

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No.....: CTA24042402301 FCC ID.....: 2A5XO-BY967

Compiled by

(position+printed name+signature)... File administrators Jinghua Xiao

Supervised by

(position+printed name+signature)..: Project Engineer Zoey Cao

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue.....: Apr. 28, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... Shenzhen Boyi Electronics Co., Ltd.

Street, Longgang District Shenzhen, China

Test specification:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Equipment description.....: Wireless Car Adapter

Trade Mark: N/A

Manufacturer Shenzhen Boyi Electronics Co., Ltd.

Model/Type reference...... BY967

BY967A, BY967B, BY967C, BY967D, BY967E, BY967F, BY967G,

BY967H, BY967J, BY967K, BY967L, BY967M, BY967N, BY967P,

BY967X, BY967Y, BY967Z

Modulation: GFSK

Frequency...... From 2402MHz to 2480MHz

Ratings DC 5.0V From external circuit

Result.....:PAS

Report No.: CTA24042402301 Page 2 of 35

TEST REPORT

Equipment under Test Wireless Car Adapter

Model /Type BY967

Listed Models BY967A, BY967B, BY967C, BY967D, BY967E, BY967F, BY967G,

BY967H, BY967J, BY967K, BY967L, BY967M, BY967N, BY967P, BY967Q, BY967R, BY967S, BY967T, BY967U, BY967V, BY967W,

BY967X, BY967Y, BY967Z

Shenzhen Boyi Electronics Co., Ltd. **Applicant**

Address 5F, #Building 5, Longbi Industrial Zone, NO.27 Dafa Road, Bantian

Street, Longgang District Shenzhen, China

Manufacturer Shenzhen Boyi Electronics Co., Ltd.

5F, #Building 5, Longbi Industrial Zone, NO.27 Dafa Road, Bantian Address

Street, Longgang District Shenzhen, China

Test Result:	PASS
root Noodit.	

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test CTA TESTING laboratory.

Page 3 of 35 Report No.: CTA24042402301

Contents

		TESTING	ontents	
	1	TEST STANDARDS	eTING	4
		CTA		
	<u>2</u>	SUMMARY		<u>5</u>
	2.1	General Remarks		5
	2.2	Product Description*		5
	2.3	Equipment Under Test		5
	2.4	Short description of the Equipment un	der Test (EUT)	5
	2.5	EUT operation mode	, ,	6
	2.6	Block Diagram of Test Setup		6
CIP	2.7	Related Submittal(s) / Grant (s)		6
	2.8	Modifications		6
		OTA		
	_			_
	<u>3</u>	TEST ENVIRONMENT		<u> 7</u>
	3.1	Address of the test laboratory		TED 7
	3.2	Test Facility		7
	3.3	Environmental conditions		7 7 7 8
	3.4	Summary of measurement results		8
	3.5	Statement of the measurement uncerta		8
	3.6	Equipments Used during the Test	y	9
	3.0	Equipments osculuting the rest		J
		TES		
	<u>4</u>	TEST CONDITIONS AND RES	<u>;ULTS</u>	11
	4.1	AC Power Conducted Emission		44
	4.1			11 14
		Radiated Emissions and Band Edge		14
	4.3 4.4	Maximum Peak Output Power	CTA'	21 22
		Power Spectral Density		24
	4.5	6dB Bandwidth	CTA TESTING	24
	4.6	Out-of-band Emissions		20
	4.7	Antenna Requirement		30
	5	TEST SETUP PHOTOS OF TH	<u> 1E EUT</u>	
	_	TING		
	•	BUOTOO OF THE SUT		
	<u>6</u>		······	
		Carlo C.	CTA TESTING	
			CIP	
				CTATESTING

Page 4 of 35 Report No.: CTA24042402301

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices CTATE KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 CTATESTING

Report No.: CTA24042402301 Page 5 of 35

SUMMARY

General Remarks

2.1 General Remarks		TATESTING		
Date of receipt of test sample		Apr. 18, 2024	STING	
			TES	
Testing commenced on	VA) WHEE CA	Apr. 18, 2024	CTA.	
			(CAN	
Testing concluded on	:	Apr. 28, 2024	O Committee of the Comm	

2.2 Product Description*

2.2 Product Description	n*
Product Description:	Wireless Car Adapter
Model/Type reference:	BY967
Power supply:	DC 5.0V from external circuit
PC information (Auxiliary test supplied by testing Lab):	Model: E470C Trade Mark: thinkpad
Hardware version:	V1.0.
Software version:	V1.0
Testing sample ID:	CTA240424023-1# (Engineer sample) CTA240424023-2# (Normal sample)
Bluetooth BLE	
Supported type:	Bluetooth low Energy
Modulation:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40
Channel separation:	2 MHz
Antenna type:	PCB antenna
Antenna gain:	0.75 dBi

2.3 Equipment Under Test

Power supply system utilised

	Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
TE			0	12 V DC	0	24 V DC
	Other (specified in blank below)					
h 1	TATES		nc.	5.0V from external circuit	10	

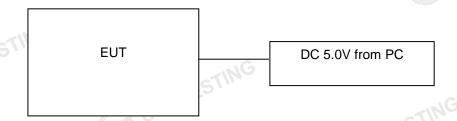
DC 5.0V from external circuit

2.4 Short description of the Equipment under Test (EUT)

This is a Wireless Car Adapter.

For more details, refer to the user's manual of the EUT.

Report No.: CTA24042402301 Page 6 of 35


2.5 EUT operation mode

The Applicant provides command "*#*#3646633#*#*" access (Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing. There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

Operation Frequency:

	Channel	Frequency (MHz)
	00	2402
	01	2404
	02	2406
	TING	:
STATE	19	2440
, G v	TESTIN	:
,	37	2476
	38	2478
	39	2480
	2.6 Block Diagram of Test Setup	CTATESTII.
(G		

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria. CTA TESTING

Page 7 of 35 Report No.: CTA24042402301

TEST ENVIRONMENT 3

Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:	23 ° C
W.	TES
Humidity:	44 %
Atmospheric pressure:	950-1050mbar

AC Main Conducted testing:

Temperature:	24 ° C
~1G	
Humidity:	47 %
. (
Atmospheric pressure:	950-1050mbar

	Allitosphene pressure.	930-103011bai	
С	onducted testing:	LES.	TING
	Temperature:	24 ° C	TESI
	No. of the last of	Tid.	(A)
	Humidity:	46 %	
	Atmospheric pressure:	950-1050mbar	

Report No.: CTA24042402301 Page 8 of 35

Summary of measurement results

	Test Specification clause	Test case	Test Mode	Test Channel		ecorded Report	Test result
	§15.247(e)	Power spectral density	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
	§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
	§15.247(b)(3)	Maximum output Peak power	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
CTATE	§15.247(d)	Band edge compliance conducted	BLE 1Mpbs	☑ Lowest☑ Highest	BLE 1Mpbs	☑ Lowest☑ Highest	complies
	§15.205	Band edge compliance radiated	BLE 1Mpbs	☑ Lowest☑ Highest	BLE 1Mpbs	☑ Lowest☑ Highest	complies
	§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
	§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	complies
	§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs	-/-	BLE 1Mpbs	-1-	complies
	§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs	'NG -/-	BLE 1Mpbs	-/-	complies

Remark:

- The measurement uncertainty is not included in the test result.
- We tested all test mode and recorded worst case in report

Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	-ING/	0.57 dB	(1)
Spectrum bandwidth	-25\\\\	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

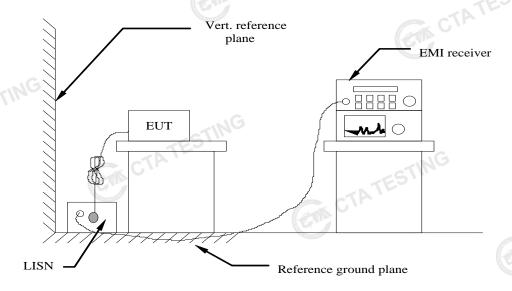
Page 9 of 35 Report No.: CTA24042402301

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01
LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01
EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01
EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01
Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01
Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01
Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01
Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01
WIDEBAND RADIO COMMUNICATION TESTER	G CMW500	R&S	CTA-302	2023/08/02	2024/08/01
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01
Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01
Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01
Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01
Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01
CAN		TATESTING		TING	1
			CTA	TESTING	

Page 10 of 35 Report No.: CTA24042402301


	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
	CTING					
CTATE	5.	CTATESTING				
1		CTATES				

Report No.: CTA24042402301 Page 11 of 35

TEST CONDITIONS AND RESULTS

AC Power Conducted Emission

TEST CONFIGURATION

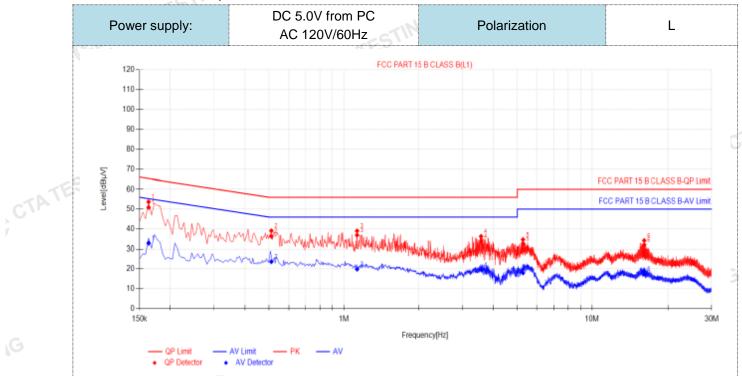
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (dBuV)					
Frequency range (IMF12)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
* Decreases with the logarithm of the frequen	ncy.					

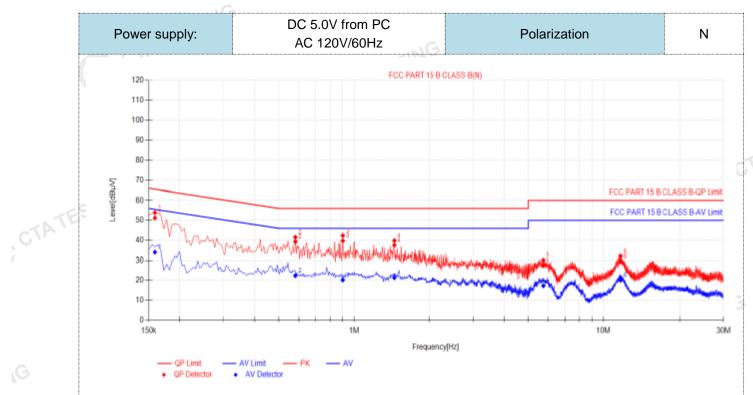

TEST RESULTS

Remark:

1. BLE 1Mpbs was tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs High channel was reported as below:

Report No.: CTA24042402301 Page 12 of 35

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:


F	Final Data List												
	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
	1	0.1635	9.93	40.95	50.88	65.28	14.40	22.94	32.87	55.28	22.41	PASS	
	2	0.51	10.02	26.24	36.26	56.00	19.74	13.66	23.68	46.00	22.32	PASS	
	3	1.131	9.90	26.97	36.87	56.00	19.13	10.01	19.91	46.00	26.09	PASS	
	4	3.5655	9.96	23.86	33.82	56.00	22.18	9.80	19.76	46.00	26.24	PASS	
	5	5.2665	10.03	22.58	32.61	60.00	27.39	7.97	18.00	50.00	32.00	PASS	
	6	16.197	10.33	21.64	31.97	60.00	28.03	7.19	17.52	50.00	32.48	PASS	

Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

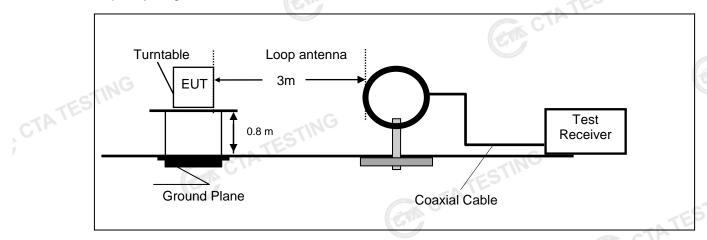
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dBµV) QP Value (dBµV)
- CTA TESTING 4). $AVMargin(dB) = AV Limit (dB\mu V) - AV Value (dB\mu V)$

CTATESTING

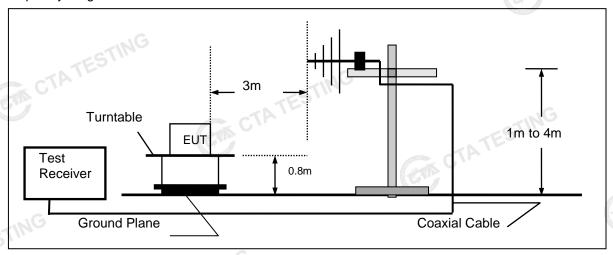
Page 13 of 35 Report No.: CTA24042402301

	Final	Final Data List												
	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dΒμV]	AV Value [dBµV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict		
3	1	0.159	10.03	41.24	51.27	65.52	14.25	23.98	34.01	55.52	21.51	PASS		
	2	0.582	10.13	29.17	39.30	56.00	16.70	12.30	22.43	46.00	23.57	PASS		
	3	0.9015	10.13	29.60	39.73	56.00	16.27	10.10	20.23	46.00	25.77	PASS		
	4	1.4505	10.14	27.46	37.60	56.00	18.40	11.24	21.38	46.00	24.62	PASS		
	5	5.73	10.21	17.15	27.36	60.00	32.64	7.12	17.33	50.00	32.67	PASS		
	6	11.715	10.41	19.07	29.48	60.00	30.52	9.69	20.10	50.00	29.90	PASS		

Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

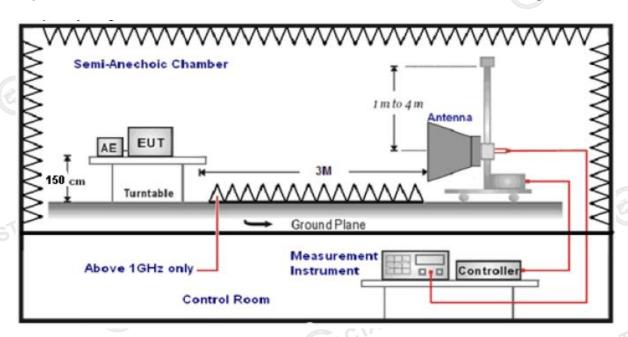

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V) CTATESTI

Page 14 of 35 Report No.: CTA24042402301


Radiated Emissions and Band Edge

TEST CONFIGURATION

Frequency range 9 KHz – 30MHz



Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Report No.: CTA24042402301 Page 15 of 35

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.

The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	QP	
2 00 11 11 11	Peak Value: RBW=1MHz/VBW=3MHz,	TING
1GHz-40GHz	Sweep time=Auto	Peak
10112-400112	Average Value: RBW=1MHz/VBW=10Hz,	Loak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	(exp

Report No.: CTA24042402301 Page 16 of 35

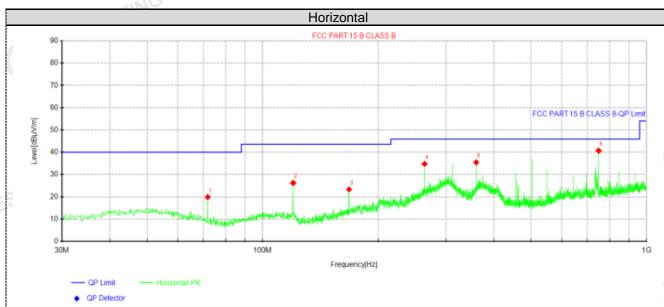
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)		
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)		
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)		
1.705-30	3	20log(30)+ 40log(30/3)	30		
30-88	3	40.0	100		
88-216	3	43.5	150		
216-960	3	46.0	200		
Above 960	3	54.0	500		

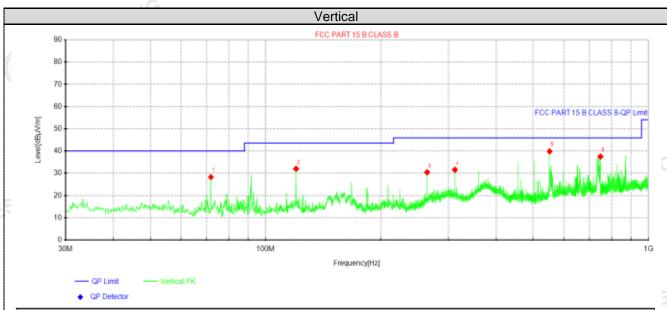

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- 2. BLE 1Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report. CTATESTING

For 30MHz-1GHz

Page 17 of 35 Report No.: CTA24042402301


Susp	ected Data	List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolorita
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	71.9525	35.32	19.88	-15.44	40.00	20.12	100	292	Horizontal
2	119.967	40.55	26.29	-14.26	43.50	17.21	100	121	Horizontal
3	167.982	39.00	23.33	-15.67	43.50	20.17	100	339	Horizontal
4	264.012	47.15	34.81	-12.34	46.00	11.19	100	231	Horizontal
5	360.042	46.48	35.54	-10.94	46.00	10.46	100	303	Horizontal
6	750.103	45.40	40.67	-4.73	46.00	5.33	100	133	Horizontal

TATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m) CTATESTING

Page 18 of 35 Report No.: CTA24042402301

Susp	ected Data	List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Folanty
1	71.9525	43.76	28.32	-15.44	40.00	11.68	100	226	Vertical
2	119.967	46.24	31.98	-14.26	43.50	11.52	100	288	Vertical
3	264.012	42.76	30.42	-12.34	46.00	15.58	100	141	Vertical
4	311.906	42.88	31.54	-11.34	46.00	14.46	100	141	Vertical
5	551.981	48.41	39.86	-8.55	46.00	6.14	100	325	Vertical
6	749.012	42.32	37.56	-4.76	46.00	8.44	100	104	Vertical

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTATESTING

Page 19 of 35 Report No.: CTA24042402301

For 1GHz to 25GHz

GFSK (above 1GHz)

Freque	Frequency(MHz):			2402		Polarity:		HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
4804.00	61.67	PK	74	12.33	65.94	32.33	5.12	41.72	-4.27		
4804.00	44.28	AV	54	9.72	48.55	32.33	5.12	41.72	-4.27		
7206.00	53.97	PK	74	20.03	54.49	36.6	6.49	43.61	-0.52		
7206.00	41.78	AV	54	12.22	42.30	36.6	6.49	43.61	-0.52		

Freque	Frequency(MHz):			02	Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	60.04	PK	74	13.96	64.31	32.33	5.12	41.72	-4.27
4804.00	42.88	AV	54	11.12	47.15	32.33	5.12	41.72	-4.27
7206.00	51.86	PK	74	22.14	52.38	36.6	6.49	43.61	-0.52
7206.00	40.31	AV	54	13.69	40.83	36.6	6.49	43.61	-0.52

Frequency(MHz):		2440		Polarity:		HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	61.20	PK	74	12.80	65.08	32.6	5.34	41.82	-3.88
4880.00	43.86	AV	54	10.14	47.74	32.6	5.34	41.82	-3.88
7320.00	53.21	PK	74	20.79	53.32	36.8	6.81	43.72	-0.11
7320.00	43.31	AV	54	10.69	43.42	36.8	6.81	43.72	-0.11

100 P 2 0 2 11 2 15 15			1111				-11/	G	
Freque	Frequency(MHz):		2440		Polarity:		VERTICAL		
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	59.52	PK	74	14.48	63.40	32.6	5.34	41.82	-3.88
4880.00	42.47	AV	54	11.53	46.35	32.6	5.34	41.82	-3.88
7320.00	51.89	PK	74	22.11	52.00	36.8	6.81	43.72	-0.11
7320.00	40.32	AV	54	13.68	40.43	36.8	6.81	43.72	-0.11
			STIN						

Frequency(MHz):		2480		Polarity:		HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.93	PK	74	13.07	64.01	32.73	5.66	41.47	-3.08
4960.00	45.32	AV	54	8.68	48.40	32.73	5.66	41.47	-3.08
7440.00	52.71	PK	74	21.29	52.26	37.04	7.25	43.84	0.45
7440.00	43.45	PK	54	10.55	43.00	37.04	7.25	43.84	0.45

Freque	Frequency(MHz):		2480		Polarity:		VERTICAL		
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	58.92	PK	74	15.08	62.00	32.73	5.66	41.47	-3.08
4960.00	42.00	AV	54	12.00	45.08	32.73	5.66	41.47	-3.08
7440.00	51.53	PK	74	22.47	51.08	37.04	7.25	43.84	0.45
7440.00	41.63	PK	54	12.37	41.18	37.04	7.25	43.84	0.45

Report No.: CTA24042402301 Page 20 of 35

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

PK AV sion	Limit (dBuV/m) 74 54 240 Limit (dBuV/m) 74 54 240	Margin (dB) 14.18 12.72	Raw Value (dBuV) 71.64 53.05 Pola Raw Value (dBuV) 70.24 51.70	Antenna Factor (dB/m) 27.42 27.42 arity: Antenna Factor (dB/m) 27.42	Cable Factor (dB) 4.31 4.31 Cable Factor (dB) 4.31	Pre- amplifier (dB) 42.15 42.15 VERTICAL Pre- amplifier (dB)	Correction Factor
sion rel //m) PK AV	54 24 Limit (dBuV/m) 74 54	11.37 02 Margin (dB) 14.18 12.72	53.05 Pola Raw Value (dBuV) 70.24	27.42 Antenna Factor (dB/m) 27.42	4.31 Cable Factor (dB)	42.15 VERTICAL Pre- amplifier	-10.42 Correction Factor
sion rel //m) PK AV	Limit (dBuV/m) 74 54	Margin (dB) 14.18 12.72	Raw Value (dBuV) 70.24	Antenna Factor (dB/m) 27.42	Cable Factor (dB)	Pre- amplifier	Correction Factor
sion rel //m) PK AV	Limit (dBuV/m) 74 54	Margin (dB) 14.18 12.72	Raw Value (dBuV) 70.24	Antenna Factor (dB/m) 27.42	Factor (dB)	Pre- amplifier	Correction Factor
rel //m) PK AV	(dBuV/m) 74 54	(dB) 14.18 12.72	Value (dBuV) 70.24	Factor (dB/m) 27.42	Factor (dB)	amplifier	Factor
AV	54	12.72			4.31		(dB/m)
:			51.70	1	_	42.15	-10.42
	248			27.42	4.31	42.15	-10.42
zion	2480		Polarity:		HORIZONTAL		
ام	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
PK	74	13.64	70.47	27.7	4.47	42.28	-10.11
AV	54	10.09	54.02	27.7	4.47	42.28	-10.11
	2480		Polarity:		VERTICAL		
sion rel //m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
PK	74	15.14	68.97	27.7	4.47	42.28	-10.11
AV	54	11.38	52.73	27.7	4.47	42.28	-10.11
/ /	el /m) PK AV V/m) =Ra lB/m) = Ai	El (dBuV/m) PK 74 AV 54 V/m) =Raw Value (dBB/m) = Antenna Factor	Limit Margin (dBuV/m) (dB)	Comparison Com	Column C	Column C	Limit (dBuV/m) Margin (dB) Value (dB/m) Factor (dB) (dB) (dB) (dB) (dB) (dB) (dB)

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Page 21 of 35 Report No.: CTA24042402301

4.3 **Maximum Peak Output Power**

Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

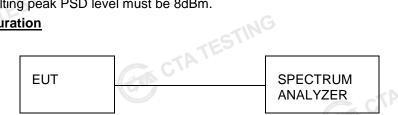
Test Configuration

Test Results

est Results				ATESTIN
Туре	Channel	Output power (dBm)	Limit (dBm)	Result
10.	00	-1.31		
GFSK 1Mbps	19	-1.66	30.00	Pass
-TA	39	-1.69		

Page 22 of 35 Report No.: CTA24042402301

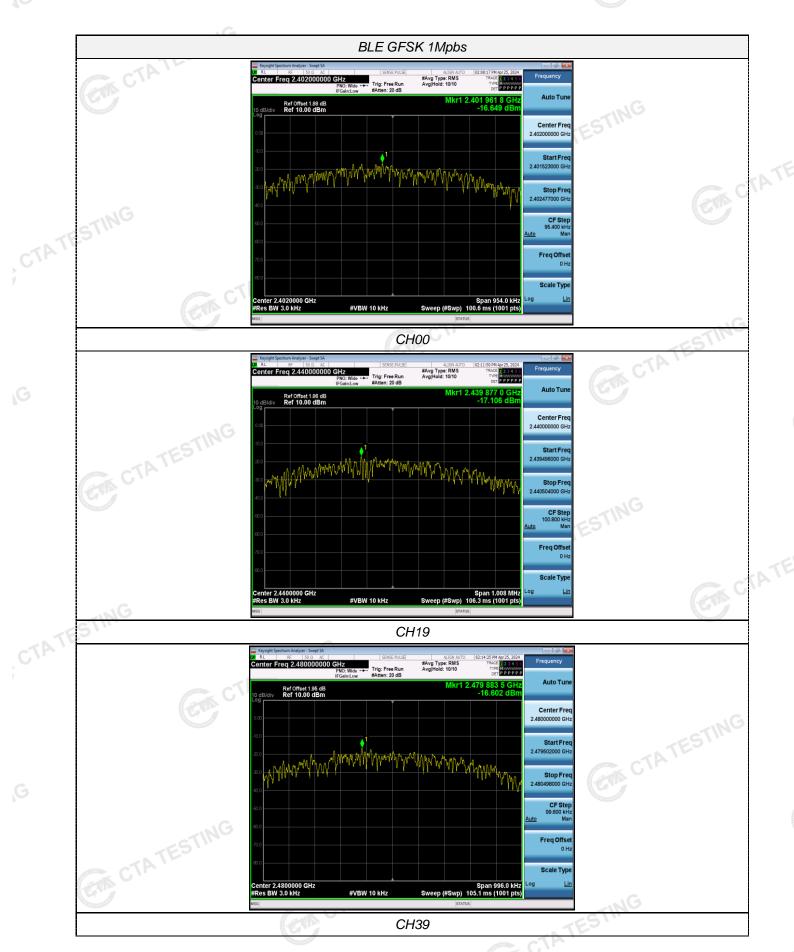
Power Spectral Density


Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- Set the VBW ≥ 3× RBW.
- CTA TESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.


Test Configuration

Test Results

ſ			Power Spectral Density		(21)
	Туре	Channel	(dBm/3KHz)	Limit (dBm/3KHz)	Result
AIL		00	-16.65		
	GFSK 1Mbps	19	-17.11	8.00	Pass
		39	-16.60	G	
	Test plot as follows	S:		The	

Page 23 of 35 Report No.: CTA24042402301

Page 24 of 35 Report No.: CTA24042402301

4.5 6dB Bandwidth

Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

Test Results		ANALYZ	FR	CTATESTING
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
CIM	00	0.636		
GFSK 1Mbps	19	0.672	≥500	Pass
CIL	39	0.664		
Test plot as follows:	CIA C	rate"	CTATESTIN	G