FCC 47 CFR MPE REPORT

Digital Dream Labs,Inc

Robot Accessory Cube

Model Number: Cube 2.0

FCC ID: 2A653-00403

Applicant:	Digital Dream Labs,Inc		
Address:	6022 Broad Street Pittsburgh,PA 15206		
Prepared By:	EST Technology Co., Ltd.		
	Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China		
Tel: 86-769-83081888-808			

Report Number:	ESTE-R2207062		
Date of Test:	Jun. 17~Jul. 06, 2022		
Date of Report:	Jul. 07, 2022		

Maximum Permissible Exposure

1. Applicable Standards

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2m normally can be maintained between the user and the device.

1.1. Limits for Maximum Permissible Exposure (MPE)

(a) Limits for Occupational/Controlled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range	Strength (E)	Strength (H)	(mW/cm^2)	$ E ^2, H ^2 \text{ or } S$
(MHz)	(V/m)	(A/m)		(minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-10000			5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times		
Range (MHz)	Strength (E)	Strength (H)	(mW/cm^2)	$\mid E \mid^2$, $\mid H \mid^2$ or S		
	(V/m)	(A/m)		(minutes)		
0.3-1.34	614	1.63	(100)*	30		
1.34-30	824/f	2.19/f	(180/f)*	30		
30-300	27.5	0.073	0.2	30		
300-1500			F/1500	30		
1500-10000			1.0	30		

Note: f=frequency in MHz; *Plane-wave equivalent power density

Page 2 of 4

1.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd $(W/m^2) = \frac{E^2}{377}$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

2. Conducted Power Result

Mode	Frequency (MHz)	Peak output power (dBm)	Peak output power (mW)	
	2402	-3.05	0.4955	
BLE	2440	-3.54	0.4426	
	2480	-3.77	0.4198	

3. Calculated Result and Limit

				Antenna gain			Limited	
Mode	Peak output power (dBm)	Target power (dBm)	MAX Target power (dBm)	(dBi)	(Linear	Power Density (S) (mW /cm2)	of Power Density (S) (mW /cm2)	Test Result
2.4G Band								
BLE	-3.05	-3±1	-2	0	1.0000	0.0001	1	Compiles

End of Test Report