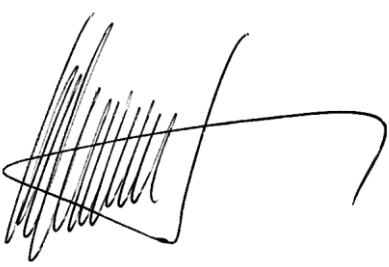


Applicant:	Certification Company BV Veluwezoom 42 1327 AH Almere The Netherlands		
Tested Product:	Radar System		
Product Name:	MAX Bird Radar System		
Model:	RRS-MAX/A3		
FCC-ID:	2A5YR-MAXA3F9250		
IC-ID:	N/A		
Manufacturer:	Robin Radar Systems B.V. Laan van Waalhaven 355 2497 GM The Hague – The Netherlands		
Output power / field strength:	44 W conducted 36 dBi Antenna Gain	power supply: 120 / 230V AC 60 Hz	Testing Laboratory, Inspection Body, Certification Body, Calibration Laboratory, Verifizierungsstelle
Frequency range:	9100-9300 MHz	Channel separation: N/A	Notified Body 0408 IC 2932K-1
Standard:	FCC: 47 CFR Part 87 (eCFR 14.03.2022) FCC: 47 CFR Part 90 (eCFR 14.03.2022) ANSI C63.26-2015		

TÜV AUSTRIA SERVICES GMBH
Test laboratory for EMC



Ing. Michael Emminger

examined by / Testing
Laboratory
TÜV AUSTRIA SERVICES
GMBH

31.03.2022

Ing. Wilhelm Seier

approved by / Testing
Laboratory
TÜV AUSTRIA SERVICES
GMBH

Registered Office:
Deutschstrasse 10
1230 Vienna/Austria

Branch Offices:
www.tuv.at/standorte

Company Register
Court / - Number:
Vienna / FN 288476 f

Bank Details:
IBAN
AT131200052949001066
BIC BKAUATWW

VAT ATU63240488
DVR 3002476

A publication of this test report is only permitted literally.

Copying or reproduction of partial sections needs a written permission of TÜV AUSTRIA
SERVICES GMBH.

The results of this test report only refer to the provided equipment.

Contents

	Designation	PAGE
1.	Applicant	3
2.	Description of EUT	4
3.	Standards / Final result	5
4.	Test results	
	List of measurements according to 47 CFR Part 2 applied together with 47 CFR Part 87 and 47 CFR Part 90 respectively	
4.1	Test object data	6
4.2	RF power output	7
4.3	99% Occupied Bandwidth	8-10
4.4	40 dB Authorized Bandwidth	11-13
4.5	Emission Mask	14-16
4.6	Spurious emissions at antenna terminals	17
4.7	Field strength of spurious radiation	18-32
4.8	Frequency stability	33-35
4.9	Radiofrequency radiation exposure limits	36
Appendix	Designation	PAGES
1	Test equipment used	5
2	Photodocumentation	17

1. Applicant

Company: Certification Company BV

Department: Regulatory Compliance Expert

Address: Veluwezoom 42
1327 AH Almere
The Netherlands

Contact person: Mr. David Rubio Borrajo

EUT received on: 03.03.2022

Tests were performed on: 14.03. till 16.03.2022

2. Description of EUT

EUT:	Radar System
Product Name:	MAX Bird Radar System
Model:	RRS-MAX/A3
Serial Number:	371#014
Manufacturer:	Robin Radar Systems B.V. Laan van Waalhaven 355 2497 GM The Hague – The Netherlands
Description:	Certification Company BV provided the following configuration for the measurements: Full functioning production model
Operating mode:	The measurements were carried out at the following running states: Transmitter continuously operating with or without rotation
Technical data EUT:	Rated voltage: 120/230V Rated current: 16A Rated frequency: 60Hz Mains voltage during the tests: 230V 60Hz
Climatic conditions in the emc laboratory:	Relative humidity: 22% Temperature: 23°C

3. Standards / Final result

Name	Title	Deviation	Result
Title 47 CFR Part 87 eCFR 14.03.2022	AVIATION SERVICES	none	OK
Title 47 CFR Part 90 eCFR 14.03.2022	PRIVATE LAND MOBILE RADIO SERVICES	none	OK
ANSI C63.26-2015	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services	none	OK
<p>Result: Opinions and interpretation of testing laboratory OK: EUT passed NOK: EUT failed</p>			

4.1 TEST OBJECT DATA

General EUT Description

This fixed transceiver is a rotating radar working on frequencies between 9100 and 9300 MHz to detect birds in the sky.

For operating frequencies between 9100 and 9200 MHz Part 87 compliance was tested. For operation at 9248.5 MHz center frequency compliance against Part 90 requirements was checked.

Part 87 class of station: RLS (surveillance radar)

2.1033 (c) Technical description

2.1033 (4) Type of emission: FMCW with 66 MHz sweep range – ITU emission designator: 73M0F0N

2.1033 (5) Frequency range: Three center operating frequencies are available: 9131.5 MHz, 9163.5 MHz and 9248,5 MHz

2.1033 (6) Power range and Controls: The maximum declared output power is 44 Watts in total. Three transmit modules with 8 RF stages each, are producing a sum of this power. There is no power control or regulation accessible to the user.

2.1033 (7) Maximum output power rating: 44 Watts conducted power with 36 dBi antenna gain.

2.1033 (8) DC Voltage and Current to the final stages: 8 VDC

maximum current consumption: Module 1: 3,3 A

Module 2: 6,9 A

Module 3: 4,2 A

Tests were performed on: March 14th till 16th 2022.

4.2 RF POWER OUTPUT

§ 2.1046

Conducted measurement is not possible, as there is no coaxial or waveguide connector output at the final stages. The final stages outputs are directly mounted on the antenna panel, therefore only radiated measurement was performed.

Declared conducted output power by the manufacturer: 44 Watts.

Declared antenna gain: 36 dBi.

Radiated measurement at three meter measurement distance

Test conditions	Transmitter EIRP (dBm)		
	9131.5 MHz	9163.5 MHz	9248.5 MHz
T _{nom} (23) °C	70,7	70,6	70,9
Measurement uncertainty	± 0,75 dB		

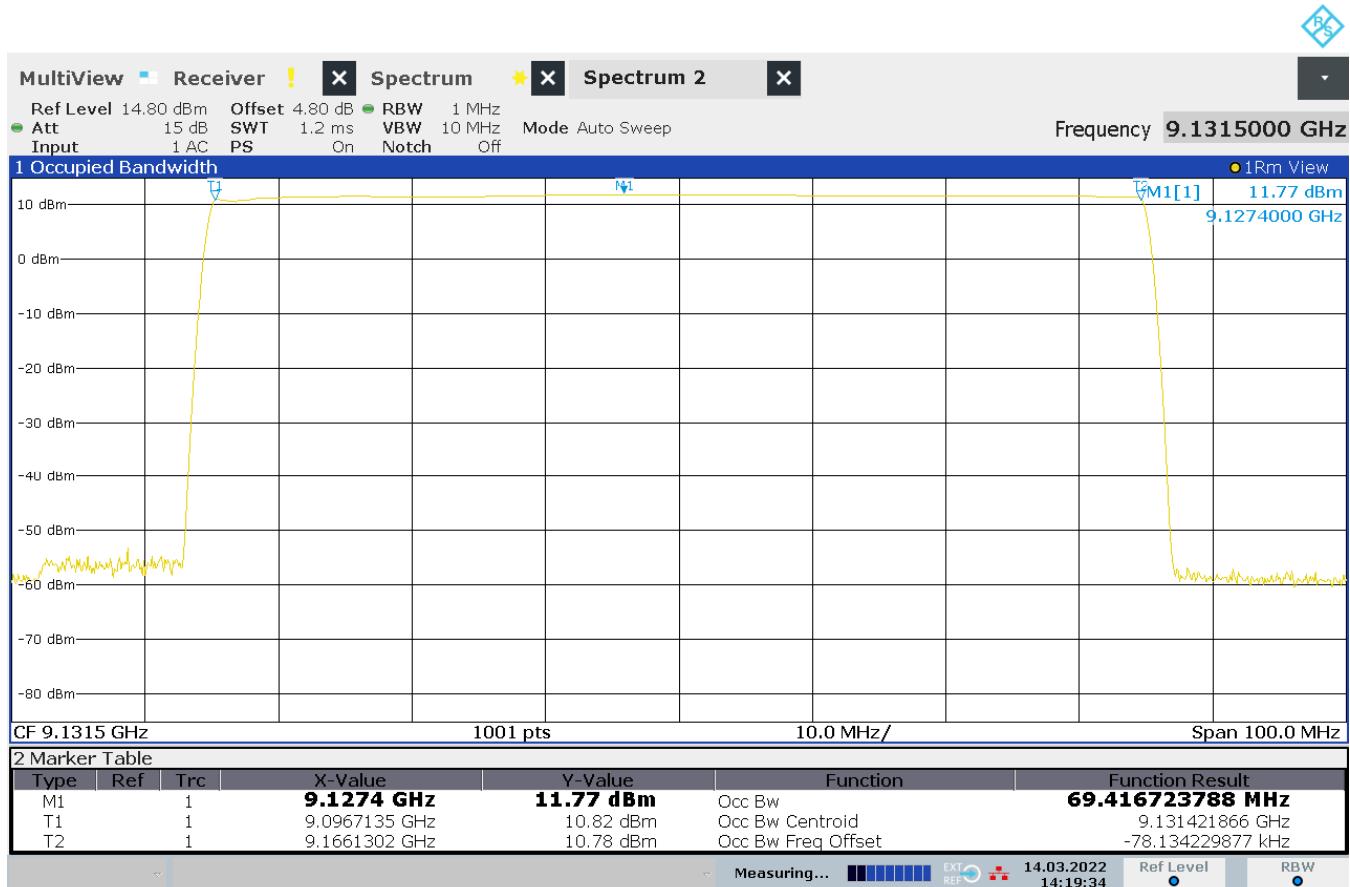
Remark: as the antenna is quite big for the used frequency, measurements at three meter distance are in the near field region and therefore measurement is informal only.

LIMIT **SUBCLAUSE 87.131**

Frequency, emission, and maximum power will be determined by appropriate standards during the certification process.

LIMIT **SUBCLAUSE 90.205 (r)**

Requested transmitter power will be considered and authorized on a case by case basis.


Test Equipment used: EMV-100; EMV-102; EMV-110; EMV-200/1

4.3 99% OCCUPIED BANDWIDTH

§ 2.1049

Radiated Measurement

Center Frequency: 9131.5 MHz

14:19:35 14.03.2022

99% Bandwidth: 69,417 MHz

LIMIT § 87.135 Bandwidth of emission.

(a) Occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to 0.5 percent of the total mean power of a given emission.

(b) The authorized bandwidth is the maximum occupied bandwidth authorized to be used by a station.

(c) The necessary bandwidth for a given class of emission is the width of the frequency band which is just sufficient to ensure the transmission of information at the rate and with the quality required under specified conditions.


Test Equipment used: EMV-100; EMV-102; EMV-110; EMV-200/1

99% OCCUPIED BANDWIDTH

§ 2.1049

Radiated Measurement

Center Frequency: 9163.5 MHz

14:26:56 14.03.2022

99% Bandwidth: 69,345 MHz

LIMIT § 87.135 Bandwidth of emission.

(a) Occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to 0.5 percent of the total mean power of a given emission.

(b) The authorized bandwidth is the maximum occupied bandwidth authorized to be used by a station.

(c) The necessary bandwidth for a given class of emission is the width of the frequency band which is just sufficient to ensure the transmission of information at the rate and with the quality required under specified conditions.

Test Equipment used: EMV-100; EMV-102; EMV-110; EMV-200/1

99% OCCUPIED BANDWIDTH

§ 2.1049

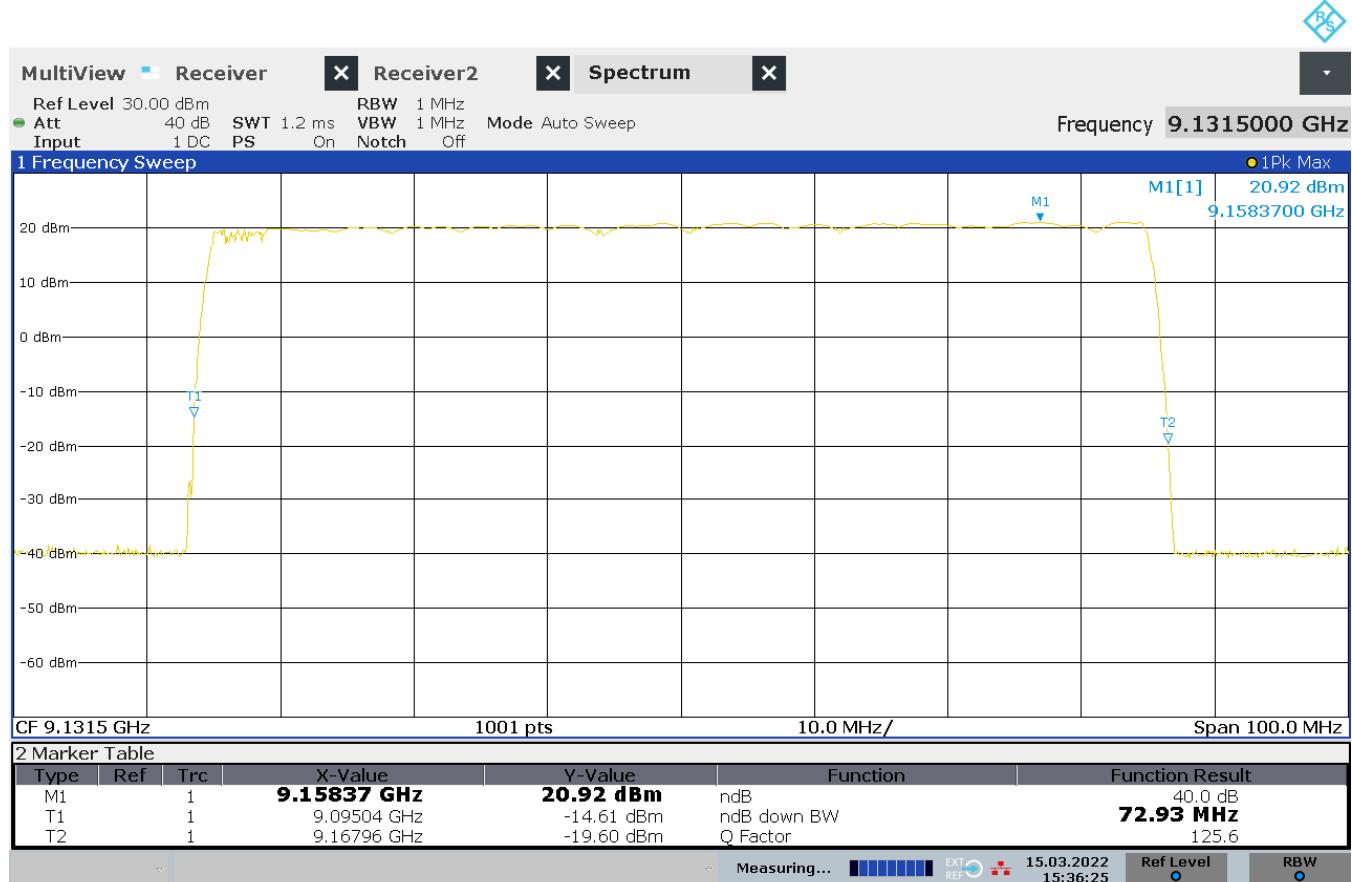
Radiated Measurement

Center Frequency: 9248.5 MHz

99% Bandwidth: 69,363 MHz

LIMIT **SUBCLAUSE 90.209(b)(5)**

Bandwidths for radiolocation stations in the frequency range above 2500 MHz will be reviewed and authorized on a case-by-case basis.


Test Equipment used: EMV-100; EMV-102; EMV-110; EMV-200/1

4.4 40 dB Authorized Bandwidth

§ ITU-R M.1177-4

Radiated Measurement

Center Frequency: 9131.5 MHz

15:36:26 15.03.2022

40 dB Bandwidth: 72,93 MHz rounded up to 73 MHz

Test Equipment used: EMV-100; EMV-102; EMV-110; EMV-200/1

40 dB Authorized Bandwidth

§ ITU-R M.1177-4

Radiated Measurement

Center Frequency: 9163.5 MHz

15:19:20 15.03.2022

40 dB Bandwidth: 72,73 MHz rounded up to 73 MHz

Test Equipment used: EMV-100; EMV-102; EMV-110; EMV-200/1

40 dB Authorized Bandwidth

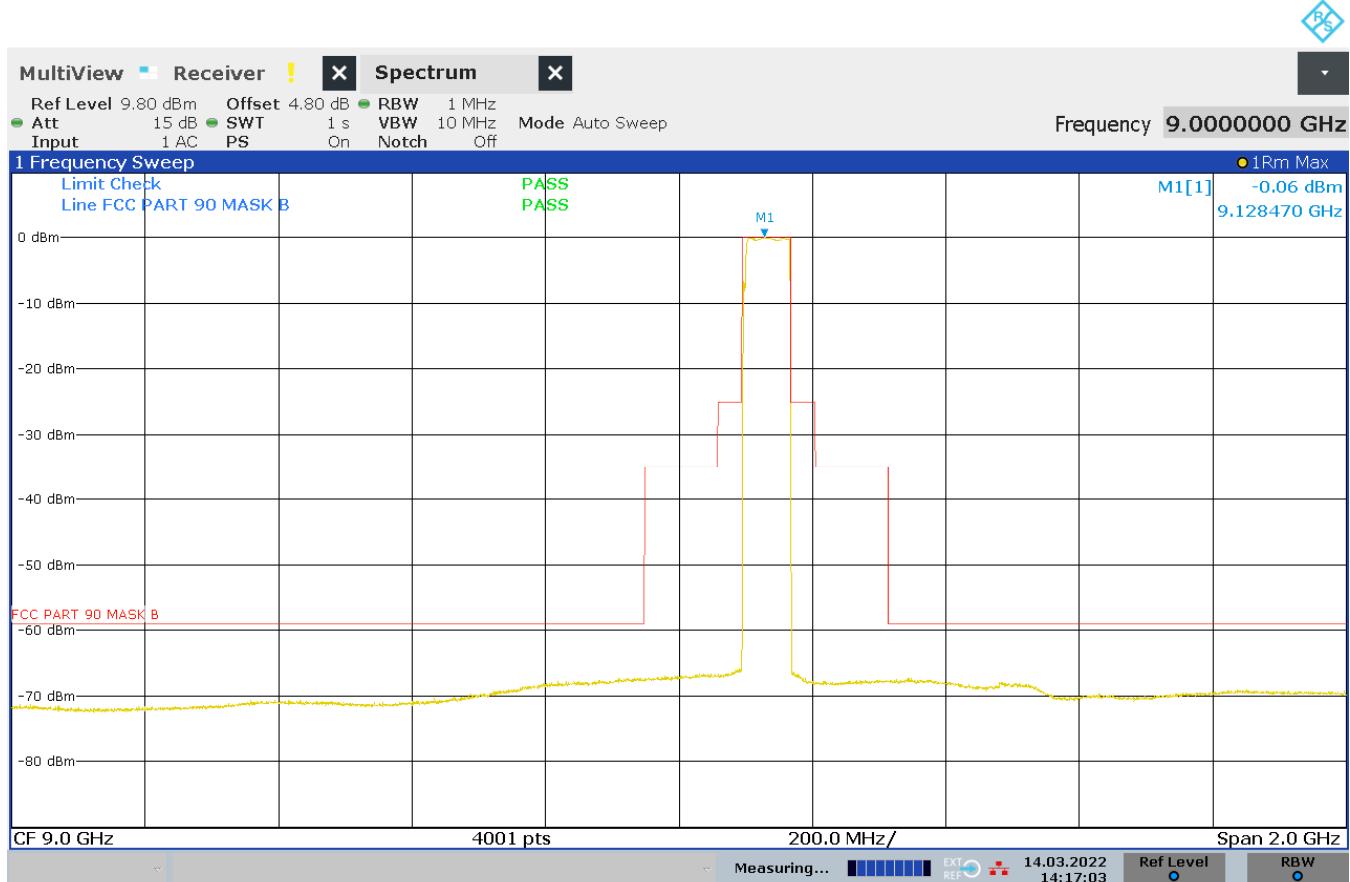
§ ITU-R M.1177-4

Radiated Measurement

Center Frequency: 9248.5 MHz

15:13:10 15.03.2022

40 dB Bandwidth: 72,93 MHz rounded up to 73 MHz


Test Equipment used: EMV-100; EMV-102; EMV-110; EMV-200/1

4.5 EMISSION MASK

§ 87.139

Radiated Measurement

Center Frequency: 9131.5 MHz

14:17:04 14.03.2022

LIMIT

SUBCLAUSE 87.139

Except for ELTs and when using single sideband (R3E, H3E, J3E), or frequency modulation (F9) or digital modulation (F9Y) for telemetry or telecommand in the 1435-1525 MHz, 2345-2395 MHz, or 5091-5150 MHz band or digital modulation (G7D) for differential GPS, the mean power of any emissions must be attenuated below the mean power of the transmitter (pY) as follows:

- (1) When the frequency is removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth the attenuation must be at least 25 dB;
- (2) When the frequency is removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth the attenuation must be at least 35 dB.
- (3) When the frequency is removed from the assigned frequency by more than 250 percent of the authorized bandwidth the attenuation for aircraft station transmitters must be at least 40 dB; and the attenuation for aeronautical station transmitters must be at least $43 + 10 \log_{10} pY$ dB. -> With a Power of 44 W this equation results in 59.43 dB.

Authorized Bandwidth (40 dB Bandwidth): 73 MHz

Test Equipment used: EMV-100; EMV-102; EMV-110; EMV-200/1

EMISSION MASK

§ 87.139

Radiated Measurement

Center Frequency: 9163.5 MHz

14:25:27 14.03.2022

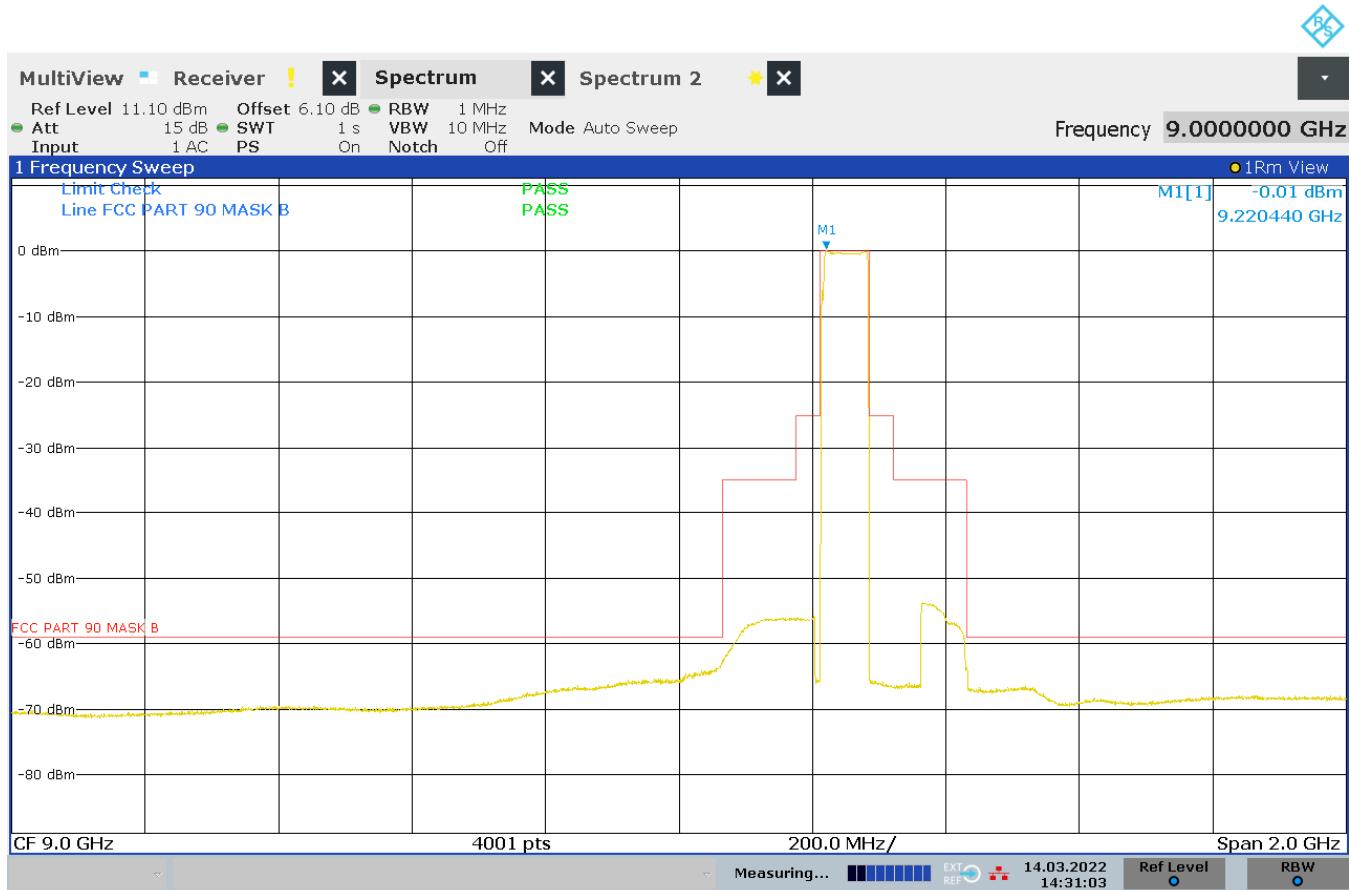
LIMIT

SUBCLAUSE 87.139

Except for ELTs and when using single sideband (R3E, H3E, J3E), or frequency modulation (F9) or digital modulation (F9Y) for telemetry or telecommand in the 1435-1525 MHz, 2345-2395 MHz, or 5091-5150 MHz band or digital modulation (G7D) for differential GPS, the mean power of any emissions must be attenuated below the mean power of the transmitter (pY) as follows:

- (1) When the frequency is removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth the attenuation must be at least 25 dB;
- (2) When the frequency is removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth the attenuation must be at least 35 dB.
- (3) When the frequency is removed from the assigned frequency by more than 250 percent of the authorized bandwidth the attenuation for aircraft station transmitters must be at least 40 dB; and the attenuation for aeronautical station transmitters must be at least $43 + 10 \log_{10} pY$ dB. -> With a Power of 44 W this equation results in 59.43 dB.

Authorized Bandwidth (40 dB Bandwidth): 73 MHz


Test Equipment used: EMV-100; EMV-102; EMV-110; EMV-200/1

EMISSION MASK

§ 90.210(b)

Radiated Measurement

Center Frequency: 9248.5 MHz

14:31:04 14.03.2022

LIMIT

SUBCLAUSE 90.210(b)

Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

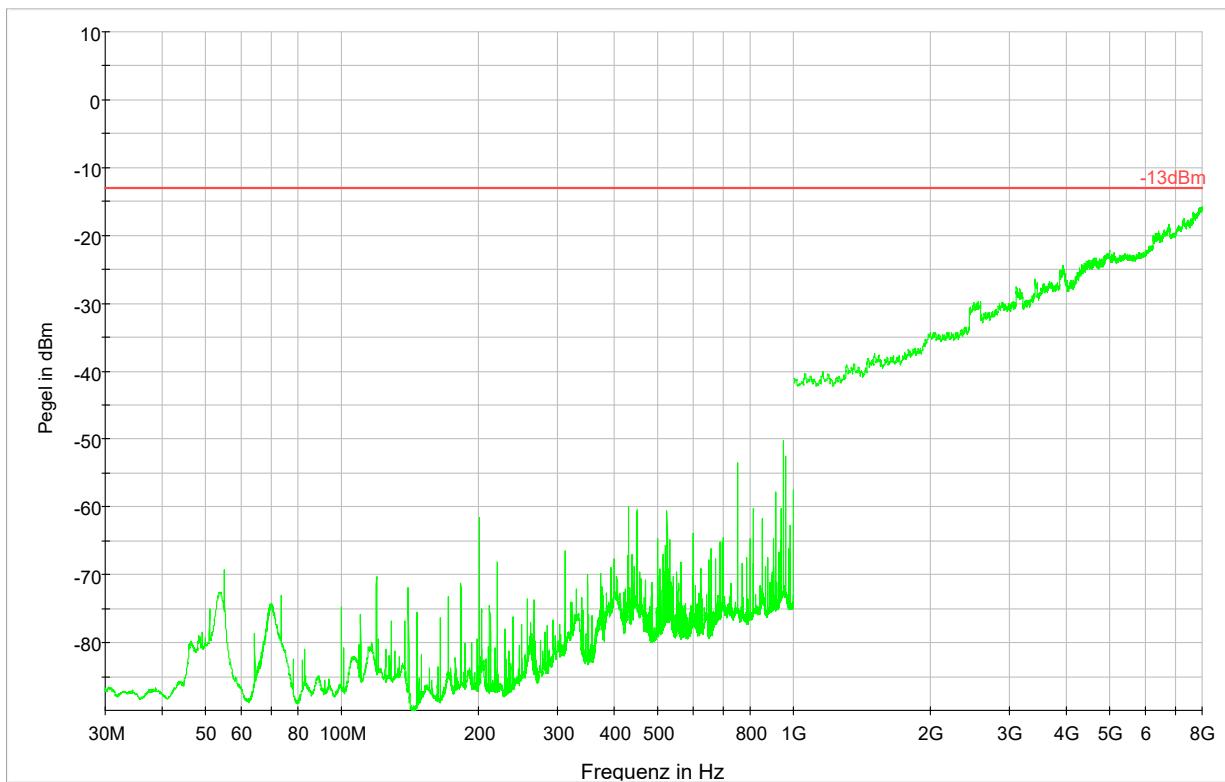
- (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
- (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
- (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least $43 + 10 \log (P)$ dB. -> With a Power of 44 W this equation results in 59.43 dB.

Authorized Bandwidth (40 dB Bandwidth): 73 MHz

Test Equipment used: EMV-100; EMV-102; EMV-110; EMV-200/1

4.6 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

§ 2.1051


Conducted measurement is not possible, as there is no coaxial or waveguide connector output at the final stages. The final stages outputs are directly mounted on the antenna panel, therefore only radiated measurement was performed.

4.7 FIELD STRENGTH OF SPURIOUS RADIATION

§ 2.1053

Frequency Range: 30 MHz – 8 GHz

Center Frequency: 9131.5 MHz

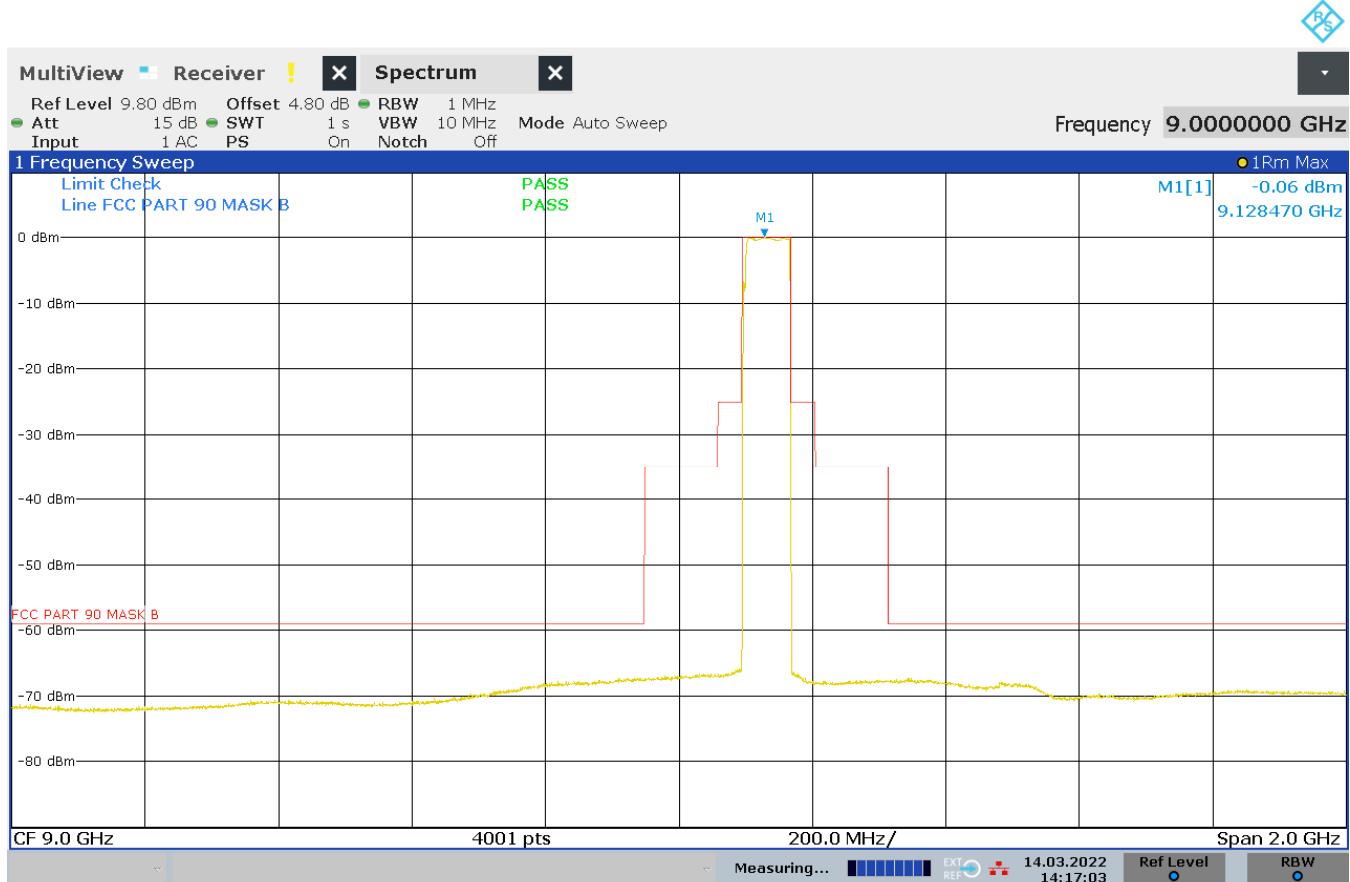
- RMS_MAXH(1):Radar 9131.5 rotierend 30M-1GHz [Radar 9131.5 rotierend 30M-1GHz.Result:4]
- RMS_MAXH(1):Radar 9131.5 rotierend 1-18GHz_ [Radar 9131.5 rotierend 1-18GHz_.Result:4]
- PK+_CLRWR [Ergebnistabelle.Result:1]
- PK+_MAXH [Ergebnistabelle.Result:2]
- -13dBm [..EMI radiated]
- RMS_CLRWR [Ergebnistabelle.Result:3]
- RMS_MAXH [Ergebnistabelle.Result:4]

LIMIT

SUBCLAUSE 87.139

Except for ELTs and when using single sideband (R3E, H3E, J3E), or frequency modulation (F9) or digital modulation (F9Y) for telemetry or telecommand in the 1435-1525 MHz, 2345-2395 MHz, or 5091-5150 MHz band or digital modulation (G7D) for differential GPS, the mean power of any emissions must be attenuated below the mean power of the transmitter (p_Y) as follows:

(3) When the frequency is removed from the assigned frequency by more than 250 percent of the authorized bandwidth the attenuation for aircraft station transmitters must be at least 40 dB; and the attenuation for aeronautical station transmitters must be at least $43 + 10 \log_{10} p_Y$ dB. -> With a Power of 44 W this equation results in 59.43 dB.


Test Equipment used: EMV-100; EMV-102; EMV-110; EMV-112; EMV-200/1; EMV-400

FIELD STRENGTH OF SPURIOUS RADIATION

§ 2.1053

Frequency Range: 8 – 10 GHz

Center Frequency: 9131.5 MHz

14:17:04 14.03.2022

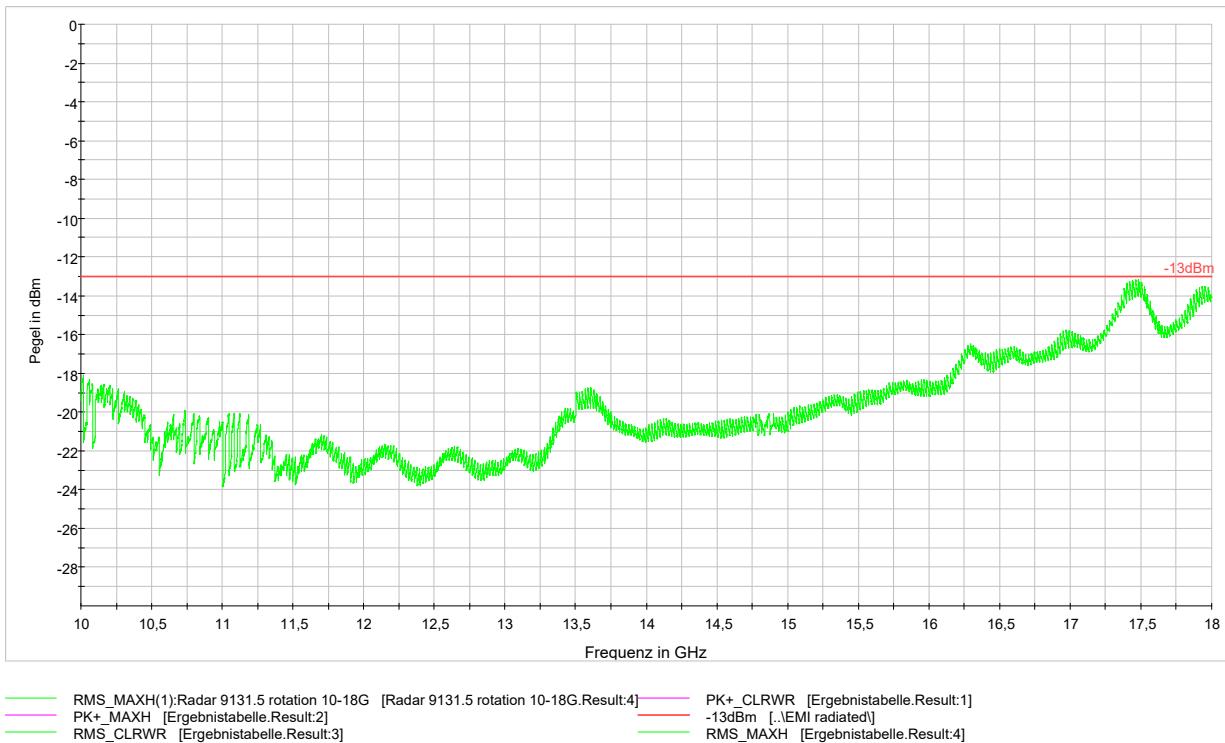
LIMIT

SUBCLAUSE 87.139

Except for ELTs and when using single sideband (R3E, H3E, J3E), or frequency modulation (F9) or digital modulation (F9Y) for telemetry or telecommand in the 1435-1525 MHz, 2345-2395 MHz, or 5091-5150 MHz band or digital modulation (G7D) for differential GPS, the mean power of any emissions must be attenuated below the mean power of the transmitter (pY) as follows:

- (1) When the frequency is removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth the attenuation must be at least 25 dB;
- (2) When the frequency is removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth the attenuation must be at least 35 dB.
- (3) When the frequency is removed from the assigned frequency by more than 250 percent of the authorized bandwidth the attenuation for aircraft station transmitters must be at least 40 dB; and the attenuation for aeronautical station transmitters must be at least $43 + 10 \log_{10} pY$ dB. -> With a Power of 44 W this equation results in 59.43 dB.

Authorized Bandwidth (40 dB Bandwidth): 73 MHz


Test Equipment used: EMV-100; EMV-102; EMV-110; EMV-200/1

FIELD STRENGTH OF SPURIOUS RADIATION

§ 2.1053

Frequency Range: 10 – 18 GHz

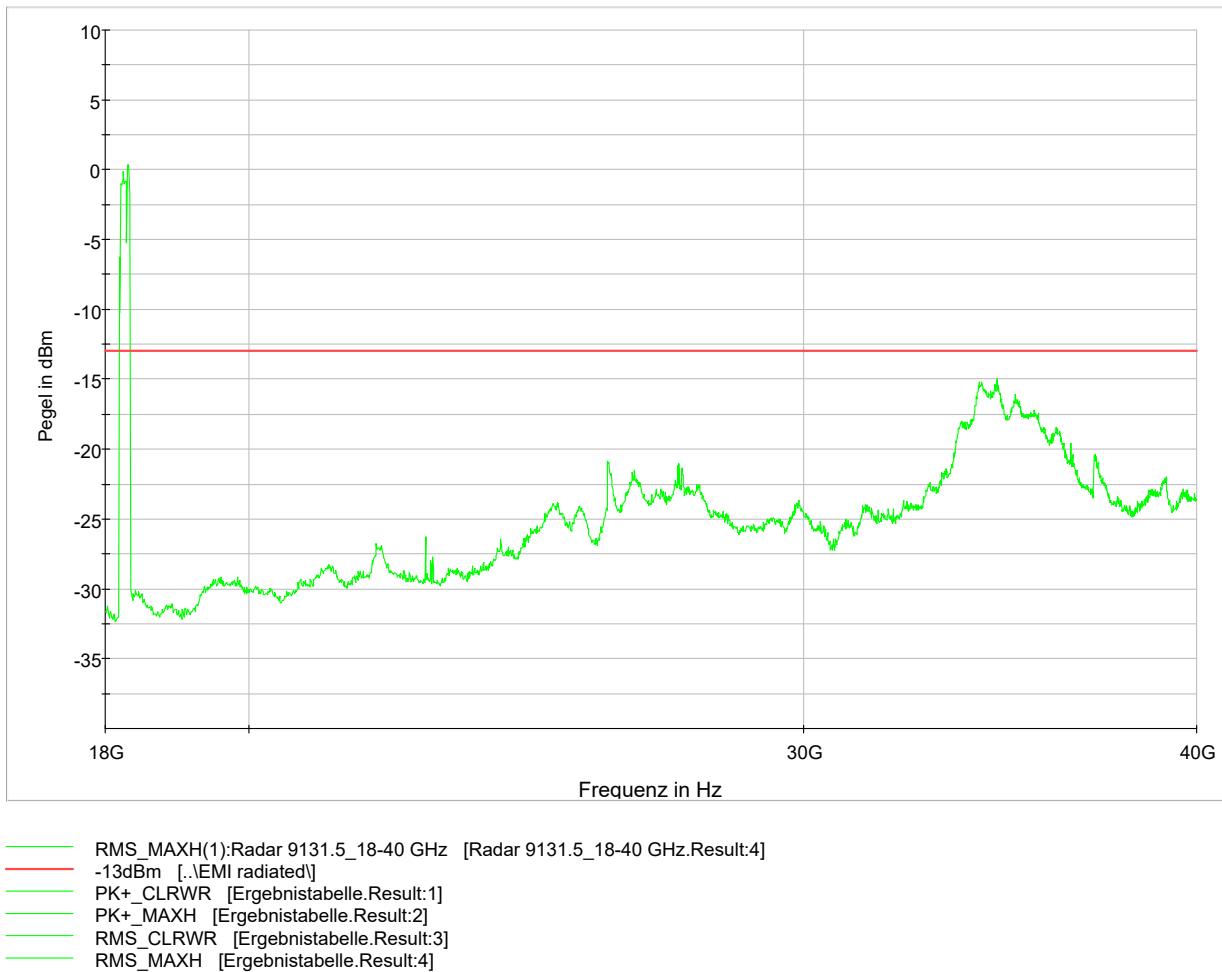
Center Frequency: 9131.5 MHz

LIMIT

SUBCLAUSE 87.139

Except for ELTs and when using single sideband (R3E, H3E, J3E), or frequency modulation (F9) or digital modulation (F9Y) for telemetry or telecommand in the 1435-1525 MHz, 2345-2395 MHz, or 5091-5150 MHz band or digital modulation (G7D) for differential GPS, the mean power of any emissions must be attenuated below the mean power of the transmitter (p_Y) as follows:

(3) When the frequency is removed from the assigned frequency by more than 250 percent of the authorized bandwidth the attenuation for aircraft station transmitters must be at least 40 dB; and the attenuation for aeronautical station transmitters must be at least $43 + 10 \log_{10} p_Y$ dB. -> With a Power of 44 W this equation results in 59.43 dB.


Test Equipment used: EMV-100; EMV-102; EMV-110; EMV-200/1

FIELD STRENGTH OF SPURIOUS RADIATION

§ 2.1053

Frequency Range: 18 – 40 GHz

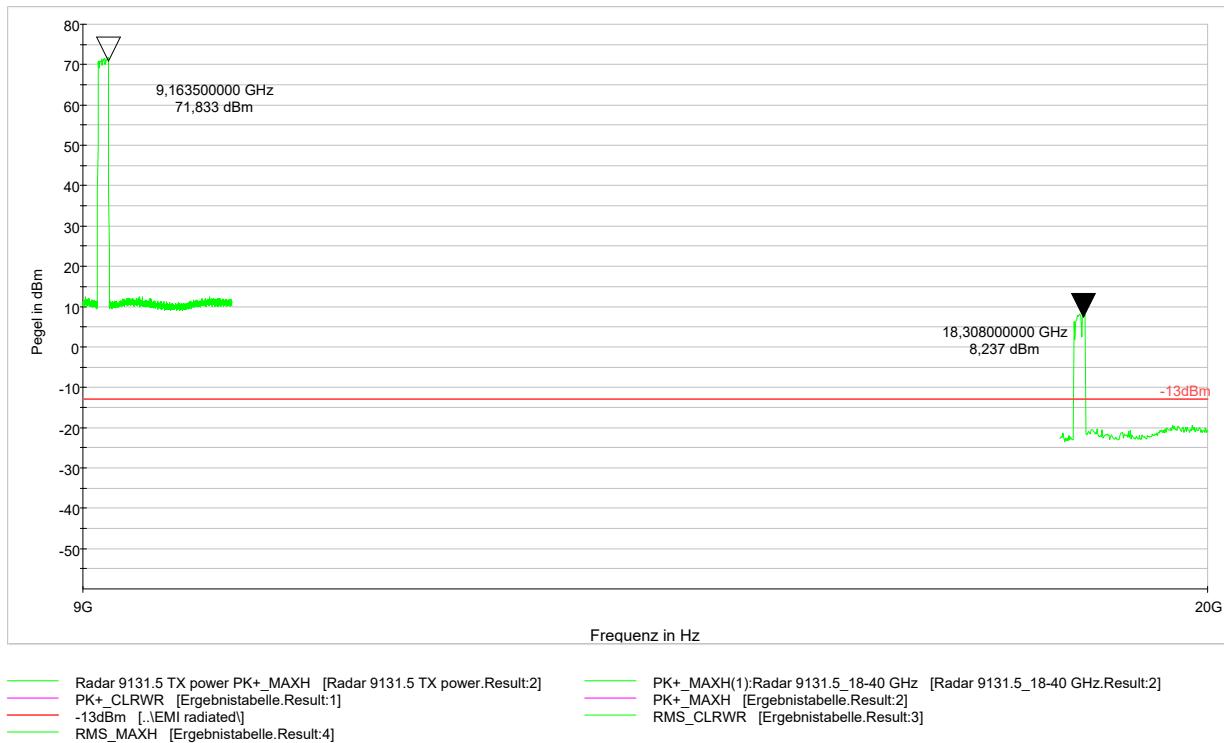
Center Frequency: 9131.5 MHz

LIMIT

SUBCLAUSE 87.139

Except for ELTs and when using single sideband (R3E, H3E, J3E), or frequency modulation (F9) or digital modulation (F9Y) for telemetry or telecommand in the 1435-1525 MHz, 2345-2395 MHz, or 5091-5150 MHz band or digital modulation (G7D) for differential GPS, the mean power of any emissions must be attenuated below the mean power of the transmitter (pY) as follows:

(3) When the frequency is removed from the assigned frequency by more than 250 percent of the authorized bandwidth the attenuation for aircraft station transmitters must be at least 40 dB; and the attenuation for aeronautical station transmitters must be at least $43 + 10 \log_{10} pY$ dB. -> With a Power of 44 W this equation results in 59.43 dB.


Test Equipment used: EMV-100; EMV-102; EMV-200/1; NT-126

FIELD STRENGTH OF SPURIOUS RADIATION

§ 2.1053

Frequency Range: Detail for 1st harmonic

Center Frequency: 9131.5 MHz

LIMIT

SUBCLAUSE 87.139

Except for ELTs and when using single sideband (R3E, H3E, J3E), or frequency modulation (F9) or digital modulation (F9Y) for telemetry or telecommand in the 1435-1525 MHz, 2345-2395 MHz, or 5091-5150 MHz band or digital modulation (G7D) for differential GPS, the mean power of any emissions must be attenuated below the mean power of the transmitter (pY) as follows:

(3) When the frequency is removed from the assigned frequency by more than 250 percent of the authorized bandwidth the attenuation for aircraft station transmitters must be at least 40 dB; and the attenuation for aeronautical station transmitters must be at least $43 + 10 \log_{10} pY$ dB. -> With a Power of 44 W this equation results in 59.43 dB.

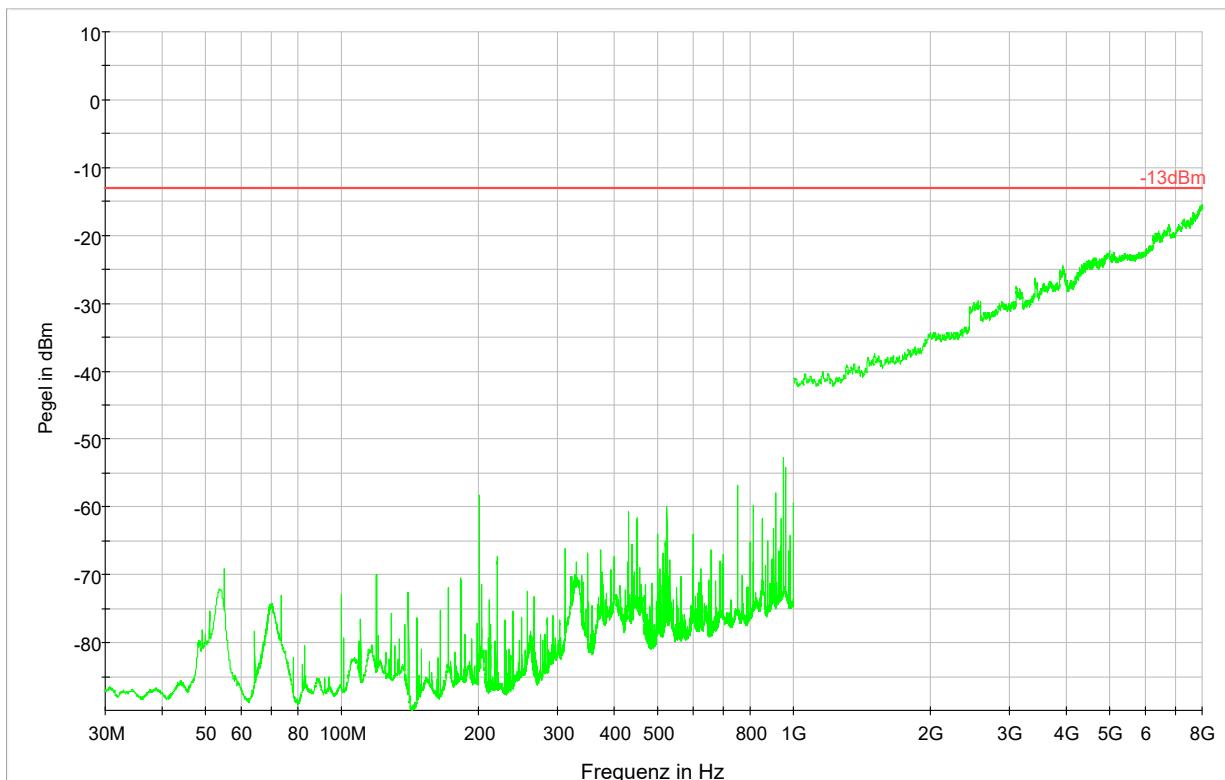
EIRP measured:

fundamental 71,833 dBm

1st harmonic 8,237 dBm

attenuation: 63,596 dBm

Remark: at all other frequencies except the first harmonic, the more stringent limit of -13dBm EIRP was checked.


Test Equipment used: EMV-100; EMV-102; EMV-110; EMV-200/1; NT-126

FIELD STRENGTH OF SPURIOUS RADIATION

§ 2.1053

Frequency Range: 30 MHz – 8 GHz

Center Frequency: 9163.5 MHz

- RMS_MAXH(1):Radar 9163.5 rotierend 30M-1GHz [Radar 9163.5 rotierend 30M-1GHz.Result:4]
- RMS_MAXH(1):Radar 9163.5 rotierend 1-18GHz [Radar 9163.5 rotierend 1-18GHz.Result:4]
- PK+_CLRWR [Ergebnistabelle.Result:1]
- PK+_MAXH [Ergebnistabelle.Result:2]
- -13dBm [..EMI radiated]
- RMS_CLRWR [Ergebnistabelle.Result:3]
- RMS_MAXH [Ergebnistabelle.Result:4]

LIMIT

SUBCLAUSE 87.139

Except for ELTs and when using single sideband (R3E, H3E, J3E), or frequency modulation (F9) or digital modulation (F9Y) for telemetry or telecommand in the 1435-1525 MHz, 2345-2395 MHz, or 5091-5150 MHz band or digital modulation (G7D) for differential GPS, the mean power of any emissions must be attenuated below the mean power of the transmitter (p_Y) as follows:

(3) When the frequency is removed from the assigned frequency by more than 250 percent of the authorized bandwidth the attenuation for aircraft station transmitters must be at least 40 dB; and the attenuation for aeronautical station transmitters must be at least $43 + 10 \log_{10} p_Y$ dB. -> With a Power of 44 W this equation results in 59.43 dB.

Test Equipment used: EMV-100; EMV-102; EMV-110; EMV-112; EMV-200/1; EMV-400

FIELD STRENGTH OF SPURIOUS RADIATION

§ 2.1053

Frequency Range: 8 – 10 GHz

Center Frequency: 9163.5 MHz

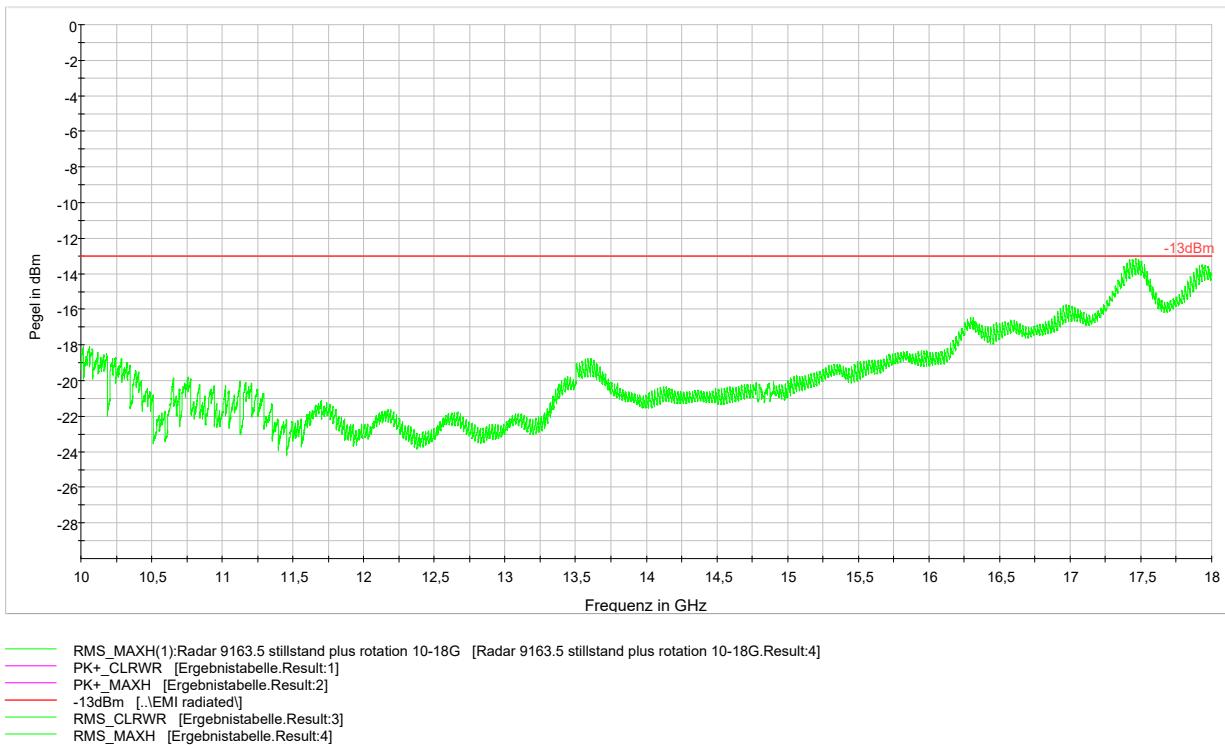
LIMIT

SUBCLAUSE 87.139

Except for ELTs and when using single sideband (R3E, H3E, J3E), or frequency modulation (F9) or digital modulation (F9Y) for telemetry or telecommand in the 1435-1525 MHz, 2345-2395 MHz, or 5091-5150 MHz band or digital modulation (G7D) for differential GPS, the mean power of any emissions must be attenuated below the mean power of the transmitter (pY) as follows:

- (1) When the frequency is removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth the attenuation must be at least 25 dB;
- (2) When the frequency is removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth the attenuation must be at least 35 dB.
- (3) When the frequency is removed from the assigned frequency by more than 250 percent of the authorized bandwidth the attenuation for aircraft station transmitters must be at least 40 dB; and the attenuation for aeronautical station transmitters must be at least $43 + 10 \log_{10} pY$ dB. -> With a Power of 44 W this equation results in 59.43 dB.

Authorized Bandwidth (40 dB Bandwidth): 73 MHz


Test Equipment used: EMV-100; EMV-102; EMV-110; EMV-200/1

FIELD STRENGTH OF SPURIOUS RADIATION

§ 2.1053

Frequency Range: 10 – 18 GHz

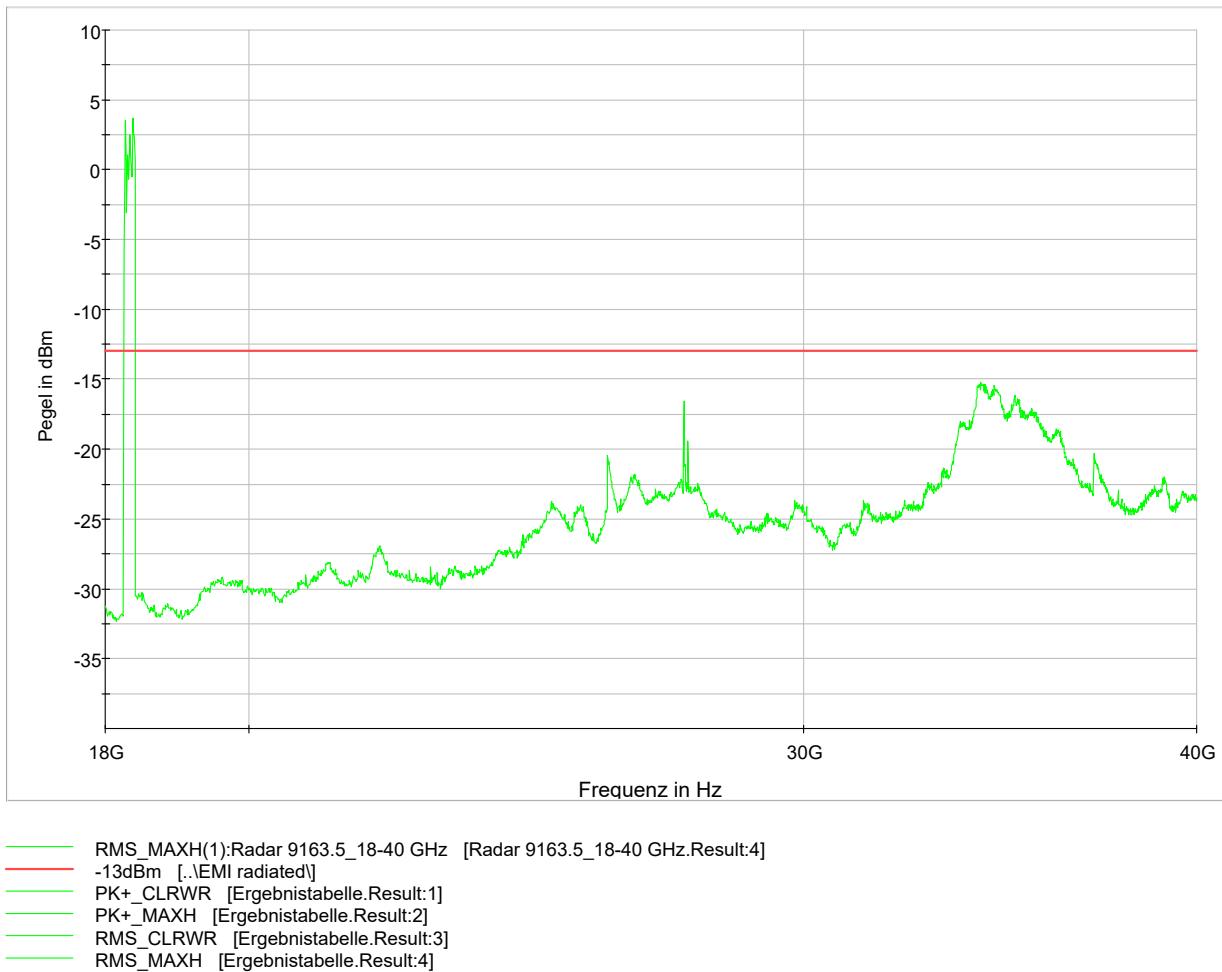
Center Frequency: 9163.5 MHz

LIMIT

SUBCLAUSE 87.139

Except for ELTs and when using single sideband (R3E, H3E, J3E), or frequency modulation (F9) or digital modulation (F9Y) for telemetry or telecommand in the 1435-1525 MHz, 2345-2395 MHz, or 5091-5150 MHz band or digital modulation (G7D) for differential GPS, the mean power of any emissions must be attenuated below the mean power of the transmitter (p_Y) as follows:

(3) When the frequency is removed from the assigned frequency by more than 250 percent of the authorized bandwidth the attenuation for aircraft station transmitters must be at least 40 dB; and the attenuation for aeronautical station transmitters must be at least $43 + 10 \log_{10} p_Y$ dB. -> With a Power of 44 W this equation results in 59.43 dB.


Test Equipment used: EMV-100; EMV-102; EMV-110; EMV-200/1

FIELD STRENGTH OF SPURIOUS RADIATION

§ 2.1053

Frequency Range: 18 – 40 GHz

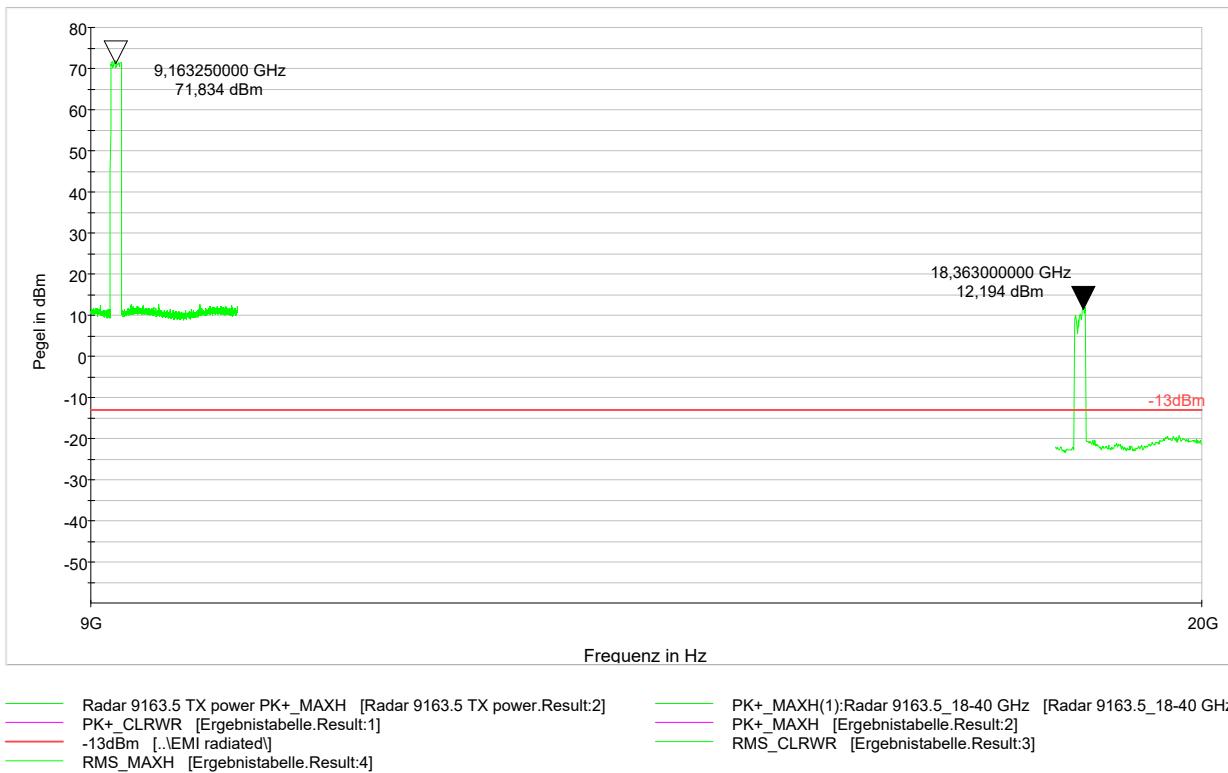
Center Frequency: 9163.5 MHz

LIMIT

SUBCLAUSE 87.139

Except for ELTs and when using single sideband (R3E, H3E, J3E), or frequency modulation (F9) or digital modulation (F9Y) for telemetry or telecommand in the 1435-1525 MHz, 2345-2395 MHz, or 5091-5150 MHz band or digital modulation (G7D) for differential GPS, the mean power of any emissions must be attenuated below the mean power of the transmitter (pY) as follows:

(3) When the frequency is removed from the assigned frequency by more than 250 percent of the authorized bandwidth the attenuation for aircraft station transmitters must be at least 40 dB; and the attenuation for aeronautical station transmitters must be at least $43 + 10 \log_{10} pY$ dB. -> With a Power of 44 W this equation results in 59.43 dB.


Test Equipment used: EMV-100; EMV-102; EMV-200/1; NT-126

FIELD STRENGTH OF SPURIOUS RADIATION

§ 2.1053

Frequency Range: Detail for 1st harmonic

Center Frequency: 9163.5 MHz

LIMIT

SUBCLAUSE 87.139

Except for ELTs and when using single sideband (R3E, H3E, J3E), or frequency modulation (F9) or digital modulation (F9Y) for telemetry or telecommand in the 1435-1525 MHz, 2345-2395 MHz, or 5091-5150 MHz band or digital modulation (G7D) for differential GPS, the mean power of any emissions must be attenuated below the mean power of the transmitter (pY) as follows:

(3) When the frequency is removed from the assigned frequency by more than 250 percent of the authorized bandwidth the attenuation for aircraft station transmitters must be at least 40 dB; and the attenuation for aeronautical station transmitters must be at least $43 + 10 \log_{10} pY$ dB. -> With a Power of 44 W this equation results in 59.43 dB.

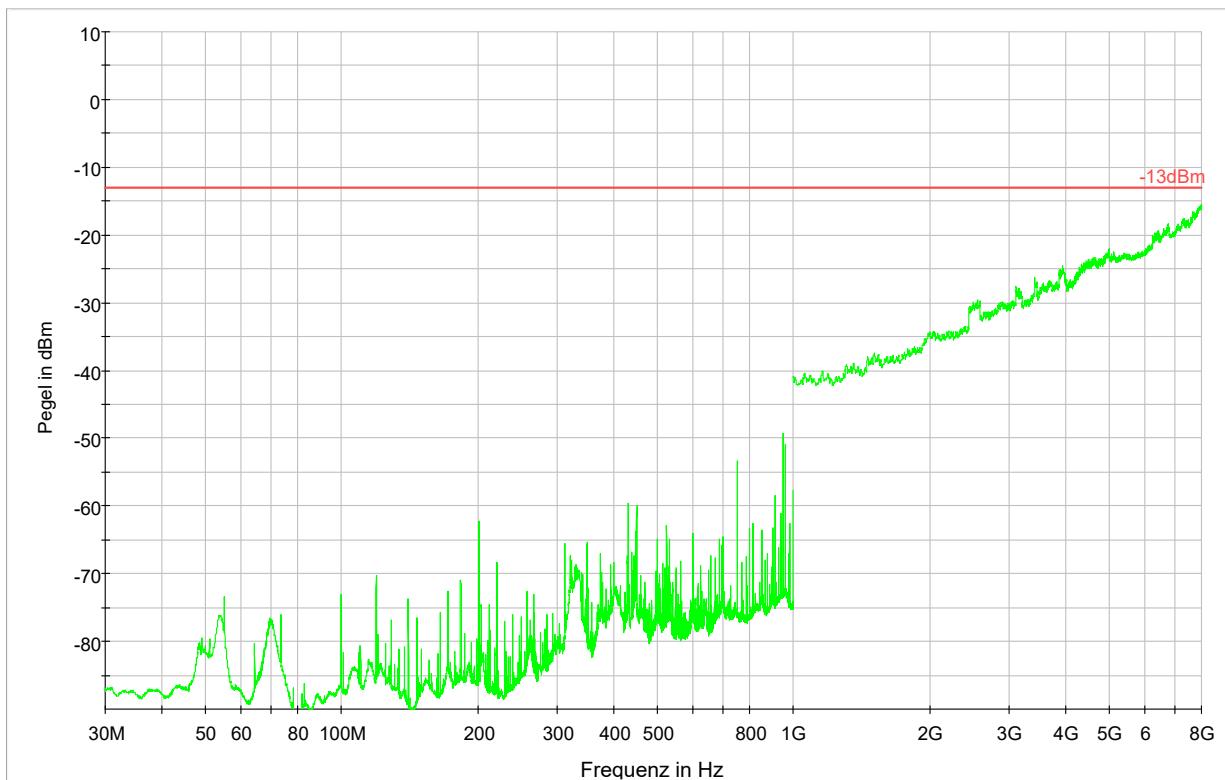
EIRP measured:

fundamental 71,834 dBm

1st harmonic 12,194 dBm

attenuation: 59,64 dBm

Remark: at all other frequencies except the first harmonic, the more stringent limit of -13dBm EIRP was checked.


Test Equipment used: EMV-100; EMV-102; EMV-110; EMV-200/1; NT-126

FIELD STRENGTH OF SPURIOUS RADIATION

§ 2.1053

Frequency Range: 30 MHz – 8 GHz

Center Frequency: 9248.5 MHz

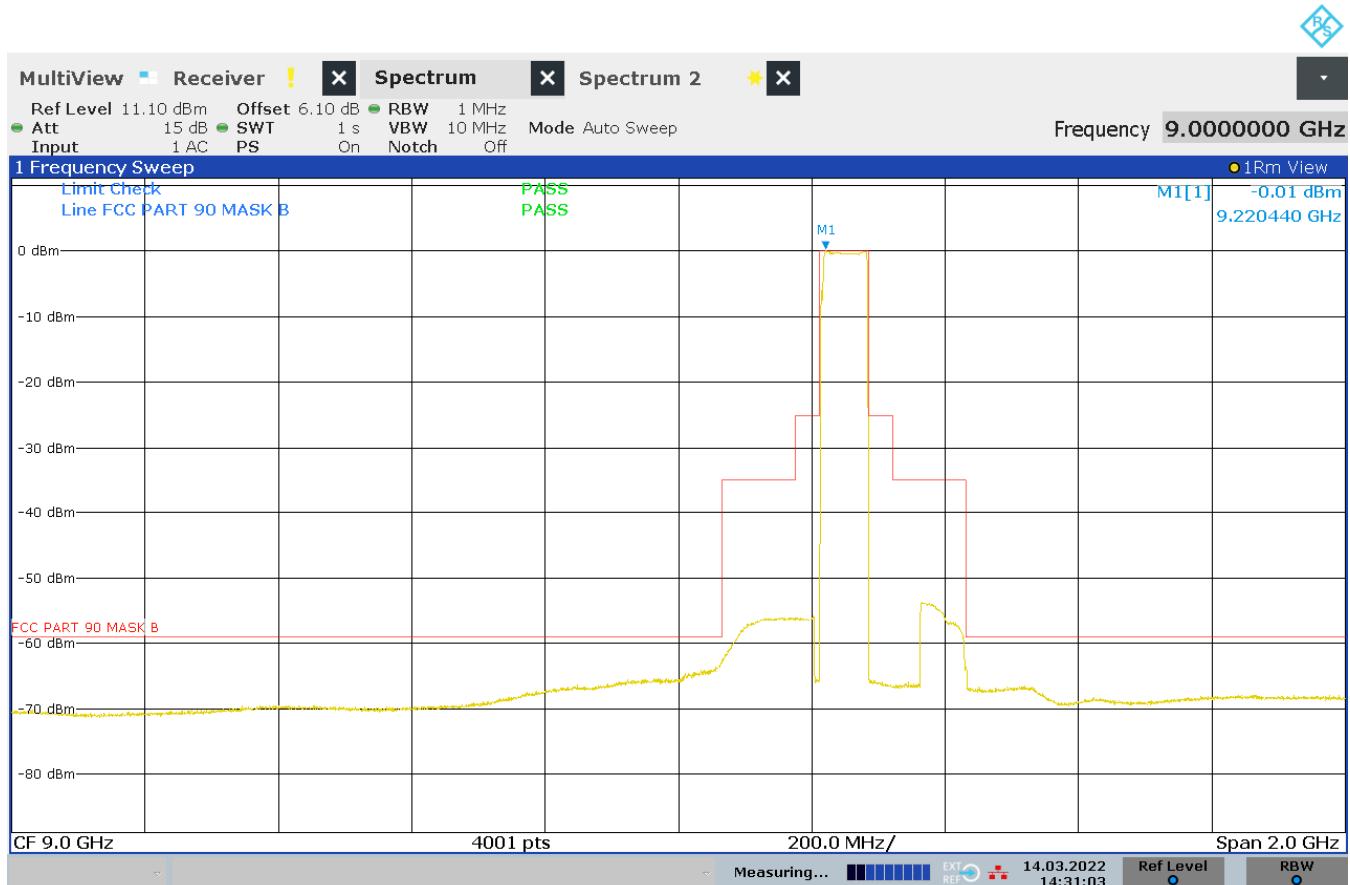
- RMS_MAXH(1):Radar 9248.5 rotierend 30M-1GHz [Radar 9248.5 rotierend 30M-1GHz.Result:4]
- RMS_MAXH(1):Radar 9248.5 rotierend 1-18GHz [Radar 9248.5 rotierend 1-18GHz.Result:4]
- PK+_CLRWR [Ergebnistabelle.Result:1]
- PK+_MAXH [Ergebnistabelle.Result:2]
- -13dBm [..EMI radiated]
- RMS_CLRWR [Ergebnistabelle.Result:3]
- RMS_MAXH [Ergebnistabelle.Result:4]

LIMIT

SUBCLAUSE 90.210(b)

Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

(3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least $43 + 10 \log (P)$ dB. -> With a Power of 44 W this equation results in 59.43 dB.


Test Equipment used: EMV-100; EMV-102; EMV-110; EMV-112; EMV-200/1; EMV-400

FIELD STRENGTH OF SPURIOUS RADIATION

§ 2.1053

Frequency Range: 8 – 10 GHz

Center Frequency: 9248.5 MHz

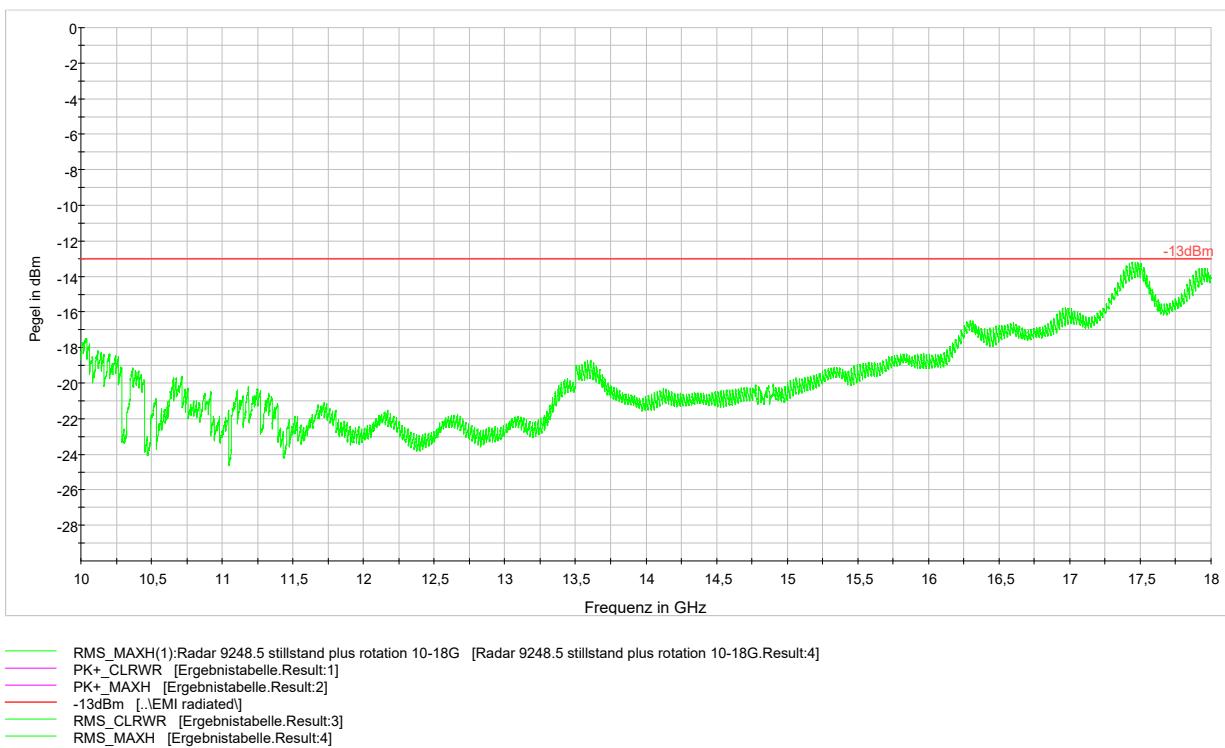
14:31:04 14.03.2022

LIMIT

SUBCLAUSE 90.210(b)

Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

- (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
- (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
- (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least $43 + 10 \log (P)$ dB. -> With a Power of 44 W this equation results in 59.43 dB.


Test Equipment used: EMV-100; EMV-102; EMV-110; EMV-200/1

FIELD STRENGTH OF SPURIOUS RADIATION

§ 2.1053

Frequency Range: 10 – 18 GHz

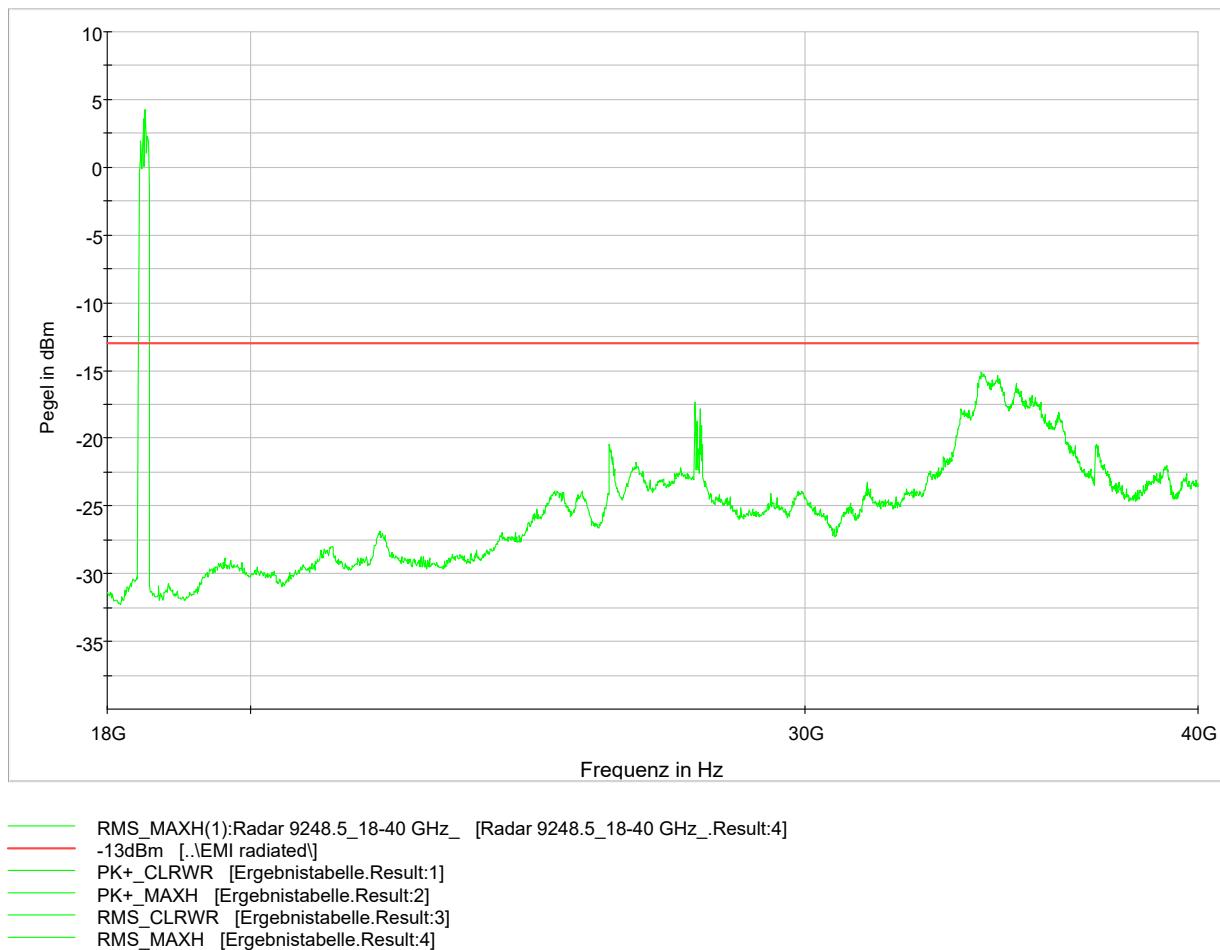
Center Frequency: 9248.5 MHz

LIMIT

SUBCLAUSE 90.210(b)

Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

(3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least $43 + 10 \log (P)$ dB. -> With a Power of 44 W this equation results in 59.43 dB.


Test Equipment used: EMV-100; EMV-102; EMV-110; EMV-200/1

FIELD STRENGTH OF SPURIOUS RADIATION

§ 2.1053

Frequency Range: 18 – 40 GHz

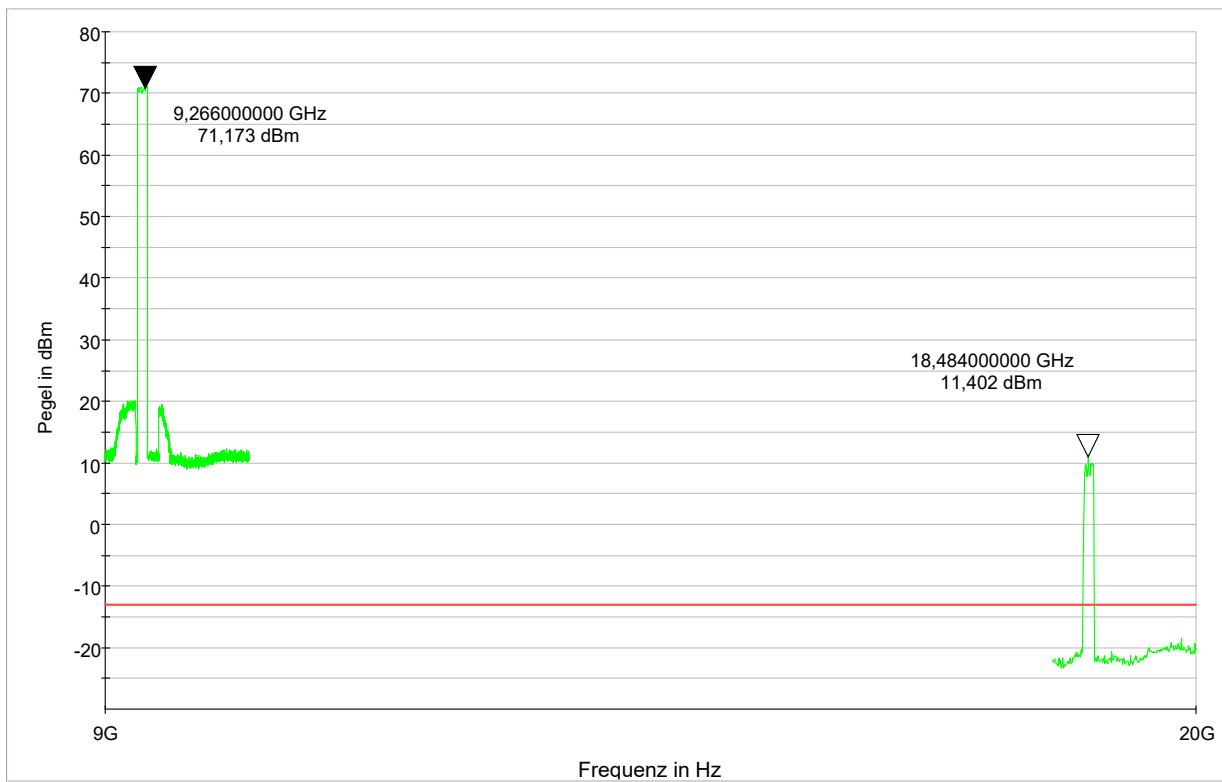
Center Frequency: 9248.5 MHz

LIMIT

SUBCLAUSE 90.210(b)

Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

(3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least $43 + 10 \log (P)$ dB. -> With a Power of 44 W this equation results in 59.43 dB.


Test Equipment used: EMV-100; EMV-102; EMV-200/1; NT-126

FIELD STRENGTH OF SPURIOUS RADIATION

§ 2.1053

Frequency Range: Detail for 1st harmonic

Center Frequency: 9248.5 MHz

- PK+_MAXH(1):Radar 9248.5_18-40 GHz_ [Radar 9248.5_18-40 GHz_.Result:2]
- PK+_MAXH(1):Radar 9248.5 RF power [Radar 9248.5 RF power.Result:2]
- 13dBm [..EMI radiated]
- PK+_CLRWR [Ergebnistabelle.Result:1]
- PK+_MAXH [Ergebnistabelle.Result:2]
- RMS_CLRWR [Ergebnistabelle.Result:3]
- RMS_MAXH [Ergebnistabelle.Result:4]

LIMIT

SUBCLAUSE 90.210(b)

Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

(3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least $43 + 10 \log (P)$ dB. -> With a Power of 44 W this equation results in 59.43 dB.

EIRP measured:

fundamental 71,173 dBm

1st harmonic 11,402 dBm

attenuation: 59,771 dBm

Remark: at all other frequencies except the first harmonic, the more stringent limit of -13dBm EIRP was checked.

Test Equipment used: EMV-100; EMV-102; EMV-110; EMV-200/1; NT-126

4.8 FREQUENCY STABILITY

§ 2.1055

Center Frequency: 9131.5 MHz

Temperature [°C]	Lower -40 dB Point [MHz]	Upper -40 dB Point [MHz]	Calculated center frequency [MHz]
-30	9095,444	9167,476	9131,46
-20	9095,444	9167,506	9131,475
-10	9095,444	9167,516	9131,48
0	9095,414	9167,506	9131,46
10	9095,394	9167,486	9131,44
20	9095,294	9167,476	9131,385
30	9095,374	9167,456	9131,415
40	9095,374	9167,446	9131,41
50	9095,334	9167,436	9131,385

LIMIT

SUBCLAUSE 87.133

Where specific frequencies are not assigned to radar stations, the bandwidth occupied by the emissions of such stations must be maintained within the band allocated to the service and the indicated tolerance does not apply.

Band allocated to the radar service: 9000-9200 MHz

Test Equipment used: EMV-205; EMV-600

FREQUENCY STABILITY

§ 2.1055

Center Frequency: 9163.5 MHz

Temperature [°C]	Lower -40 dB Point [MHz]	Upper -40 dB Point [MHz]	Calculated center frequency [MHz]
-30	9127,484	9199,476	9163,48
-20	9127,504	9199,496	9163,5
-10	9127,474	9199,506	9163,49
0	9127,434	9199,496	9163,465
10	9127,394	9199,476	9163,435
20	9127,324	9199,466	9163,395
30	9127,434	9199,446	9163,44
40	9127,434	9199,436	9163,435
50	9127,454	9199,426	9163,44

LIMIT

SUBCLAUSE 87.133

Where specific frequencies are not assigned to radar stations, the bandwidth occupied by the emissions of such stations must be maintained within the band allocated to the service and the indicated tolerance does not apply.

Band allocated to the radar service: 9000-9200 MHz

Test Equipment used: EMV-205; EMV-600

FREQUENCY STABILITY

§ 2.1055

Center Frequency: 9248.5 MHz

Temperature [°C]	Lower -40 dB Point [MHz]	Upper -40 dB Point [MHz]	Calculated center frequency [MHz]
-30	9212,554	9284,476	9248,515
-20	9212,524	9284,496	9248,51
-10	9212,534	9284,506	9248,52
0	9212,524	9284,496	9248,51
10	9212,504	9284,486	9248,495
20	9212,384	9284,466	9248,425
30	9212,484	9284,456	9248,47
40	9212,476	9284,446	9248,461
50	9212,454	9284,436	9248,445

LIMIT

SUBCLAUSE 90.213

Above 2450 MHz: Frequency stability for DSRCS equipment in the 5895-5925 MHz band is specified in subpart M of this part. For all other equipment, frequency stability is to be specified in the station authorization.

Radiolocation Service frequency band: 9200-9300 MHz, This frequency is shared with and is on a secondary basis to the Government Radiolocation Service.

Test Equipment used: EMV-205; EMV-600

4.9 RADIOFREQUENCY RADIATION EXPOSURE LIMITS

§ 1.1310

		Spatial averaged MPE over 0 – 2 meters height [mW/cm ²]		
Distance to the axis of rotation [cm]	Operating center Frequency: 9131.5 MHz	Operating center Frequency: 9163.5 MHz	Operating center Frequency: 9248.5 MHz	
85	0,2837	0,3389	0,3892	
200	0,1116	0,1103	0,1084	
300	0,06466	0,06018	0,05672	

Measurements performed according to OET Bulletin 65.

During the measurement the radar transmitter was operated with the antenna rotating at the standard rate of 60 rpm. 85cm is the shortest safe distance while the radar is rotating.

The accuracy of the average measurement during rotation was checked by comparison of the maximum value of the power density with the radar not rotating weighed by a time averaging factor (using a spectrum analyser power average over 1 second in time, which is equal to one rotation cycle) and the measured value of the average power density during rotation. Both the average value calculated from the measured maximum weighed by the time averaging factor, as well as the direct measured average value were found to be equal.

LIMIT **SUBCLAUSE 1.1310 (e)(1)(ii)**

Limit for General Population/Uncontrolled Exposure in the frequency range 1500 – 100000 MHz is 1.0 mW/m².

Overall frequency band of the radar system: 9100-9300 MHz

Test Equipment used: EMV-100; EMV-200/1; NT-240a-e

Appendix 1

Test equipment used

				Division:
<input type="checkbox"/>	Anechoic Chamber with 3m measurement distance	NT-100	Power quality analyzer Fluke 1760 (complete set)	NT-160 - NT-173
<input type="checkbox"/>	Stripline according to ISO 11452-5	NT-108	Spectrumanalyzer – FSP7 9 kHz – 7 GHz	NT-200
<input type="checkbox"/>	MA4000 - Antenna mast 1 - 4 m height	NT-110/1	ESCI - Test receiver 9 kHz - 7 GHz	NT-203/1
<input type="checkbox"/>	DS - Turntable 0 - 400 ° Azimuth	NT-111/1	ESR – Test receiver 20 Hz – 26,5 GHz	NT-207/1
<input type="checkbox"/>	CO3000 Controller Mast+Turntable	NT-112/1	Digital Radio Tester CMW500	NT-208/1
<input type="checkbox"/>	HUF-Z3 - Log. Per. Antenna 200 - 1000 MHz	NT-121	Noise-gen., ITU-R 559-2 20 Hz – 20 kHz	NT-209
<input type="checkbox"/>	FMZB1513 - Loop Antenna 9 kHz - 30 MHz	NT-122/1	CMTA - Radiocommunication analyzer ; 0,1 - 1000 MHz	NT-210
<input type="checkbox"/>	HFH-Z6 - Rod Antenna 9 kHz - 30 MHz	NT-123	3271 - Spectrum analyzer 100 Hz - 26,5 GHz	NT-211
<input type="checkbox"/>	3121C - Dipole Antenna 28 - 1000 MHz	NT-124	Digital Radio Tester Aeroflex 3920	NT-212/1
<input type="checkbox"/>	3115 - Horn Antenna 1 - 18 GHz (immunity)	NT-125	Mixer M28HW 26,5 GHz - 40 GHz	NT-214
<input type="checkbox"/>	3116 - Horn Antenna 18 - 40 GHz	NT-126	RubiSource T&M Timing reference	NT-216
<input type="checkbox"/>	SAS-200/543 - Bicon. Antenna 20 MHz - 300 MHz	NT-127	Radiocommunicationanalyzer SWR 1180 MD	NT-217
<input type="checkbox"/>	AT-1080 - Log. Per. Antenna 80 - 1000 MHz	NT-128	Mixer M19HWD 40 GHz – 60 GHz	NT-218
<input type="checkbox"/>	HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-129	Mixer M12HWD 60 GHz – 90 GHz	NT-219
<input type="checkbox"/>	HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-130	DSO9104 Digital scope	NT-220/1
<input type="checkbox"/>	3146 - Log. Per. Antenna 200 – 1000 MHz	NT-131	TPS 2014 Digital scope	NT-222
<input type="checkbox"/>	VULB 9163 Trilog Antenna 30 – 3000 MHz	NT-131/1	Artificial Ear according to IEC 60318	NT-224
<input type="checkbox"/>	Loop Antenna H-Field	NT-132	1 kHz Sound calibrator	NT-225
<input type="checkbox"/>	Horn Antenna 500 MHz - 2900 MHz	NT-133	SRM-3006 Spectrumanalyzer	NT-233/1a
<input type="checkbox"/>	Horn Antenna 500 MHz - 6000 MHz	NT-133/1	E-field probe SRM 75 MHz – 3 GHz	NT-234
<input type="checkbox"/>	Log. per. Antenna 800 MHz - 2500 MHz	NT-134	Field Meter NBM-500 incl. E- and H-Field probes	NT-240a-e
<input type="checkbox"/>	Log. per. Antenna 800 MHz - 2500 MHz	NT-135	Magnetometer HP-01	NT-241/1
<input type="checkbox"/>	BiConiLog Antenna 26 MHz – 2000 MHz	NT-137	EFA-3 H-field- / E-field probe	NT-243
<input type="checkbox"/>	Conical Dipol Antenna PCD8250	NT-138	EHP-50F H-field- / E-field probe	NT-243/1
<input type="checkbox"/>	HF 906 - Horn Antenna 1 - 18 GHz (emission)	NT-139	Field Meter EMR-200 100 kHz – 3 GHz	NT-244
<input type="checkbox"/>	HZ-1 Antenna tripod	NT-150	E-field probe 100 kHz – 3 GHz	NT-245
<input type="checkbox"/>	BN 1500 Antenna tripod	NT-151	H-field probe 300 kHz – 30 MHz	NT-246
<input type="checkbox"/>	Ant. tripod for EN61000-4-3 Model TP1000A	NT-156		

Appendix 1 (continued)

Test equipment used

<input type="checkbox"/> E-field probe 3 MHz – 18 GHz	NT-247	<input type="checkbox"/> Prana N-MT 500 - RF-Amplifier 80 - 1000 MHz / 500 W	NT-332/1	Division: Industry & Energy
<input type="checkbox"/> H-field probe 27 MHz – 1 GHz	NT-248	<input type="checkbox"/> BBA150 RF-Amplifier 1 GHz - 6 GHz	NT-333/1	
<input type="checkbox"/> ELT-400 1 Hz – 400 kHz	NT-249	<input type="checkbox"/> APA01 - RF-Amplifier 0,5 GHz – 2,5 GHz	NT-334	Test report number: 2022-IN-AT-TICL-E-EX-000102-FG-001
<input type="checkbox"/> MDS 21 - Absorbing clamp 30 - 1000 MHz	NT-250	<input type="checkbox"/> Preamplifier 1 GHz - 4 GHz	NT-335	
<input type="checkbox"/> FCC-203I EM Injection clamp	NT-251	<input type="checkbox"/> Preamplifier for GPS MKU 152 A	NT-336	Page: 2 of 5
<input type="checkbox"/> FCC-203I-DCN Ferrite decoupling network	NT-252	<input type="checkbox"/> Preamplifier 1 GHz – 18 GHz	NT-337/1	Date: 31.03.2022
<input type="checkbox"/> PR50 Current Probe	NT-253	<input type="checkbox"/> DC Block 10 MHz – 18 GHz Model 8048	NT-338	
<input type="checkbox"/> i310s Current Probe	NT-254/1	<input type="checkbox"/> 2-97201 Electronic load	NT-341	
<input type="checkbox"/> Fluke 87 V True RMS Multimeter	NT-260	<input type="checkbox"/> TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-344	
<input type="checkbox"/> Model 2000 Digital Multimeter	NT-261	<input type="checkbox"/> TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-345	
<input type="checkbox"/> Fluke 87 V Digital Multimeter	NT-262/1	<input type="checkbox"/> VDS 200 Mobil-impuls-generator	NT-350	
<input type="checkbox"/> ESH2-Z5-U1 Artificial mains network 4x25A	NT-300	<input type="checkbox"/> LD 200 Mobil-impuls-generator	NT-351	
<input type="checkbox"/> ESH3-Z5-U1 Artificial mains network 2x10A	NT-301	<input type="checkbox"/> MPG 200 Mobil-Impuls-Generators	NT-352	
<input type="checkbox"/> ESH3-Z6-U1 Artificial mains network 1x100A	NT-302	<input type="checkbox"/> EFT 200 Mobil-impuls-generator	NT-353	
<input type="checkbox"/> ESH3-Z6-U1 Artificial mains network 1x100A	NT-302a	<input type="checkbox"/> AN 200 S1 Artificial Network	NT-354	
<input type="checkbox"/> EZ10 T-Artificial Network	NT-305	<input type="checkbox"/> FP-EFT 32M 3 ph. Coupling filter (Burst)	NT-400/1	
<input type="checkbox"/> SMG - Signal generator 0,1 - 1000 MHz	NT-310	<input type="checkbox"/> PHE 4500 - Mains impedance network	NT-401	
<input type="checkbox"/> SMA100A - Signal generator 9 kHz - 6 GHz	NT-310/1	<input type="checkbox"/> IP 6.2 Coupling filter for data lines (Surge)	NT-403	
<input type="checkbox"/> RefRad Reference generator	NT-312	<input type="checkbox"/> TK 9421 High Power Volt. Probe 150 kHz - 30 MHz	NT-409	
<input type="checkbox"/> SMP 02 Signal generator 10 MHz - 20 GHz	NT-313	<input type="checkbox"/> ESH2-Z3 - Probe 9 kHz - 30 MHz	NT-410	
<input type="checkbox"/> 40 MHz Arbitrary Generator TGA1241	NT-315	<input type="checkbox"/> IP 4 - Capacitive clamp (Burst)	NT-411	
<input type="checkbox"/> Artificial mains network NSLK 8127-PLC	NT-316	<input type="checkbox"/> Highpass-Filter 100 MHz – 3 GHz	NT-412	
<input type="checkbox"/> PSURGE 4.1 Surge generator	NT-324	<input type="checkbox"/> Highpass-Filter 600 MHz – 4 GHz	NT-413	
<input type="checkbox"/> IMU4000 Immunity test system	NT-325/1	<input type="checkbox"/> Highpass-Filter 1250 MHz – 4 GHz	NT-414	
<input type="checkbox"/> VCS 500-M6 Surge-Generator	NT-326	<input type="checkbox"/> Highpass-Filter 1800 MHz – 16 GHz	NT-415	
<input type="checkbox"/> Oscillatory Wave Simulator incl. Coupling networks	NT-328a+b+c			
<input type="checkbox"/> BTA-250 - RF-Amplifier 9 kHz - 220 MHz / 250 W	NT-330			

Appendix 1 (continued)

Test equipment used

<input type="checkbox"/> RF-Attenuator 10 dB DC – 18 GHz / 50 W	NT-417/1	<input type="checkbox"/> FCC-801-T4 Coupling decoupling network	NT-463	Division: Industry & Energy
<input type="checkbox"/> RF-Attenuator 6 dB DC – 18 GHz / 50 W	NT-418	<input type="checkbox"/> FCC-801-C1 Coupling decoupling network	NT-464	
<input type="checkbox"/> RF-Attenuator 3 dB DC – 18 GHz / 50 W	NT-419	<input type="checkbox"/> SW 9605 - Current probe 150 kHz – 30 MHz	NT-465/1	
<input type="checkbox"/> RF-Attenuator 20 dB DC - 1000 MHz / 25 W	NT-421	<input type="checkbox"/> 95242-1 – Current probe 1 MHz – 400 MHz	NT-468	Test report number: 2022-IN-AT-TICL-E-EX-000102-FG-001
<input type="checkbox"/> RF-Attenuator 30 dB DC - 1000 MHz / 1 W	NT-423	<input type="checkbox"/> 94106-1L-1 – Current probe 100 kHz – 450 MHz	NT-471	Page: 3 of 5
<input type="checkbox"/> RF-Attenuator 30 dB 30 dB	NT-424	<input type="checkbox"/> WHKX12-2700-3000-18000 3 GHz Highpass filter	NT-472	Date: 31.03.2022
<input type="checkbox"/> RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-425	<input type="checkbox"/> WHKX10-3870-4500-18000 4,5 GHz Highpass filter	NT-473	
<input type="checkbox"/> RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-426	<input type="checkbox"/> GA 1240 Power amplifier according to EN 61000-4-16	NT-480	
<input type="checkbox"/> RF-Attenuator 6 dB	NT-428	<input type="checkbox"/> Coupling networks according to EN 61000-4-16	NT-481 - NT-483	
<input type="checkbox"/> RF-Attenuator 0 dB - 81 dB	NT-429	<input type="checkbox"/> Van der Hoofden Test Head	NT-484	
<input type="checkbox"/> WRU 27 - Band blocking 27 MHz	NT-430	<input type="checkbox"/> WRCJV12-5820-5850-5950-5980 5,9 GHz Band Reject Filter	NT-490	
<input type="checkbox"/> WHJ450C9 AA - High pass 450 MHz	NT-431	<input type="checkbox"/> WHKX10-5670-6300-18000 6 GHz Highpass filter	NT-491	
<input type="checkbox"/> WHJ250C9 AA - High pass 250 MHz	NT-432	<input type="checkbox"/> WHK12-935-1000-7000 1 GHz Highpass filter	NT-492	
<input type="checkbox"/> RF-Load 150 W	NT-433	<input type="checkbox"/> EMC Video/Audiosystem	NT-511/1	
<input type="checkbox"/> Impedance transducer 1:4 ; 1:9 ; 1:16	NT-435	<input type="checkbox"/> ES-K1 Version 1.71 SP2 Test software	NT-520	
<input type="checkbox"/> RF-Attenuator DC – 18 GHz 6 dB	NT-436	<input type="checkbox"/> EMC32 Version 10.60.20 Test software	NT-520/1	
<input type="checkbox"/> RF-Attenuator DC – 18 GHz 6 dB	NT-437	<input type="checkbox"/> SRM-TS Version 1.3 software for SRM-3000	NT-522	
<input type="checkbox"/> RF-Attenuator DC – 18 GHz 10 dB	NT-438	<input type="checkbox"/> SRM-TS Version 1.3.1 software for SRM-3006	NT-522/1	
<input type="checkbox"/> RF-Attenuator DC – 18 GHz 20 dB	NT-439	<input type="checkbox"/> Spitzengerber und Spies Test software V4.1	NT-525	
<input type="checkbox"/> I+P 7780 Directional coupler 100 - 2000 MHz	NT-440	<input type="checkbox"/> Vertical coupling plane (ESD)	NT-531	
<input type="checkbox"/> ESH3-Z2 - Pulse limiter 9 kHz - 30 MHz	NT-441	<input type="checkbox"/> Test cable #4 for EN 61000-4-6	NT-553	
<input type="checkbox"/> Power Divider 6 dB/1 W/50 Ohm	NT-443	<input type="checkbox"/> Test cable #3 for conducted emission	NT-554	
<input type="checkbox"/> Directional coupler 0,1 MHz – 70 MHz	NT-444	<input type="checkbox"/> Test cable #5+#6 ESD-cable (2x470k)	NT-555 + NT-556	
<input type="checkbox"/> Directional coupler 0,1 MHz – 70 MHz	NT-445	<input type="checkbox"/> Test cable #8 Sucoflex 104EA	NT-559	
<input type="checkbox"/> Tube imitations according to EN 55015	NT-450	<input type="checkbox"/> Test cable #9 (for outdoor measurements)	NT-580	
<input type="checkbox"/> FCC-801-M3-16A Coupling decoupling network	NT-458	<input type="checkbox"/> Test cable #10 (for outdoor measurements)	NT-581	
<input type="checkbox"/> FCC-801-M2-50A Coupling decoupling network	NT-459	<input type="checkbox"/> Test cable #13 Sucoflex 104PE	NT-584	
<input type="checkbox"/> FCC-801-M5-25 Coupling decoupling network	NT-460	<input type="checkbox"/> Test cable #21 for SRM-3000	NT-592	
<input type="checkbox"/> FCC-801-AF10 Coupling decoupling network	NT-461	<input type="checkbox"/> Shield chamber	NT-600	
<input type="checkbox"/> FCC-801-S25 Coupling decoupling network	NT-462	<input type="checkbox"/> Climatic chamber	M-1200	

Appendix 1 (continued)

Test equipment used

					Division:
<input type="checkbox"/> Anechoic Chamber 3 m / 5 m measuring distance	EMV-100	<input type="checkbox"/> HF- Amplifier 9 kHz-225 MHz BBL200	EMV-300/1		Industry & Energy
<input type="checkbox"/> Turntable 6 m diameter	EMV-101	<input type="checkbox"/> HF- Amplifier 80 -1000 MHz BBA150	EMV-301		
<input type="checkbox"/> Antenna mast + controller	EMV-102+ EMV-103	<input type="checkbox"/> HF- Amplifier 0,8 - 6 GHz BBA150	EMV-302		Test report number: 2022-IN-AT-TICL-E-EX-000102-FG-001
<input type="checkbox"/> EMC Video/Audiosystem	EMV-104	<input type="checkbox"/> High Power Ant. 20-200 MHz HPBA-2510	EMV-303/1		
<input type="checkbox"/> EMC Software EMC32 Version 10.60.20	EMV-105	<input type="checkbox"/> High Power Ant. 20-200 MHz S12018-21	EMV-303/2		Page: 4 of 5
<input type="checkbox"/> Hornantenna 1 – 18 GHz HF 907	EMV-110	<input type="checkbox"/> Log.per Antenna 80-2700 MHz STLP 9128 E special	EMV-304		Date: 31.03.2022
<input type="checkbox"/> Antennapre.amp. 1 – 18 GHz BBV 9718 D	EMV-111/1	<input type="checkbox"/> Log.per Antenna 0,7 – 9 GHz STLP9149	EMV-305		
<input type="checkbox"/> Trilog Antenna 30-3000 MHz VULB9163	EMV-112	<input type="checkbox"/> HF- Amplifier 9 kHz-250 MHz BBA150 (low noise)	EMV-306		
<input type="checkbox"/> Monopol 9 kHz – 30 MHz VAMP 9243	EMV-113	<input type="checkbox"/> ISO11451-2 TLS 10 kHz – 30 MHz	EMV-307		
<input type="checkbox"/> Antennapre.amp 18 – 40 GHz BBV 9721	EMV-114	<input type="checkbox"/> Load Dump Generator LD 200N	EMV-350		
<input type="checkbox"/> Hornantenna 200 – 2000 MHz AH-220	EMV-115	<input type="checkbox"/> Ultra Compact Simulator UCS 200N100	EMV-351		
<input type="checkbox"/> DC Artificial Network PVDC 8300	EMV-150	<input type="checkbox"/> Automotive Power fail module PFM 200N100.1	EMV-352		
<input type="checkbox"/> AC Artificial Network NNLK 8121 RC	EMV-151	<input type="checkbox"/> Voltage Drop Simulator VDS 200Q100	EMV-353		
<input type="checkbox"/> AC Artificial Network NNLK 140	EMV- 153a-d	<input type="checkbox"/> Arb. Generator AutoWave	EMV-354		
<input type="checkbox"/> EMI Receiver ESW44	EMV-200/1	<input type="checkbox"/> Ultra Compact Simulator UCS 500N7	EMV-355		
<input type="checkbox"/> Signalgenerator 9 kHz – 40 GHz N5173B	EMV-201	<input type="checkbox"/> Coupling decoupling network CNI 503B7 / 32 A	EMV-356		
<input type="checkbox"/> GPS Frequency normal B-88	EMV-202	<input type="checkbox"/> Coupling decoupling network CNI 503B7 / 63 A	EMV-357		
<input type="checkbox"/> DC Power supply N5745A	EMV-203	<input type="checkbox"/> Telecom Surge Generator TSurge 7	EMV-358		
<input type="checkbox"/> Spektrum Analyzator FSV40	EMV-205	<input type="checkbox"/> Coupling decoupling network CNI 508N2	EMV-359		
<input type="checkbox"/> Thd Multimeter Model 2015	EMV-206	<input type="checkbox"/> Coupling decoupling network CNV 504N2.2	EMV-360		
<input type="checkbox"/> Poweramplifier PAS15000	EMV- 207/abc	<input type="checkbox"/> Immunity generator NSG4060/NSG4060-1	EMV-361		
<input type="checkbox"/> Inrush Current Source	EMV- 208/abc	<input type="checkbox"/> Coupling network CDND M316-2	EMV-362		
<input type="checkbox"/> Arb.-generator Sycore	EMV-209	<input type="checkbox"/> Coupling network CT419-5	EMV-363		
<input type="checkbox"/> Harmonics/Flicker analyzer ARS 16/3	EMV-210	<input type="checkbox"/> ESD Generator NSG 437	EMV-364		
<input type="checkbox"/> Power Supply Regatron AC	EMV-214	<input type="checkbox"/> Pulse Limiter VTSD 9561-F BNC	EMV-405		
<input type="checkbox"/> Power Supply Regatron DC	EMV-215	<input type="checkbox"/> Transient emission BSM200N40+BS200N100	EMV- 450+451		
<input type="checkbox"/> Harmonics/Flicker analyser Zimmer	EMV-216	<input type="checkbox"/> Cap. Coupling Clamp HFK	EMV-455		
<input type="checkbox"/> Flicker Impedanz Newton4th 753	EMV-218	<input type="checkbox"/> Mag. Field System MS100N+MC26100+MC2630	EMV- 456-458		
<input type="checkbox"/> Comemso	EMV-219				

Appendix 1 (continued)

Test equipment used

Division:
Industry & Energy

<input type="checkbox"/> Coupling network CDN M2-100A	EMV-459
<input type="checkbox"/> Coupling network CDN M3-32A	EMV-460
<input type="checkbox"/> Coupling network CDN M5-100A	EMV-461
<input type="checkbox"/> Current Clamp CIP 9136A	EMV-462
<input type="checkbox"/> DC Artificial Network HV-AN 150	EMV-464+465
<input type="checkbox"/> Coupling Clamp EM 101	EMV-466
<input type="checkbox"/> Decoupling Clamp FTC 101	EMV-467
<input type="checkbox"/> Power attenuator 10 dB / 250 Watt	EMV-469/2
<input type="checkbox"/> HV AMN NNHV 8123 800A	EMV-472
<input type="checkbox"/> HV AMN NNHV 8123 800A	EMV-473

Test report number:
2022-IN-AT-TICL-E-EX-
000102-FG-001

Page: 5 of 5

Date: 31.03.2022