

FCC TEST REPORT

Test report
On Behalf of

Shenzhen Anya Video Technology Co., Ltd.

For

IP WIFI CAMERA
Model No.: AY01, AY02, AY03, AY04, AY05, AY06, AY07, AY08,
AY09, AY10, AY11, AY12, AY13, AY14, AY15, AY16, AY17, AY18,
AY19, AY20

FCC ID: 2A6AK-AY01

Prepared For: Shenzhen Anya Video Technology Co., Ltd.

B 1320, Huachuangyun, No. 1998, Gangtou Jiaxian Road, Bantian Street,

Longgang District, Shenzhen, Guang dong, China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Mar. 04, 2022 ~ Mar. 23, 2022

Date of Report: Mar. 23, 2022

Report Number: HK2203080964-E

Page 2 of 70

TEST RESULT CERTIFICATION

Applicant's name:	Shenzhen Any	ya Video Te	echnology Co.	., Ltd.
-------------------	--------------	-------------	---------------	---------

Address B 1320, Huachuangyun, No. 1998, Gangtou Jiaxian Road,

Bantian Street, Longgang District, Shenzhen, Guang dong, China

Report No.: HK2203080964-E

Manufacture's Name...... Shenzhen Anya Video Technology Co., Ltd.

B 1320, Huachuangyun, No. 1998, Gangtou Jiaxian Road,

Bantian Street, Longgang District, Shenzhen, Guang dong, China

Product description

Standards ..

Trade Mark: N/A

Product name...... IP WIFI CAMERA

Model and/or type reference .: AY01, AY02, AY03, AY04, AY05, AY06, AY07, AY08, AY09, AY10, AY09

AY11, AY12, AY13, AY14, AY15, AY16, AY17, AY18, AY19, AY20

FCC Rules and Regulations Part 15 Subpart C Section 15.247

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date (s) of performance of tests Mar. 04, 2022 ~ Mar. 23, 2022

Date of Issue...... Mar. 23, 2022

Test Result..... Pass

Testing Engineer :

(Gary Qian)

Technical Manager

(Eden Hu)

Authorized Signatory:

Justin Pyddu

(Jason Zhou)

TABLE OF CONTENTS

1.	TEST RESULT SUMMARY	5
	1.1. TEST PROCEDURES AND RESULTS	5
	1.2. INFORMATION OF THE TEST LABORATORY	5
	1.3. MEASUREMENT UNCERTAINTY	
2.		
	2.1. GENERAL DESCRIPTION OF EUT	
	2.2. CARRIER FREQUENCY OF CHANNELS	
	2.3. OPERATION OF EUT DURING TESTING	
	2.4. DESCRIPTION OF TEST SETUP	
3.	ENERA INFORMATION	10
	3.1. TEST ENVIRONMENT AND MODE	
	3.2. DESCRIPTION OF SUPPORT UNITS	
4.	TEST RESULTS AND MEASUREMENT DATA	12
	4.1. CONDUCTED EMISSION	12
	4.2. TEST RESULT	14
	4.3. MAXIMUM CONDUCTED OUTPUT POWER	16
	4.4. EMISSION BANDWIDTH	
	4.5. POWER SPECTRAL DENSITY	24
	4.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT	31
	4.7. RADIATED SPURIOUS EMISSION MEASUREMENT	41
	4.8. ANTENNA REQUIREMENT	
5.	PHOTOGRAPH OF TEST	68
C	DUOTOS OF THE FIIT	70

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Mar. 23, 2022	Jason Zhou
n/G	and and	-NG	3G

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

1. TEST RESULT SUMMARY

1.1. TEST PROCEDURES AND RESULTS

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247(b)(4)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247(b)(3)	PASS
6dB Emission Bandwidth	§15.247(a)(2)	PASS
Power Spectral Density	§15.247(e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. INFORMATION OF THE TEST LABORATORY

Shenzhen HUAK Testing Technology Co., Ltd. Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

1.3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ± U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.71dB
2	RF power, conducted	±0.37dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.90dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK

2. EUT DESCRIPTION

2.1. GENERAL DESCRIPTION OF EUT

^	
Equipment:	IP WIFI CAMERA
Model Name:	AY01
Series Model:	AY02, AY03, AY04, AY05, AY06, AY07, AY08, AY09, AY10, AY11, AY12, AY13, AY14, AY15, AY16, AY17, AY18, AY19, AY20
Model Difference:	All model's the function, software and electric circuit are the same, only with a product color, appearance and model named different. Test sample model: AY01.
FCC ID:	2A6AK-AY01
Antenna Type:	External Antenna
Antenna Gain:	1dBi WHANT WHANT WAR HANT WAS A SHARE WAS
Operation frequency:	802.11b/g/n 20:2412~2462 MHz 802.11n 40: 2422~2452MHz
Number of Channels:	802.11b/g/n20: 11CH 802.11n 40: 7CH
Modulation Type:	CCK/OFDM/DBPSK/DAPSK
Power Source:	DC 12V from Adapter
Power Rating:	DC 12V from Adapter

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

2.2. CARRIER FREQUENCY OF CHANNELS

	Channel List For 802.11b/802.11g/802.11n (HT20)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452	ESTING.	

(1) HOW	Channel List For 802.11n (HT40)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
STING_	XTESTING CO	04	2427	07	2442	TESTIN	NTE
@ H		05	2432	08	2447	HUAK	A HOM
03	2422	06	2437	09	2452		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2.3. OPERATION OF EUT DURING TESTING

Operating Mode

The mode is used: Transmitting mode for 802.11b/802.11g/802.11n (HT20)

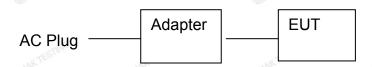
Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

The mode is used: Transmitting mode for 802.11n (HT40)

Low Channel: 2422MHz Middle Channel: 2437MHz High Channel: 2452MHz

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.co

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China



2.4. DESCRIPTION OF TEST SETUP

Operation of EUT during conducted and radiation below 1GHz testing:

Operation of EUT during radiation above 1GHz testing:

Laptop information Model: TP00067A

Input: DC 20V, 2.25~3.25A

Output: 5VDC, 0.5A

Adapter information Model: SAN-12010

Input: 100-240V, 50-60Hz, 0.4A

Output: 12VDC, 1A

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

3. ENERA INFORMATION

3.1. TEST ENVIRONMENT AND MODE

Operating Environment:			
Temperature:	25.0 °C	MAKTESIN	WAK TES
Humidity:	56 % RH		
Atmospheric Pressure:	1010 mbar	LAKTESTING	, NG
Test Mode:			
Engineering mode:	Keep the EUT i by select chann value of duty cy	nel and modula	tions(The

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and The output power to the maximum state.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

ESTING	Mode	Data r	ate
	802.11b	1Mbp	os o municipality
ò	802.11g	6Mbp	os
	802.11n(H20)	6.5Mb	ps
M HI	802.11n(H40)	13.5M	bps Marine
			(1)

Final Test Mode:

Operation mode:	Keep the EUT in continuous transmitting
Operation mode.	with modulation

- 1. For WIFI function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.
- 2.According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20), 13.5Mbps for 802.11(H40). Duty cycle setting during the transmission is 98.5% with maximum power setting for all modulations.

3.2. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
	IG I HUANTESTI	I STING	I HUMA TESTIN	1 STING

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

TEST RESULTS AND MEASUREMENT DATA

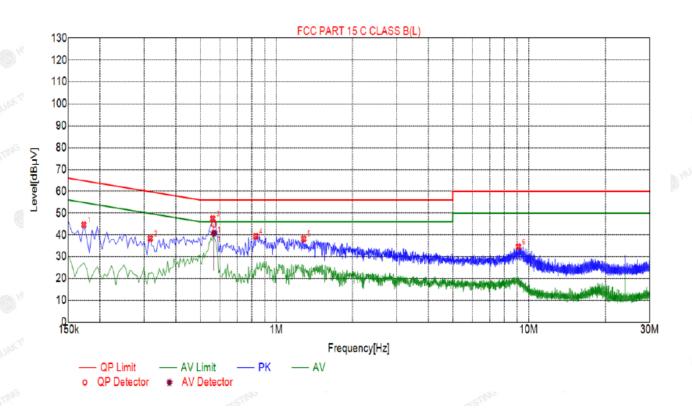
CONDUCTED EMISSION

Test Specification

ANSI C63.10:2013 150 kHz to 30 MHz RBW=9 kHz, VBW=30 kHz, Sweep time=auto Frequency range Limit (dBuV) (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Filter Ac power LSN Line Impedance Stabilization network Charging + transmitting with modulation 1. The E.U.T is connected to the main power through a line impedance stabilization network (L.I.S.N.). Thi provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination (Pleas)	TING	TIME	TING	TING					
Receiver setup: RBW=9 kHz, VBW=30 kHz, Sweep time=auto Frequency range Limit (dBuV) (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane LUT AC power E U F Equament Inter Test 1.50 LISN in engagement Inter Test 1.50 LISN inter Test 1.50	Test Requirement:	FCC Part15 C Secti	on 15.207	AKTE HIAKTE					
RBW=9 kHz, VBW=30 kHz, Sweep time=auto Frequency range	Test Method:	ANSI C63.10:2013	ANSI C63.10:2013						
Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Plane P	Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz						
(MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane E.U.T Ac power EMI Executiver EMI EXECUTIVE EMI EXECUTIVE EMI EXECUTIVE EMI EMI	Receiver setup:	RBW=9 kHz, VBW=	RBW=9 kHz, VBW=30 kHz, Sweep time=auto						
Pest Setup: Charging + transmitting with modulation 1. The E.U.T is connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Pleasurefer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to	Limits:	(MHz) 0.15-0.5 0.5-5	Quasi-peak 66 to 56* 56	Average 56 to 46* 46					
1. The E.U.T is connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to	Test Setup:	Test table/Insulation Remark: EU.T. Equipment Under Test LISN Line Impedence Stabili	cm 80cm LISN Filte	r — AC power					
line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to	Test Mode:	Charging + transmit	ting with modula	tion					
7 il tol 000. To. 20 to on conductod modedicinoni.	Test Procedure:	line impedance s provides a 50ohr measuring equipr 2. The peripheral de power through a coupling impedar refer to the bloo photographs). 3. Both sides of A conducted interfe emission, the rela- the interface cab	stabilization netwon/50uH couplingment. evices are also concerned with 50ohm couplingment of the couplingment. C. line are charence. In order the couplingment of the	work (L.I.S.N.). This impedance for the connected to the maindes a 500hm/50ul termination. (Pleas the test setup and ecked for maximum to find the maximum equipment and all changed according to					
est Result: PASS	Test Result:	PASS	0,1	0,1					

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

Test Instruments


Conducted Emission Shielding Room Test Site (843)								
Equipment Manufacturer Model Serial Number Calibration Date Due								
Receiver	R&S	ESCI 7	HKE-010	Dec. 09, 2021	Dec. 08, 2022			
LISN	R&S	ENV216	HKE-002	Dec. 09, 2021	Dec. 08, 2022			
Coax cable (9KHz-30MHz)	Times	381806-002	N/A	Dec. 09, 2021	Dec. 08, 2022			
Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A			

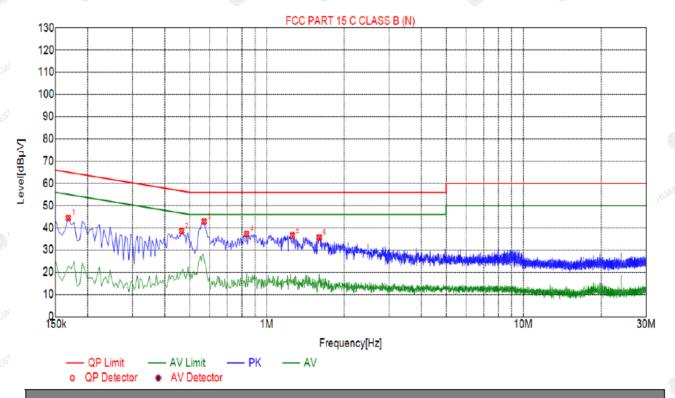
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.2. TEST RESULT

Test Specification: Line

Sus	Suspected List												
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре					
1	0.1725	44.59	20.04	64.84	20.25	24.55	PK	L					
2	0.3165	38.39	20.05	59.80	21.41	18.34	PK	L					
3	0.5595	47.45	20.06	56.00	8.55	27.39	PK	L					
4	0.8295	39.37	20.06	56.00	16.63	19.31	PK	L					
5	1.2840	38.24	20.09	56.00	17.76	18.15	PK	L					
6	9.1140	34.53	20.11	60.00	25.47	14.42	PK	L					

					200.0000							
	Final Data List											
	NO.	Freq. [MHz]	Correction factor[dB]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	QP Reading [dBμV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	AV Reading [dBµV]	Туре
10	1	0.5651	20.06	44.92	56.00	11.08	24.86	40.81	46.00	5.19	20.75	L


Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Specification: Neutral

Sus	pected	List

	Suspecieu List											
JP	NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBμV]	Detector	Туре			
	1	0.1680	44.45	20.01	65.06	20.61	24.44	PK	N			
	2	0.4650	38.52	20.04	56.60	18.08	18.48	PK	N			
4	3	0.5685	42.84	20.05	56.00	13.16	22.79	PK	N			
NG.	4	0.8340	37.27	20.06	56.00	18.73	17.21	PK	N			
	5	1.2570	36.59	20.09	56.00	19.41	16.50	PK	N			
	6	1.5990	35.63	20.11	56.00	20.37	15.52	PK	N			

Remark: Margin = Limit - Level Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

4.3. MAXIMUM CONDUCTED OUTPUT POWER

Test Specification

Test Requirement:	FCC Part15 C Section 15	5.247 (b)(3)	X TESTIN
Test Method:	KDB 558074	Muly Holy	MONTH OF THE PARTY
Limit:	30dBm	AKTESTING	فاده
Test Setup:	Power meter	EUT	NIC HUNKTESTING
Test Mode:	Transmitting mode with m	nodulation	
Test Procedure:	1. The testing follows the FCC KDB 558074 D0 v05r02. 2. The RF output of EUT meter by RF cable and compensated to the result. 3. Set to the maximum pose EUT transmit continuous. 4. Measure the Peak output in the test report.	1 15.247 Meas G was connected to d attenuator. The esults for each me ower setting and e ously.	o the power path loss was easurement. enable the
Test Result:	PASS	O HUM	9 110

Test Instruments

ATTAL YOU	ALC: NO.	N. Fr	Alle Ave	William Alla	William A.A.					
	RF Test Room									
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due					
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	Dec. 08, 2022					
Power meter	Agilent	E4419B	HKE-085	Dec. 09, 2021	Dec. 08, 2022					
Power Sensor	Agilent	E9300A	HKE-086	Dec. 09, 2021	Dec. 08, 2022					
RF cable	Times	1-40G	HKE-034	Dec. 09, 2021	Dec. 08, 2022					
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 09, 2021	Dec. 08, 2022					

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Data

TING	TING	TING TING	-myG
CTES.	HUAKTES.	TX 802.11b Mode	HUAKTES!
Test	Frequency	Maximum Peak Conducted Output Power	LIMIT
Channel	(MHz)	(dBm)	dBm
CH01	2412	17.06	30
CH06	2437	15.26	30
CH11	2462	19.16	30 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		TX 802.11g Mode	
CH01	2412	17.92	30
CH06	2437	18.09	JUNETES III
CH11	2462	17.95	30
	TESTING	TX 802.11n20 Mode	TESTING
CH01	2412	18.14	30
CH06	2437	18.35	30
CH11	2462	17.17	30 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1		TX 802.11n40 Mode	9
CH03	2422	17.85	30
CH06	2437	17.56	JUNETES 30 HUMETES
CH09	2452	17.51	30

4.4. EMISSION BANDWIDTH

Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)					
Test Method:	KDB 558074	(I) HOLD	MONTH HOME			
Limit:	>500kHz	AK TESTING	e)(o			
Test Setup:	Spectrum Analyzer	EUT	ME HUAKTES IN			
Test Mode:	Transmitting mode with r	modulation				
Test Procedure:	1. The testing follows FC 15.247 Meas Guidan 2. Set to the maximum p EUT transmit continu 3. Make the measureme resolution bandwidth Video bandwidth (VB an accurate measure be greater than 500 ke 4. Measure and record the second sec	ce v05r02. bower setting and elements ously. Int with the spectru (RBW) = 100 kHz W) = 300 kHz. In element. The 6dB backHz.	enable the um analyzer's Set the order to make andwidth must			
Test Result:	PASS	● HUA	(a)			

Test Instruments

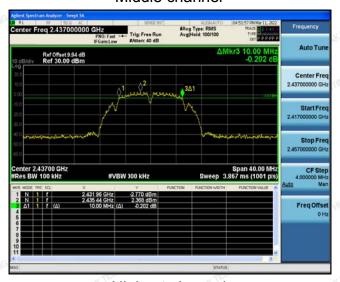
	RF Test Room										
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due						
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	Dec. 08, 2022						
RF cable	Times	1-40G	HKE-034	Dec. 09, 2021	Dec. 08, 2022						
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 09, 2021	Dec. 08, 2022						

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

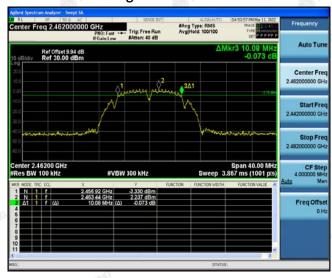
AFICATION

Test data

Toot channel	6dB Emission Bandwidth (MHz)							
Test channel	802.11b	802.11g	802.11n(H20)	802.11n(H40)				
Lowest	10.08	16.32	17.52	35.28				
Middle	10.00	16.44	17.28	35.12				
Highest	10.08	16.32	17.00	35.12				
Limit:	3 HUANTES.	>	500k	- 1G				
Test Result:	1104	TESTING	PASS	TING				


Test plots as follows:

802.11b Modulation


Lowest channel

Middle channel



Highest channel

802.11g Modulation

Lowest channel

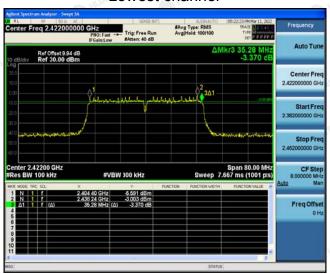
Middle channel

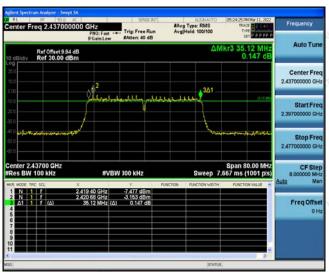
Highest channel

802.11n (HT20) Modulation

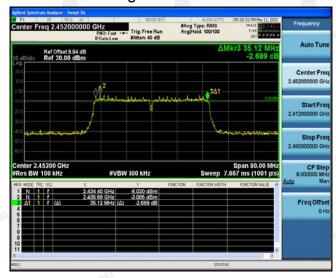

Lowest channel

Middle channel


Highest channel



802.11n (HT40) Modulation


Lowest channel

Middle channel

Highest channel

4.5. POWER SPECTRAL DENSITY

Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)				
Test Method:	KDB 558074				
Limit:	The average power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.				
Test Setup:	Spectrum Analyzer EU1				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 Transmitting mode with modulation The testing follows Measurement procedure 10.2 method PKPSD of FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the span to at least 1.5 times the OBW. Detector = Peak, Sweep time = auto couple. Employ trace averaging (Peak) mode over a minimum of 100 traces. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report. 				
Test Result:	PASS (METERINA)				

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

AFICATION

Test Instruments

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	Dec. 08, 2022
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Dec. 09, 2021	Dec. 08, 2022
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 09, 2021	Dec. 08, 2022
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test data

EUT Set Mode	Channel	Result (dBm/30kHz)	Result (dBm/3kHz)
	Lowest	0.9	-9.1 _{4.755} m
802.11b	Middle	1.13	-8.87 (h)
	Highest	0.75	-9.25
802.11g	Lowest	-6.02	-16.02
	Middle	-5.87	-15.87
	Highest	-5.05	-15.05
802.11n(H20)	Lowest	-5.18	-15.18
	Middle	-5.35	-15.35
	Highest	-4.26	-14.26
802.11n(H40)	Lowest	-7.79	-17.79
	Middle	-8.32	-18.32
	Highest	-8.91	-18.91
PSD test result (dBm/	3kHz)= PSD tes	t result (dBm/30kHz)-10	
Limit: 8dBm/3kHz			
Test Result:	HUAKTER	PASS	ى م

Test plots as follows:

802.11b Modulation

Lowest channel

Middle channel

Highest channel

802.11g Modulation

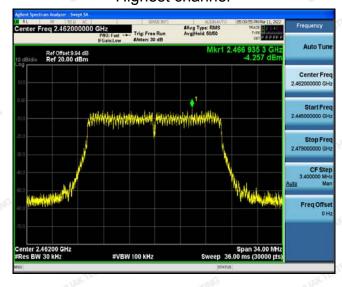
Lowest channel

Middle channel

Highest channel

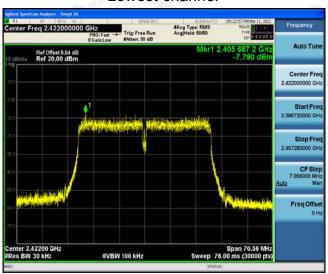


802.11n (HT20) Modulation

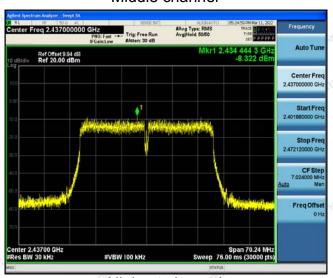

Lowest channel

Middle channel

Highest channel



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

802.11n (HT40) Modulation

Lowest channel

Middle channel

Highest channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

4.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT

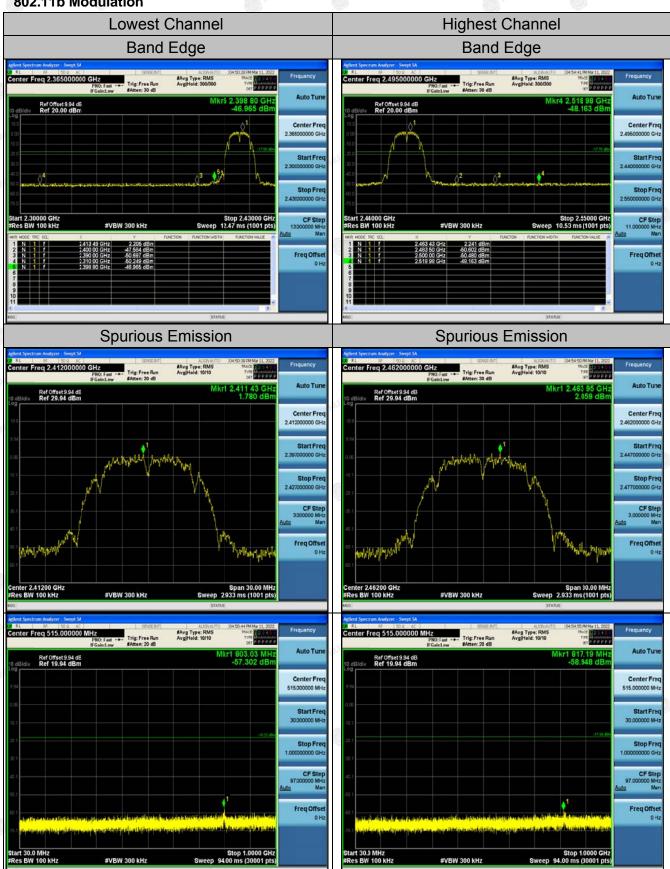
Test Specification

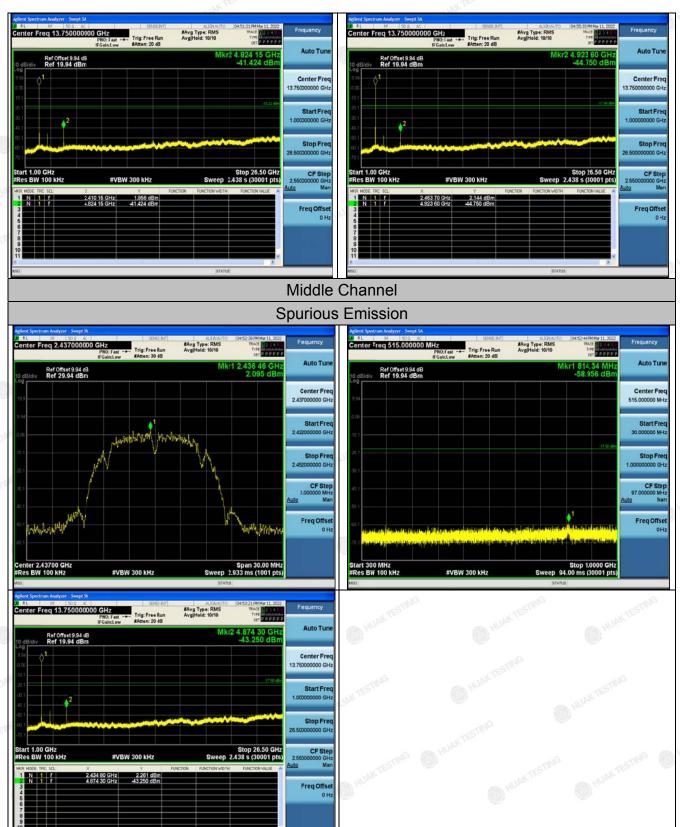
Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	KDB558074			
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 Transmitting mode with modulation The testing follows FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded 			
Test Result:	against the limit line in the operating frequency band. PASS			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

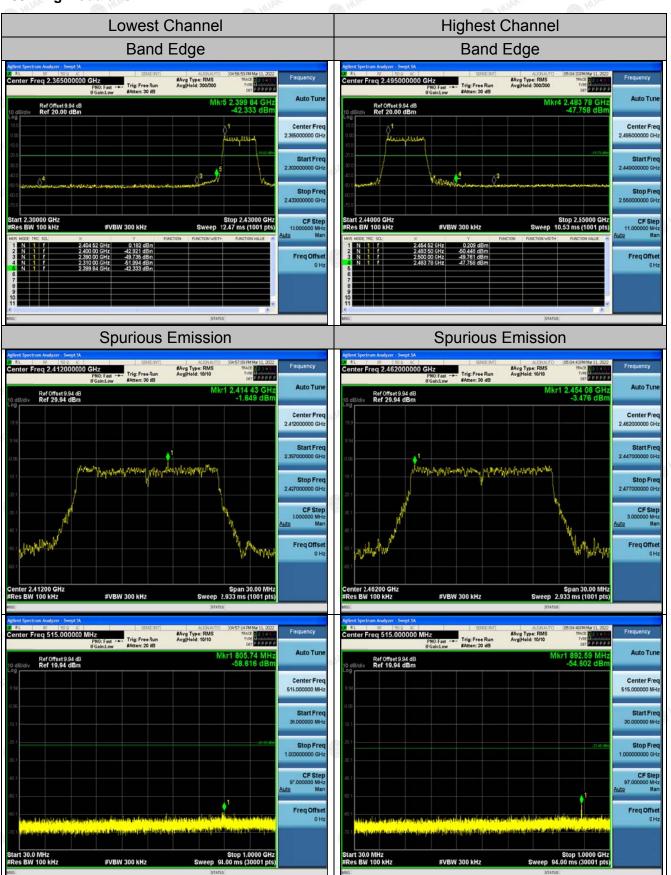
HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

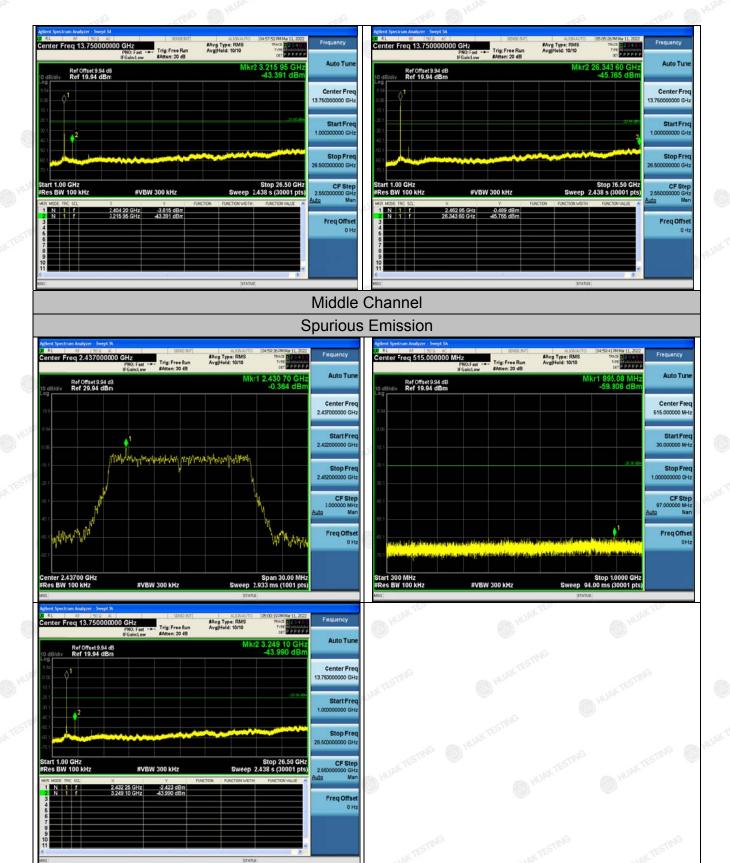
Test Instruments

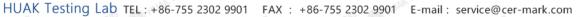

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	Dec. 08, 2022
High pass filter unit	Tonscend	JS0806-F	HKE-055	Dec. 09, 2021	Dec. 08, 2022
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Dec. 09, 2021	Dec. 08, 2022
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 09, 2021	Dec. 08, 2022
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

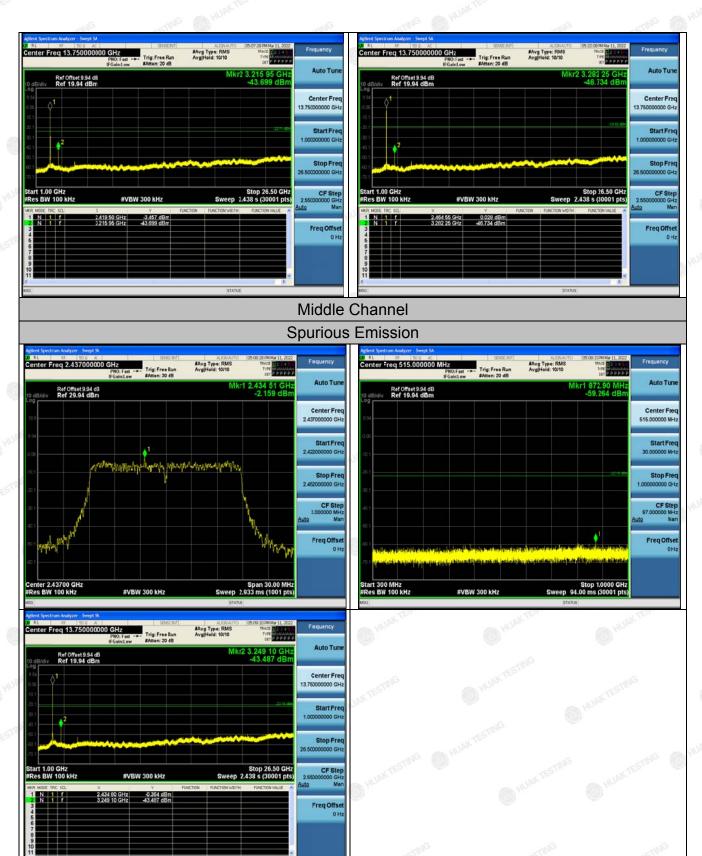
Test Data

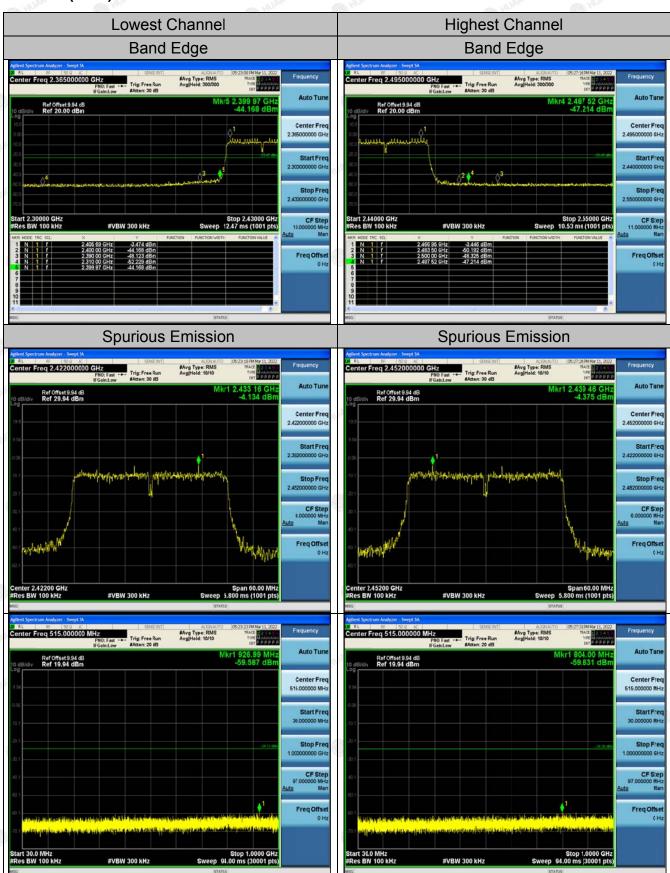

802.11b Modulation

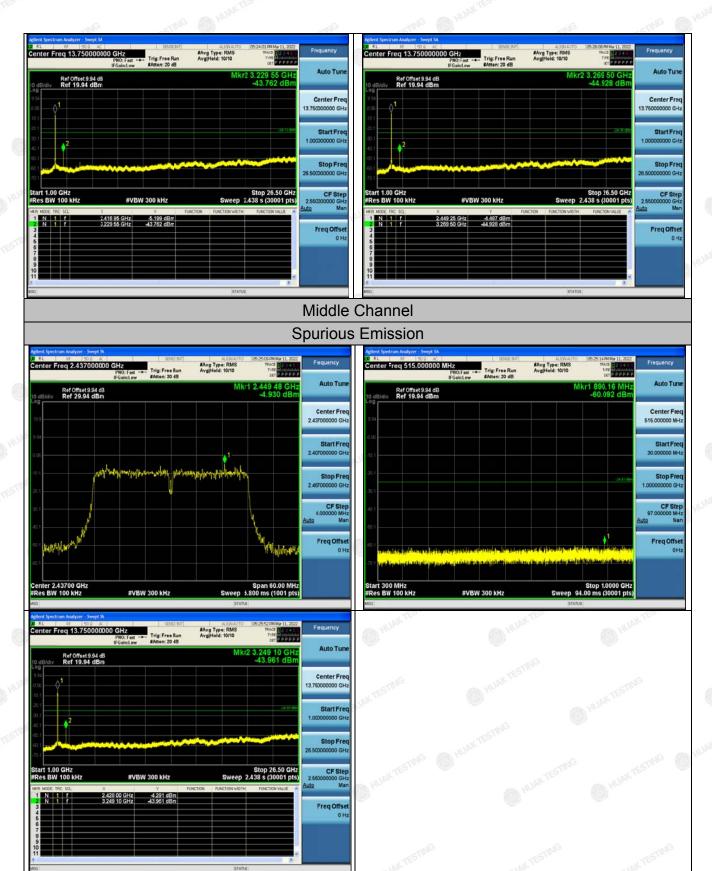




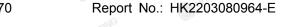
802.11g Modulation

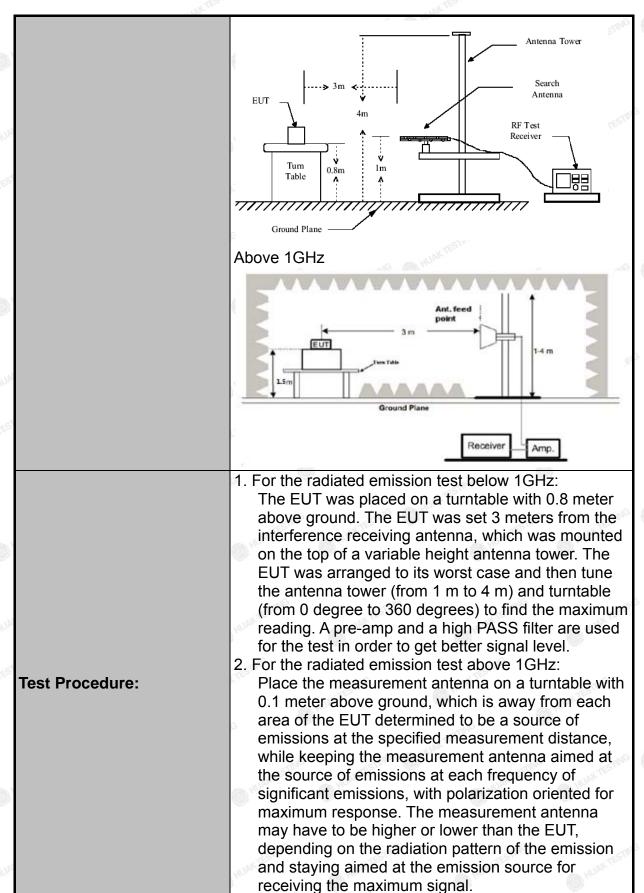



802.11n (HT20) Modulation

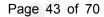


802.11n (HT40) Modulation


4.7. RADIATED SPURIOUS EMISSION MEASUREMENT


Test Specification

Test Requirement:	FCC Part15	C Section	n 1	15.209	TESTI	JG.	TESTIN
Test Method:	ANSI C63.10	0: 2013		6	HUAN		HUAN
Frequency Range:	9 kHz to 25 (GHz			TING		
Measurement Distance:	3 m	TESTING		AN HU	AKTES		TESTING
Antenna Polarization:	Horizontal &	Vertical				0	HONE
Operation mode:	Transmitting	mode w	ith	modulati	ion		
Pagaivar Satura	Frequency 9kHz- 150kHz 150kHz-	Quasi-pe	Detector Quasi-peak Quasi-peak		VBW 1kHz 30kHz		Remark si-peak Value si-peak Value
Receiver Setup:	30MHz 30MHz-1GHz Above 1GHz	Quasi-pe Peak Peak	ak	120KHz 1MHz 1MHz	300KHz 3MHz 10Hz	Р	si-peak Value eak Value erage Value
Limit:	Frequen 0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-96 Above 9 Frequency Above 1GHz	490 705 30 60 Fi (mic	rovo	Field Stre (microvolts/ 2400/F(F) 24000/F(I) 30 100 150 200 500 Strength olts/meter) 500 000	/meter) (Hz)	Dista	asurement ince (meters) 300 30 30 3 3 3 3 3 3 Detector Average Peak
Test setup:	For radiated 30MHz to 10	Tun	— 3	below 30	RX Ant)	A HUAR STR


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

101		4 1 212	
	that which maxing measurement and emissions shall from 1 m to 4 m ground plane. 3. Corrected Reading Read Level - Proceed Reading Read Level - Proceded Reading Rea	above the ground ag: Antenna Factor eamp Factor = Level to below 1GHz, If the sured by the peak applicable limit, the ported. Otherwise, to the sured was presented using the sured of the	ns. The or maximum range of heights of or reference r + Cable Loss + vel he emission level detectoris 3 dB peak emission heemission ng the quasi-peak er settings: r capture the Iz; VBW ≥RBW; n = peak;Trace = Iz for f 1 GHz for 10 Hz, when duty W ≥ 1/T, when where T is the er which the at its maximum
Test results:	PASS	(a) HU	(a)

Test Instruments

	Rad	iated Emission	Test Site (966	5)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Receiver	R&S	ESCI-7	HKE-010	Dec. 09, 2021	Dec. 08, 2022
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 09, 2021	Dec. 08, 2022
Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 09, 2021	Dec. 08, 2022
High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	Dec. 09, 2021	Dec. 08, 2022
Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 09, 2021	Dec. 08, 2022
Preamplifier	EMCI	EMC051845S E	HKE-015	Dec. 09, 2021	Dec. 08, 2022
Preamplifier	Agilent	83051A	HKE-016	Dec. 09, 2021	Dec. 08, 2022
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 09, 2021	Dec. 08, 2022
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Dec. 09, 2021	Dec. 08, 2022
Horn antenna	Schwarzbeck	9120D	HKE-013	Dec. 09, 2021	Dec. 08, 2022
High pass filter unit	Tonscend	JS0806-F	HKE-055	Dec. 09, 2021	Dec. 08, 2022
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	N/A
Position controller	Taiwan MF	MF7802	HKE-011	Dec. 09, 2021	Dec. 08, 2022
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A
RF cable	Times	9kHz-1GHz	HKE-117	Dec. 09, 2021	Dec. 08, 2022
RF cable	Times	1-40G	HKE-034	Dec. 09, 2021	Dec. 08, 2022
Horn Antenna	Schewarzbeck	BBHA 9170	HKE-017	Dec. 09, 2021	Dec. 08, 2022

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

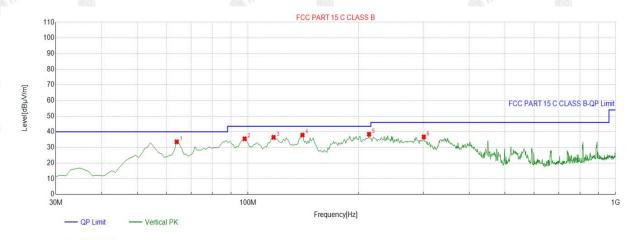
this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com. HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Data

All the test modes completed for test. only the worst result of (802.11b at 2412MHz) was reported as below:

Below 1GHz

Horizontal


QP Detector

	Suspected List									
1	NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delevite
	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
	1	123.2132	-17.57	50.02	32.45	43.50	11.05	100	310	Horizontal
3	2	167.8779	-17.50	49.66	32.16	43.50	11.34	100	318	Horizontal
	3	180.5005	-16.81	49.05	32.24	43.50	11.26	100	306	Horizontal
	4	236.8168	-14.00	52.85	38.85	46.00	7.15	100	358	Horizontal
	5	259.1491	-13.51	54.03	40.52	46.00	5.48	100	326	Horizontal
	6	338.7688	-11.63	50.03	38.40	46.00	7.60	100	76	Horizontal

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Vertical

Suspected List										
NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	63.9840	-16.16	49.73	33.57	40.00	6.43	100	74	Vertical	
2	97.9680	-15.74	51.28	35.54	43.50	7.96	100	66	Vertical	
3	117.3874	-16.66	53.12	36.46	43.50	7.04	100	66	Vertical	
4	140.6907	-19.16	57.12	37.96	43.50	5.54	100	304	Vertical	
5	213.5135	-14.72	53.15	38.43	43.50	5.07	100	324	Vertical	
6	300 9009	-12 72	49 45	36.73	46.00	9 27	100	213	Vertical	

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Harmonics and Spurious Emissions

Frequency Range (9kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
© ')	• - • • ·
NG	TING	TING
- TIFG - VI	ANTES TING	- WAYTES
- marter-	- with	Warter

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

2. Theemission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

Above 1GHz

RADIATED EMISSION TEST

LOW CH1 (802.11b Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4824	59.36	-3.64	55.72	74	-18.28	peak
4824	44.96	-3.64	41.32	54	-12.68	AVG
7236	50.59	-0.95	49.64	74	-24.36	peak
7236	42.69	-0.95	41.74	54	-12.26	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	60.99	-3.64	57.35	74	-16.65	peak
4824	36.55	-3.64	32.91	54	-21.09	AVG
7236	52.12	-0.95	51.17	74	-22.83	peak
7236	36.37	-0.95	35.42	54	-18.58	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

MID CH6 (802.11b Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4874	60.88	-3.51	57.37	74	-16.63	peak
4874	42.17	-3.51	38.66	54	-15.34	AVG
7311 AUAK	52.64	-0.82	51.82	74	-22.18	peak
7311	40.36	-0.82	39.54	54	-14.46	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4874	57.73	-3.51	54.22	74	-19.78	peak
4874	41.52	-3.51	38.01	54	-15.99	AVG
7311	50.43	-0.82	49.61	74	-24.39	peak
7311	39.35	-0.82	38.53	54	-15.47	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH11 (802.11b Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	56.12	-3.43	52.69	74	-21.31	peak
4924	42.94	-3.43	39.51	54	-14.49	AVG
7386	50.82	-0.75	50.07	74	-23.93	peak
7386	35.91	-0.75	35.16	54	-18.84	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	59.76	-3.43	56.33	74	-17.67	peak
4924	38.36	-3.43	34.93	54	-19.07	AVG
7386	47.91	-0.75	47.16	74	-26.84	peak
7386	39.95	-0.75	39.2	54	-14.8	AVG
	00.00	0.70		01	14.0	- (

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH1 (802.11g Mode)/2412

Horizontal:

Detector	Margin	Limits	Emission Level	Factor	Reading Result	Frequency
Туре	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(dBµV)	(MHz)
peak	-27.43	74	46.57	-3.64	50.21	4824
AVG	-17.52	54 ₄₀ M	36.48	-3.64	40.12	4824
peak	-24.84	74	49.16	-0.95	50.11	7236
AVG	-17.33	54	36.67	-0.95	37.62	7236
5	·	THE STATE OF THE S	36.67	-0.95		7236

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	49.02	-3.64	45.38	74	-28.62	peak
4824	39.79	-3.64	36.15	54	-17.85	AVG
7236	50.01	-0.95	49.06	74	-24.94	peak
7236	37.78	-0.95	36.83	54	-17.17	AVG

MID CH6 (802.11g Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	60.04	-3.51	56.53	74	-17.47	peak
4874	42.04	-3.51	38.53	54	-15.47	AVG
7311	52.50	-0.82	51.68	74	-22.32	peak
7311	39.77	-0.82	38.95	54	-15.05	AVG

Vertical:

Reading Result	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
60.42	-3.51	56.91	74	-17.09	peak
40.62	-3.51	37.11	54	-16.89	AVG
52.28	-0.82	51.46	74	-22.54	peak
39.3	-0.82	38.48	54	-15.52	AVG
	(dBµV) 60.42 40.62 52.28	(dBµV) (dB) 60.42 -3.51 40.62 -3.51 52.28 -0.82	(dBμV) (dB) (dBμV/m) 60.42 -3.51 56.91 40.62 -3.51 37.11 52.28 -0.82 51.46	(dBμV) (dB) (dBμV/m) (dBμV/m) 60.42 -3.51 56.91 74 40.62 -3.51 37.11 54 52.28 -0.82 51.46 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 60.42 -3.51 56.91 74 -17.09 40.62 -3.51 37.11 54 -16.89 52.28 -0.82 51.46 74 -22.54

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH11 (802.11g Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4924	60.69	-3.43	57.26	74	-16.74	peak
4924	39.89	-3.43	36.46	54	-17.54	AVG
7386	52.24	-0.75	51.49	74 A	-22.51	peak
7386	38.14	-0.75	37.39	54	-16.61	AVG

Vertical:

		1000				
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	52.8	-3.43	49.37	74	-24.63	peak
4924	42.34	-3.43	38.91	54	-15.09	AVG
7386	48.97	-0.75	48.22	74 HUA	-25.78	peak
7386	37.31	-0.75	36.56	54	-17.44	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH1 (802.11n/H20 Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	53.71	-3.64	50.07	74	-23.93	peak
[©] 4824	42.04	-3.64	38.4	54	-15.6	AVG
7236	51.56	-0.95	50.61	74	-23.39	peak
7236	41.34	-0.95	40.39	54	-13.61	AVG

Vertical:

Reading Result	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
51.66	-3.64	48.02	74	-25.98	peak
42.55	-3.64	38.91	54	-15.09	AVG
50.8	-0.95	49.85	74	-24.15	peak
41.37	-0.95	40.42	54 TESTING	-13.58	AVG
	(dBµV) 51.66 42.55 50.8	(dBµV) (dB) 51.66 -3.64 42.55 -3.64 50.8 -0.95	(dBμV) (dB) (dBμV/m) 51.66 -3.64 48.02 42.55 -3.64 38.91 50.8 -0.95 49.85	(dBμV) (dB) (dBμV/m) (dBμV/m) 51.66 -3.64 48.02 74 42.55 -3.64 38.91 54 50.8 -0.95 49.85 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 51.66 -3.64 48.02 74 -25.98 42.55 -3.64 38.91 54 -15.09 50.8 -0.95 49.85 74 -24.15

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH6 (802.11n/H20 Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	53.47	-3.51	49.96	74.00	-24.04	peak
4874	39.64	-3.51	36.13	54.00	-17.87	AVG
7311	49.32	-0.82	48.50	74.00	-25.50	peak
7311	41.18	-0.82	40.36	54.00	-13.64	AVG
Remark: Factor	r = Antenna Factor	+ Cable Loss	– Pre-amplifier.	We Ding	TESTING	AK TESTIN

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector _s
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	53.03	-3.51	49.52	74.00	-24.48	peak
4874	42.98	-3.51	39.47	54.00	-14.53	AVG
7311	51.02	-0.82	50.20	74.00	-23.80	peak
7311	40.63	-0.82	39.81	54.00	-14.19	AVG
- NG	-111/2 115/23		41G	100	-A/G	7117

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH11 (802.11n/H20 Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Tyme
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	54.16	-3.43	50.73	74	-23.27	peak
4924	43.69	-3.43	40.26	54	-13.74	AVG
7386	52.47	-0.75	51.72	74	-22.28	peak
7386	40.22	-0.75	39.47	54	-14.53	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data atau Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	55.28	-3.43	51.85	74	-22.15	peak
4924	42.17	-3.43	38.74	54	-15.26	AVG
7386	51.56	-0.75	50.81	74	-23.19	peak
7386	39.12	-0.75	38.37	54	-15.63	AVG

LOW CH3 (802.11n/H40 Mode)/2422

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data atau Tun a
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	60.72	-3.63	57.09	74	-16.91	peak
4844	42.62	-3.63	38.99	54	-15.01	AVG
7266	50.35	-0.94	49.41	74	-24.59	peak
7266	36.29	-0.94	35.35	54	-18.65	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data stan Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	55.5	-3.63	51.87	74	-22.13	peak
4844	39.39	-3.63	35.76	54	-18.24	AVG
7266	52.8	-0.94	51.86	74	-22.14	peak
7266	36.43	-0.94	35.49	54	-18.51	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

MID CH6 (802.11n/H40 Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data atau Timasi
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	60.25	-3.51	56.74	74	-17.26	peak
4874	40.46	-3.51	36.95	54	-17.05	AVG
7311	49.23	-0.82	48.41	74	-25.59	peak
7311	38.97	-0.82	38.15	54	-15.85	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Tyro
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	50.68	-3.51	47.17	74	-26.83	peak
4874	41.66	-3.51	38.15	54	-15.85	AVG
7311	49.39	-0.82	48.57	74	-25.43	peak
7311	37.45	-0.82	36.63	54	-17.37	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

HIGH CH9 (802.11n/H40 Mode)/2452

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data stan Tunk
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	58.88	-3.43	55.45	74	-18.55	peak
4904	43.66	-3.43	40.23	54	-13.77	AVG
7356	50.73	-0.75	49.98	74	-24.02	peak
7356	39.61	-0.75	38.86	54	-15.14	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	54.05	-3.43	50.62	74	-23.38	peak
4904	41.5	-3.43	38.07	54	-15.93	AVG
7356	51.33	-0.75	50.58	74	-23.42	peak
7356	39.65	-0.75	38.9	54	-15.1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

Test Result of Radiated Spurious at Band edges

Operation Mode:

802.11b Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits W	Margin	Datastar Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	52.06	-5.81	46.25	74	-27.75	peak
2310.00	41.47	-5.81	35.66	54	-18.34	AVG
2390.00	49.40	-5.84	43.56	74	-30.44	peak
2390.00	39.05	-5.84	33.21	54	-20.79	AVG
emark: Factor	r = Antenna Factor	+ Cable Loss	Pre-amplifier.	N ^G	TESTING	ESTING

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Daleston Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	53.25	-5.81	47.44	74	-26.56	peak
2310.00	42.03	-5.81	36.22	54	-17.78	AVG
2390.00	52.08	-5.84	46.24	74	-27.76	peak
2390.00	39.23	-5.84	33.39	54	-20.61	AVG
- TING -	TING_		NG HE T	NG	TING	TUG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

C

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Tyre
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	54.58	-5.81	48.77	74	-25.23	peak
2483.50	41.48	-5.81	35.67	54	-18.33	AVG
2500.00	50.08	-6.06	44.02	74	-29.98	peak
2500.00	37.92	-6.06	31.86	54	-22.14	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

253	269	60	251		65	6.63
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	53.6	-5.81	47.79	74 HUAY	-26.21	peak
2483.50	42.99	-5.81	37.18	54	-16.82	AVG
2500.00	50.31	-6.06	44.25	74	-29.75	peak
2500.00	40.04	-6.06	33.98	54	-20.02	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11g Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	54.57	-5.81	48.76	74	-25.24	peak
2310.00	41.84	-5.81	36.03	54	-17.97	AVG
2390.00	52.57	-5.84	46.73	74 TESTIN	-27.27	peak
2390.00	39.60	-5.84	33.76	54	-20.24	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Datastar Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
2310.00	50.69	-5.81	44.88	74	-29.12	peak
2310.00	41.42	-5.81	35.61	54	-18.39	AVG
2390.00	49.13	-5.84	43.29	74	-30.71	peak
2390.00	41.7	-5.84	35.86	54	-18.14	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data atom Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	54.57	-5.65	48.92	74	-25.08	peak
2483.50	40.91	-5.65	35.26	54	-18.74	AVG
2500.00	50.7	-5.65	45.05	74	-28.95	peak
2500.00	40.04	-5.65	34.39	54	-19.61	AVG
-STING	V(2)		The TESTIN		STINE	TESTA

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	53.15	-5.65	47.5	74	-26.5	peak
2483.50	42.42	-5.65	36.77	54	-17.23	AVG
2500.00	50.87	-5.65	45.22	74	-28.78	peak
2500.00	38.03	-5.65	32.38	54	-21.62	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

STING

Report No.: HK2203080964-E

Operation Mode: 802.11n/H20 Mode TX CH Low (2412MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data star Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	51.51	-5.81	45.7	74	-28.3	peak
2310.00	41.12	-5.81	35.31	54 HUAN	-18.69	AVG
2390.00	50.36	-5.84	44.52	74	-29.48	peak
2390.00	39.1	-5.84	33.26	54	-20.74	AVG
Remark: Factor	= Antenna Factor -	+ Cable Loss –	Pre-amplifier.	. O	STING	TESTING

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits ■	Margin	Detector Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	53.06	-5.81	47.25	74	-26.75	peak
2310.00	41.14	-5.81	35.33	54	-18.67	AVG
2390.00	50.33	-5.84	44.49	74	-29.51	peak
2390.00	40.22	-5.84	34.38	54	-19.62	AVG
	A CONG PROPERTY	<u> </u>	5 G 115 4N	G AND THE	,G	TNG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	51.15	-5.65	45.5	74	-28.5	peak
2483.50	41.95	-5.65	36.3	54	-17.7	AVG
2500.00	49.7	-5.65	44.05	74 TESTIN	-29.95	peak
2500.00	38.39	-5.65	32.74	54	-21.26	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

~ 111 m	~ TII ~	~~~	II.a.	-111 m	~411	-The
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	53.02	-5.65	47.37	74	-26.63	peak
2483.50	42.58	-5.65	36.93	54	-17.07	AVG
2500.00	51.57	-5.65	45.92	74	-28.08	peak
2500.00	39.13	-5.65	33.48	54	-20.52	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

of 70 Report No.: HK2203080964-E

Operation Mode: 802.11n/H40 Mode TX CH Low (2422MHz)

Horizontal

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data atan Timo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	54.25	-5.81	48.44	74	-25.56	peak
2310.00	STING /	-5.81	TESTING	54 MAK	1	AVG
2390.00	63.17	-5.84	57.33	74	-16.67	peak
2390.00	45.84	-5.84	40	54	-14	AVG
Remark: Factor	= Antenna Factor	+ Cable Loss -	Pre-amplifier.	3 10 110	STING	TESTING

Vertical:

Reading Result	Factor	Emission Level	Limits	Margin	Data ata K Timo
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
58.08	-5.81	52.27	74	-21.73	peak
STING /	-5.81	TAX ESTING	54	1	AVG
62.15	-5.84	56.31	74	-17.69	peak
52.77	-5.84	46.93	54	-7.07	AVG
	(dBµV) 58.08 / 62.15	(dBµV) (dB) 58.08 -5.81 / -5.81 62.15 -5.84	(dBμV) (dB) (dBμV/m) 58.08 -5.81 52.27 / -5.81 / 62.15 -5.84 56.31	(dBμV) (dB) (dBμV/m) (dBμV/m) 58.08 -5.81 52.27 74 / -5.81 / 54 62.15 -5.84 56.31 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dB) 58.08 -5.81 52.27 74 -21.73 / -5.81 / 54 / 62.15 -5.84 56.31 74 -17.69

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High (2452MHz)

Horizontal

- Na	Slav	Mari)	110	Sla.	Slaw.
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	52.62	-5.65	46.97	74	-27.03	peak
2483.50	1	-5.65	O HUAR	54	1 🚳	AVG
2500.00	50.18	-5.65	44.53	74	-29.47	peak
2500.00	AKTESTING ()	-5.65	TAK TESTIN	54	N. T. STING	AVG
2000.00	N Dr	O.OO	HALL WAR		HICKTON	ALTHU MU AIN

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

	A. V.	2.70			A. V.	A. V.
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	55.54	-5.65	49.89	74	-24.11	peak
2483.50	1	-5.65	1	54	1	AVG
2500.00	52.16	-5.65	46.51	74	-27.49	peak
2500.00	I Dik	-5.65	WAK!	54	HUAKTE	AVG

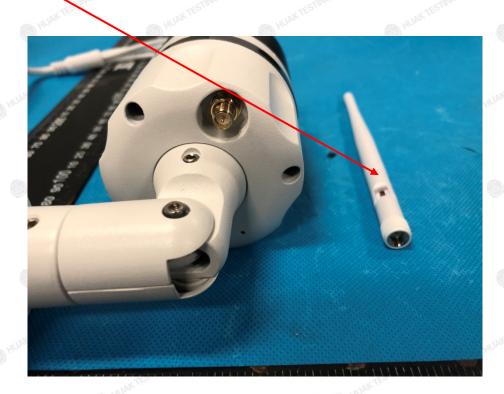
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

4.8. ANTENNA REQUIREMENT

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

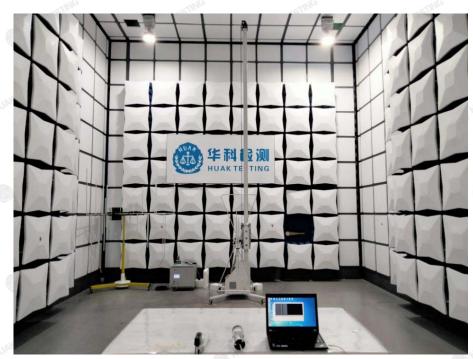

Refer to statement below for compliance.

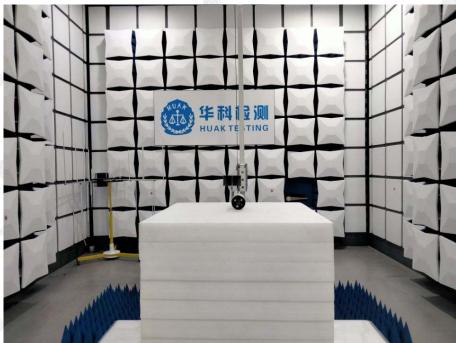
The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is External Antenna, which have non-standard antenna jack. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 1dBi.

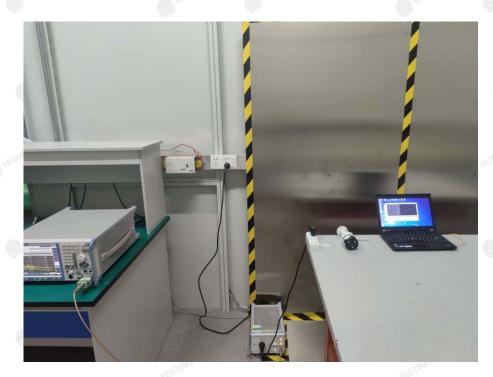
WIFI ANTENNA


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

5. PHOTOGRAPH OF TEST

Radiated Emissions


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

SPPE

this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Conducted Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK Testing Lab TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

6. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

-----End of test report-----