Page 1 of 24 Report No.: 23080106ER-61

FCC RADIO TEST REPORT

FCC ID: 2A684-S18

Sample: 3 in 1 Magnetic Wireless Charger

Trade Name: **///** 和聖

Main Model: S18

Additional Model: N/A

Report No.: 23080106ER-61

Prepared for

Shenzhen Yuyi Intelligent Electronics Co., Ltd.

601, BLDG. C, Weihuada IND. Park, No. 5, Lirong Road, Xinshi, Dalang, Longhua, Shenzhen, China

Prepared by

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Page 2 of 24 Report No.: 23080106ER-61

TEST RESULT CERTIFICATION

Applicant:	Shenzhen Yuyi Intelligent Electronics Co., Ltd.
Address:	601, BLDG. C, Weihuada IND. Park, No. 5, Lirong Road, Xinshi, Dalang, Longhua, Shenzhen, China
	Shenzhen Yuyi Intelligent Electronics Co., Ltd.
Address:	601, BLDG. C, Weihuada IND. Park, No. 5, Lirong Road, Xinshi, Dalang, Longhua, Shenzhen, China
Product description	
Product:	3 in 1 Magnetic Wireless Charger
Trade Name:	YUYI ng
Model Name:	S18
Test Methods:	FCC Rules and Regulations Part 15 Subpart C Section 15.209 ANSI C63.10: 2013
results show that the equipment And it is applicable only to the te This report shall not be reproduc	s been tested by Shenzhen ZKT Technology Co., Ltd., and the test tunder test (EUT) is in compliance with the FCC requirements. ested sample identified in the report. ced except in full, without the written approval, this document may ten ZKT Technology Co., Ltd., personnel only, and shall be noted
Date of Test	
Date (s) of performance of tests.	Aug. 01, 2023 ~ Aug. 09, 2023
Date of Issue	: Aug. 10, 2023
Test Result	: Pass
Tested by:	Tom Zou
·	Tom Zou
Reviewer:	Jackson Fang
	Jackson Fang
Approved	Labe : xie
Approved:	Lake Xie

Table of Contents	Pages
1 TEST SUMMARY	4
1.1 TEST PROCEDURES AND RESULTS	4
1.2 TEST FACILITY	4
1.3 MEASUREMENT UNCERTAINTY	5
2 GENERAL INFORMATION	6
2.1 GENERAL DESCRIPTION OF EUT	6
2.2 CARRIER FREQUENCY OF CHANNELS	7
2.3 TEST MODE	7
2.4 TEST SETUP	7
2.5 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL	8
2.6 MEASUREMENT INSTRUMENTS LIST	9
3 CONDUCTED EMISSION	11
3.1 TEST LIMIT	11
3.2 TEST SETUP	11
3.3 TEST PROCEDURE	12
3.4 TEST RESULT	12
4 RADIATED EMISSION	15
4.1 TEST LIMIT	15
4.2 TEST SETUP	17
4.3 TEST PROCEDURE	18
4.4 TEST RESULT	18
5 ANTENNA REQUIREMENT	21
6 PHOTO OF TEST	22
6.1 RADIATED EMISSION	22
6.2 CONDUCTED EMISSION	24

Page 4 of 24 Report No.: 23080106ER-61

1 TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

Item	FCC Rules	Description Of Test	Result
1	FCC Part 15.207	Conducted Emission	Pass
2	FCC Part 15.209(a)	Radiated Emission	Pass
3	FCC Part 15.203	Antenna Requirement	Pass

1.2 TEST FACILITY

Test Firm : Shenzhen ZKT Technology Co., Ltd.

Address : 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue,

Fuhai Street, Bao'an District, Shenzhen, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

Designation Number: CN1299

The EMC Laboratory has been accredited by A2LA, and in compliance with ISO/IEC 17025:2017 General Requirements for testing Laboratories.

FCC Registration Number: 692225

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission.

IC Registration Number: 27033

The EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada.

1.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

A. Conducted Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
LINII ANICI	9KHz ~ 150KHz	2.96		
UNI	ANSI	150KHz ~ 30MHz	2.44	

B. Radiated Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
		9KHz ~ 30MHz	2.50	
UNI ANSI	ANSI	30MHz ~ 1000MHz	4.80	
		1000MHz ~ 6000MHz	4.13	

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product:	3 in 1 Magnetic Wireless Charger
Trade Name:	YUYI Ng
Main Model:	S18
Additional Model:	N/A
Model Difference:	N/A
FCC ID:	2A684-S18
Operation Frequency:	110-205kHz
Number of Channels:	4CH
Modulation Type:	ASK
Antenna Type:	Coil Antenna
Antenna Gain:	0dBi
Battery:	N/A
Adapter:	N/A
Power Source:	DC 5V or 9V by adapter

2.2 CARRIER FREQUENCY OF CHANNELS

	Test List						
							Frequency (KHz)
Phone coil	121.8	Watch coil	133.6	Earphone coil 1	132.5	Earphone coil 2	148.4

2.3 TEST MODE

NO.	TEST MODE DESCRIPTION						
1	Phone coil + Full load						
2	Phone coil + Half load						
3	Phone coil + Null load						
4	Earphone coil 1 + Full load						
5	Earphone coil 1 + Half load						
6	Earphone coil 1 + Null load						
7	Earphone coil 2 + Full load						
8	Earphone coil 2 + Half load						
9	Earphone coil 2 + Null load						
10	Watch coil + Full load						
11	Watch coil + Half load						
12	Watch coil + Null load						
13	Phone coil + Earphone coil 1 + Watch coil + Full load						
14	Phone coil + Earphone coil 1 + Watch coil + Half load						
15	Phone coil + Earphone coil 1 + Watch coil + Null load						
16	Phone coil + Earphone coil 2 + Watch coil + Full load						
17	Phone coil + Earphone coil 2 + Watch coil + Half load						
18	Phone coil + Earphone coil 2 + Watch coil + Null load						
Note:							
The mod	de 13 was the worst case and only the data of the worst case record in this report.						

2.4 TEST SETUP

Operation of EUT during testing:

2.5 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Note
E-1	3 in 1 Magnetic Wireless Charger	N/A	S18	EUT
E-2	Adapter	Xiaomi	MDY-11-EX	AE
E-3	Wireless Load 1 (15W/10W/7.5W/5W)	N/A	N/A	AE
E-4	Wireless Load 2 (15W/10W/7.5W/5W)	N/A	N/A	AE
E-5	Wireless Load 3(2.5W)	N/A	N/A	AE

Note:

- 1. The support equipment was authorized by Declaration of Confirmation.
- 2. All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

2.6 MEASUREMENT INSTRUMENTS LIST

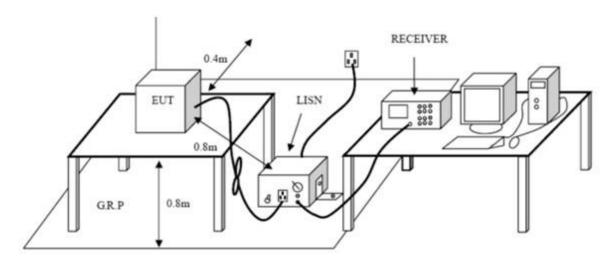
Radia	ted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	June 23, 2021	June 22, 2024
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 14, 2023	April 13, 2024
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 19, 2023	March 18, 2025
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	April 17, 2023	April 16, 2025
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Coaxial Cable	GTS	N/A	GTS213	April 21, 2023	April 20, 2024
8	Coaxial Cable	GTS	N/A	GTS211	April 21, 2023	April 20, 2024
9	Coaxial cable	GTS	N/A	GTS210	April 21, 2023	April 20, 2024
10	Coaxial Cable	GTS	N/A	GTS212	April 21, 2023	April 20, 2024
11	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 14, 2023	April 13, 2024
12	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 29, 2022	Nov. 28, 2023
13	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 14, 2023	April 13, 2024
14	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 14, 2023	April 13, 2024
15	Horn Antenna (18-26.5GHz)	/	UG-598A/U	GTS664	Oct. 30, 2022	Oct. 29, 2023
16	Horn Antenna (26.5-40GHz)	A.H Systems	SAS-573	GTS665	Oct. 30, 2022	Oct. 29, 2023
17	FSV-Signal Analyzer (10Hz-40GHz)	Keysight	FSV-40-N	GTS666	March 13, 2023	March 12, 2024
18	Amplifier	1	LNA-1000-30S	GTS650	April 14, 2023	April 13, 2024
19	CDNE M2+M3-16A	HCT	30MHz-300MHz	GTS668	Dec. 20, 2022	Dec.19, 2023
20	Thermo meter	JINCHUANG	GSP-8A	GTS643	April 19, 2023	April 18, 2024

Report No.: 23080106ER-61

Cond	Conducted Emission							
14.0	Took Favoisment	Manufactura	Madal Na	Inventory	Cal.Date	Cal.Due date		
Item	Test Equipment	Manufacturer	Model No.	No.	(mm-dd-yy)	(mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	July 12, 2022	July 11, 2027		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 14, 2023	April 13, 2024		
3	LISN	ROHDE & SCHWARZ	ENV216	GTS226	April 14, 2023	April 13, 2024		
4	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
6	Thermo meter	JINCHUANG	GSP-8A	GTS642	April 19, 2023	April 18, 2024		
7	Absorbing clamp	Elektronik-Feinmechani k	MDS21	GTS229	April 14, 2023	April 13, 2024		
8	ISN	SCHWARZBECK	NTFM 8158	GTS565	April 14, 2023	April 13, 2024		
9	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 14, 2023	April 13, 2024		
10	Antenna end assembly	Weinschel	1870A	GTS560	April 14, 2023	April 13, 2024		

RF C	onducted Test:					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 14, 2023	April 13, 2024
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 14, 2023	April 13, 2024
3	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	April 14, 2023	April 13, 2024
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 14, 2023	April 13, 2024
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 14, 2023	April 13, 2024
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 14, 2023	April 13, 2024
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 14, 2023	April 13, 2024
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 14, 2023	April 13, 2024
9	Thermo meter	JINCHUANG	GSP-8A	GTS641	April 19, 2023	April 18, 2024

3 CONDUCTED EMISSION


3.1 TEST LIMIT

For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following

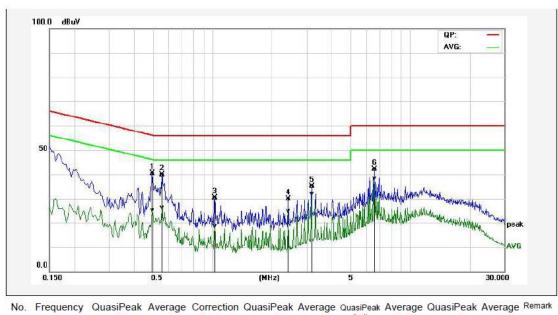
Frequency (MHz)	Maximum RF Line Voltage (dB V)					
	CLA	SS A	CLASS B			
()	Q.P.	Q.P. Ave. C		Ave.		
0.15~0.50	79	66	66~56*	56~46*		
0.50~5.00	73	60	56	46		
5.00~30.0	73	60	60	50		

* Decreasing linearly with the logarithm of the frequency. For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 TEST SETUP

Page 12 of 24 Report No.: 23080106ER-61

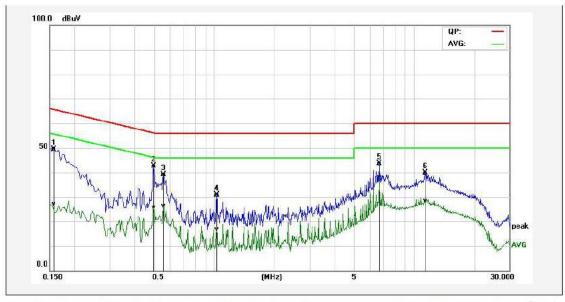
3.3 TEST PROCEDURE


- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is placed on a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

3.4 TEST RESULT

PASS

Remark: EUT was tested at AC 120V and 240V, only the worst result of AC 120V was reported.


Temperature:	26℃	Relative Humidity:	60%
Test Date:	Aug. 07, 2023	Pressure:	1010hPa
Test Voltage:	AC 120V, 60Hz	Phase:	Line
Test Mode:	Transmitting mode 13		

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1P	0.4980	30.21	15.01	10.05	40.26	25.06	56.03	46.03	-15.77	-20.97	Pass
2P	0.5580	29.72	16.43	10.04	39.76	26.47	56.00	46.00	-16.24	-19.53	Pass
3P	1.0300	20.27	8.41	10.11	30.38	18.52	56.00	46.00	-25.62	-27.48	Pass
4P	2.4219	19.79	14.77	10.18	29.97	24.95	56.00	46.00	-26.03	-21.05	Pass
5P	3.1780	24.77	21.65	10.27	35.04	31.92	56.00	46.00	-20.96	-14.08	Pass
6*	6.6180	31.75	27.88	10.46	42.21	38.34	60.00	50.00	-17.79	-11.66	Pass

Remark: 1.Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result – Limit.

Temperature:	26℃	Relative Humidity:	60%
Test Date:	Aug. 07, 2023	Pressure:	1010hPa
Test Voltage:	AC 120V, 60Hz	Phase:	Neutral
Test Mode:	Transmitting mode 13		

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1P	0.1580	39.64	17.05	10.06	49.70	27.11	65.57	55.57	-15.87	-28.46	Pass
2P	0.4980	32.48	15.63	10.04	42.52	25.67	56.03	46.03	-13.51	-20.36	Pass
3P	0.5580	29.07	16.29	10.04	39.11	26.33	56.00	46.00	-16.89	-19.67	Pass
4P	1.0300	20.70	6.73	10.09	30.79	16.82	56.00	46.00	-25.21	-29.18	Pass
5*	6.6940	33.17	27.51	10.49	43.66	38.00	60.00	50.00	-16.34	-12.00	Pass
6P	11.3220	29.31	17.95	10.50	39.81	28.45	60.00	50.00	-20.19	-21.55	Pass

Remark: 1.Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result – Limit.

2. The test mode 13 was the worst case and only the data of the worst case record in this report.

4 RADIATED EMISSION

4.1 TEST LIMIT

CFR 47 Part 15, section 15.205 Only spurious emissions are permitted in any of the frequency bands listed the tables in these sections:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			

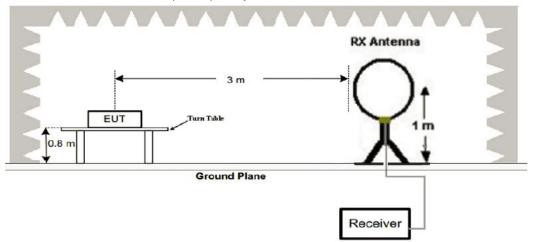
CFR 47 Part 15, section 15.209

The emissions from an intentional radiator shall not exceed the limits in the tables in these sections using an average detector:

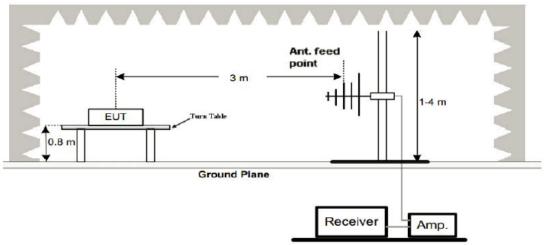
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

Limit calculation and transfer to 3m distance as showed in the following table:

Frequency	Limit	Distance
(MHz)	(dBuV/m)	(m)
0.009-0.490	20log(2400/F(KHz))+40log(300/3)	3
0.490-1.705	20log(24000/F(KHz))+40log(30/3)	3
1.705-30.0	69.5	3
30-88	40.0	3
88-216	43.5	3
216-960	46.0	3
Above 960	54.0	3


CFR 47 Part 15, section 15.35

When average radiated emission measurements are specified, the limit on the peak level of the radio Frequency emission is 20dB above the maximum permitted average emission limit.


Transmitter Spurious Emissions 9KHz-30MHz							
9-150KHz 150-490KHz 490KHz-30MHz							
Resolution Bandwidth	200Hz	9KHz	9KHz				
Video Bandwidth	2KHz	100KHz	100KHz				
Detector	Peak	Peak	Peak				
Trace Mode	Max Hold	Max Hold	Max Hold				
Sweep Time	Auto	Auto	Auto				

4.2 TEST SETUP

1. Radiated Emission Test-Up Frequency Below 30MHz

2. Radiated Emission Test-Up Frequency 30MHz~1GHz

4.3 TEST PROCEDURE

- 1. Measurement distance is 3m.
- 2. For the measurement range up to 30MHz in the following plots the field strength result from 3m.
- 3. Distance measurement are extrapolated to 300m and 30m distance respectively, by 40dB/decade. According to part 15.31(f)(2), per antenna factor scaling.
- 4. Measurements below 1000MHz are performed with a peak detector and compared to average limits. Measurements with an average detector are not required.

Note:

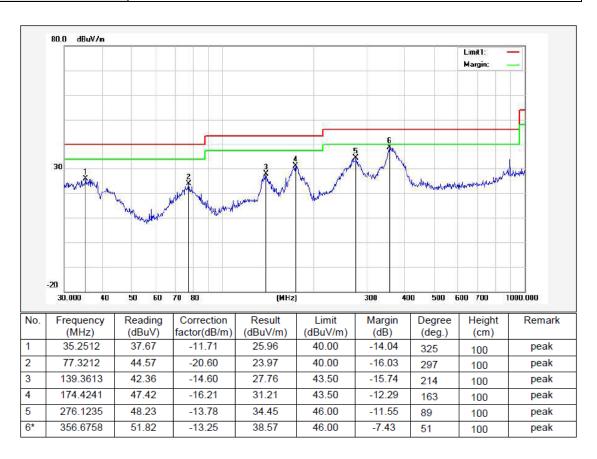
For battery operated equipment, the equipment tests shall be performed using a new battery.

4.4 TEST RESULT

PASS

For 9KHz-30MHz Test Results:

Phone coil + Earphone coil 1 + Watch coil:


Frequency (MHz)	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limits 3m (dBuV/m)	Margin (dBuV/m)
0.1218	PK	75.42	15.48	90.9	105.89	-14.99
0.1336	PK	65.76	15.98	81.74	105.09	-23.35
0.1484	PK	59.4	16.2	75.6	104.18	-28.58
2.853	PK	25.22	15.2	40.42	69.5	-29.08
5.714	PK	24.18	15.68	39.86	69.5	-29.64
8.928	PK	24.37	15.6	39.97	69.5	-29.53

Phone coil + Earphone coil 2 + Watch coil:

Frequency (MHz)	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limits 3m (dBuV/m)	Margin (dBuV/m)
0.1218	PK	75.37	15.42	90.79	105.89	-15.1
0.1336	PK	65.72	15.97	81.69	105.09	-23.4
0.1325	PK	59.42	16.22	75.64	104.18	-28.54
2.848	PK	25.25	15.21	40.46	69.5	-29.04
5.723	PK	24.16	15.66	39.82	69.5	-29.68
8.939	PK	24.39	15.62	40.01	69.5	-29.49

For 30MHz-1GHz Test Results:

Temperature:	24 ℃	Relative Humidity:	48%
Test Date:	Jun. 15, 2023	Pressure:	1010hPa
Test Voltage:	AC 120V, 60Hz	Phase:	Horizontal
Test Mode:	Transmitting mode 13		

Remark: Result = Reading Level + Factor, Margin = Result - Limit Factor = Ant. Factor + Cable Loss - Pre-amplifier

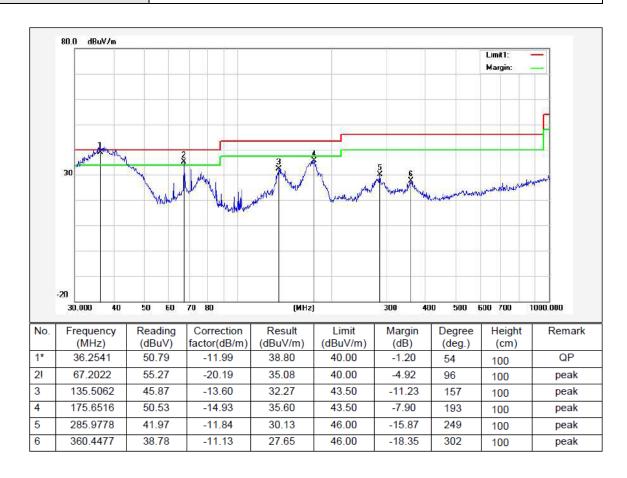
Pressure:

Phase:

Relative Humidity:	48%

1010hPa

Vertical


Report No.: 23080106ER-61

root ronago.	710 1201, 00112	i ilaco.	rortioal
Test Mode:	Transmitting mode 13		

24℃

Jun. 15, 2023

AC 120V 60Hz

Remark: Result = Reading Level + Factor, Margin = Result – Limit Factor = Ant. Factor + Cable Loss – Pre-amplifier

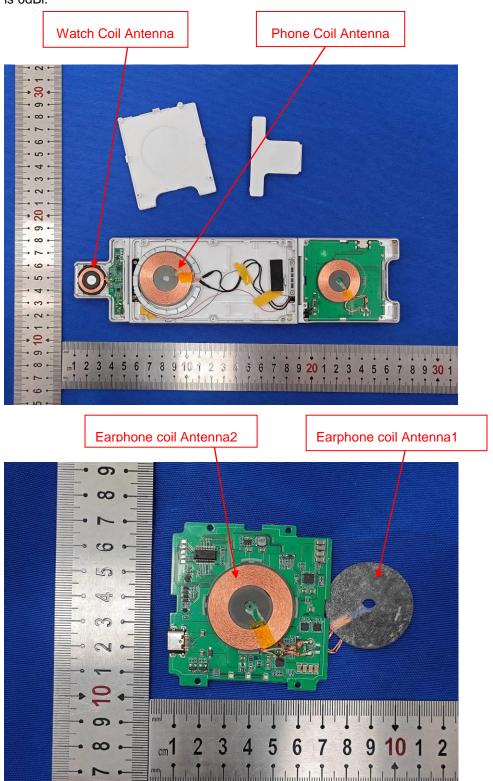
Remark:

Temperature:

Test Voltage:

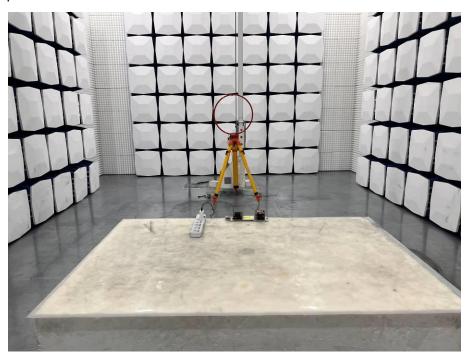
Test Date:

- 1. * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- 2. The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- 3. The test mode 13 was the worst case and only the data of the worst case record in this report.

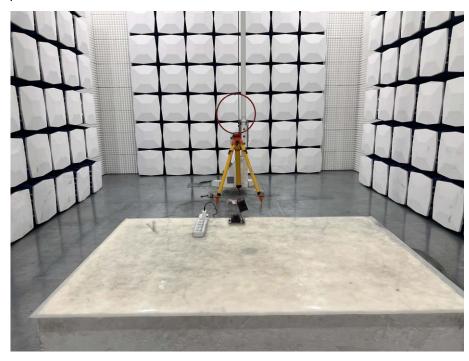

5 ANTENNA REQUIREMENT

Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.


Antenna Connected Construction:

The antenna used in this product is Coil Antenna, The directional gains of antenna used for transmitting is 0dBi.


6 PHOTO OF TEST 6.1 RADIATED EMISSION

Phone coil + Earphone coil 1 + Watch coil:

Phone coil + Earphone coil 2 + Watch coil:

Report No.: 23080106ER-61

6.2 CONDUCTED EMISSION

Phone coil + Earphone coil 1 + Watch coil:

Phone coil + Earphone coil 2 + Watch coil:

End of Report