

Report No.: JYTSZ-R12-2300900

FCC RF Test Report

Applicant:	NU-ERA TELECOMMUNICATIONS INC
Address of Applicant:	848 Brickell Av. Suite 1015, Miami, Florida, United States 33131
Equipment Under Test (E	UT)
Product Name:	mobile phone
Model No.:	X63Pro
Trade Mark:	XMOBILE
FCC ID:	2A5WBXMOX63PR
Applicable Standards:	FCC CFR Title 47 Part 15C (§15.247)
Date of Sample Receipt:	07 Jul., 2023
Date of Test:	08 Jul., to 09 Aug., 2023
Date of Report Issued:	10 Aug., 2023
Test Result:	PASS

	lan 1:		
Tested by:	GROUP SU	Date:	10 Aug., 2023
Reviewed by:	Test Engineer Met Project Engineer	Date:	10 Aug., 2023
Approved by:	Manager	Date:	10 Aug., 2023

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

1 Version

Version No.	Date	Description
00	10 Aug., 2023	Original

2 Contents

			Page
С	over P	age	1
1	Ve	rsion	2
2	Co	ntents	
3	Ge	neral Information	4
	3.1	Client Information	4
	3.2	General Description of E.U.T.	4
	3.3	Test Mode and Test Environment	
	3.4	Description of Test Auxiliary Equipment	5
	3.5	Measurement Uncertainty	5
	3.6	Additions to, Deviations, or Exclusions from the Method	5
	3.7	Laboratory Facility	5
	3.8	Laboratory Location	5
	3.9	Test Instruments List	6
4	Ме	asurement Setup and Procedure	8
	4.1	Test Channel	8
	4.2	Test Setup	8
	4.3	Test Procedure	10
5	Tes	st Results	11
	5.1	Summary	11
	5.1	.1 Clause and Data Summary	11
	5.1	.2 Test Limit	12
	5.2	Antenna requirement	13
	5.3	AC Power Line Conducted Emission	14
	5.4	Emissions in Restricted Frequency Bands	16
	5.5	Emissions in Non-restricted Frequency Bands	

3 General Information

3.1 Client Information

Applicant:	NU-ERA TELECOMMUNICATIONS INC
Address:	848 Brickell Av. Suite 1015, Miami, Florida, United States 33131
Manufacturer:	NU-ERA TELECOMMUNICATIONS INC
Address:	848 Brickell Av. Suite 1015, Miami, Florida, United States 33131

3.2 General Description of E.U.T.

Product Name:	mobile phone
Model No.:	X63Pro
Operation Frequency:	2402 MHz - 2480 MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Technology:	GFSK
Data Speed:	1 Mbps (LE 1M PHY)
Antenna Type:	Internal Antenna
Antenna Gain:	2.5 dBi (declare by applicant)
Antenna transmit mode:	SISO (1TX, 1RX)
Power Supply:	Rechargeable Li-ion Battery DC3.8V, 3000mAh
AC Adapter:	Input: AC100-220V, 50/60Hz, 0.3A
	Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

3.3 Test Mode and Test Environment

Test Mode:				
Transmitting mode	Keep the EUT in continuous transmitting with modulation			
Remark:				
-	emission and radiated spurious emission (below 1GHz), pre-scan all data speed, found received a construction is case mode.			
 Channel Low, Mid and High for each type band with rated data rate were chosen for full testing. The field strength of spurious radiation emission was measured as EUT stand-up position (H mode) and lie down position (E1, E2 mode) for these modes. Just the worst case position (H mode) shown in report. 				
Operating Environment:				

Operating Environment:	
Temperature:	15℃ ~ 35℃
Humidity:	20 % ~ 75 % RH
Atmospheric Pressure:	1008 mbar

3.4 Description of Test Auxiliary Equipment

The EUT has been tested as an independent unit.

3.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 10MHz)	1.9 dB
Conducted Emission for LISN (10MHz ~ 30MHz)	2.6 dB
Radiated Emission (30MHz ~ 1GHz) (3m SAC)	3.8 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	3.6 dB
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	5.34 dB
Radiated Emission (30MHz ~ 1GHz) (10m SAC)	3.7 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

3.6 Additions to, Deviations, or Exclusions from the Method

No

3.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

3.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

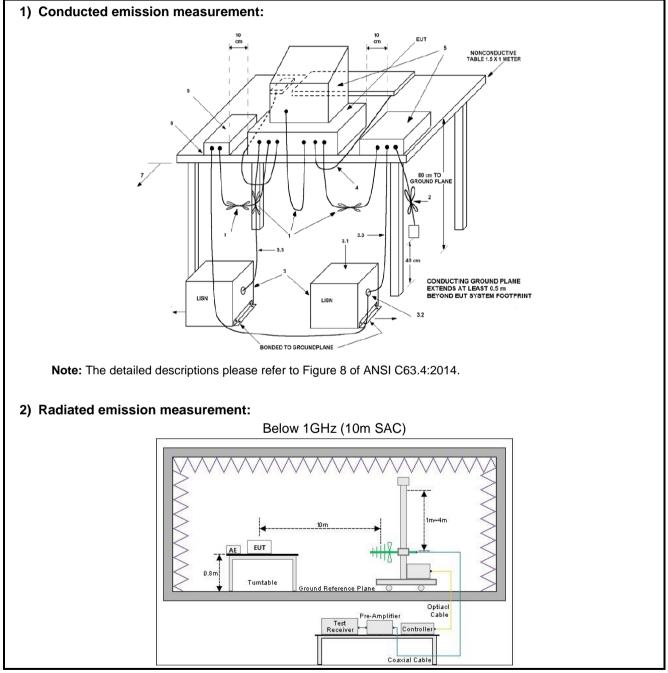
3.9 Test Instruments List

Radiated Emission(3m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	WXJ001-1	04-14-2021	04-13-2024	
Loop Antenna	Schwarzbeck	FMZB 1519 B	WXJ002-4	02-09-2023	02-08-2024	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	02-09-2023	02-08-2024	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	02-09-2023	02-08-2024	
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-5	01-09-2023	01-08-2024	
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXJ001-2	01-10-2023	01-09-2024	
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXJ001-3	01-10-2023	01-09-2024	
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA-180400G45B	WXJ002-7	01-11-2023	01-10-2024	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	01-11-2023	01-10-2024	
Spectrum Analyzer	Rohde & Schwarz	FSP 30	WXJ004	01-10-2023	01-09-2024	
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	10-17-2022	10-16-2023	
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	01-18-2023	01-17-2024	
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG001-5	01-18-2023	01-17-2024	
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS-8M	WXG001-7	01-18-2023	01-17-2024	
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N/A		
Test Software	Tonscend	TS+		Version: 3.0.0.1		

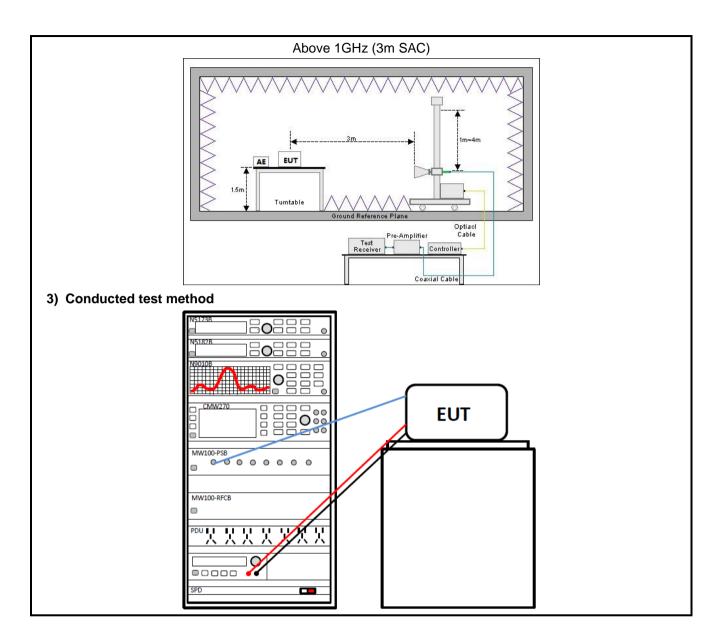
Radiated Emission(10m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
10m SAC	ETS	RFSD-100-F/A	WXJ090	04-28-2021	04-27-2024	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	WXJ090-1	01-17-2023	01-16-2024	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	WXJ090-2	01-10-2023	01-09-2024	
EMI Test Receiver	R&S	ESR 3	WXJ090-3	01-10-2023	01-09-2024	
EMI Test Receiver	R&S	ESR 3	WXJ090-4	01-11-2023	01-09-2024	
Low Pre-amplifier	Bost	LNA 0920N	WXJ090-6	01-10-2023	01-09-2024	
Low Pre-amplifier	Bost	LNA 0920N	WXJ090-7	01-10-2023	01-09-2024	
Cable	Bost	JYT10M-1G-NN-10M	WXG002-7	01-18-2023	01-17-2024	
Cable	Bost	JYT10M-1G-NN-10M	WXG002-8	01-18-2023	01-17-2024	
Test Software	R&S	EMC32		Version: 10.50.4	0	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESR3	WXJ003-2	07-05-2023	07-04-2024	
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	01-10-2023	01-09-2024	
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	01-11-2023	01-10-2024	
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-22-2023	02-21-2024	
RF Switch	TOP PRECISION	RSU0301	WXG003	N/A		
Test Software	AUDIX	E3	V	Version: 6.110919b		

Conducted Method:									
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	10-17-2022	10-16-2023				
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	01-09-2023	01-08-2025				
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	10-17-2022	10-16-2023				
DC Power Supply	Keysight	E3642A	WXJ025-2	Ν	J/A				
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N	J/A				
Test Software	MWRFTEST	MTS 8310		Version: 2.0.0.0	_				


4 Measurement Setup and Procedure

4.1 Test Channel


According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowe	Lowest channel		le channel	Highest channel		
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	
0	2402	20	2442	39	2480	

4.2 Test Setup

4.3 Test Procedure

Test method	Test step
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Radiated emission	For below 1GHz:
	 The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 10 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 10 m.
	 EUT works in each mode of operation that needs to be tested , and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
	For above 1GHz:
	 The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested , and having
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
	3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
Conducted test method	 The BLE antenna port of EUT was connected to the test port of the test system through an RF cable.
	 The EUT is keeping in continuous transmission mode and tested in all modulation modes.
	 Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through the test software.

5 Test Results

5.1 Summary

5.1.1 Clause and Data Summary

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	See Section 5.2	Pass
AC Power Line Conducted Emission	15.207	See Section 5.3	Pass
Conducted Output Power	15.247 (b)(3)	Appendix A – BLE-1M PHY	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A – BLE-1M PHY	Pass
Power Spectral Density	15.247 (e)	Appendix A – BLE-1M PHY	Pass
Band-edge Emission Conduction Spurious Emission	15.247 (d)	Appendix A – BLE-1M PHY	Pass
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	See Section 5.4	Pass
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	See Section 5.5	Pass
Remark:			1

1. Pass: The EUT complies with the essential requirements in the standard.

2. N/A: Not Applicable.

3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method:

ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5.1.2 Test Limit

Conducted Output Power and 6dB Emission Bandwidth The 99% Occupied Bandwidth N/A Power Spectral Density For a inter In ar spectral Band-edge Emission high	Frequency (MHz) 0.15 – 0.5 0.5 – 5 5 – 30 Note 1: The limit level in dBµ Note 2: The more stringent lin systems using digital r 5725-5850 MHz band e minimum 6 dB bandw digitally modulated sys ntional radiator to the a d during any time inter ny 100 kHz bandwidth ctrum or digitally modu uency power that is pr	66 to 5 6 V decreases linearly mit applies at transiti modulation in t ls: 1 Watt. vidth shall be a stems, the power antenna shall r val of continuct outside the fre ulated intention	he 902-928 M t least 500 kH ver spectral de tot be greater ous transmissi equency band al radiator is c	Average 56 to 46 Note 1 46 50 of frequency. 1Hz, 2400-2483.5 MHz Iz. ensity conducted from than 8 dBm in any 3 I ton. in which the spread	the
Emission For and Conducted Output Power For and 6dB Emission Bandwidth The 99% Occupied Bandwidth N/A Power Spectral Density For and In ar specified Band-edge Emission high	(MHz) 0.15 – 0.5 0.5 – 5 5 – 30 Note 1: The limit level in dBµ Note 2: The more stringent lin systems using digital r 5725-5850 MHz bandw digitally modulated system ntional radiator to the a d during any time inter ny 100 kHz bandwidth ctrum or digitally modu	66 to 5 6 V decreases linearly mit applies at transiti modulation in t ls: 1 Watt. vidth shall be a stems, the power antenna shall r val of continuct outside the fre ulated intention	66 Note 1 66 60 7 with the logarithm ion frequencies. he 902-928 M t least 500 kH ver spectral de not be greater bus transmissi equency band al radiator is o	56 to 46 Note 1 46 50 of frequency. 1Hz, 2400-2483.5 MHz Iz. ensity conducted from than 8 dBm in any 3 ligon. in which the spread	the
Emission For and Conducted Output Power For and 6dB Emission Bandwidth The 99% Occupied Bandwidth N/A Power Spectral Density For and In ar spec freque dB b Band-edge Emission high	0.5 – 5 5 – 30 Note 1: The limit level in dBµ Note 2: The more stringent lin 5725-5850 MHz band e minimum 6 dB bandw digitally modulated sys ntional radiator to the a d during any time inter ny 100 kHz bandwidth ctrum or digitally modu	V decreases linearly mit applies at transiti modulation in t ls: 1 Watt. vidth shall be a stems, the pow antenna shall r val of continuc outside the fre ilated intention	in frequencies. with the logarithm ion frequencies. he 902-928 M t least 500 kH ver spectral de not be greater bus transmissi equency band al radiator is o	46 50 of frequency. 1Hz, 2400-2483.5 MHz Iz. ensity conducted from than 8 dBm in any 3 I ion. in which the spread	the
Emission For and Conducted Output Power For and 6dB Emission Bandwidth The 99% Occupied Bandwidth N/A Power Spectral Density For and In ar spec freque dB b Band-edge Emission high	5 – 30 Note 1: The limit level in dBµ Note 2: The more stringent lin systems using digital r 5725-5850 MHz band minimum 6 dB bandw digitally modulated sys ntional radiator to the a d during any time inter ny 100 kHz bandwidth ctrum or digitally modu	V decreases linearly mit applies at transiti modulation in t ls: 1 Watt. vidth shall be a stems, the pow antenna shall r val of continuc outside the fre ilated intention	with the logarithm ion frequencies. he 902-928 M t least 500 kH ver spectral de not be greater ous transmissi equency band al radiator is c	50 of frequency. 1Hz, 2400-2483.5 MHz Iz. Iz. ensity conducted from than 8 dBm in any 3 l ion.	the
Conducted Output Power For and 6dB Emission Bandwidth The 99% Occupied Bandwidth N/A Power Spectral Density For and In ar spectral Band-edge Emission high	Note 1: The limit level in dBµ Note 2: The more stringent lin systems using digital r 5725-5850 MHz band minimum 6 dB bandw digitally modulated sys ntional radiator to the a d during any time inter ny 100 kHz bandwidth ctrum or digitally modu	V decreases linearly mit applies at transiti modulation in t ls: 1 Watt. vidth shall be a stems, the pow antenna shall r val of continuc outside the fre ilated intention	with the logarithm ion frequencies. he 902-928 M t least 500 kH ver spectral de not be greater ous transmissi equency band al radiator is c	of frequency. IHz, 2400-2483.5 MH: Iz. ensity conducted from than 8 dBm in any 3 l ion. i in which the spread	the
Conducted Output Power and 6dB Emission Bandwidth The 99% Occupied Bandwidth N/A Power Spectral Density For a inter band In ar spectral Density In ar band Band-edge Emission	Note 2: The more stringent lin systems using digital r 5725-5850 MHz band minimum 6 dB bandw digitally modulated sys ntional radiator to the a d during any time inter ny 100 kHz bandwidth ctrum or digitally modu	mit applies at transiti modulation in t ls: 1 Watt. vidth shall be a stems, the pow antenna shall r val of continuc outside the fre ilated intention	he 902-928 M t least 500 kH ver spectral de tot be greater ous transmissi equency band al radiator is c	IHz, 2400-2483.5 MHz Iz. ensity conducted from than 8 dBm in any 3 I ion.	the
Conducted Output Power and 6dB Emission Bandwidth The 99% Occupied Bandwidth N/A Power Spectral Density For a inter band In ar spectral Density In ar band Band-edge Emission	5725-5850 MHz band minimum 6 dB bandw digitally modulated sys ntional radiator to the a d during any time inter ny 100 kHz bandwidth ctrum or digitally modu	Is: 1 Watt. vidth shall be a stems, the pow antenna shall r val of continuc outside the fre ulated intention	t least 500 kH ver spectral de not be greater ous transmissi equency band al radiator is o	lz. ensity conducted from than 8 dBm in any 3 l ion. I in which the spread	the
99% Occupied Bandwidth N/A Power Spectral Density For band In ar spec freq dB b band-edge Emission	digitally modulated sys ntional radiator to the a d during any time inter ny 100 kHz bandwidth ctrum or digitally modu	stems, the pow antenna shall r val of continuc outside the fre ilated intention	ver spectral de not be greater ous transmissi equency band al radiator is c	ensity conducted from than 8 dBm in any 3 l ion. I in which the spread	
Power Spectral Density In ar spec freq dB b high	digitally modulated sys ntional radiator to the a d during any time inter ny 100 kHz bandwidth ctrum or digitally modu	antenna shall r val of continuc outside the fre lated intention	not be greater bus transmissi equency band al radiator is o	than 8 dBm in any 3 l on. in which the spread	
Power Spectral Density inter band In ar spec freq dB b Band-edge Emission high	ntional radiator to the a d during any time inter ny 100 kHz bandwidth ctrum or digitally modu	antenna shall r val of continuc outside the fre lated intention	not be greater bus transmissi equency band al radiator is o	than 8 dBm in any 3 l on. in which the spread	
spec freq dB b Band-edge Emission high	ctrum or digitally modu	lated intention	al radiator is o		
Conduction Spurious pow Emission perm this limit whice	below that in the 100 k nest level of the desired ated measurement, pro- peak conducted power ver limits based on the mitted under paragraph paragraph shall be 30 ts specified in §15.209 ch fall in the restricted of the radiated emission	Hz bandwidth d power, based ovided the trar r limits. If the tr use of RMS as h (b)(3) of this dB instead of (a) is not requi bands, as defin	within the ban d on either an asmitter demo ransmitter con veraging over section, the at 20 dB. Attenu red. In additio ned in §15.203	diator shall be at least and that contains the RF conducted or a onstrates compliance v nplies with the conduct a time interval, as ttenuation required un uation below the gener on, radiated emissions 5(a), must also compl	vith tted ider ral
	Frequency	Limit (di		Detector	
Ⅰ	(MHz) 30 – 88	@ 3m 40.0	@ 10m 30.0	Quasi-peak	
Emissions in Restricted	88 - 216	40.0	33.5	Quasi-peak Quasi-peak	
Frequency Bands	216 - 960	46.0	36.0	Quasi-peak	
	960 - 1000	54.0	44.0	Quasi-peak	1
	Note: The more stringent limit				1
			Limit (dBµV/m)) @ 3m	1
Frequency Bands	Frequency	Aver		Peake	
	Above 1 GHz	54.	.0	74.0	
N	Note: The measurement band	width shall be 1 MF	z or greater.		

5.2 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)(4)

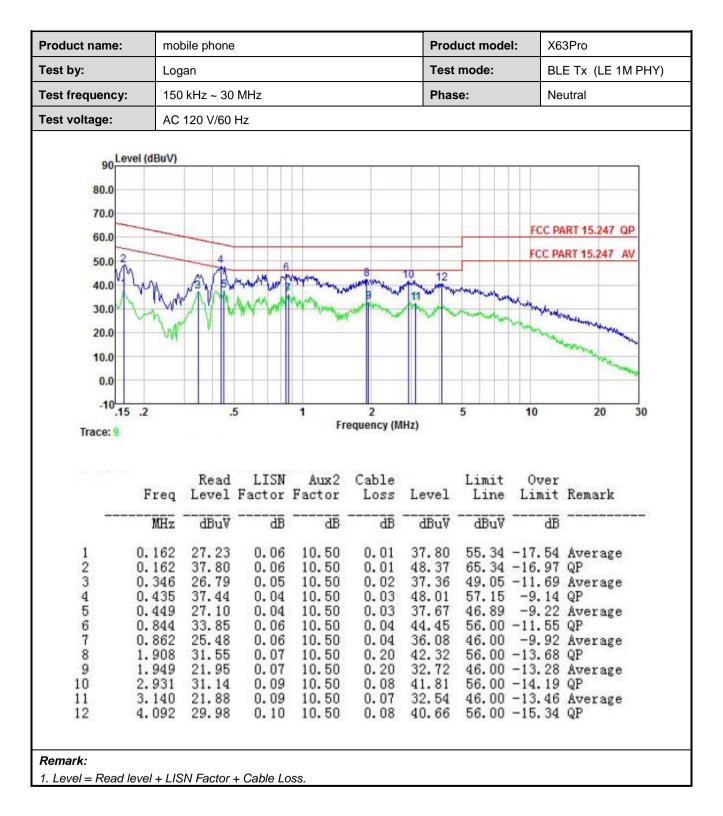
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:


The BLE antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 2.5 dBi. See product internal photos for details.

Product name:	mob	mobile phone				Produ	ct model:	X63	Pro	
ſest by:	Loga	an				Test m	node:	BLE	Tx (LE 1M	PHY)
Test frequency:	150	kHz ~ 30	MHz			Phase	:	Line		
Fest voltage:	AC ²	120 V/60	Hz					·		
Level (1Du1/1									
90 Lever	ibuv)									
80.0										
70.0			_							_
60.0		_						FCC PA	ART 15.247 G	P
		4	6					FCC PA	ART 15.247 A	v
50.0 2		in the		8	9	12			_	
40.0	M. day	MyAlly	Maria Maria	MMALIN	NAMPANA MARKA	MANNAW MAN	- Anthe Hulthan	4.411		
30.0	. MMM.A	Alm		The Arter	10 10	As Likels 1.114		1 M MANAGAN	When the strate of the strate	-
20.0	Munth	VV	AMALAN.	TY New	1 mar	man	par anno		WALKARD	
	Which.							and the second	ALL ALLAND	41-
10.0	11112012								**	
10.0								1.0	and the second	
10.0					_				and the second	-
0.0					2				20	30
0.0 -10 <mark>.15 .2</mark>		.5	j	1 Fr	2 equency (M	Hz)	5	10	20	30
0.0		.5	j			Hz)			20	30
0.0 -10 <mark>.15 .2</mark>		.5	,			Hz)			20	30
0.0 -10 .15 .2 Trace: 11		Read	LISN	Fro Aux2	equency (M Cable		5 Limit	10 Over		30
0.0 -10 .15 .2 Trace: 11		Read	LISN	Fr	equency (M	Hz) Level	5	10 Over		30
0.0 -10 .15 .2 Trace: 11		Read	LISN	Fro Aux2	equency (M Cable		5 Limit	10 Over		30
0.0 -10 .15 .2 Trace: 11	Freq MHz	Read Level dBuV	LISN Factor 	Aux2 Factor dB	Cable Loss dB	Level 	5 Limit Line dBuV	10 Over Limit dB	Remark	30
0.0 -10 .15 .2 Trace: 11	Freq MHz 166	Read Level dBuV 19.13	LISN Factor 	Aux2 Factor dB 10.50	Cable Loss 	Level dBuV 29.68	5 Limit Line 	10 Over Limit -25.48	Remark 	30
0.0 -10 .15 .2 Trace: 11	Freq MHz	Read Level dBuV	LISN Factor 	Aux2 Factor dB	Cable Loss dB	Level 	5 Limit Line dBuV 55.16 64.77	10 Over Limit -25.48 -20.40	Remark 	30
0.0 -10 .15 .2 Trace: 11	Freq MHz 166 174 421 426	Read Level dBuV 19.13 33.81 21.03 38.78	LISN Factor dB 0.04 0.05 0.05 0.05 0.05	Aux2 Factor dB 10.50 10.50 10.50 10.50	Cable Loss dB 0.01 0.01 0.04 0.03	Level dBuV 29.68 44.37 31.62 49.36	5 Limit Line dBuV 55.16 64.77 47.42 57.33	10 Over Limit -25.48 -20.40 -15.80 -7.97	Remark Average QP Average QP	30
0.0 -10 .15 .2 Trace: 11 1 0 2 0 3 0 4 0 5 0	Freq MHz 166 174 421 426 679	Read Level dBuV 19.13 33.81 21.03 38.78 19.68	LISN Factor dB 0.04 0.05 0.05 0.05 0.05 0.07	Aux2 Factor dB 10.50 10.50 10.50 10.50 10.50 10.50	Cable Loss dB 0.01 0.01 0.04 0.03 0.03	Level dBuV 29.68 44.37 31.62 49.36 30.28	5 Limit Line dBuV 55.16 64.77 47.42 57.33 46.00	10 Over Limit -25.48 -20.40 -15.80 -7.97 -15.72	Remark Average QP Average QP Average	30
0.0 -10 .15 .2 Trace: 11 1 0 2 0 3 0 4 0 5 0 6 0	Freq MHz 166 174 421 426 679 679	Read Level dBuV 19.13 33.81 21.03 38.78 19.68 37.15	LISN Factor dB 0.04 0.05 0.05 0.05 0.05 0.07 0.07	Aux2 Factor dB 10.50 10.50 10.50 10.50 10.50 10.50 10.50	Cable Loss dB 0.01 0.01 0.04 0.03 0.03 0.03 0.03	Level dBuV 29.68 44.37 31.62 49.36 30.28 47.75	5 Limit Line dBuV 55.16 64.77 47.42 57.33 46.00 56.00	10 Over Limit -25.48 -20.40 -15.80 -7.97 -15.72 -8.25	Remark Average QP Average QP Average QP	30
0.0 -10 .15 .2 Trace: 11 1 0 2 0 3 0 4 0 5 0 6 0 7 0	Freq MHz 166 174 421 426 679 679 862	Read Level dBuV 19.13 33.81 21.03 38.78 19.68 37.15 18.90	LISN Factor dB 0.04 0.05 0.05 0.05 0.05 0.07 0.07 0.07	Aux2 Factor dB 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50	Cable Loss dB 0.01 0.04 0.03 0.03 0.03 0.03 0.04	Level dBuV 29.68 44.37 31.62 49.36 30.28 47.75 29.51	5 Limit Line dBuV 55.16 64.77 47.42 57.33 46.00 56.00 46.00	10 Over Limit -25.48 -20.40 -15.80 -7.97 -15.72 -8.25 -16.49	Remark Average QP Average QP Average QP Average Average	30
0.0 -10 .15 .2 Trace: 11 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0	Freq MHz 166 174 421 426 679 .679 .862 .918	Read Level dBuV 19.13 33.81 21.03 38.78 19.68 37.15 18.90 34.80	LISN Factor dB 0.04 0.05 0.05 0.05 0.07 0.07 0.07 0.07 0.07	Aux2 Factor dB 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50	Cable Loss dB 0.01 0.04 0.03 0.03 0.03 0.03 0.04 0.04 0.04	Level dBuV 29.68 44.37 31.62 49.36 30.28 47.75 29.51 45.41	5 Limit Line dBuV 55.16 64.77 47.42 57.33 46.00 56.00 46.00 56.00	10 Over Limit -25.48 -20.40 -15.80 -7.97 -15.72 -8.25 -16.49 -10.59	Remark Average QP Average QP Average QP Average QP	30
0.0 -10 .15 .2 Trace: 11 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1	Freq 166 174 421 679 .679 .862 .918 .716	Read Level dBuV 19.13 33.81 21.03 38.78 19.68 37.15 18.90 34.80 32.11	LISN Factor dB 0.04 0.05 0.05 0.05 0.07 0.07 0.07 0.07 0.07	Aux2 Factor dB 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50	Cable Loss dB 0.01 0.04 0.03 0.03 0.03 0.03 0.04 0.04 0.04	Level dBuV 29.68 44.37 31.62 49.36 30.28 47.75 29.51 45.41 42.86	5 Limit Line dBuV 55.16 64.77 47.42 57.33 46.00 56.00 46.00 56.00 56.00	10 Over Limit -25.48 -20.40 -15.80 -7.97 -15.72 -8.25 -16.49 -10.59 -13.14	Remark Average QP Average QP Average QP Average QP Average QP QP	30
0.0 -10 .15 .2 Trace: 11 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 10 1	Freq 166 174 421 679 .862 .918 .716 .928	Read Level dBuV 19.13 33.81 21.03 38.78 19.68 37.15 18.90 34.80 32.11 15.58	LISN Factor dB 0.04 0.05 0.05 0.05 0.07 0.07 0.07 0.07 0.07	Aux2 Factor dB 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50	Cable Loss dB 0.01 0.04 0.03 0.03 0.03 0.03 0.04 0.04 0.04	Level dBuV 29.68 44.37 31.62 49.36 30.28 47.75 29.51 45.41 42.86 26.36	5 Limit Line dBuV 55.16 64.77 47.42 57.33 46.00 56.00 46.00 56.00 46.00 56.00 46.00	10 Over Limit -25.48 -20.40 -15.80 -7.97 -15.72 -8.25 -16.49 -10.59 -13.14 -19.64	Remark Average QP Average QP Average QP Average QP Average QP Average	30
0.0 -10 .15 .2 Trace: 11 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 0 7 0 8 0 9 1 10 1 1 3 1 0 1 1 0 2 0 3 1 0 1 1 0 1 1 0 2 0 3 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	Freq 166 174 421 679 .679 .862 .918 .716	Read Level dBuV 19.13 33.81 21.03 38.78 19.68 37.15 18.90 34.80 32.11	LISN Factor dB 0.04 0.05 0.05 0.05 0.07 0.07 0.07 0.07 0.07	Aux2 Factor dB 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50	Cable Loss dB 0.01 0.04 0.03 0.03 0.03 0.03 0.04 0.04 0.04	Level dBuV 29.68 44.37 31.62 49.36 30.28 47.75 29.51 45.41 42.86	5 Limit Line dBuV 55.16 64.77 47.42 57.33 46.00 56.00 46.00 56.00 46.00 46.00 46.00	10 Over Limit -25.48 -20.40 -15.80 -7.97 -15.72 -8.25 -16.49 -10.59 -13.14 -19.64	Remark Average QP Average QP Average QP Average QP Average Average	30

5.3 AC Power Line Conducted Emission

		mobile phone		Product I	Model:	X63Pro		
st By:		Logan			Test mod	le:	BLE Tx (L	E 1M PHY)
st Cha	annel:	Lowest channe	9		Polarizati	ion:	Vertical	
st Volt	tage:	AC 120/60Hz						
	110 90 80 70 60 50			FCC PART 15 (ART 15 C-PK Limit
-ev	40 30 20 10 0 2.31G • PK Lin • PK De		2.3382G 2.3 – Vertical PK – Vertic	476G 2.357G Frequency[Hz] al AV	2.3664G	2 3758G 2.3	1852G 2.39	446G 2.404G
	30 20 10 2.31G 	iit <u>— AV Limit</u> lector ♦ AV Detector		Frequency[Hz]		2.3758G 2.3	1852G 2.39	46G 2.404G
	30 20 10 0 2.31G • PK Lin • PK De	iit <u>— AV Limit</u> lector ♦ AV Detector		Frequency[Hz]		2 3758G 2 3 Margin [dB]	1852G 2.39	Polarity
Susp	30 20 10 0 2.31G → PK Lin ◆ PK De ected Da Freq.	ta List Reading [dBµV/m]	– Vertical PK –– Vertic	Frequency[Hz] al AV Factor	Limit	Margin		
Susp NO.	30 20 10 231G → PKLin ◆ PKDe ected Dat Freq. [MHz] 2334.2 2334.2	tector - AV Limit - • AV Detector ta List Reading [dBμV/m] 5 13.77 5 24.86	– Vertical PK – Vertic Level [dBµV/m]	Frequency[Hz] al AV Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
Suspe NO. 1	30 20 10 0 2.31G PKLin • PKDe PKDe PKDe PKDe PKDe PKJDE PKJD	tector - AV Limit - • AV Detector ta List Reading [dBμV/m] 5 13.77 5 24.86	Vertical PK Vertic Level [dBµV/m] 49.58	Frequency[Hz] al AV Factor [dB] 35.81	Limit [dBµV/m] 54.00	Margin [dB] 4.42	Trace	Polarity Vertical
Susp NO. 1 2	30 20 10 231G → PKLin ◆ PKDe ected Dat Freq. [MHz] 2334.2 2334.2	tector → AV Limit → AV Detector ta List Reading [dBµV/m] 5 13.77 5 24.86 9 13.55	- Vertical PK Vertico Level [dBµV/m] 49.58 60.67	Frequency(Hz) al AV Factor [dB] 35.81 35.81	Limit [dBµV/m] 54.00 74.00	Margin [dB] 4.42 13.33	Trace AV PK	Polarity Vertical Vertical
Susp NO. 1 2 3	30 20 10 0 231G PK Lin • PK De PK De • PK DE • P	ta List Reading [dBµV/m] 5 13.77 5 24.86 9 13.55 9 22.97	Level [dBµV/m] 49.58 60.67 49.54	Frequency[Hz] al AV Factor [dB] 35.81 35.81 35.81 35.99	Limit [dBµV/m] 54.00 74.00 54.00	Margin [dB] 4.42 13.33 4.46	Trace AV PK AV	Polarity Vertical Vertical Vertical

5.4 Emissions in Restricted Frequency Bands

		mobile phone			Product I	Model:	X63Pro	
est By:		Logan			Test mod	le:	BLE Tx(L	E 1M PHY)
est Cha	annel:	Lowest channe			Polarizati	ion:	Horizontal	
est Vol	tage:	AC 120/60Hz						
Level[dBjrV/m]	110 90 80 70 60 50 40			FCC PART 15	C		6	ART 15 C-PK Limit
L	30 20 10 0 2.31G PK Lim • PK Det			476G 2.357G Frequency[Hz rizontal AV	2.3664G	2.3758G 2.30	852G 2.39	946G 2.404G
	20 10 231G	ctor AV Limit Ctor AV Detector	– Horizontal PK – Ho	Frequency[Hz]	2.3758G 2.34	852G 2.38	946G 2.404G
	20 10 0 2.31G PK Lim ◆ PK Det	Ctor ◆ AV Limit		Frequency[Hz		2.3758G 2.30 Margin [dB]	852G 2 39	Polarity
Susp	20 10 0 2.316 PK Lim PK Det PK Det Ected Da Freq. [MHz] 2334.62	AV Limit AV Detector AV Detector a List Reading [dBµV/m] 13.77	- Horizontal PK Ho Level	Frequency[Hz rizontal AV Factor	Limit	Margin		
Susp NO.	20 10 0 2316 → PK Lim → PK Det ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	AV Limit ◆ AV Detector a List Reading [dBµV/m] 13.77 23.07	– Horizontal PK – Ho Level [dBµV/m]	Frequency[Hz rizontal AV Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
Susp NO.	20 10 0 2.316 PK Lim PK Det PK Det Ected Da Freq. [MHz] 2334.62	AV Limit ◆ AV Detector a List Reading [dBµV/m] 13.77 23.07	Level [dBµV/m] 49.58	Frequency[Hz rizontal AV Factor [dB] 35.81	Limit [dBµV/m] 54.00	Margin [dB] 4.42	Trace	Polarity Horizontal
Susp NO. 1 2	20 10 0 2316 → PK Lim → PK Det ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	a List Reading [dBµV/m] 13.77 23.07 13.68	- Horizontal PK — Ho Level [dBµV/m] 49.58 58.88	Frequency[Hz rizontal AV Factor [dB] 35.81 35.81	Limit [dBµV/m] 54.00 74.00	Margin [dB] 4.42 15.12	Trace AV PK	Polarity Horizontal Horizontal
Susp NO. 1 2 3	20 10 2316 PK Lim PK Det PK Det PK Det PK Det 2334.62 2334.62 2334.62	a List Reading [dBµV/m] 13.77 23.07 13.68 23.43	Level [dBµV/m] 49.58 58.88 49.69	Frequency[Hz rizontal AV Factor [dB] 35.81 35.81 35.81 36.01	Limit [dBµV/m] 54.00 74.00 54.00	Margin [dB] 4.42 15.12 4.31	Trace AV PK AV	Polarity Horizontal Horizontal Horizontal

	Name:	mobile phone			Product I	Model:	X63Pro	
est By:		Logan			Test mod	le:	BLE Tx (LI	E 1M PHY)
est Cha	nnel:	Highest channe	el		Polarizat	ion:	Vertical	
est Volt	age:	AC 120/60Hz						
1 [Wi/\rigp	110 100 90 80 70 60 50		1	FCC PART 15			_	ART 15 C-PK Limit
	40 30 20 10 0 2.478G 2 PK Limit • PK Dete		2.4846G 2.48 - Vertical PK — Vertic	68G 2.489G Frequency[Hz al AV	2.4912G]	2.4934G 2.4	956G 2.49	78G 2.5G
	30 20 10 0 2.478G 2 PK Limit • PK Dete	AV Limit AV Detector	- Vertical PK Vertic	Frequency[Hz]		956G 2.49	78G 2.5G
	30 20 10 2.478G 2 PK Limit • PK Dete	AV Limit		Frequency[Hz		2.4934G 2.49 Margin [dB]	956G 2.497	78G 25G Polarity
Suspe	30 20 10 0 2.478G 2 PK Limit ◆ PK Dete ected Dat Freq. [MHz] 2483.50	AV Limit AV Detector AV Detector	- Vertical PK Vertic	Frequency[Hz al AV Factor	Limit	Margin		
Suspe NO.	30 20 10 0 2.478G 2 PK Limit ♦ PK Dete PK Dete PK Dete PK Dete 2483.50 2483.50	AV Limit AV Detector AV Detector AV Detector AV Detector	– Vertical PK – Vertic Level [dBµV/m]	Frequency[Hz al AV Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
Suspe NO. 1	30 20 10 0 2.478G 2 PK Limit ◆ PK Dete ected Dat Freq. [MHz] 2483.50	AV Limit AV Detector AV Detector AV Detector AV Detector AV Detector	Vertical PK Vertic Level [dBµV/m] 59.48	Frequency[Hz al AV Factor [dB] 36.34	Limit [dBµV/m] 74.00	Margin [dB] 14.52	Trace PK	Polarity Vertical
Suspe NO. 1 2	30 20 10 2,4786 2 2,4786 2 PK Limit ◆ PK Dete • PK Dete	AV Limit AV Detector AV Detector AV Detector AV Detector AV Detector AV Detector AV Detector AV Detector	- Vertical PK	Frequency[Hz al AV Factor [dB] 36.34 36.34	Limit [dBµV/m] 74.00 54.00	Margin [dB] 14.52 4.51	Trace PK AV	Polarity Vertical Vertical
Suspe NO. 1 2 3	30 20 10 24786 2 → PK Limit → PK Dete • PK 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 •	AV Limit AV Detector AV DETE	- Vertical PK	Frequency[Hz al AV Factor [dB] 36.34 36.34 36.32	Limit [dBµV/m] 74.00 54.00 74.00	Margin [dB] 14.52 4.51 14.21	Trace PK AV PK	Polarity Vertical Vertical Vertical

		mobile phone		Product I	Model:	X63Pro		
		Logan			Test mod	le:	BLE Tx (L	E 1M PHY)
est Cha	innel:	Highest channe	el .		Polarizati	ion:	Horizontal	
est Volt	tage:	AC 120/60Hz						
	110 100 90 80 70 60 50			FCC PART 15	C	\$		ART 15 C-PK Limit
Lev	40 30 20 10 0 2.478G 2 PK Limit ◆ PK Detect			168G 2.489G Frequency[Hz rizontal AV	2.4912G]	2.4934G 2.4	956G 2.49	178G 2.5G
	30 20 10 0 2.478G 2 PK Limit	AV Limit AV Detector	- Horizontal PK — Ho	Frequency[Hz]		956G 2.49	178G 2.5G
	30 20 10 0 2.478G 2 → PK Limit ♦ PK Detect	AV Limit		Frequency[Hz		2.4934G 2.4 Margin [dB]	956G 2.49	Polarity
Suspe	30 20 10 0 2.478G 2 PK Limit PK Detector PK Detector Freq.	AV Limit AV Detector	- Horizontal PK — Ho Level	Frequency[Hz rizontal AV Factor	Limit	Margin		
Suspo NO.	30 20 10 0 2.478G 2 PK Limit • PK Detect • PK Detect Freq. [MHz]	AV Limit AV Detector AV Detector AV Detector AV Detector	- Horizontal PK — Ho Level [dBµV/m]	Frequency[Hz rizontal AV Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
Suspe NO. 1	30 20 10 0 2.478G 2 PK Limit ◆ PK Detect Freq. [MHz] 2483.50	AV Limit AV Detector AV Detector AV Detector AV Detector AV Detector AV Detector AV Detector AV Detector	Horizontal PK — Ho Level [dBµV/m] 59.31	Frequency[Hz rizontal AV Factor [dB] 36.34	Limit [dBµV/m] 74.00	Margin [dB] 14.69	Trace PK	Polarity Horizontal
Suspe NO. 1 2	30 20 10 0 2.4786 2 PK Limit ◆ PK Detect ● PK Det	AV Limit AV Detector AV Detector	- Horizontal PK — Ho Level [dBµV/m] 59.31 49.53	Frequency[Hz rizontal AV Factor [dB] 36.34 36.34	Limit [dBµV/m] 74.00 54.00	Margin [dB] 14.69 4.47	Trace PK AV	Polarity Horizontal Horizontal
Suspe NO. 1 2 3	30 20 10 0 2.478G 2 PK Limit ◆ PK Detect Freq. [MHz] 2483.50 2483.50 2483.50 2489.08	AV Limit AV Detector AV DETE	- Horizontal РК — Ho Level [dBµV/m] 59.31 49.53 59.90	Frequency[Hz rizontal AV Factor [dB] 36.34 36.34 36.32	Limit [dBµV/m] 74.00 54.00 74.00	Margin [dB] 14.69 4.47 14.10	Trace PK AV PK	Polarity Horizontal Horizontal Horizontal

5.5 Emissions in Non-restricted Frequency Bands

Below 1GHz:

	mobile phone			Product	Model:	X63Pro	
t By:	Logan			Test mo	de:	BLE Tx (LE	1M PHY
t Frequency:	30 MHz ~ 1 GI	Hz		Polariza	tion:	Vertical & H	orizontal
t Voltage:	AC 120/60Hz						
		F	- - ull Spectrum				
⁴⁵ T					FC	C PART 15.247	10 m
40+							
= 30				_			
<u> </u>							**
						*	₩ ¹¹
<u>=</u> 20						*	ALC: NO.
8							
	*		1.10.*	a la de	and the second		
10	A Loomeds Million of the second	العباري والاط		ALC: NO.	100		
		A STATE OF THE OWNER OF THE	A CONTRACTOR OF THE OWNER	Anti-Anti-Anti-Anti-Anti-Anti-Anti-Anti-			
o —		and the states.					
30M	50 60	80 100M	200	300	400 5	500 800) 1G
			Frequency in	Ц 7			
			r lequency in	112			
* Critica	al_Fregs PK+	—— F	CC PART 15.2	47 10 m	•	Final_Result QP	K
	al_Freqs PK+ ew Result 1H-PK+		CC PART 15.2 Preview Result 1		•	Final_Result QP	K
					•	Final_Result QP	K
					•	Final_Result QP	K
					•	Final_Result QP	K
					•	Final_Result QP	K
Previe	ew Result 1H-PK+				•	Final_Result QP	K
Previe	ew Result 1H-PK+	• — P	Preview Result 1	IV-PK+			
Previe Critical_Fre	ew Result 1H-PK+ EQS MaxPeak	P		IV-₽K+ Height	Pol	Azimuth	Corr.
Previe	ew Result 1H-PK+	• — P	Preview Result 1	IV-PK+			
Previe Critical_Fre Frequency (MHz)	ew Result 1H-PK+ EQS MaxPeak (dB µ V/m)	P Limit (dB	Preview Result 1 Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
Previe Critical_Frequency (MHz) 54.153000 162.356500 504.863500	ew Result 1H-PK+ EQS <u>MaxPeak</u> (dB ^µ V/m) 11.22 11.83 19.01	Limit (dB µ V/m) 30.00	Margin (dB) 18.78 21.67 16.99	V-PK+ Height (cm) 100.0 100.0	Pol V	Azimuth (deg) 243.0	Corr. (dB/m) -15.9
Previe Critical_Fre Frequency (MHz) 54.153000 162.356500 504.863500 539.977500	ew Result 1H-PK+ EQS <u>MaxPeak</u> (dB µ V/m) <u>11.22</u> 11.83	Limit (dB µ V/m) 30.00 33.50 36.00 36.00	Margin (dB) 18.78 21.67 16.99 14.73	V-PK+ Height (cm) 100.0 100.0 100.0	Pol V V	Azimuth (deg) 243.0 109.0 166.0 67.0	Corr. (dB/m) -15.9 -14.7
Previe Critical_Frequency (MHz) 54.153000 162.356500 504.863500 539.977500 930.063000	ew Result 1H-PK+ EQS <u>MaxPeak</u> (dB µ V/m) 11.22 11.83 19.01 21.27 27.40	Limit (dB µ V/m) 30.00 33.50 36.00 36.00 36.00	Margin (dB) 18.78 21.67 16.99 14.73 8.60	V-PK+ Height (cm) 100.0 100.0 100.0 100.0	Pol V V V V V V	Azimuth (deg) 243.0 109.0 166.0 67.0 0.0	Corr. (dB/m) -15.9 -14.7 -9.1 -8.1 -0.4
Previe Critical_Fre Frequency (MHz) 54.153000 162.356500 504.863500 539.977500	ew Result 1H-PK+ EQS <u>MaxPeak</u> (dB µ V/m) 11.22 11.83 19.01 21.27	Limit (dB µ V/m) 30.00 33.50 36.00 36.00	Margin (dB) 18.78 21.67 16.99 14.73	V-PK+ Height (cm) 100.0 100.0 100.0	Pol V V V V	Azimuth (deg) 243.0 109.0 166.0 67.0	Corr. (dB/m) -15.9 -14.7 -9.1 -8.1
Previe Critical_Fre Frequency (MHz) 54.153000 162.356500 504.863500 539.977500 930.063000	ew Result 1H-PK+ EQS <u>MaxPeak</u> (dB µ V/m) 11.22 11.83 19.01 21.27 27.40	Limit (dB µ V/m) 30.00 33.50 36.00 36.00 36.00	Margin (dB) 18.78 21.67 16.99 14.73 8.60	V-PK+ Height (cm) 100.0 100.0 100.0 100.0	Pol V V V V V V	Azimuth (deg) 243.0 109.0 166.0 67.0 0.0	Corr. (dB/m) -15.9 -14.7 -9.1 -8.1 -0.4
Previe Critical_Fre Frequency (MHz) 54.153000 162.356500 504.863500 539.977500 930.063000	ew Result 1H-PK+ EQS <u>MaxPeak</u> (dB µ V/m) 11.22 11.83 19.01 21.27 27.40	Limit (dB µ V/m) 30.00 33.50 36.00 36.00 36.00	Margin (dB) 18.78 21.67 16.99 14.73 8.60	V-PK+ Height (cm) 100.0 100.0 100.0 100.0	Pol V V V V V V	Azimuth (deg) 243.0 109.0 166.0 67.0 0.0	Corr. (dB/m) -15.9 -14.7 -9.1 -8.1 -0.4
Previe Critical_Fre Frequency (MHz) 54.153000 162.356500 504.863500 539.977500 930.063000	ew Result 1H-PK+ EQS <u>MaxPeak</u> (dB µ V/m) 11.22 11.83 19.01 21.27 27.40	Limit (dB µ V/m) 30.00 33.50 36.00 36.00 36.00	Margin (dB) 18.78 21.67 16.99 14.73 8.60	V-PK+ Height (cm) 100.0 100.0 100.0 100.0	Pol V V V V V V	Azimuth (deg) 243.0 109.0 166.0 67.0 0.0	Corr. (dB/m) -15.9 -14.7 -9.1 -8.1 -0.4

Above 1GHz:

			LE Tx (LE 1M PH	-		
		Test o	channel: Lowest cl	nannel		
	1 1	D	etector: Peak Valu	le	ſ	I
Frequency	Read Level	Factor	Level	Limit	Margin	Polarization
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	i olanzadoi
4804.00	55.68	-9.60	46.08	74.00	27.92	Vertical
4804.00	57.10	-9.60	47.50	74.00	26.50	Horizontal
		Det	tector: Average Va	alue		-
Frequency	Read Level	Factor	Level	Limit	Margin	Polarization
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	T Olarization
4804.00	48.18	-9.60	38.58	54.00	15.42	Vertical
4804.00	49.73	-9.60	40.13	54.00	13.87	Horizontal
		Test	channel: Middle ch	nannel		
		D	etector: Peak Val	he	1	
Frequency	Read Level	Factor	Level	Limit	Margin	Polarizatior
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	FUIAIIZALIUI
4884.00	55.65	-9.04	46.61	74.00	27.39	Vertical
4884.00	57.20	-9.04	48.16	74.00	25.84	Horizontal
		Det	tector: Average Va	alue		
Frequency	Read Level	Factor	Level	Limit	Margin	Delerization
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Polarizatior
4884.00	47.77	-9.04	38.73	54.00	15.27	Vertical
4884.00	50.19	-9.04	41.15	54.00	12.85	Horizontal
		Test c	hannel: Highest c	hannel		
		D	etector: Peak Valu	ue	1	
-	Read Level	Factor	Level	Limit	Margin	Polarization
Frequency	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	FUIAIIZALIUI
Frequency (MHz)	(40,41)				00.00	N/ (* 1
	56.16	-8.45	47.71	74.00	26.29	Vertical
(MHz)		-8.45 -8.45	47.71 48.40	74.00 74.00	26.29 25.60	Horizontal
(MHz) 4960.00	56.16	-8.45		74.00		
(MHz) 4960.00	56.16	-8.45	48.40	74.00		Horizontal
(MHz) 4960.00 4960.00	56.16 56.85	-8.45 De	48.40 tector: Average Va	74.00 alue	25.60	
(MHz) 4960.00 4960.00 Frequency	56.16 56.85 Read Level	-8.45 De Factor	48.40 tector: Average Va Level	74.00 alue Limit	25.60 Margin	Horizontal

2. Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

-----End of report-----