Radio Test Report

Report No.: CTA231214005W04

Issued for

Shenzhen Xingchang Technology Co. Ltd 9th Floor, BLDG A, Jianyu 2nd Industrial Zone, Nanchang, Gushu 1st Road, Shenzhen, China

> **Product Name:** Aurora k-song speaker CTATESTING

Brand Name: N/A

Model Name: **K8**

Series Model(s): N/A

> FCC ID: 2A5ZJ-K8

Test Standards: FCC Part15.247

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the ShenZhen CTA Test Services CTA TESTING Co., Ltd.

TEST REPORT

	ILSI KLFOKI
Applicant's Name	Shenzhen Xingchang Technology Co. Ltd
Address	9th Floor, BLDG A, Jianyu 2nd Industrial Zone, Nanchang, Gushu 1st Road, Shenzhen, China
Manufacturer's Name:	Shenzhen Xingchang Technology Co. Ltd
Address:	9th Floor, BLDG A, Jianyu 2nd Industrial Zone, Nanchang, Gushu 1st Road, Shenzhen, China
Product Description	
Product Name	Aurora k-song speaker
Brand Name:	Aurora κ-song speaker N/A K8
Model Name:	K8 N/A FCC Part15.247
Series Model(s)	N/A
Test Standards	FCC Part15.247
Test Procedure:	ANSI C63.10-2013
under test (EUT) is in complianc sample identified in the report. The test results presented in the	s been tested by CTA, the test results show that the equipment se with the FCC requirements. And it is applicable only to the tested his report relate only to the object tested. This report shall not but the written approval of the ShenZhen CTA Test Services Co., Ltd:
Date of receipt of test item	: 30 Nov. 2023
Date (s) of performance of tests	: 30 Nov. 2023 ~ 04 Dec. 2023
Date of Issue	: 04 Dec. 2023
Test Result	: Pass
Testing Engine	eer : Zoey Cord (Zoey Cao)
Technical Mar	nager: Amy Wen

Authorized Signatory:

(Amy Wen)

(Eric Wang)

	Page 3 of 94	Report No.: CTA231214005V	V04
CTATESTING	Table of Contents	Pa	ge
	CTATL	CTA TESTING	
1. SUMMARY OF TEST F	RESULTS		6
1.1 TEST FACTORY		GW CV	7
	TING TECHNOLOGY CO., LT	D.	CTA
1.2 MEASUREMENT			Car
2. GENERAL INFORMAT			8
2.1 GENERAL DESCR			8
2.2 DESCRIPTION OF			0
	PPING SYSTEM REQUIREM		0
	ETERS OF TEST SOFTWAR		TING
		CTA	2
	FNECESSARY ACCESSORIE 		3
2.7 EQUIPMENTS LIS	T		4
3. EMC EMISSION TEST		1	6
3.1 CONDUCTED EM	ISSION MEASUREMENT	1	6
3.2 RADIATED EMISS	ION MEASUREMENT		20
4. CONDUCTED SPURIO	US & BAND EDGE EMISSIO	ON 3	31
4.1 LIMIT		INTES!!	31
4.2 TEST PROCEDUR	RE	3	31
4.3 TEST SETUP		3	32
4.4 EUT OPERATION	CONDITIONS	3	32
4.5 TEST RESULTS		3	32
5. NUMBER OF HOPPIN	G CHANNEL	3	3
5.1 LIMIT		.NG 3	33
5.2 TEST PROCEDUR	RE CONDITIONS	STING	33
5.3 TEST SETUP	CTA	3	311NG
5.4 EUT OPERATION	CONDITIONS	TATES	33
5.5 TEST RESULTS		CTA TES	33
6. AVERAGE TIME OF O	CCUPANCY		34
6.1 LIMIT		3	34
6.2 TEST PROCEDUR	RE	3	34
6.3 TEST SETUP	STING	_	34
6.4 EUT OPERATION	CONDITIONS	ING 3	34
6.5 TEST RESULTS	CIA	TESTIN	34
		CTATESTING 3	CTATES

Report No.: CTA231214005W04 Page 4 of 94

CTA.	Table of Contents	Page
7 HODDIN	NG CHANNEL SEPARATION MEASUREMEN MIT ST PROCEDURE	ESTING 35
7. HOPPII 7.1 LIM	AIT	35 35
	ST PROCEDURE	35 TATES
	ST SETUP	35
7.4 EU	T OPERATION CONDITIONS	35
7.5 TE	ST RESULTS	35
8. BANDV	VIDTH TEST	36
8.1 LIM	VIDTH TEST VIIT ST PROCEDURE ST SETUP	36
8.2 TE	ST PROCEDURE	36
8.3 TE	ST SETUP	36 36
	T OPERATION CONDITIONS	36
8.5 TE	ST RESULTS	36
	T POWER TEST	37
9.1 LIN	MIT	37
	ST PROCEDURE ST SETUP	37
	ST SETUP T OPERATION CONDITIONS	38 38
	ST RESULTS	38
	ST SETUP T OPERATION CONDITIONS ST RESULTS NNA REQUIREMENT	38 CTATES
	TANDARD REQUIREMENT	38
	UT ANTENNA	38
APPENDI	X 1-TEST DATA	39
1. DWELL	TIME TATES	39
2. MAXIM	TIME UM PEAK CONDUCTED OUTPUT POWER BANDWIDTH	49
320DB I	BANDWIDTH	49 TE55 ^{TING}
4. CARRIE	ER FREQUENCIES SEPARATION	61
5. NUMBE	ER OF HOPPING CHANNEL	67
6. BAND	EDGE	70
7. BAND	EDGE(HOPPING)	77
8. CONDU	ICTED RF SPURIOUS EMISSION	84
APPENDI	X 2-PHOTOS OF TEST SETUP	ESTING 94
	ICTED RF SPURIOUS EMISSION X 2-PHOTOS OF TEST SETUP	CTATEST

Report No.: CTA231214005W04 Page 5 of 94

Revision History

CTATEST			Revision Hi	story	
CTA.	Rev.	Issue Date	Report No.	Effect Page	Contents
	00	04 Dec. 2023	CTA231214005W04	ALL	Initial Issue
			CCC	A	STING
					CTATE

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

	Standard Section	Test Item	Judgment	Remark	
-711	G 15.207	Conducted Emission	PASS	- 64	
TESTIN	15.247(a)(1)	Hopping Channel Separation	PASS		
	15.247(a)(1)&(b)(1)	Output Power	PASS		
	15.209	Radiated Spurious Emission	PASS		
	15.247(d)	Conducted Spurious & Band Edge Emission	PASS	TATESTIN	
	15.247(a)(1)(iii)	Number of Hopping Frequency	PASS		
	15.247(a)(1)(iii)	Dwell Time	PASS		
	15.247(a)(1)	Bandwidth	PASS		
	15.205	Restricted bands of operation	PASS		
V23 113-113-113	Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS		
	15.203	Antenna Requirement	PASS		

NOTE:

- (1) 'N/A' denotes test is not applicable in this Test Report.
- (2) All tests are according to ANSI C63.10-2013. CTATESTING

Page 7 of 94 Report No.: CTA231214005W04

1.1 TEST FACTORY

SHENZHEN CTA TESTING TECHNOLOGY CO., LTD.

ROOM 106, BUILDING 1, YIBAOLAI INDUSTRIAL PARK, QIAOTOU COMMUNITY, FUHAI

STREET, BAO'AN DISTRICT, SHENZHEN, CHINA

FCC TEST FIRM REGISTRATION NUMBER: 517856

IC TEST FIRM REGISTRATION NUMBER: 27890

A2LA CERTIFICATE NO.: 6534.01

IC CAB ID: CN0127

1.2 MEASUREMENT UNCERTAINTY
The reported The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

	Test	Range	Measurement Uncertainty	ESTING	
	Radiated Emission	0.009~30MHz	3.02 dB		
	Radiated Emission	30~1000MHz	4.06 dB		
	Radiated Emission	1~18GHz	5.14 dB		
	Radiated Emission	18-40GHz	5.38 dB		
	Conducted Disturbance	0.15~30MHz	2.14 dB		
	Conducted Spurious Emission	30MHz~40GHz	2.23 dB		
TATE	Output Peak power	30MHz~18GHz	0.55 dB		
	Spectrum bandwidth		1.1%		
	Dwell time	/	3.2%		
	GIN CITY	CT CT	ATESTING	~ c.T	

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

		17	_
	Product Name	Aurora k-song speaker	
	Brand Name	N/A	TES
	Model Name	K8	CTATES
STING	Series Model(s)	N/A	
	Model Difference	N/A	
	Channel List	Please refer to the Note 3.	
	Bluetooth	Frequency:2402 – 2480 MHz Modulation: GFSK(1Mbps), π/4-DQPSK(2Mbps),8DPSK(3Mbps)	ING
	Bluetooth Configuration	BR+EDR	
	Antenna Type	РСВ	
	Antenna Gain	2.81 dBi	
	Rating	Input: DC5V 2A	
	Battery	Rated Voltage:3.7V Charge Limit Voltage:4.2V Capacity: 3000Mah	
	Hardware version number	V1.7	-1
	Software version number	V20	CTATES
	Connecting I/O Port(s)	Please refer to the Note 1.	

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.
- 2. The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer.

	•	٠
		٠

3.			Page 9 of 94	R	eport No.: CTA2	31214005W04
347						
GVA CO.			Chann	el List		
	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	00	2402	27	2429	54	2456
	01	2403	28	2430	55	2457
	02	2404	29	2431	56	2458
	03	2405	30	2432	57	2459
ESTING	04	2406	31	2433	58	2460
ESTI	05	2407	32	2434	59	2461
	06	2408	33	2435	60	2462
	07	2409	34	2436	61	2463
	08	2410	35	2437	62	2464
	09	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454		70,111
	26	2428	53	2455		

Page 10 of 94 Report No.: CTA231214005W04

2.2 DESCRIPTION OF THE TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

				_
Worst M	lode	Description	Data Rate/Modulation	-6
Mode	1	TX CH00	1Mbps/GFSK	TATES
Mode	2	TX CH39	1Mbps/GFSK	0,,
Mode	3	TX CH78	1Mbps/GFSK	1
Mode	4	TX CH00	2 Mbps/π/4-DQPSK	1
Mode	5	TX CH39	2 Mbps/π/4-DQPSK	
Mode	6	TX CH78	2 Mbps/π/4-DQPSK	1
Mode	, 7	TX CH00	3 Mbps/8DPSK	
Mode	8	TX CH39	3 Mbps/8DPSK	1
Mode	9	TX CH78	3 Mbps/8DPSK	1
Mode	10	Hopping	GFSK	1
Mode	11	Hopping	π/4-DQPSK	
Mode	12	Hopping	8DPSK	
	· -			_

Note:

- (1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.
- (2) We tested for all available U.S. voltage and frequencies (For 120V, 50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/ 60Hz is shown in the report.
- (3) The battery is fully-charged during the radiated and RF conducted test.

For AC Conducted Emission

NG.	Test Case	THE THE WAY THE
AC Conducted Emission	Mode 13 : Keeping BT TX	

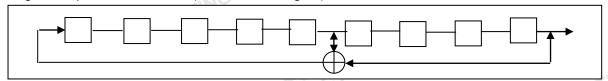
2.3 FREQUENCY HOPPING SYSTEM REQUIREMENTS

(1)Standard and Limit

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

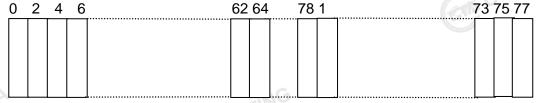
Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and


Page 11 of 94 Report No.: CTA231214005W04

independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

(2)The Pseudorandom sequence may be generated in a nin-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones: i.e. the shift register is initialized with nine ones.


Numver of shift register stages:9

Length of pseudo-random sequence:29-1=511bits Longest sequence of zeros: 8(non-inverted signal)

Liner Feedback Shift Register for Generator of the PRBS sequence

An example of Pseudorandom Frequency Hoppong Sequence as follow:

Each frequency used equally on th average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies ini synchronization with the transmitted signals.

(3) Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

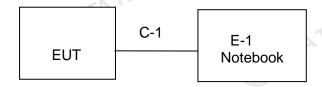
Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with a bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements FCC Part 15.247 rule.

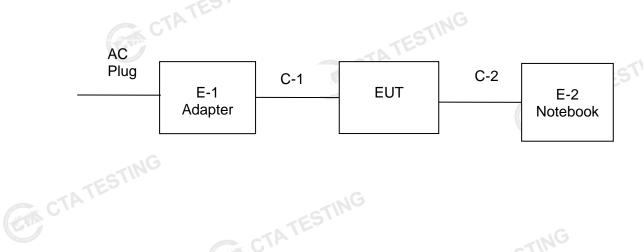
2.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control

Page 12 of 94


the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS.

Report No.: CTA231214005W04


	(CIN)	Test program: Bluetoot	KS THE
(Control software) Parameters(1/2/3Mbps)	Packet type: DH1:4:27	Packet type: DH3:11:183	Packet type: DH5:15:339
1 arameters (1/2/61/16/5)	2DH1:20:54	2DH3:26:367	2DH5:30:679
NG	3DH1:24:83	3DH3:27:552	3DH5:31:1021

	AG.		3DH1:24:83 3DH3:2		:27:552	3DH5:31:1021
CTATEST	RF Function	Туре	Mode Or Modulation type	ANT Gain(dBi)	Power Class	Software For Testing
		CIL	GFSK	2.81	6	
	ВТ	BR+EDR	π/4-DQPSK	2.81	6	FrequencyTool_v0.3.2
			8DPSK	2.81	6	CTATE
G				1		CV

2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED Radiated Spurious Emission Test

Conducted Emission Test

2.6 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

	The state of the s										
Item	Equipment Mfr/Brand		Model/Type No.	Length	Note						
	USB Cable	N/A	N/A	80cm	N/A						

Support units

		USB Cable	IN/A	IN/A	OUCITI	IN/A
TEST	NG			Support units		
CTA	Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
		Adapter	HUAWEI	HW-050450C00	N/A	N/A
		Personal computer	DELL	Inspiron 14-3467	N/A	N/A
		USB Cable	N/A	N/A	150cm	NO

Note:

(1) For detachable type I/O cable should be specified the length in cm in Length column.

(2) "YES" is means "with core"; "NO" is means "without core". CTATEST

2.7 EQUIPMENTS LIST

Test Equi	ipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISI	N	R&S	ENV216	CTA-308	2023/08/02	2024/08/01
LISI	N	R&S	ENV216	CTA-314	2023/08/02	2024/08/01
EMI Test R	Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01
EMI Test R	Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01
Spectrum A	Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01
Spectrum Analyzer		R&S	FSP	CTA-337	2023/08/02	2024/08/01
Vector S genera		Agilent	N5182A	CTA-305	2023/08/02	2024/08/01
Analog Signal Generator		R&S	SML03	CTA-304	2023/08/02	2024/08/01
WIDEBAND RADIO COMMUNICATIO N TESTER		CMW500	R&S	CTA-302	2023/08/02	2024/08/01
Temperate humidity		Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01
Ultra-Broa Anten		Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
Horn An	tenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
Loop An	tenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
Horn An	tenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
Ampli	fier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01
Ampli	fier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01
Directional	coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01
High-Pas	s Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01
High-Pas	s Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01
Automate ban		Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01
Power S	ensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01
Α	fier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01

Report No.: CTA231214005W04 Page 15 of 94

			Page 15 of 94	Report	No.: CTA23121	4005W04	
	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date	
	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	S N/A	N/A	
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A	CATES
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A	
CTATES	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A	
	GM.	TATES	4	ESTING			_

CTA TESTING

Page 16 of 94 Report No.: CTA231214005W04

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

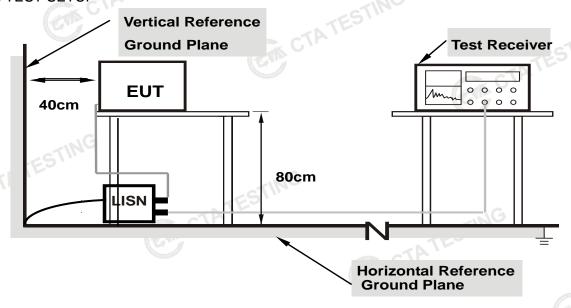
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

		Conducted Emissionlimit (dBuV)				
	FREQUENCY (MHz)	Quasi-peak	Average			
TESTIN	0.15 -0.5	66 - 56 *	56 - 46 *			
CTA	0.50 -5.0	56.00	46.00			
	5.0 -30.0	60.00	50.00			

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.


The following table is the setting of the receiver

Setting	(-
10 dB	
0.15 MHz	
30 MHz	
9 kHz	
CO.	CTATES
	10 dB 0.15 MHz 30 MHz

3.1.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.3 TEST SETUP

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units. CTATESTING

3.1.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data. CTA TESTING

3.1.5 TEST RESULT

Temperature:	26.2(C)	Relative Humidity:	54%RH
Test Voltage:	AC 120V/60Hz	Phase:	LESTING
Test Mode:	Mode 13	CTA	

Final Data List													
1	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	ΑV Reading [dBμV]	AV Value [dBµV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict	57
	1	0.1725	10.50	40.09	50.59	64.84	14.25	29.59	40.09	54.84	14.75	PASS]
"	2	0.456	10.50	35.35	45.85	56.77	10.92	20.14	30.64	46.77	16.13	PASS	
	3	0.744	10.50	32.14	42.64	56.00	13.36	10.58	21.08	46.00	24.92	PASS	
	4	1.4595	10.50	32.10	42.60	56.00	13.40	12.74	23.24	46.00	22.76	PASS	
	5	2.8275	10.50	24.68	35.16	56.00	20.84	8.38	18.88	46.00	27.12	PASS	
	6	22.7805	10.50	23.33	33.83	60.00	26.17	9.66	20.16	50.00	29.84	PASS	
2). 3).											G		

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V)

	NG F	Page 19 of 94	Report	No.: CTA231214005W0
CTATEST				
Temperature:	26.2(C)	Relative I	Humidity:	54%RH
Test Voltage:	AC 120V/60Hz	Phase:		N
Test Mode:	Mode 13			•

120 7	FCC PART 15 B CLASS B(N)	
110		
100		
90		
80		
70		
60-		FCC PART 15 B CLASS B-QP Limit
50		FCC PART 15 B CLASS B-AV Limit
30	Marin	
20	Company of the second s	
		4
10		
10		
	1M 10	DM 30

	Final Data List												
1	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	5\
	1	0.186	10.50	39.04	49.54	64.21	14.67	25.27	35.77	54.21	18.44	PASS	
2 0.458 10.50 34.74 45.24 56.77 11.53 23.40 33.90 46.77 12.87 PASS													
	3	0.663	10.50	34.67	45.17	56.00	10.83	10.32	20.82	46.00	25.18	PASS	
	4	1.941	10.50	32.44	42.94	56.00	13.06	15.36	25.86	46.00	20.14	PASS	
	5	4.659	10.50	27.82	38.32	56.00	17.68	10.39	20.89	46.00	25.11	PASS	
	6	18.627	10.50	26.75	37.25	60.00	22.75	11.59	22.09	50.00	27.91	PASS	
Note:1).QP Value (dB μ V)= QP Reading (dB μ V)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB) 3). QPMargin(dB) = QP Limit (dB μ V) - QP Value (dB μ V) 4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V)										TESTIN			

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V) CTATESTING

Page 20 of 94 Report No.: CTA231214005W04

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205 (a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies	Field Strength	Measurement Distance	
(MHz)	(micorvolts/meter)	(meters)	
0.009~0.490	2400/F(KHz)	300	
0.490~1.705	24000/F(KHz)	30	
1.705~30.0	30	30	
30~88	100	3	
88~216	150	3 - ESTIN	
216~960	200	3.74	
Above 960	500	3	

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)			
	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41		371	
G			(CIT)

For Radiated Emission

Attenuation Auto	
Detector Peak/QP/AV	
Start Frequency 9 KHz/150KHz(Peak/QP/AV)	
Stop Frequency 150KHz/30MHz(Peak/QP/AV)	C C
200Hz (From 9kHz to 0.15MHz)/	CALL
RB / VB (emission in restricted 9KHz (From 0.15MHz to 30MHz);	
band) 200Hz (From 9kHz to 0.15MHz)/	
9KHz (From 0.15MHz to 30MHz)	
LEST III	

Spectrum Parameter	Setting			
Attenuation	Auto			
Detector	Peak/QP			
Start Frequency	30 MHz(Peak/QP)			
Stop Frequency	1000 MHz (Peak/QP)			
RB / VB (emission in restricted band)	120 KHz / 300 KHz			

Per usu	Spectrum Parameter	Setting		
	Attenuation	Auto		
	Detector	Peak/AV		
	Start Frequency	1000 MHz(Peak/AV)		
cT	Stop Frequency	10th carrier hamonic(Peak/AV)		
CTATEST	RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)		
CAL	band)	1 MHz/1/T MHz(AVG)		

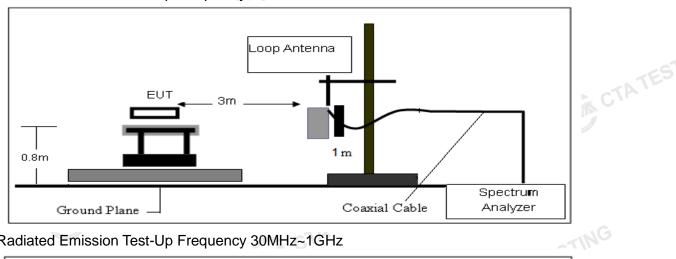
For Restricted band

·G		
100		
Setting		
Peak/AV		
Lower Band Edge: 2310 to 2410 MHz		
Upper Band Edge: 2476 to 2500 MHz		
1 MHz / 3 MHz(Peak)		
1 MHz/1/T MHz(AVG)		
TESTING		

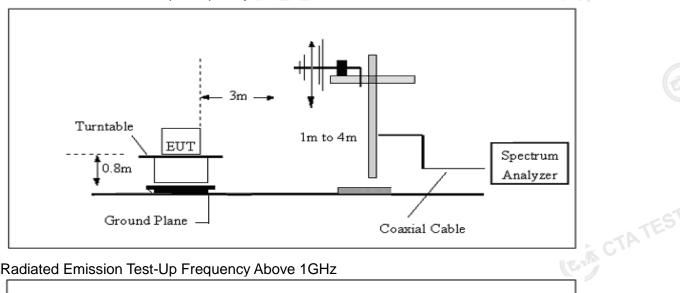
	Page 22 of 94	Report No.: CTA231214005W04		
Receiver Parameter	Setting			
Attenuation	TESTIN	Auto		
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV			
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP			
Start ~ Stop Frequency	110kHz~4	90kHz / RB 200Hz for PK & AV		
Start ~ Stop Frequency	490kH	z~30MHz / RB 9kHz for QP		
Start ~ Stop Frequency	30MHz~1	1000MHz / RB 120kHz for QP		

3.2.2 TEST PROCEDURE

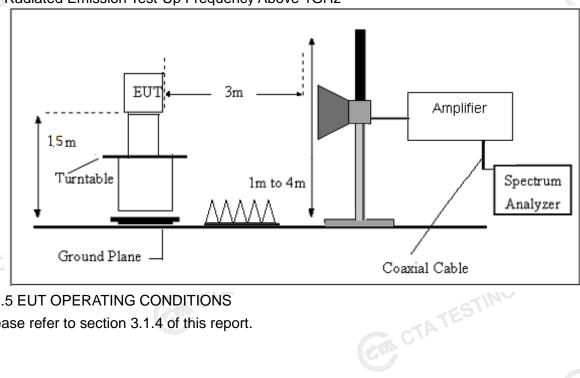
- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.


CTATES Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

3.2.3 DEVIATION FROM TEST STANDARD No deviation.


Report No.: CTA231214005W04 Page 23 of 94

3.2.4 TESTSETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.5 EUT OPERATING CONDITIONS

Please refer to section 3.1.4 of this report.

Page 24 of 94 Report No.: CTA231214005W04

3.2.6 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic CTATEST equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor

For example						
Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1
Factor=AF+CL-AG					CT CT	ATE