann Toutain ID Date: 2003.05.24 15.53.51 +02000 | | Customer Name | |---------------|-------------------------------| | Distribution: | CCIC SOUTHERN
TESTING CO., | | | LTD | | Issue | Name | Date | Modifications | |-------|------------|---------------------|-----------------| | A | Jérôme Luc | 5/24/2023 | Initial release | | | | 1.112-2.2-10.0-10.1 | | | | | | | | | | | | Page: 2/8 Testero des estimos #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref ACR 144 10.23 BES A # TABLE OF CONTENTS | 1 | 11111 | ouccion | | |---|-------|----------------------------|---| | 2 | De | vice Under Test4 | | | 3 | | educt Description4 | | | | 3.1 | General Information | 4 | | 4 | Me | asurement Method5 | | | | 4.1 | Mechanical Requirements | 5 | | | 4.2 | S11 parameter Requirements | 5 | | | 4.3 | SAR Requirements | 5 | | 5 | Me | asurement Uncertainty5 | | | | 5.1 | Mechanical dimensions | 5 | | | 5.2 | S11 Parameter | 5 | | | 5.3 | SAR | 5 | | 6 | Cal | libration Results 6 | | | | 6.1 | Mechanical Dimensions | 6 | | | 6.2 | S11 parameter | 6 | | | 6.3 | SAR | 6 | | 7 | Lis | t of Equipment8 | | Ref. ACR 144 10.23 BES A #### INTRODUCTION This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### DEVICE UNDER TEST | Device Under Test | | | | |--|-----|--|--| | Device Type COMOSAR 1900 MHz REFERENCE DIPOL | | | | | Manufacturer | MVG | | | | Model SID1900 | | | | | Serial Number SN 09/13 DIP1G900-218 | | | | | Product Condition (new / used) Used | | | | # PRODUCT DESCRIPTION # 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664
D01 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Page: 4/8 Template ACR.DDD.N.YY.MVGB.ISSUE SAR Reference Dipute vt. This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO. Ref ACR 144 10 23 BES A #### 4 MEASUREMENT METHOD #### 4.1 MECHANICAL REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. #### 4.2 S11 PARAMETER REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. ## 4.3 SAR REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards. ## 5 MEASUREMENT UNCERTAINTY #### 5.1 MECHANICAL DIMENSIONS For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions. For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions. ## 5.2 S11 PARAMETER The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions. #### 5.3 <u>SAR</u> The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements. The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions. Page: 5/8 Template ACR.DDD,N.YY.MVGBJSSUE SAR Reference Dipole vI. Ref ACR 144 10 23 BES A #### 6 CALIBRATION RESULTS #### 6.1 MECHANICAL DIMENSIONS | L mm | | h mm | | d mm | | |----------|--------------|----------|--------------|----------|-------------| | Measured | Required | Measured | Required | Measured | Required | | - | 68.00 +/- 2% | - | 39.50 +/- 2% | - | 3.60 +/- 2% | ## 6.2 S11 PARAMETER # 6.2.1 S11 parameter in Head Liquid | Frequency (MHz) | S11 parameter (dB) | Requirement (dB) | Impedance | |-----------------|--------------------|------------------|---------------------------| | 1900 | -23.18 | -20 | $49.1\Omega + 6.8j\Omega$ | #### 6.3 SAR The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. ## 6.3.1 SAR with Head Liquid The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. Page: 6/8 Template ACR.DDD.N.YY.MV GBJSSUE SAR Reference Dipole vL Ref. ACR 144 10 23 BES. A | Software | OPENSAR V5 | | |---|--|--| | Phantom | SN 13/09 SAM68 | | | Probe | SN 41/18 EPGO333 | | | Liquid | Head Liquid Values: eps': 41.5 sigma: 1.51 | | | Distance between dipole center and liquid | 10.0 mm | | | Area scan resolution | dx=8mm/dy=8mm | | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | | Frequency | 1900 MHz | | | Input power 20 dBm | | | | Liquid Temperature | 20 +/- 1 °C | | | ab Temperature 20 +/- 1 °C | | | | Lab Humidity | 30-70 % | | | Frequency | 1g SAR (W/kg) | | | 10g SAR (W/kg) | | | |-----------|---------------|---------------------------------|-------------------------------|----------------|---------------------------------|-------------------------------| | | Measured | Measured
normalized
to 1W | Target
normalized
to 1W | Measured | Measured
normalized
to 1W | Target
normalized
to 1W | | 1900 MHz | 4.15 | 41.50 | 39.70 | 2.10 | 21.04 | 20.50 | Page: 7/8 Template ACR.DDD.N.YY.MV GB.ISSUE SAR Reference Dipole vI. This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO. Ref. ACR 144 10.23 BES.A. # 7 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | |---------------------------------------|----------------------------|--------------------|---|---|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | SAM Phantom | MVG | SN 13/09 SAM68 | Validated. No cal
required. | Validated. No ca
required. | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No ca
required. | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 08/2021 08/2024 | | | | Network Analyzer | Agilent 8753ES | MY40003210 | 10/2019 10/2023 | | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 07/2022 07/202 | | | | Network Analyzer –
Calibration kit | HP 85033D | 3423A08186 | 06/2021 | 06/2027 | | | Calipers | Mitutoyo | SN 0009732 | 11/2022 | 11/2025 | | | Reference Probe | MVG | SN 41/18 EPGO333 | 09/2022 | 09/2023 | | | Multimeter | Keithley 2000 | 4013982 | 02/2023 02/202 | | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 03/2022 03/2025 | | | | Amplifier | MVG | MODU-023-C-0002 | Characterized prior to Characterized prior test. No cal required. | | | | Power Meter | NI-USB 5680 | 170100013 | 06/2021 06/2024 | | | | Power Meter | Keysight U2000A | SN: MY62340002 | 10/2022 10/2025 | | | | Directional Coupler | Krytar 158020 | 131467 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44225320 | 06/2021 | 06/2024 | | Page: 8/8 Template ACR.DDD.N.YY.MV GB.ISSUE SAR Reference Dipole vI. This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO. # SID2450 Dipole Calibration Report # SAR Reference Dipole Calibration Report Ref: ACR.144.13.23.BES.A # CCIC SOUTHERN TESTING CO., LTD ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD, XILI STREET, NANSHAN DISTRICT SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 2450 MHZ SERIAL NO.: SN 09/13 DIP2G450-220 Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 05/24/2023 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr The use of the Cofrac brand and the accreditation references is prohibited from any reproduction #### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. Page: 1/8 Ref. ACR 144 13 23 BES. A | | Name | Function | Date | Signature | |------------------------|--------------|---------------------|-----------|---------------| | Prepared by : | Jérôme Luc | Technical Manager | 5/24/2023 | JES | | Checked & approved by: | Jérôme Luc | Technical Manager | 5/24/2023 | JES | | Authorized by: | Yann Toutain | Laboratory Director | 5/24/2023 | Yana TOUTHVEL | Signature numérique de Yann Toutain ID Yann Toutain ID Date: 2023.05.24 | | Customer Name | |---------------|--------------------------------------| | Distribution: | CCIC SOUTHERN
TESTING CO.,
LTD | | Issue | Name | Date | Modifications | |-------|------------|---------------------|-----------------| | A | Jérôme Luc | 5/24/2023 | Initial release | | | | 1.112-2.2-10.0-10.1 | | | | | | | | | | | | Page: 2/8 Ref. ACR 144 13 23 BES. A # TABLE OF CONTENTS | 1 | Inti | roduction4 | | |---|------|----------------------------|---| | 2 | De | vice Under Test4 | | | 3 | | educt Description4 | | | | 3.1 | General Information | 4 | | 4 | Me | asurement Method5 | | | | 4.1 | Mechanical Requirements | 5 | | | 4.2 | S11 parameter Requirements | 5 | | | 4.3 | SAR Requirements | 5 | | 5 | Me | asurement Uncertainty | | | | 5.1 | Mechanical dimensions | 5 | | | 5.2 | S11 Parameter | 5 | | | 5.3 |
SAR | 5 | | 6 | Cal | libration Results 6 | | | | 6.1 | Mechanical Dimensions | 6 | | | 6.2 | S11 parameter | 6 | | | 6.3 | SAR | 6 | | 7 | Lis | t of Equipment8 | | Page: 3/8 Ref. ACR 144 13 23 BES A #### INTRODUCTION This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### DEVICE UNDER TEST | Device Under Test | | | | | |--------------------------------|-----------------------------------|--|--|--| | Device Type | COMOSAR 2450 MHz REFERENCE DIPOLE | | | | | Manufacturer | MVG | | | | | Model | SID2450 | | | | | Serial Number | SN 09/13 DIP2G450-220 | | | | | Product Condition (new / used) | Used | | | | # PRODUCT DESCRIPTION # 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Page: 4/8 Template ACR.DDD.N.YY.MVGB.ISSUE SAR Reference Dipute vt. This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO. Ref ACR 144 13 23 BES A #### 4 MEASUREMENT METHOD #### 4.1 MECHANICAL REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. ### 4.2 S11 PARAMETER REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. ## 4.3 SAR REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards. ## 5 MEASUREMENT UNCERTAINTY #### 5.1 MECHANICAL DIMENSIONS For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions. For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions. ## 5.2 S11 PARAMETER The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions. #### 5.3 <u>SAR</u> The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements. The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions. Page: 5/8 Template ACR.DDD,N.YY.MVGBJSSUE SAR Reference Dipole vI. Ref ACR 144 13 23 BES A #### 6 CALIBRATION RESULTS #### 6.1 MECHANICAL DIMENSIONS | L mm | | h mm | | d mm | | |----------|--------------|----------|--------------|----------|-------------| | Measured | Required | Measured | Required | Measured | Required | | - | 51.50 +/- 2% | - | 30.40 +/- 2% | - | 3.60 +/- 2% | ## 6.2 S11 PARAMETER # 6.2.1 S11 parameter in Head Liquid | Frequency (MHz) | S11 parameter (dB) | Requirement (dB) | Impedance | |-----------------|--------------------|------------------|---------------------------| | 2450 | -33.29 | -20 | $52.1\Omega + 0.8j\Omega$ | ## 6.3 <u>SAR</u> The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. ## 6.3.1 SAR with Head Liquid The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. Page: 6/8 Template ACR.DDD.N.YY.MV GBJSSUE SAR Reference Dipole vL Ref. ACR 144 13 23 BES. A | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values: eps': 40.7 sigma: 1.94 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=5mm/dy=5mm/dz=5mm | | Frequency | 2450 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | | Frequency | 1g SAR (W/kg) | | | 10g SAR (W/kg) | | | |-----------|---------------|---------------------------------|-------------------------------|----------------|---------------------------------|-------------------------------| | | Measured | Measured
normalized
to 1W | Target
normalized
to 1W | Measured | Measured
normalized
to 1W | Target
normalized
to 1W | | 2450 MHz | 5.17 | 51.74 | 52.40 | 2.38 | 23.75 | 24.00 | Page: 7/8 Template ACR.DDD.N.YY.MV GB.ISSUE SAR Reference Dipole vI. This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO. Ref. ACR. 144 13:23.BES.A # 7 LIST OF EQUIPMENT | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | | |---------------------------------------|----------------------------|--------------------|--|--|--|--|--|--| | SAM Phantom | MVG | SN 13/09 SAM68 | Validated. No cal
required. | Validated. No ca
required. | | | | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No ca
required. | | | | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 08/2021 | 08/2024 | | | | | | Network Analyzer | Agilent 8753ES | MY40003210 | 10/2019 | 10/2023 | | | | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 07/2022 | 07/2025 | | | | | | Network Analyzer –
Calibration kit | HP 85033D | 3423A08186 | 06/2021 | 06/2027 | | | | | | Calipers | Mitutoyo | SN 0009732 | 11/2022 | 11/2025 | | | | | | Reference Probe | MVG | SN 41/18 EPGO333 | 09/2022 | 09/2023 | | | | | | Multimeter | Keithley 2000 | 4013982 | 02/2023 | 02/2026 | | | | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 03/2022 | 03/2025 | | | | | | Amplifier | MVG | MODU-023-C-0002 | Characterized prior to
test. No cal required. | Characterized prior to
test. No cal required. | | | | | | Power Meter | NI-USB 5680 | 170100013 | 06/2021 | 06/2024 | | | | | | Power Meter | Keysight U2000A | SN: MY62340002 | 10/2022 | 10/2025 | | | | | | Directional Coupler | Krytar 158020 | 131467 | | Characterized prior to
test. No cal required. | | | | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44225320 | 06/2021 | 06/2024 | | | | | Page: 8/8 # SID2600 Dipole Calibration Report # SAR Reference Dipole Calibration Report Ref: ACR.144.21.23.BES.A # CCIC SOUTHERN TESTING CO., LTD ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD, XILI STREET, NANSHAN DISTRICT SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 2600 MHZ SERIAL NO.: SN 32/14 DIP2G600-338 Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 05/24/2023 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr The use of the Cofrac brand and the accreditation references is prohibited from any reproduction #### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. Page: 1/8 Ref. ACR 144.21.23.BES.A. | | Name | Function | Date | Signature | |------------------------|--------------|---------------------|-----------|-------------| | Prepared by : | Jérôme Luc | Technical Manager | 5/24/2023 | 25 | | Checked & approved by: | Jérôme Luc | Technical Manager | 5/24/2023 | JES | | Authorized by: | Yann Toutain | Laboratory Director | 5/24/2023 | Gan TO WANT | Yann Signature numérique de Yann Toutain ID Date : 2023.05.24 | | Customer Name | |----------------|--------------------------------------| | Distribution ; | CCIC SOUTHERN
TESTING CO.,
LTD | | Issue
| Name | Date | Modifications | |-------|------------|-----------|-----------------| | A | Jérôme Luc | 5/24/2023 | Initial release | | | | | | | | | | | | | | | | Page: 2/8 Intenduction #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref. ACR 144.21.23.BES.A. # TABLE OF CONTENTS | 1 | mu | ouccion | | |---|-----|----------------------------|---| | 2 | De | vice Under Test4 | | | 3 | | duct Description4 | | | | 3.1 | General Information | 4 | | 4 | Me | asurement Method5 | | | | 4.1 | Mechanical Requirements | 5 | | | 4.2 | S11 parameter Requirements | 5 | | | 4.3 | SAR Requirements | 5 | | 5 | Me | asurement Uncertainty | | | | 5.1 | Mechanical dimensions | 5 | | | 5.2 | S11 Parameter_ | 5 | | | 5.3 | SAR | 5 | | 6 | Cal | ibration Results 6 | | | | 6.1 | Mechanical Dimensions | 6 | | | 6.2 | S11 parameter | 6 | | | 6.3 | SAR | 6 | | 7 | Lis | t of Equipment8 | | Page: 3/8 Ref. ACR 144 21 23 BES A #### INTRODUCTION This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### DEVICE UNDER TEST | Device Under Test | | | | | |---|-----------------------|--|--|--| | Device Type COMOSAR 2600 MHz REFERENCE DI | | | | | | Manufacturer | MVG | | | | | Model | SID2600 | | | | | Serial Number | SN 32/14 DIP2G600-338 | | | | | Product Condition (new / used) | | | | | # PRODUCT DESCRIPTION # 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Page: 4/8 Template ACR.DDD.N.YY.MVGB.ISSUE SAR Reference Dipute vt. This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO. Ref ACR 144 21 23 BES A #### 4 MEASUREMENT METHOD #### 4.1 MECHANICAL REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. #### 4.2 S11 PARAMETER REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. ## 4.3 SAR REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards. ## 5 MEASUREMENT UNCERTAINTY #### 5.1 MECHANICAL DIMENSIONS For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions. For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions. ## 5.2 S11 PARAMETER The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions. #### 5.3 <u>SAR</u> The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements. The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions. Page: 5/8 Template ACR.DDD,N.YY.MVGB.ISSUE SAR Reference Dipole vI. Ref ACR 144 21 23 BES A #### 6 CALIBRATION RESULTS #### 6.1 MECHANICAL DIMENSIONS | L mm | | h mm | | d mm | | |----------|--------------|----------|--------------|----------|-------------| | Measured | Required | Measured | Required | Measured | Required | | - | 48.50 +/- 2% | ± | 28.80 +/- 2% | - | 3.60 +/- 2% | ## 6.2 S11 PARAMETER # 6.2.1 S11 parameter in Head Liquid | Frequency (MHz) | S11 parameter (dB) | Requirement (dB) | Impedance | |-----------------|--------------------|------------------|---------------------------| | 2600 | -36.90 | -20 | $48.7\Omega - 0.5j\Omega$ | #### 6.3 SAR The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. # 6.3.1 SAR with Head Liquid The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. Page: 6/8 Template ACR.DDD.N.YY.MV GBJSSUE SAR Reference Dipole vL Ref. ACR 144.21.23.BES.A | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values: eps': 40.4 sigma: 2.05 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=5mm/dy=5mm/dz=5mm | | Frequency | 2600 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | | Frequency | | 1g SAR (W/kg | 0 | 10g SAR (W/kg) | | | |-----------|----------|---------------------------------|-------------------------------|----------------|---------------------------------|-------------------------------| | | Measured | Measured
normalized
to 1W | Target
normalized
to 1W | Measured | Measured
normalized
to 1W | Target
normalized
to 1W | | 2600 MHz | 5.71 | 57.13 | 55.30 | 2.57 | 25.66 | 24.60 | Page: 7/8 Template ACR.DDD.N.YY.MV GB.ISSUE SAR Reference Dipole vI. This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO. Ref. ACR 144.21.23.BES.A # 7 LIST OF EQUIPMENT | | Equi | pment Summary S | Sheet | | | | |---------------------------------------|----------------------------|--------------------|---|---|--|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | SAM Phantom | MVG | SN 13/09 SAM68 | Validated. No cal
required. | Validated. No ca
required. | | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No ca
required. | | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 08/2021 | 08/2024 | | | | Network Analyzer | Agilent 8753ES | MY40003210 | 10/2019 | 10/2023 | | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 07/2022 | 07/2025 | | | | Network Analyzer –
Calibration kit | HP 85033D | 3423A08186 | 06/2021 | 06/2027 | | | | Calipers | Mitutoyo | SN 0009732 | 11/2022 | 11/2025 | | | | Reference Probe | MVG | SN 41/18 EPGO333 | 09/2022 | 09/2023 | | | | Multimeter | Keithley 2000 | 4013982 | 02/2023 | 02/2026 | | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 03/2022 | 03/2025 | | | | Amplifier | MVG | MODU-023-C-0002 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Power Meter | NI-USB 5680 | 170100013 | 06/2021 | 08/2024 | | | | Power Meter | Keysight U2000A | SN: MY62340002 | 10/2022 | 10/2025 | | | | Directional Coupler | Krytar 158020 | 131467 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44225320 | 06/2021 | 06/2024 | | | Page: 8/8 # SID3500 Dipole Calibration Report # SAR Reference Dipole Calibration Report Ref: ACR.144.15.23.BES.A # CCIC SOUTHERN TESTING CO., LTD ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD, XILI STREET, NANSHAN DISTRICT SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 3500 MHZ SERIAL NO.: SN 50/20 DIP3G500-527 Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 05/24/2023 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr The use of the Cofrac brand and the accreditation references is prohibited from any reproduction #### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the
COMOSAR test bench. All calibration results are traceable to national metrology institutions. Page: 1/8 Ref. ACR 144 15 23 BES. A | | Name | Function | Date | Signature | |------------------------|--------------|---------------------|-----------|--------------| | Prepared by : | Jérôme Luc | Technical Manager | 5/24/2023 | 25 | | Checked & approved by: | Jérôme Luc | Technical Manager | 5/24/2023 | J55 | | Authorized by: | Yann Toutain | Laboratory Director | 5/24/2023 | Yann TOUTHAN | Yann Signature numérique de Yarni Toutain ID Date : 2023.05.24 Toutain ID Date : 2023.05.24 | | Customer Name | |---------------|--------------------------------------| | Distribution: | CCIC SOUTHERN
TESTING CO.,
LTD | | Issue | Name | Date | Modifications | |-------|------------|---------------------|-----------------| | A | Jérôme Luc | 5/24/2023 | Initial release | | | | 1.112-2.2-10.0-10.1 | | | | | | | | | | | | Page: 2/8 Intenduction #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref. ACR 144 15 23 BES. A # TABLE OF CONTENTS | 1 | mu | ouccion | | |---|-----|----------------------------|---| | 2 | De | vice Under Test4 | | | 3 | | duct Description4 | | | | 3.1 | General Information | 4 | | 4 | Me | asurement Method5 | | | | 4.1 | Mechanical Requirements | 5 | | | 4.2 | S11 parameter Requirements | 5 | | | 4.3 | SAR Requirements | 5 | | 5 | Me | asurement Uncertainty | | | | 5.1 | Mechanical dimensions | 5 | | | 5.2 | S11 Parameter_ | 5 | | | 5.3 | SAR | 5 | | 6 | Cal | ibration Results 6 | | | | 6.1 | Mechanical Dimensions | 6 | | | 6.2 | S11 parameter | 6 | | | 6.3 | SAR | 6 | | 7 | Lis | t of Equipment8 | | Page: 3/8 Ref. ACR 144 15 23 BES A #### INTRODUCTION This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### DEVICE UNDER TEST | Device Under Test | | | | | |--------------------------------|-----------------------------------|--|--|--| | Device Type | COMOSAR 3500 MHz REFERENCE DIPOLE | | | | | Manufacturer | MVG | | | | | Model | SID3500 | | | | | Serial Number | SN 50/20 DIP3G500-527 | | | | | Product Condition (new / used) | Used | | | | # PRODUCT DESCRIPTION # GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Page: 4/8 Template ACR.DDD.N.YY.MVGB.ISSUE SAR Reference Dipute vt. This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO. Ref. ACR 144 15 23 BES. A. #### 4 MEASUREMENT METHOD #### 4.1 MECHANICAL REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. ### 4.2 S11 PARAMETER REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. ## 4.3 SAR REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards. ## 5 MEASUREMENT UNCERTAINTY #### 5.1 MECHANICAL DIMENSIONS For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions. For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions. ## 5.2 S11 PARAMETER The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions. #### 5.3 <u>SAR</u> The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements. The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions. Page: 5/8 Template ACR.DDD,N.YY.MVGBJSSUE SAR Reference Dipole vI. Ref ACR 144 15 23 BES A #### 6 CALIBRATION RESULTS #### 6.1 MECHANICAL DIMENSIONS | L mm | | h mm | | d mm | | |----------|--------------|----------|--------------|----------|-------------| | Measured | Required | Measured | Required | Measured | Required | | - | 37.00 +/- 2% | - | 26.40 +/- 2% | - | 3.60 +/- 2% | ## 6.2 S11 PARAMETER ## 6.2.1 S11 parameter in Head Liquid | Frequency (MHz) | S11 parameter (dB) | Requirement (dB) | Impedance | |-----------------|--------------------|------------------|---------------| | 3500 | -21.73 | -20 | 58.9Ω - 0.5jΩ | #### 6.3 SAR The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. ## 6.3.1 SAR with Head Liquid The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. Page: 6/8 Template ACR.DDD.N.YY.MV GBJSSUE SAR Reference Dipole vL Ref. ACR. 144 15:23.BES.A | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values: eps': 39.2 sigma: 2.79 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=4mm/dy=4mm/dz=2mm | | Frequency | 3500 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | | Frequency | 1g SAR (W/kg) | | | 10g SAR (W/kg) | | | |-----------|---------------|---------------------------------|-------------------------------|----------------|---------------------------------|-------------------------------| | | Measured | Measured
normalized
to 1W | Target
normalized
to 1W | Measured | Measured
normalized
to 1W | Target
normalized
to 1W | | 3500 MHz | 6.63 | 66.30 | 67.10 | 2.61 | 26.06 | 25.00 | Page: 7/8 Template ACR.DDD.N.YY.MV GB.ISSUE SAR Reference Dipole vI. This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO. Ref. ACR. 144 15:23 BES. A # 7 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | |---------------------------------------|----------------------------|--------------------|---|---|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | SAM Phantom | MVG | SN 13/09 SAM68 | Validated. No cal required. | Validated. No ca
required. | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No ca
required. | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 08/2021 | 08/2024 | | | Network Analyzer | Agilent 8753ES | MY40003210 | 10/2019 | 10/2023 | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 07/2022 | 07/2025 | | | Network Analyzer –
Calibration kit | HP 85033D | 3423A08186 | 06/2021 | 06/2027 | | | Calipers | Mitutoyo | SN 0009732 | 11/2022 | 11/2025 | | | Reference Probe | MVG | SN 41/18 EPGO333 | 09/2022 | 09/2023 | | | Multimeter | Keithley 2000 | 4013982 | 02/2023 | 02/2026 | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 03/2022 | 03/2025 | | | Amplifier | MVG | MODU-023-C-0002 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Power Meter | NI-USB 5680 | 170100013 | 06/2021 | 06/2024 | | | Power Meter | Keysight U2000A | SN: MY62340002 | 10/2022 | 10/2025 | | | Directional Coupler | Krytar 158020 | 131467 | Characterized prior to test. No cal required. | Characterized prior to | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44225320 | 06/2021 | 06/2024 | | Page: 8/8 Template ACR.DDD.N.YY.MV GB.ISSUE SAR Reference Dipole vI. This document shall not be reproduced,
except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO. # SID3700 Dipole Calibration Report # SAR Reference Dipole Calibration Report Ref: ACR.144.16.23.BES.A # CCIC SOUTHERN TESTING CO., LTD ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD, XILI STREET, NANSHAN DISTRICT SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 3700 MHZ SERIAL NO.: SN 50/20 DIP3G700-528 Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 05/24/2023 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr The use of the Cofrac brand and the accreditation references is prohibited from any reproduction #### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. Page: 1/8 Ref. ACR 144 16 23 BES. A | | Name | Function | Date | Signature | |------------------------|--------------|---------------------|-----------|--------------| | Prepared by : | Jérôme Luc | Technical Manager | 5/24/2023 | JES | | Checked & approved by: | Jérôme Luc | Technical Manager | 5/24/2023 | J55 | | Authorized by: | Yann Toutain | Laboratory Director | 5/24/2023 | Gam TOUTHVER | Signature numérique de Yann Yann Toutain ID Toutain ID Date: 2023.05.24 15:57:01 +02'00' | | Customer Name | |----------------|--------------------------------------| | Distribution : | CCIC SOUTHERN
TESTING CO.,
LTD | | Issue | Name | Date | Modifications | |-------|------------|---------------------|-----------------| | A | Jérôme Luc | 5/24/2023 | Initial release | | | | 1.112-2.2-10.0-10.1 | | | | | | | | | | | | Page: 2/8 Testero des estimos #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref. ACR 144 16 23 BES. A # TABLE OF CONTENTS | 1 | mu | ouccion | | |---|-----|----------------------------|---| | 2 | De | vice Under Test4 | | | 3 | | duct Description4 | | | | 3.1 | General Information | | | 4 | Me | asurement Method5 | | | | 4.1 | Mechanical Requirements | | | | 4.2 | S11 parameter Requirements | | | | 4.3 | SAR Requirements | | | 5 | Me | asurement Uncertainty | | | | 5.1 | Mechanical dimensions | | | | 5.2 | S11 Parameter | 3 | | | 5.3 | SAR | 3 | | 6 | Cal | ibration Results | | | | 6.1 | Mechanical Dimensions | (| | | 6.2 | S11 parameter | | | | 6.3 | SAR | | | 7 | Lis | t of Equipment8 | | Ref ACR 144 16 23 BES A #### INTRODUCTION This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### DEVICE UNDER TEST | Device Under Test | | | |--------------------------------|-----------------------------------|--| | Device Type | COMOSAR 3700 MHz REFERENCE DIPOLE | | | Manufacturer | MVG | | | Model | SID3700 | | | Serial Number | SN 50/20 DIP3G700-528 | | | Product Condition (new / used) | Used | | # PRODUCT DESCRIPTION # 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Page: 4/8 Template ACR.DDD.N.YY.MVGB.ISSUE SAR Reference Dipute vt. This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO. Ref ACR 144 16.23 BES A #### 4 MEASUREMENT METHOD #### 4.1 MECHANICAL REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. #### 4.2 S11 PARAMETER REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. #### 4.3 SAR REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards. ## 5 MEASUREMENT UNCERTAINTY #### 5.1 MECHANICAL DIMENSIONS For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions. For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions. ## 5.2 S11 PARAMETER The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions. #### 5.3 <u>SAR</u> The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements. The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions. Page: 5/8 Template ACR.DDD,N.YY.MVGBJSSUE SAR Reference Dipole vI. Ref ACR 144 16 23 BES A # 6 CALIBRATION RESULTS ### 6.1 MECHANICAL DIMENSIONS | Lmm | | h mm | | d mm | | |----------|--------------|----------|--------------|----------|-------------| | Measured | Required | Measured | Required | Measured | Required | | - | 34.70 +/- 2% | - | 26.40 +/- 2% | - | 3.60 +/- 2% | # 6.2 S11 PARAMETER # 6.2.1 S11 parameter in Head Liquid | Frequency (MHz) | S11 parameter (dB) | Requirement (dB) | Impedance | |-----------------|--------------------|------------------|---------------------------| | 3700 | -24.25 | -20 | $56.5\Omega - 0.7i\Omega$ | # 6.3 SAR The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. # 6.3.1 SAR with Head Liquid The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. Page: 6/8 Template ACR.DDD.N.YY.MV GBJSSUE SAR Reference Dipole vL This document shall not be reproduced, except in full or in part, without the written approval of MVO. The vigormation contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO. Ref. ACR 144 16 23 BES. A | Software | OPENSAR V5 | | | |---|--|--|--| | Phantom | SN 13/09 SAM68 | | | | Probe | SN 41/18 EPGO333 | | | | Liquid | Head Liquid Values: eps': 38.4 sigma: 3.08 | | | | Distance between dipole center and liquid | 10.0 mm | | | | Area scan resolution | dx=8mm/dy=8mm | | | | Zoon Scan Resolution | dx=4mm/dy=4mm/dz=2mm | | | | Frequency | 3700 MHz | | | | Input power | 20 dBm | | | | Liquid Temperature | 20 +/- 1 °C | | | | Lab Temperature | 20 +/- 1 °C | | | | Lab Humidity | 30-70 % | | | | Frequency | 1g SAR (W/kg) | | | 10g SAR (W/kg) | | | |-----------|---------------|---------------------------------|-------------------------------|----------------|---------------------------------|-------------------------------| | | Measured | Measured
normalized
to 1W | Target
normalized
to 1W | Measured | Measured
normalized
to 1W | Target
normalized
to 1W | | 3700 MHz | 6.64 | 66.42 | 67.40 | 2.57 | 25.71 | 24.20 | Page: 7/8 Template ACR.DDD.N.YY.MV GB.ISSUE SAR Reference Dipole vI. This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO. Ref. ACR 144 16 23 BES. A # 7 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | | | |---------------------------------------|----------------------------|--------------------|---|---|--|--|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | | SAM Phantom | MVG | SN 13/09 SAM68 | Validated. No cal
required. | Validated. No
ca
required. | | | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No ca
required. | | | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 08/2021 | 08/2024 | | | | | Network Analyzer | Agilent 8753ES | MY40003210 | 10/2019 | 10/2023 | | | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 07/2022 | 07/2025 | | | | | Network Analyzer –
Calibration kit | HP 85033D | 3423A08186 | 06/2021 | 06/2027 | | | | | Calipers | Mitutoyo | SN 0009732 | 11/2022 | 11/2025 | | | | | Reference Probe | MVG | SN 41/18 EPGO333 | 09/2022 | 09/2023 | | | | | Multimeter | Keithley 2000 | 4013982 | 02/2023 | 02/2026 | | | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 03/2022 | 03/2025 | | | | | Amplifier | MVG | MODU-023-C-0002 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | Power Meter | NI-USB 5680 | 170100013 | 06/2021 | 06/2024 | | | | | Power Meter | Keysight U2000A | SN: MY62340002 | 10/2022 | 10/2025 | | | | | Directional Coupler | Krytar 158020 | 131467 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44225320 | 06/2021 | 06/2024 | | | | Page: 8/8 # SID3900 Dipole Calibration Report # SAR Reference Dipole Calibration Report Ref: ACR.144.17.23.BES.A # CCIC SOUTHERN TESTING CO., LTD ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD, XILI STREET, NANSHAN DISTRICT SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 3900 MHZ SERIAL NO.: SN 50/20 DIP3G900-529 Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 05/24/2023 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr The use of the Cofrac brand and the accreditation references is prohibited from any reproduction # Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. Page: 1/8 Ref. ACR 144.17.23.BES A | | Name | Function | Date | Signature | |------------------------|--------------|---------------------|-----------|----------------| | Prepared by : | Jérôme Luc | Technical Manager | 5/24/2023 | JS | | Checked & approved by: | Jérôme Luc | Technical Manager | 5/24/2023 | JS | | Authorized by: | Yann Toutain | Laboratory Director | 5/24/2023 | ifam 10eltacht | Signature numérique de Yann Toutain ID Yann Toutain ID Date: 2023.05.24 15:57:31 +02'00' | | Customer Name | |---------------|---------------| | Distribution: | CCIC SOUTHERN | | | TESTING CO., | | | LTD | | Name | Date | Modifications | |------------|-----------|----------------------| | Jérôme Luc | 5/24/2023 | Initial release | | | | 14 | | | | | | | | | | | | Jérôme Luc 5/24/2023 | Page: 2/8 Ref ACR 144 17 23 BES A # TABLE OF CONTENTS | 1 | mu | oduction | | |---|-----|----------------------------|---| | 2 | De | vice Under Test4 | | | 3 | | duct Description4 | | | | 3.1 | General Information | 2 | | 4 | Me | asurement Method | | | | 4.1 | Mechanical Requirements | | | | 4.2 | S11 parameter Requirements | | | | 4.3 | SAR Requirements | | | 5 | Me | asurement Uncertainty | | | | 5.1 | Mechanical dimensions | | | | 5.2 | S11 Parameter | | | | 5.3 | SAR | 3 | | 6 | Cal | ibration Results | | | | 6.1 | Mechanical Dimensions | 6 | | | 6.2 | S11 parameter | | | | 6.3 | SAR | (| | 7 | Lis | t of Equipment8 | | Page: 3/8 Ref. ACR 144 17 23 BES A # INTRODUCTION This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. # DEVICE UNDER TEST | Device Under Test | | | | | | |---|-----------------------|--|--|--|--| | Device Type COMOSAR 3900 MHz REFERENCE DIPC | | | | | | | Manufacturer | MVG | | | | | | Model | SID3900 | | | | | | Serial Number | SN 50/20 DIP3G900-529 | | | | | | Product Condition (new / used) Used | | | | | | # PRODUCT DESCRIPTION # 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Page: 4/8 Template ACR.DDD.N.YY.MVGB.ISSUE SAR Reference Dipole vI. This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information constained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Ref ACR 144 17 23 BES A ### MEASUREMENT METHOD # MECHANICAL REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. # S11 PARAMETER REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a S11 of -20 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. ### 4.3 SAR REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards. # MEASUREMENT UNCERTAINTY ### 5.1 MECHANICAL DIMENSIONS For the measurement in the range 0-300mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.20 mm with respect to measurement conditions. For the measurement in the range 300-450mm, the estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/-0.44 mm with respect to measurement conditions. # 5.2 S11 PARAMETER The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions. ### 5.3 SAR The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements. The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions. Page: 5/8 Template ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vt. This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Ref ACR 144 17 23 BES A ### 6 CALIBRATION RESULTS # 6.1 MECHANICAL DIMENSIONS | L mm | | h mm | | d mm | | |----------|----------|----------|----------|----------|----------| | Measured | Required | Measured | Required | Measured | Required | | 2 | - | 3 | - | | 112 | # 6.2 S11 PARAMETER # 6.2.1 S11 parameter in Head Liquid | Frequency (MHz) | S11 parameter (dB) | Requirement (dB) | Impedance | |-----------------|--------------------|------------------|---------------------------| | 3900 | -20.28 | -20 | $53.1\Omega + 9.5j\Omega$ | # 6.3 SAR The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. # 6.3.1 SAR with Head Liquid The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. Page: 6/8 Temptate ACR.DDD.N.YY.MVGBJSSUE SAR Reference Dipote vl. This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO. Ref. ACR 144.17.23.BES A | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values: eps': 37.4 sigma: 3.35 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=4mm/dy=4mm/dz=2mm | | Frequency | 3900 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | | Frequency | - 3 | 1g SAR (W/kg | 0 | 1 | log SAR (W/kg | 0 | |-----------|----------|---------------------------------
-------------------------------|----------|---------------------------------|-------------------------------| | | Measured | Measured
normalized
to 1W | Target
normalized
to 1W | Measured | Measured
normalized
to 1W | Target
normalized
to 1W | | 3900 MHz | 7.04 | 70.35 | 67.60 | 2.41 | 24.14 | 23.30 | Page: 7/8 Template ACR.DDD.N.YY.MV GB.ISSUE_SAR Reference Dipole v1. This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information constained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Ref ACR 144 17 23 BES A # 7 LIST OF EQUIPMENT | | Equi | pment Summary S | meet | | | |---------------------------------------|----------------------------|--------------------|--|---|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | SAM Phantom | MVG | SN 13/09 SAM68 | Validated. No cal
required. | Validated. No ca
required. | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No cal
required. | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 08/2021 | 08/2024 | | | Network Analyzer | Agilent 8753ES | MY40003210 | 10/2019 | 10/2023 | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 07/2022 | 07/2025 | | | Network Analyzer –
Calibration kit | HP 85033D | 3423A08186 | 06/2021 | 06/2027 | | | Calipers | Mitutoyo | SN 0009732 | 11/2022 | 11/2025 | | | Reference Probe | MVG | SN 41/18 EPGO333 | 09/2022 | 09/2023 | | | Multimeter | Keithley 2000 | 4013982 | 02/2023 | 02/2026 | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 03/2022 | 03/2025 | | | Amplifier | MVG | MODU-023-C-0002 | Characterized prior to
test. No cal required. | Characterized prior to test. No cal required. | | | Power Meter | NI-USB 5680 | 170100013 | 06/2021 06/2024 | | | | Power Meter | Keysight U2000A | SN: MY62340002 | 10/2022 | 10/2025 | | | Directional Coupler | Krytar 158020 | 131467 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44225320 | 06/2021 | 06/2024 | | Page: 8/8 # SID5G Dipole Calibration Report # SAR Reference Waveguide Calibration Report Ref: ACR.145.20.23.BES.A # CCIC SOUTHERN TESTING CO., LTD ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD, XILI STREET, NANSHAN DISTRICTSHENZHEN, GUANGDONG, CHINAMVG COMOSAR REFERENCE WAVEGUIDE FREQUENCY: 5000-6000 MHZ SERIAL NO.: SN 15/15 WGA39 Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 05/25/2023 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr The use of the Cofrac brand and the accreditation references is prohibited from any reproduction Summary: This document presents the method and results from an accredited SAR reference waveguide calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI). Page: 1/9 Ref. ACR 145 20 23 BES. A | | Name | Function | Date | Signature | |------------------------|--------------|---------------------|-----------|------------------| | Prepared by : | Jérôme Luc | Technical Manager | 5/25/2023 | 75 | | Checked & approved by: | Jérôme Luc | Technical Manager | 5/25/2023 | 75 | | Authorized by: | Yann Toutain | Laboratory Director | 5/25/2023 | efann 50 et 201s | Yann Toutain Signature numérique de Yann Toutain ID Date: 2023.05.25 16:30:59 +02'00' | | Customer Name | |---------------|-----------------------------| | Distribution: | CCIC SOUTHERN
TESTING CO | | | LTD | | Issue | Name | Date | Modifications | |-------|------------|-----------|-----------------| | A | Jérôme Luc | 5/25/2023 | Initial release | | | | | | | - 0 | | | | | | | | | Page: 2/9 Template ACR.DDD.N.YY.MVGB.ISSUE SAR Reference Waveguide vt. This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO. # SAR REFERENCE WAVEGUIDE CALIBRATION REPORT Ref. ACR 145 20 23 BES. A # TABLE OF CONTENTS | 1 | ши | oduction4 | | |---|-----|----------------------------|---| | 2 | De | vice Under Test4 | | | 3 | | duct Description4 | | | | 3.1 | General Information | 2 | | 4 | Me | asurement Method4 | | | | 4.1 | Mechanical Requirements | 4 | | | 4.2 | S11 parameter Requirements | | | | 4.3 | SAR Requirements | | | 5 | Me | asurement Uncertainty | | | | 5.1 | Mechanical dimensions | | | | 5.2 | S11 Parameter | 3 | | | 5.3 | SAR | | | 6 | Cal | ibration Results5 | | | | 6.1 | Mechanical Dimensions | | | | 6.2 | S11 parameter | | | | 6.3 | SAR | | | 7 | Lis | t of Equipment9 | | Page: 3/9 Template ACR.DDD.N.YY.MVGB.ISSUE SAR Reference Waveguide vt. This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO. Ref ACR 145 20 23 BES A # 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference waveguides used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. ## 2 DEVICE UNDER TEST | | Device Under Test | | | |--------------------------------|---|--|--| | Device Type | COMOSAR 5000-6000 MHz REFERENCE WAVEGUIDE | | | | Manufacturer | MVG | | | | Model | SWG5500 | | | | Serial Number | SN 15/15 WGA39 | | | | Product Condition (new / used) | Used | | | # 3 PRODUCT DESCRIPTION # 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Waveguides are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. # 4 MEASUREMENT METHOD # 4.1 MECHANICAL REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. # 4.2 S11 PARAMETER REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a S11 of -8 dB or better. The S11 measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. Page: 4/9 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Waveguide vL This document shall not be reproduced, except or full or in part, without the written approval of MVV. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVV. Ref ACR 145 20 23 BES A # 4.3 SAR REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore-mentioned standards. # 5 MEASUREMENT UNCERTAINTY # 5.1 MECHANICAL DIMENSIONS The estimated expanded uncertainty (k=2) in calibration for the dimension measurement in mm is +/0.20 mm with respect to measurement conditions. # 5.2 S11 PARAMETER The estimated expanded uncertainty (k=2) in calibration for the S11 parameter in linear is +/-0.08 with respect to measurement conditions. ### 5.3 SAR The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements. The estimated expanded uncertainty (k=2) in calibration for the 1g and 10g SAR measurement in W/kg is +/-19% with respect to measurement conditions. # 6 CALIBRATION RESULTS # 6.1 MECHANICAL DIMENSIONS | Frequency | L 0 | L (mm) W (mm) L _f (mm) | | W (mm) | | nm) L _f (mm) W _f (mn | | mm) | |-----------|--------------|-----------------------------------|--------------|----------|-----------------|--|-----------------|----------| | (MHz) | Required | Measured | Required | Measured | Required | Measured | Required | Measured | | 5800 | 40.39 ± 0.13 | | 20.19 ± 0.13 | 148 | 81.03 ±
0.13 | ¥ . | 61.98 ±
0.13 | 14 | Figure 1: Validation Waveguide Dimensions Page: 5/9 Template ACR.DDD.N.YY.MVGB.ISSUE SAR Reference Waveguide vL This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO. Ref. ACR 145 20 23 BES A # 6.2 S11 PARAMETER # 6.2.1 S11 parameter In Head Liquid | Frequency (MHz) | S11 parameter
(dB) | Requirement (dB) | Impedance | |-----------------|-----------------------|------------------|--------------------------------| | 5200 | -9.89 | -8 | 26.75 Ω - 8.37 jΩ | | 5400 | -11.33 | -8 | 58.18 Ω + 29.31 jΩ | | 5600 | -14.34 | -8 | 48.03 Ω - 19.07 jΩ | | 5800 | -13.96 | -8 | $37.90 \Omega + 13.07 j\Omega$ | ### 6.3 <u>SAR</u> The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that
the system validation measurements must be performed using a reference waveguide meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed with the matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell. # 6.3.1 SAR With Head Liquid At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by MVG, within the uncertainty for the system validation. All SAR values are normalized to 1 W net power. In bracket, the measured SAR is given with the used input power. Page: 6/9 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Waveguide vL This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO. Ref. ACR 145 20 23 BES. A | Software | OPENSAR V5 | |--|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values 5200 MHz: eps': 34.01 sigma: 4.86
Head Liquid Values 5400 MHz: eps': 33.40 sigma: 5.09
Head Liquid Values 5600 MHz: eps': 32.71 sigma: 5.32
Head Liquid Values 5800 MHz: eps': 32.12 sigma: 5.57 | | Distance between dipole waveguide and liquid | 0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=4mm/dy=4m/dz=2mm | | Frequency | 5200 MHz
5400 MHz
5600 MHz
5800 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | | | 1 | | Frequency
(MHz) | 1 g SAR (W/kg) | | | 10 g SAR (W/kg) | | | |--------------------|----------------|---------------------------------|-------------------------------|-----------------|---------------------------------|-------------------------------| | | Measured | Measured
normalized
to 1W | Target
normalized
to 1W | Measured | Measured
normalized
to 1W | Target
normalized
to 1W | | 5200 | 15.30 | 152.95 | 159.00 | 5.37 | 53.70 | 56.90 | | 5400 | 15.99 | 159.94 | 166.40 | 5.57 | 55.71 | 58.43 | | 5600 | 16.66 | 166.59 | 173.80 | 5.77 | 57.66 | 59.97 | | 5800 | 17.47 | 174.67 | 181.20 | 6.00 | 59.99 | 61.50 | Page: 7/9 Template ACR.DDD,N, YY.MVGB, ISSUE SAR Reference Waveguide vL. This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO. Ref. ACR 145 20 23 BES.A. # SAR MEASUREMENT PLOTS @ 5600 MHz # SAR MEASUREMENT PLOTS @ 5800 MHz Page: 8/9 Template ACR.DDD,N, YY.MVGB.ISSUE SAK Reference Waveguide vL. This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO. Ref. ACR 145 20 23 BES A # 7 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | |---------------------------------------|----------------------------|--------------------|---|---| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | SAM Phantom | MVG | SN 13/09 SAM68 | Validated. No cal required. | Validated. No ca
required. | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No ca
required. | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 08/2021 | 08/2024 | | Network Analyzer | Agilent 8753ES | MY40003210 | 10/2019 | 10/2023 | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 07/2022 | 07/2025 | | Network Analyzer –
Calibration kit | HP 85033D | 3423A08186 | 06/2021 | 06/2027 | | Calipers | Mitutoyo | SN 0009732 | 11/2022 | 11/2025 | | Reference Probe | MVG | SN 41/18 EPGO333 | 09/2022 | 09/2023 | | Multimeter | Keithley 2000 | 4013982 | 02/2023 | 02/2026 | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 03/2022 | 03/2025 | | Amplifier | MVG | MODU-023-C-0002 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Power Meter | NI-USB 5680 | 170100013 | 06/2021 | 06/2024 | | Power Meter | Keysight U2000A | SN: MY62340002 | 10/2022 | 10/2025 | | Directional Coupler | Krytar 158020 | 131467 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Temperature / Humidity
Sensor | Testo 184 H1 | 44225320 | 06/2021 | 06/2024 | Page: 9/9 Template ACR.DDD,N, YY.MVGB, ISSUE SAR Reference Waveguide vL. This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO.