





For Question,
Please Contact with WSCT
www.wsct-cert.com

# **TEST REPORT**

FCC ID: 2A5UI-BM5WR

**Product: LCD monitors** 

Model No.: BM5 III WR

Additional Model No.: PT6L,LH5U,LH5W,BM5WR,BM5 IV WR ,BM5 V WR , LH5H III,LH5H V, LH5P II,LH5P III,BM7 II WR ,BM7 III WR ,RH8,OEYEWR, OEYEWR II,KEYGRIP II,BKEY,BKEY II,BKEYIII,Shooter,Shooter II, Shooter III , LH7P,LH7P II,LH7H,LH7H II,LH8P,LH8P II,LH8H,LH8H II

Trade Mark: PortKeys

Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

Issued Date: 01 April 2022

Issued for:

SHENZHEN PORTKEYS ELECTRONIC TECHNOLOGY CO.,LTD ROOM 201, BUILDING 1, NO. 101, SHANGWEI ROAD, SHANGWEI VILLAGE,

ZHANGKENGJING COMMUNITY, GUANHU STREET, LONGHUA DISTRICT, SHENZHEN
FOTAN NT

Issued By:

WORLD STANDARDIZATION CERTIFICATION & TESTING GROUP (SHENZHEN) CO., LTD.

Building A-B, Baoshi Road, Baoshi Science & Technology Park, Bao'an District,

Shenzhen, Guangdong, People's Republic of China

TEL: + (86) 13924678855

FAX: +86-755-86376605

Note: In recognition of the successful completion of the A2LA evaluation process, (including an assessment of the laboratory's compliance with A2LA's ENERGY STAR ® Accreditation Program requirements 1) accreditation is granted to this laboratory to perform the following tests: EMC, electromagnetic compatibility, telecommunications and Energy Star.



AWSET"

4W557

WSET



**Table of Contents** 







Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

Certificate Number 5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

Page

| \/           |                                                   |          |          |          |
|--------------|---------------------------------------------------|----------|----------|----------|
| $\wedge$     | 1. GENERAL INFORMATION                            |          | 3        |          |
| EFT          | 1.1. GENERAL DESCRIPTION OF EUT                   |          | 4        |          |
| JL I         | 1.2. FACILITIES AND ACCREDITATIONS                |          | 5        |          |
|              | 2. TEST DESCRIPTION                               |          | 6        |          |
|              | 2.1 MEASUREMENT UNCERTAINTY                       |          | 6        |          |
|              | 2.2 DESCRIPTION OF TEST MODES                     | WSIT     | 7        | WSET     |
|              | 2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING  |          | 8        |          |
| X            | 2.4 CONFIGURATION OF SYSTEM UNDER TEST            |          | 8        |          |
|              | 2.5 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE) |          | 8        |          |
| 5 <i>ET</i>  | 3. SUMMARY OF TEST RESULTS WSET                   |          | W65 ET   |          |
|              |                                                   |          |          |          |
|              | 4. MEASUREMENT INSTRUMENTS                        | X        | 10       | X        |
|              | 5. EMC EMISSION TEST                              |          | 11       |          |
|              | 5.1 CONDUCTED EMISSION MEASUREMENT                | WSET     | 11       | 4W5E1    |
|              | 5.2 RADIATED EMISSION MEASUREMENT                 |          | 14       |          |
| X            | 6. ANTENNA APPLICATION                            |          | 27       |          |
|              |                                                   |          |          |          |
| 5 <i>L1</i>  | 7. 6DB BANDWIDTH MEASUREMENT                      |          | 28       |          |
|              | 7.1 TEST SETUP                                    |          | 28       |          |
|              | 7.2 LIMITS OF 6DB BANDWIDTH MEASUREMENT           |          | 28       |          |
|              | 7.3 TEST PROCEDURE W-7.4 TEST RESULT W-5CT        | MARIA    | 28<br>28 | WSE      |
|              | 8. MAXIMUM CONDUCTED OUTPUT POWER                 |          | 36       |          |
| $\checkmark$ |                                                   |          |          |          |
| $\wedge$     | 9. POWER SPECTRAL DENSITY MEASUREMENT             |          | 38       |          |
| 5/1          | 9.1 TEST SETUP                                    |          | 38       |          |
|              | 9.2 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT  |          | 38       |          |
|              | 9.3 TEST PROCEDURE                                | $\times$ | 38<br>39 | $\times$ |
|              | 9.4 TEST RESULT                                   |          | 39       |          |
|              | 10. OUT OF BAND MEASUREMENT                       | WSET     | 46       | WSEI     |
|              | 10.1 TEST SETUP FOR BAND EDGE                     |          | 46       |          |
| X            | 10.2 LIMITS OF OUT OF BAND EMISSIONS MEASUREMENT  |          | 46       |          |
|              | 10.3 TEST PROCEDURE                               |          | 46       |          |
|              |                                                   |          |          |          |



世标检测认证股份 AC







Certificate Number 5768,01

Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

For Question,
Please Contact with WSCT
www.wsct-cert.com

### 1. GENERAL INFORMATION

|                    |         | THE STATE OF THE S |
|--------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Produc             | t:      | LCD monitors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Model N            | lo.:    | BM5 III WR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Additio            | nal /   | PT6L,LH5U,LH5W,BM5WR,BM5 IV WR,BM5 V WR,LH5H II,LH5H III,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Model:             | NY      | LH5H V, LH5P II,LH5P III,BM7 II WR,BM7 III WR,RH8,OEYEWR,OEYEWR II,KEYGRIP II,BKEY,BKEY II,BKEY III,Shooter,Shooter II, Shooter III, LH7P,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                    |         | LH7PII,LH7H,LH7H II,LH8P,LH8P II,LH8H,LH8H II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Applica            | nt:     | SHENZHEN PORTKEYS ELECTRONIC TECHNOLOGY CO.,LTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Address            | s:      | Room 201, Building 1, No. 101, ShangWei Road, ShangWei Village, ZhangKengJing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MAGETT             |         | Community, GuanHu Street, LongHua District, ShenZhen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Manufa             | cturer: | SHENZHEN PORTKEYS ELECTRONIC TECHNOLOGY CO.,LTD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Address            | s: )    | Room 201, Building 1, No. 101, ShangWei Road, ShangWei Village, ZhangKengJing Community, GuanHu Street, LongHua District, ShenZhen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Data of receipt    | AVE     | 11March 2022 W5ET W5ET W5ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Date of            | Test:   | 11March 2022 to 30March 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Applica<br>Standar |         | FCC Rules Part15 Subpart C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

The above equipment has been tested by World Standardization Certification & Testing Group Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

(Wang Xiang)

Check By:

(Chen Xu)

WSIT

Approved By:

(Wang Fengbing)

Date:

WSIT

WSIT

WSIT

WSIT

WSIT

WSIT

WSIT

Page 3 of 58

世标检测认证股份

roup (Shenzhen) Co., Ltd.

World Standard zation Certification (1990)

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC.







Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

For Question,
Please Contact with WSCT
www.wsct-cert.com

#### 1.1. GENERAL DESCRIPTION OF EUT

| Equipment Type:             | LCD monitors                                                                                                                                                                                                                                     |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Model:                 | BM5 III WR                                                                                                                                                                                                                                       |
| Additional<br>Model:        | PT6L,LH5U,LH5W,BM5WR,BM5 IV WR ,BM5 V WR , LH5H II ,LH5H III ,LH5H V , LH5P III ,LH5P III ,BM7 II WR ,BM7 III WR ,RH8,OEYEWR,OEYEWR II ,KEYGRIP II ,BKEY,BKEY III ,BKEY III ,Shooter III ,LH7P,LH7P II ,LH7H,LH7H II ,LH8P,LH8P II ,LH8H,LH8H II |
| Trade Mark                  | Port <u>Ke</u> ys                                                                                                                                                                                                                                |
| Hardware version:           | NA WSET WSET                                                                                                                                                                                                                                     |
| version:                    | N/A                                                                                                                                                                                                                                              |
| Extreme Temp.<br>Tolerance  | 0°C to +40°C                                                                                                                                                                                                                                     |
| Power Supply                | DC 12V                                                                                                                                                                                                                                           |
| Operating<br>Frequency      | 2412-2462MHz                                                                                                                                                                                                                                     |
| Channels                    | 11° WSET° WSET° WSET°                                                                                                                                                                                                                            |
| Channel Spacing             | 5MHz                                                                                                                                                                                                                                             |
| Modulation Type             | CCK for IEEE 802.11b<br>OFDM for IEEE 802.11g/n HT-20/n HT-40                                                                                                                                                                                    |
| Antenna Type:               | RP-SMA                                                                                                                                                                                                                                           |
| Antenna gain:               | 0.78dBi                                                                                                                                                                                                                                          |
| Deviation                   | None W5CT W5CT                                                                                                                                                                                                                                   |
| Condition of<br>Test Sample | Normal                                                                                                                                                                                                                                           |

#### Models difference

BM5 III WR ,PT6L,LH5U,LH5W,BM5WR,BM5 IV WR ,BM5 V WR , LH5H II,LH5H III,LH5H V, LH5P III,LH5P III,BM7 II WR ,BM7 III WR ,RH8,OEYEWR,OEYEWR II,KEYGRIP II,BKEY,BKEY III,Shooter,Shooter III ,LH7P,LH7PII,LH7H,LH7H II,LH8P,LH8P II,LH8H, LH8H II are series models, only the appearance size is different,the main test is BM5 III WR.



5141 W.51

WSET WSET

WSET\*

证股份 AC Co., Ltd. TE





Certificate Number 5768.01





Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

Please Contact with WSCT www.wsct-cert.com

#### 1.2. FACILITIES AND ACCREDITATIONS

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the WORLD STANDARDIZATION CERTIFICATION & TESTING GROUP (SHENZHEN) CO., LTD.

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

1.2.1. ACCREDITATIONS

China National Accreditation Service for Conformity Assessment (CNAS)

Registration number NO: L3732

American Association for Laboratory Accreditation(A2LA)

Registration NO: 5768.01

NON \* PI

Copies of granted accreditation certificates are available for downloading from our web site, http://www.wsct-cert.com

Page 5 of 58



MOM # PT

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.







Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

Please Contact with WSCT www.wsct-cert.com

Member of the WSCT INC

# 2. TEST DESCRIPTION

# 2.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $\mathbf{y} \pm \mathbf{U}$ , where expended uncertainty  $\mathbf{U}$  is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %。

| • |     |                               |              |
|---|-----|-------------------------------|--------------|
|   | No. | Item                          | Uncertainty  |
| 5 | 1   | Conducted Emission Test       | ±3.2dB ws r1 |
|   | 2   | RF power, conducted           | ±0.16dB      |
|   | 3   | Spurious emissions, conducted | ±0.21dB      |
|   | 4   | All emissions, radiated(<1G)  | ±4.7dB       |
|   | 5   | All emissions, radiated(>1G)  | ±4.7dB       |
|   | 6   | Temperature                   | ±0.5°C       |
|   | 7   | Humidity                      | ±2%          |

| WSET           | WSET                                            | WSET                             | WSET                             | WSET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------|-------------------------------------------------|----------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                                                 |                                  |                                  | $\langle \hspace{0.1cm} \hspace{0.1cm}$ |
| WS             | ET WS                                           | CT WS                            | CT WS                            | CT WSCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WSET           | WSET                                            | WSET                             | WSET                             | WSET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| W/S            | $\langle \hspace{0.1cm} \rangle$                |                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| WSET           | WSET                                            | WSET                             | WSET                             | WSET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | $\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ | $\langle \hspace{0.1cm} \rangle$ | $\langle \hspace{0.1cm} \rangle$ | $\langle  \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ification & Te | estino                                          |                                  | 7                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Page 6 of 58







Please Contact with WSCT www.wsct-cert.com

#### 2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

|   | Pretest Mode | Description |
|---|--------------|-------------|
|   | Mode 1       | 802.11b     |
| 5 | Mode 2       | 802.11g     |
|   | Mode 3       | 802.11n20   |
|   | Mode 4       | 802.11n40   |

|                 | For Conducted Emission |  |
|-----------------|------------------------|--|
| Final Test Mode | Description            |  |
| Mode 1          | 802.11b                |  |

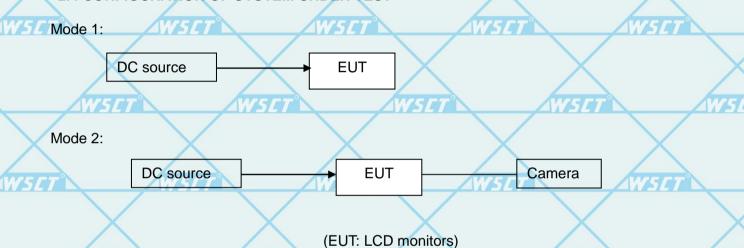
|                         | For Radiated Emission |      |
|-------------------------|-----------------------|------|
| Final Test Mode         | Description           |      |
| Mode 1                  | 802.11b               | 7 W  |
| Mode 2                  | 802.11g               |      |
| Final Test Mode  Mode 1 | 802.11n20             |      |
| Mode 4                  | 802.11n40             | WSIT |

#### Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The EUT use new battery.
- (3) The data rate was set in 1Mbps, 6 Mbps, 6.5 Mbps and 13.5M for radiated emission due to the highest RF output power.
- (4) Record the worst case of each test item in this report.
- (5) When we test it, the duty cycle ≥ 98%






For Question,
Please Contact with WSCT
www.wsct-cert.com

#### 2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

| Test software Version    | WSET     | N/A      | SET WSET |
|--------------------------|----------|----------|----------|
|                          |          |          |          |
| Frequency(802.11b/g/n20) | 2412 MHz | 2437 MHz | 2462 MHz |
| Frequency(802.11n40)     | 2422 MHz | 2437 MHz | 2452 MHz |

#### 2.4 CONFIGURATION OF SYSTEM UNDER TEST



# 2.5 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

|   | Item | Equipment | Mfr/Brand | Model/Type No. | Series No. | Note |
|---|------|-----------|-----------|----------------|------------|------|
|   | 1    | DC source | WSET      | WSET           | WSET       | 1    |
| , | 2    | Camera    | 1         | 1              | /          | \ /  |

#### Note:

- (1) All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- (2) Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.









# 3. SUMMARY OF TEST RESULTS

Please Contact with WSCT www.wsct-cert.com

Test procedures according to the technical standards:

| / |                        |                                                                 |          |          |  |  |  |  |  |  |
|---|------------------------|-----------------------------------------------------------------|----------|----------|--|--|--|--|--|--|
| \ |                        | FCC Part15 (15.247) , Subpart C                                 |          |          |  |  |  |  |  |  |
| Ź | Standard<br>Section    | Test Item                                                       | Judgment | Remark   |  |  |  |  |  |  |
|   | 15.207                 | Conducted Emission Test                                         | PASS     | Complies |  |  |  |  |  |  |
|   | 45 047(a)(a) Limit     | Spectrum bandwidth of a Orthogonal                              |          | 567      |  |  |  |  |  |  |
| / | 15.247(a)(2) Limit     | Frequency Division Multiplex System Limit: 6dB bandwidth>500kHz | PASS     | Complies |  |  |  |  |  |  |
| \ | 15.247(b)              | Maximum peak outputpower Limit: max. 30dBm                      | PASS     | Complies |  |  |  |  |  |  |
|   | 15.109,15.205 & 15.209 | Transmitter Radiated Emission Limit: Table 15.209               | PASS     | Complies |  |  |  |  |  |  |
|   | 15.247(e)              | Power Spectral Density Limit: max. 8dBm                         | PASS     | Complies |  |  |  |  |  |  |
|   | WSET                   | Band edge                                                       | W        | SET      |  |  |  |  |  |  |
| / | 15.247(d)              | Limit: 30dB less than Reference level                           | PASS     | Complies |  |  |  |  |  |  |
|   |                        | Restricted band limit: Table 15.209                             |          |          |  |  |  |  |  |  |

NOTE:

(1)" N/A" denotes test is not applicable in this test report.

W5C1

Mon \* pri









Please Contact with WSCT www.wsct-cert.com

# 4. MEASUREMENT INSTRUMENTS

|    | NAME OF<br>EQUIPMENT                    | MANUFACTURER           | MODEL            | SERIAL<br>NUMBER | Calibration<br>Date | Calibratio<br>n Due. |
|----|-----------------------------------------|------------------------|------------------|------------------|---------------------|----------------------|
|    | EMI Test Receiver                       | R&S                    | ESCI             | 100005           | 2021-11-05          | 2022-11-04           |
|    | LISN                                    | AFJ                    | LS16             | 16010222119      | 2021-11-05          | 2022-11-04           |
|    | LISN(EUT)                               | Mestec                 | AN3016 5 /       | 04/10040         | 2021-11-05          | 2022-11-04           |
|    | Universal Radio<br>Communication Tester | R&S                    | CMU 200          | 1100.0008.02     | 2021-11-05          | 2022-11-04           |
| _  | Coaxial cable                           | Megalon                | LMR400           | N/A              | 2021-11-05          | 2022-11-04           |
| 7  | GPIB cable 54                           | Megalon                | 5 <i>CT</i> GPIB | VN/A             | 2021-11-05          | 2022-11-04           |
|    | Spectrum Analyzer                       | R&S                    | FSU              | 100114           | 2021-11-05          | 2022-11-04           |
|    | Pre Amplifier                           | H.P.                   | HP8447E          | 2945A02715       | 2021-11-05          | 2022-11-04           |
| 7  | Pre-Amplifier                           | CDSI                   | PAP-1G18-38      |                  | 2021-11-05          | 2022-11-04           |
|    | Bi-log Antenna                          | SUNOL Sciences         | JB3              | A021907          | 2021-11-05          | 2022-11-04           |
|    | 9*6*6 Anechoic                          | 4                      | -                |                  | 2021-11-05          | 2022-11-04           |
|    | Horn Antenna                            | COMPLIANCE ENGINEERING | CE18000          | Water            | 2021-11-05          | 2022-11-04           |
|    | Horn Antenna                            | SCHWARZBECK            | BBHA9120D        | 9120D-631        | 2021-11-05          | 2022-11-04           |
|    | Cable                                   | TIME MICROWAVE         | LMR-400          | N-TYPE04         | 2021-11-05          | 2022-11-04           |
|    | System-Controller                       | ccs                    | N/A              | N/A              | N.C.R               | N.C.R                |
|    | Turn Table                              | ccs                    | N/A              | N/A              | N.C.R               | N.C.R                |
|    | Antenna Tower                           | ccs                    | 5N/A             | N/A              | N.C.R               | N.C.R                |
|    | RF cable                                | Murata                 | MXHQ87WA3000     | _                | 2021-11-05          | 2022-11-04           |
|    | Loop Antenna                            | EMCO                   | 6502             | 00042960         | 2021-11-05          | 2022-11-04           |
|    | Horn Antenna                            | SCHWARZBECK            | BBHA 9170        | 1123             | 2021-11-05          | 2022-11-04           |
|    | Power meter                             | Anritsu                | ML2487A          | 6K00003613       | 2021-11-05          | 2022-11-04           |
|    | Power sensor                            | Anritsu                | MX248XD          |                  | 2021-11-05          | 2022-11-04           |
| 0) |                                         |                        | 0                |                  |                     |                      |







Certificate Number 5768.01



www.wsct-cert.com

Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

For Question,
Please Contact with WSCT

# 5. EMC EMISSION TEST

#### 5.1 CONDUCTED EMISSION MEASUREMENT

# 5.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

|                             | Conducted limit (dBµ | ıV)       |
|-----------------------------|----------------------|-----------|
| Frequency of emission (MHz) | Quasi-peak           | Average   |
| 0.15-0.5                    | 66 to 56*            | 56 to 46* |
| 0.5-5                       | 56                   | 46        |
| 5-30                        | 60                   | 50        |

#### Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

| Receiver Parameters  | Setting  |
|----------------------|----------|
| Attenuation          | 10 dB    |
| Start Frequency      | 0.15 MHz |
| Stop Frequency ///5/ | 30 MHz   |
| IF Bandwidth         | 9 kHz    |

| WSET      | WSE  | W5   | CT W | <b>1567</b> | WSGI |
|-----------|------|------|------|-------------|------|
| WSET      | WSET | WSET | WSET | WSET        |      |
| WSET      |      |      |      | /SET        | WSEI |
| WSET      | WSET | WSET | WSET | WSET        |      |
| Son & Tax |      |      |      | 1517        | WSG  |

生标检测认证股份 (Shenzhen) Co., Ltd.

W5C1

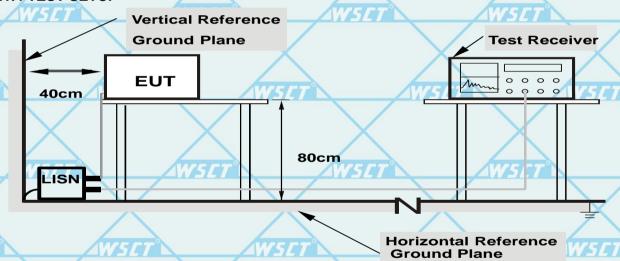




Certificate Number 5768.01

Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

For Question,
Please Contact with WSCT
www.wsct-cert.com


#### **5.1.2 TEST PROCEDURE**

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

#### **5.1.3 DEVIATION FROM TEST STANDARD**

No deviation

#### **5.1.4 TEST SETUP**



Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

#### 5.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

World Standard Zation & Testing Code
WSC7
World Standard Zation Certification & Testing Group (She









Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

Please Contact with WSCT www.wsct-cert.com

#### 5.1.6 TEST RESULTS

NOTE: The EUT is powered by a DC source, so conducted emissions are not applicable.

| 11011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The LOT is powere     | d by a DC source, so o                                                             | conducted emissions | are not applicable.                                            | WSLT                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------|-------------------------------------|
| WSET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WSCI                  | WSET                                                                               | WSET                | WSET                                                           |                                     |
| WSET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                                                                    |                     | WSET                                                           | WSET                                |
| WSET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WSET                  | WSET                                                                               | WSET                | WSGI                                                           |                                     |
| WSET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WSI                   |                                                                                    |                     | WSET                                                           | WSET                                |
| WSET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WSET                  | WSET                                                                               | WSLT                | WSET                                                           |                                     |
| WSET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | W.51                  | T W                                                                                |                     | WSET                                                           | WSET                                |
| WSET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WSET                  | WSET                                                                               | WSET                | WSEI                                                           |                                     |
| WSET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | W.5                   | T W                                                                                | 7.67                | WSET                                                           | WSET                                |
| WSET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WSET                  | WSET                                                                               | WSET                | WSGI                                                           |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WS                    | T W                                                                                | 7.67                | WSET                                                           | WSET                                |
| World Start and Explication & Testing  World Start and Ex | Choup (Shenz)         | WSET                                                                               | WSET                | WSE                                                            |                                     |
| World Standard Position Certification (165)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 型 世标检测认证股份 ADD: TEL:8 | Building A-B Baoshi Science & Te<br>6-755-26996192 26992306 FAX:8<br>Page 13 of 58 |                     | Bao'an District, Shenzhen, Gua<br>g.Wang@wsct-cert.com Http:ww | angdong, China<br>www.wsct-cert.com |







For Question,
Please Contact with WSCT
www.wsct-cert.com

#### **5.2 RADIATED EMISSION MEASUREMENT**

### 5.2.1 Radiated Emission Limits (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| 211111111   | 21 7 7 10 7 225    | 21777                |  |
|-------------|--------------------|----------------------|--|
| Frequencies | Field Strength     | Measurement Distance |  |
| (MHz)       | (micorvolts/meter) | (meters)             |  |
| 0.009~0.490 | 2400/F(KHz)        | 300                  |  |
| 0.490~1.705 | 24000/F(KHz)       | 30                   |  |
| 1.705~30.0  | 30                 | 30                   |  |
| 30~88       | 100                | 3                    |  |
| 88~216      | 150                | W5[7] 3              |  |
| 216~960     | 200                | 3                    |  |
| Above 960   | 500                | 3                    |  |

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

| FREQUENCY (MHz)  | Limit (dBuV/m) (at 3M) |         |  |
|------------------|------------------------|---------|--|
| PREQUENCT (MIDZ) | PEAK                   | AVERAGE |  |
| Above 1000       | 74                     | 54      |  |

#### Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

| Spectrum Parameter |                                       | Setting                                         |  |
|--------------------|---------------------------------------|-------------------------------------------------|--|
| Attenuation        |                                       | Auto                                            |  |
|                    | Start Frequency                       | 1000 MHz                                        |  |
|                    | Stop Frequency                        | 10th carrier harmonic                           |  |
|                    | RB / VB (emission in restricted band) | 1 MHz / 1 MHz for Peak, 1 MHz / 1Hz for Average |  |

| Receiver Parameter     |  | Setting                          |  |
|------------------------|--|----------------------------------|--|
| Attenuation            |  | Auto                             |  |
| Start ~ Stop Frequency |  | 9kHz~150kHz / RB 200Hz for QP    |  |
| Start ~ Stop Frequency |  | 150kHz~30MHz / RB 9kHz for QP    |  |
| Start ~ Stop Frequency |  | 30MHz~1000MHz / RB 120kHz for QP |  |

W5ET

世标检测认证股份 roup (Shenzhen) Co., Ltd.





Certificate Number 5768.01



Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

Please Contact with WSCT www.wsct-cert.com

Member of the WSCT INC

#### **5.2.2 TEST PROCEDURE**

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.

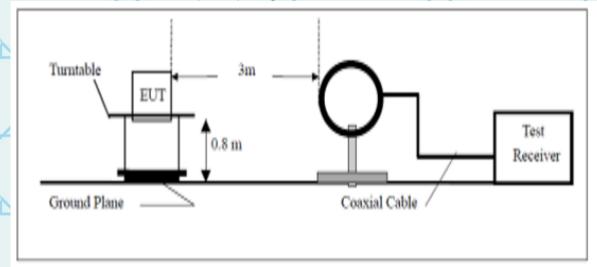
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

| 5.2.3 DEVI<br>No deviatio | ATION FROM TEST ST | TANDARD WSET | WSET | WSET                                            |
|---------------------------|--------------------|--------------|------|-------------------------------------------------|
|                           |                    |              |      | $\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ |
| W5E                       |                    |              | X    |                                                 |
| WSET                      | WSET               | WSET         | WSET | WSET                                            |
| W5C                       |                    |              | X    |                                                 |
| WSET                      | WSET               | WSCT         | WSET | WSET                                            |
| Softmation & Test         | W5                 | W5           | W.   | TET WSE                                         |

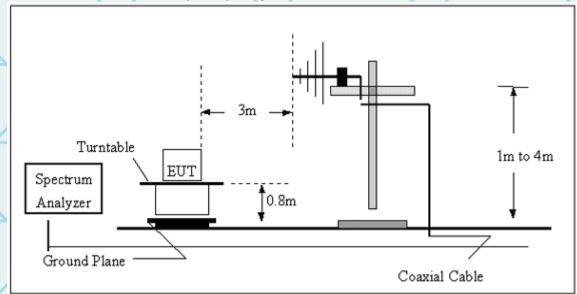







Please Contact with WSCT www.wsct-cert.com

Certificate Number 5768.01


Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

#### **5.2.4 TEST SETUP**

# (A) Radiated Emission Test-Up Frequency Below 30MHz

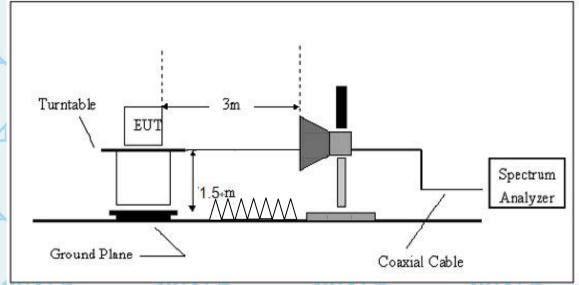


(B) Radiated Emission Test-Up Frequency 30MHz~1GHz








Certificate Number 5768.01



Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

For Question,
Please Contact with WSCT
www.wsct-cert.com

(C) Radiated Emission Test-Up Frequency Above 1GHz



#### 5.2.5 EUT OPERATING CONDITIONS

Now \* PT

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Page 17 of 58

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC









Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

Certificate Number 5768.01

## 5.2.5.1 RESULTS (Below 30 MHz)

| For Question,           |   |
|-------------------------|---|
| Please Contact with WSC | ; |
| www.wsct-cert.com       | ١ |

| Temperature | <b>20</b> °C | $\vee$ | Relative Humidity | 48%    |
|-------------|--------------|--------|-------------------|--------|
| Pressure    | 1010 hPa     |        | Test Mode         | Mode 1 |

| ы |       |          |          |        |       |
|---|-------|----------|----------|--------|-------|
|   | Freq. | Reading  | Limit    | Margin | State |
|   | (MHz) | (dBuV/m) | (dBuV/m) | (dB)   | P/F   |
|   | WEEK  | WSET     | WSIT     | WS     | Р     |
|   |       |          |          | -      | Р     |

|   | $\sim$ | _ | _ |   |
|---|--------|---|---|---|
| N |        |   | _ | • |
|   |        |   |   |   |

No result in this part for margin above 20dB.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuV) + distance extrapolation factor.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

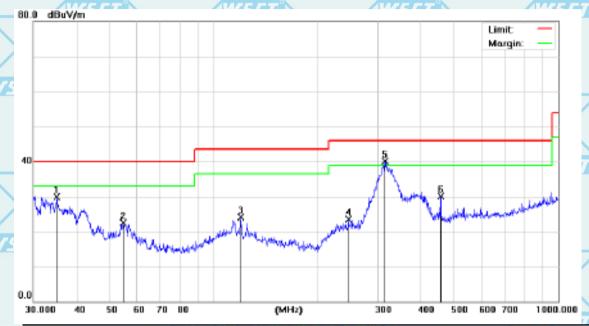
| WSET          | WSET  | WSET | W    | TET W | VSET* |
|---------------|-------|------|------|-------|-------|
|               |       | WSET | WSCT | WSET  | WSET  |
| WSET          | WSET  | WSEI |      |       | VSET* |
|               |       | WSET | WSET | WSET  | WSET  |
| WSET          | WSET  | WSET |      |       | V5ET  |
|               |       | WSET | WSET | WSET  | WSET  |
| Stiff ation & | ON CE |      |      |       |       |





Certificate Number 5768.01






Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

# 5.2.5.2 TEST RESULTS (Between 30M - 1000 MHz)

For Question,
Please Contact with WSCT
www.wsct-cert.com

| F74         | 4W3L/ N  |                   | W-5/4      |
|-------------|----------|-------------------|------------|
| Temperature | 20 ℃     | Relative Humidity | 48%        |
| Pressure    | 1010 hPa | Polarization:     | Horizontal |
| Test Mode   | Mode 1   |                   |            |



| X | No. | Mk. | Freq.    | Reading<br>Level | Correct | Measure-<br>ment | Limit  | Over   | mà.      |
|---|-----|-----|----------|------------------|---------|------------------|--------|--------|----------|
|   |     |     | MHz      | dBuV             | dB      | dBuV/m           | dBuV/m | dB     | Detector |
| 3 | 1   |     | 35.1278  | 27.05            | 2.80    | 29.85            | 40.00  | -10.15 | QP       |
|   | 2   | 4   | 54.6429  | 28.04            | -5.57   | 22.47            | 40.00  | -17.53 | QP       |
|   | /3  |     | 119.8556 | 26.87            | -2.82   | 24.05            | 43.50  | -19.45 | QP       |
| i | 4   | 3   | 245.9509 | 28.49            | -4.91   | 23.58            | 46.00  | -22.42 | QP       |
| X | 5   | *   | 314.3765 | 42.27            | -2.07   | 40.20            | 46.00  | -5.80  | QP       |
| 5 | 6   | 1   | 455.9058 | 30.02            | 0.06    | 30.08            | 46.00  | -15.92 | QP       |

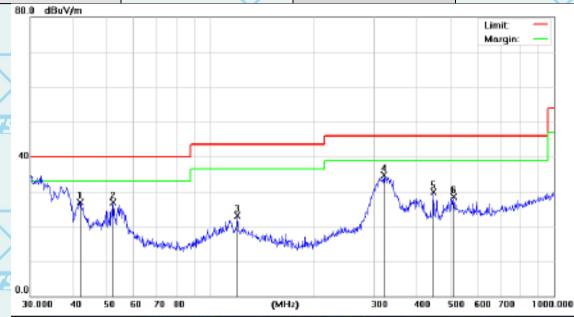
Remark: All the modes have been investigated, and only worst mode is presented in this report.







Certificate Number 5768.01




Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

For Question,
Please Contact with WSCT

www.wsct-cert.com

|             |          |                   |          | www.wsct-c |
|-------------|----------|-------------------|----------|------------|
| Temperature | 20 ℃     | Relative Humidity | 48%      | www.wsci-c |
| Pressure    | 1010 hPa | Polarization :    | Vertical |            |
| Test Mode   | Mode 1   |                   |          |            |



|   | No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   | Trad     |
|---|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|   |     |     | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector |
|   | 1   | ,   | 41.8596  | 27.69            | -0.80             | 26.89            | 40.00  | -13.11 | QP       |
| 7 | 2   | 4   | 52.2079  | 32.23            | -5.28             | 26.95            | 40.00  | -13.05 | QP       |
|   | /3  |     | 119.8556 | 25.97            | -2.82             | 23.15            | 43.50  | -20.35 | QP       |
|   | 4   | *   | 319.9370 | 36.79            | -2.00             | 34.79            | 46.00  | -11.21 | QP       |
|   | 5   | K   | 446.4141 | 29.89            | -0.05             | 29.84            | 46.00  | -16.16 | QP       |
|   | 6   |     | 511.8352 | 27.74            | 0.67              | 28.41            | 46.00  | -17.59 | QP       |

Remark: All the modes have been investigated, and only worst mode is presented in this report.

WSET WSET WSET WSET







Certificate Number 5768.01

Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

# 5.2.5.3 TEST RESULTS (1GHz to 25GHz)

| Ple | ease Contact with WSC1 |
|-----|------------------------|
|     | www.wsct-cert.com      |
|     |                        |

| Temperature | 20 ℃     | Relative Humidity | 48%       |
|-------------|----------|-------------------|-----------|
| Pressure    | 1010 hPa | Test Mode         | Mode 1 TX |
| Frequency   | 2412MHz  |                   | Augus     |

| Freq. | Ant. | Emission    |       | Limit      |    | Over(dB) |        |
|-------|------|-------------|-------|------------|----|----------|--------|
| (MHz) | Pol. | Level(dBuV) |       | 3m(dBuV/m) |    | $\times$ |        |
|       | H/V  | PK          | AV    | PK         | AV | PK       | AV     |
| 4824  | V    | 60.95       | 39.70 | 74         | 54 | -13.05   | -14.30 |
| 7236  | V    | 58.08       | 39.88 | 74         | 54 | -15.92   | -14.12 |
| 4824  | XH   | 58.29       | 39.72 | 74         | 54 | -15.71   | -14.28 |
| 7236  | H    | 58.09       | 39.09 | 74         | 54 | -15.91   | -14.91 |

#### Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

| Temperature | 20 ℃     | Relative Humidity | 48%       |
|-------------|----------|-------------------|-----------|
| Pressure    | 1010 hPa | Test Mode         | Mode 1 TX |
| Frequency   | 2437MHz  |                   |           |

| Freq.<br>(MHz) | Ant.Pol. | Emission Level(dBuV |       | Lir<br>3m(dB | 5- | W5E Ove | er(dB) |
|----------------|----------|---------------------|-------|--------------|----|---------|--------|
| , ,            | H/V      | PK                  | AV    | PK           | AV | PK      | AV     |
| 4874           | V        | 59.91               | 40.07 | 74           | 54 | -14.09  | -13.93 |
| 7311           | V        | 59.47               | 39.51 | 74           | 54 | -14.53  | -14.49 |
| 4874           | ATTH A   | 58.80               | 39.01 | 74           | 54 | -15.20  | -14.99 |
| 7311           | Н        | 58.31               | 39.31 | 74           | 54 | -15.69  | -14.69 |

#### Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.



检测认证股份 enzhen) Co., Ltd.







Certificate Number 5768.01

Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

For Question,
Please Contact with WSCT
www.wsct-cert.com

| Temperature | 20 °C W 5 [ 7 ° ] | Relative Humidity | 48%       |
|-------------|-------------------|-------------------|-----------|
| Pressure    | 1010 hPa          | Test Mode         | Mode 1 TX |
| Frequency   | 2462MHz           |                   | X         |

|   | Freq. | Ant.Pol. | Emission | Level(dBuV | Lir        | nit - | Ove    | r(dB)  |
|---|-------|----------|----------|------------|------------|-------|--------|--------|
|   | (MHz) |          |          |            | 3m(dBuV/m) |       |        |        |
|   | X     | H/V      | PK       | AV         | PK         | AV    | PK     | AV     |
|   | 4924  | V        | 60.35    | 39.67      | 74         | 54    | -13.65 | -14.33 |
| 1 | 7386  | V        | 58.79    | 39.21      | 74         | 54    | -15.21 | -14.79 |
|   | 4924  | H        | 58.06    | 40.81      | 74         | 54    | -15.94 | -13.19 |
|   | 7386  | ×Η       | 58.79    | 39.79      | 74         | 54    | -15.21 | -14.21 |

#### Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

|   |             |          |   |                   |          | 1 |
|---|-------------|----------|---|-------------------|----------|---|
| 1 | Temperature | 20 ℃     |   | Relative Humidity | 48%      |   |
|   | Pressure    | 1010 hPa | X | Test Mode         | Mode2 TX |   |
|   | Frequency   | 2412MHz  |   |                   |          |   |

|   | Freq. | Ant. Pol. | Emis   |       | Limit 3m(dl | 3uV/m) | Over(  | dB)    |   |
|---|-------|-----------|--------|-------|-------------|--------|--------|--------|---|
|   | (MHz) |           | Level( | dBuV) | X           |        | X      |        |   |
|   |       | H/V       | PK     | AV    | PK          | AV     | PK     | AV     |   |
|   | 4824  | V         | 60.40  | 39.27 | v 5 / 74°   | 54     | -13.60 | -14.73 | P |
| 7 | 7236  | V         | 59.78  | 40.39 | 74          | 54     | -14.22 | -13.61 |   |
|   | 4824  | Á         | 59.15  | 40.11 | 74          | 54     | -14.85 | -13.89 | ĺ |
|   | 7236  | ×         | 58.79  | 39.79 | 74          | 54     | -15.21 | -14.21 |   |

#### Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor.

W5ET°

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

orld Standard Standar

WSET WSET







Certificate Number 5768.01

Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

For Question,
Please Contact with WSCT
www.wsct-cert.com

| Temperature | 20 °C    |       | Relative Humidity | 48%       |
|-------------|----------|-------|-------------------|-----------|
| Pressure    | 1010 hPa | X     | Test Mode         | Mode 2 TX |
| Frequency   | 2437MHz  | Maria |                   | WELT      |

| Freq. | Ant.Pol. | Emission I | Level(dBuV | Limit      |    | Over(dB) |        |
|-------|----------|------------|------------|------------|----|----------|--------|
| (MHz) |          |            |            | 3m(dBuV/m) |    |          |        |
| WEET  | H/V      | PK         | AV         | PK         | AV | PK       | AV     |
| 4874  | V        | 58.70      | 40.23      | 74         | 54 | -15.30   | -13.77 |
| 7311  | V        | 59.51      | 40.24      | 74         | 54 | -14.49   | -13.76 |
| 4874  | H        | 58.30      | 39.69      | 74         | 54 | -15.70   | -14.31 |
| 7311  | Ĥ        | 59.74      | 40.74      | 74         | 54 | -14.26   | -13.26 |

#### Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

| Temperature | <b>20</b> ℃ | Relative Humidity | 48%          |
|-------------|-------------|-------------------|--------------|
| Pressure    | 1010 hPa    | Test Mode         | Mode 2 TX V5 |
| Frequency   | 2462MHz     |                   |              |

| Freq.<br>(MHz) | Ant.Pol. | Emission Level(dBuV) |       |         | Limit<br>3m(dBuV/m) |        | Over(dB) |  |
|----------------|----------|----------------------|-------|---------|---------------------|--------|----------|--|
| (IVITZ)        |          |                      |       | SIII(UE | uv/III)             |        |          |  |
|                | H/V      | PK                   | AV    | PK      | AV                  | PK     | AV       |  |
| 4924           | V        | 58.91                | 40.96 | 74      | 54                  | -15.09 | -13.04   |  |
| 7386           | V        | 58.40                | 39.92 | 74      | 54                  | -15.60 | -14.08   |  |
| 4924           | WET THE  | 58.76                | 39.53 | 74      | 54                  | -15.24 | -14.47   |  |
| 7386           | Н        | 59.77                | 40.77 | 74      | 54                  | -14.23 | -13.23   |  |

#### Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor.

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.



SET WSET

WSET WSET

SET WSL

证股份 AC Co., Ltd. TE







Certificate Number 5768.01

Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

For Question,
Please Contact with WSCT
www.wsct-cert.com

| 7 | Temperature | <b>20</b> ℃ | Relative Humidity | 48%      |
|---|-------------|-------------|-------------------|----------|
|   | Pressure    | 1010 hPa    | Test Mode         | Mode3 TX |
|   | Frequency   | 2412MHz     |                   |          |

| Freq.<br>(MHz) | Ant. Pol. | Emission<br>Level(dBuV) |       | Limit<br>3m(dBuV/m) |    | Over(dB) |        |
|----------------|-----------|-------------------------|-------|---------------------|----|----------|--------|
| WSCT           | H/V       | PK                      | AV    | PK                  | AV | PK       | AV     |
| 4824           | V         | 59.49                   | 41.50 | 74                  | 54 | -14.51   | -12.50 |
| 7236           | <b>V</b>  | 59.80                   | 39.31 | 74                  | 54 | -14.20   | -14.69 |
| 4824           | ¥         | 59.61                   | 40.34 | 74                  | 54 | -14.39   | -13.66 |
| 7236           | H         | 59.56                   | 40.56 | 74                  | 54 | -14.44   | -13.44 |

#### Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

# WSET WSET

| Temperature | 20 ℃     | Relative Humidity | 48%       |
|-------------|----------|-------------------|-----------|
| Pressure    | 1010 hPa | Test Mode         | Mode 3 TX |
| Frequency   | 2437MHz  |                   |           |

| Freq. | Ant.Pol. | Emission Level(dBuV) |       | Limit |            | Over(dB) |        |  |
|-------|----------|----------------------|-------|-------|------------|----------|--------|--|
| (MHz) | 7267     | 11213                |       | 3m(dB | 3m(dBuV/m) |          |        |  |
|       | H/V      | PK                   | AV    | PK    | AV         | PK       | AV     |  |
| 4874  | V        | 60.13                | 40.32 | 74    | 54         | -13.87   | -13.68 |  |
| 7311  | V        | 59.10                | 39.91 | 74    | 54         | -14.90   | -14.09 |  |
| 4874  | H /      | 58.10                | 39.12 | 74    | 54         | -15.90   | -14.88 |  |
| 7311  | \ H      | 59.34                | 40.34 | 74    | 54         | -14.66   | -13.66 |  |

#### Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.



世标检测认证股份 Group (Shenzhen) Co., Ltd.







Please Contact with WSCT

Certificate Number 5768.01

Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

20 °C

1010 hPa 2462MHz

|    |                   |           | www.wsct-cert.com |
|----|-------------------|-----------|-------------------|
| ET | Relative Humidity | 48%       | N5                |
|    | Test Mode         | Mode 3 TX |                   |

| Freq. | Ant.Pol. | Emission | Level(dBuV) |    | mit    | Over(dB) |        |  |
|-------|----------|----------|-------------|----|--------|----------|--------|--|
| (MHz) |          |          |             |    | BuV/m) |          |        |  |
| X     | H/V      | PK       | AV          | PK | AV     | PK       | AV     |  |
| 4924  | V        | 59.23    | 40.55       | 74 | 54     | -14.77   | -13.45 |  |
| 7386  | V        | 58.06    | 39.56       | 74 | 54     | -15.94   | -14.44 |  |
| 4924  | H        | 58.62    | 39.67       | 74 | 54     | -15.38   | -14.33 |  |
| 7386  | ×Η       | 59.64    | 40.64       | 74 | 54     | -14.36   | -13.36 |  |

Remark:

Temperature Pressure

Frequency

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

WSET WSET W

| Temperature | 20 ℃     |      | Relative Humidity | 48%      |
|-------------|----------|------|-------------------|----------|
| Pressure    | 1010 hPa |      | Test Mode         | Mode4 TX |
| Frequency   | 2422MHz  | V5CT |                   | WSC      |

| Freq. | Ant. | Emis        | Emission |            | Limit |        | Over(dB) |  |  |
|-------|------|-------------|----------|------------|-------|--------|----------|--|--|
| (MHz) | Pol. | Level(dBuV) |          | 3m(dBuV/m) |       |        |          |  |  |
| WELL  | H/V  | PK          | AV       | PK         | AV    | PK     | AV       |  |  |
| 4844  | V    | 60.72       | 39.71    | 74         | 54    | -13.28 | -14.29   |  |  |
| 7266  | V    | 58.94       | 40.56    | 74         | 54    | -15.06 | -13.44   |  |  |
| 4844  | H    | 59.33       | 39.89    | 74         | 54    | -14.67 | -14.11   |  |  |
| 7266  | H    | 59.39       | 40.39    | 74         | 54    | -14.61 | -13.61   |  |  |

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor.

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

 $\times$ 

WSCT She Report to the Report

X

WEST







Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

Please Contact with WSCT www.wsct-cert.com

| Temperature | 20 °C    |       | Relative Humidity | 48%       |
|-------------|----------|-------|-------------------|-----------|
| Pressure    | 1010 hPa | X     | Test Mode         | Mode 4 TX |
| Frequency   | 2437MHz  | Miles |                   | W.F.F.    |

| Freq. | Ant.Pol. | Emission | Level(dBuV) | Limit      |    | Over(dB) |        |
|-------|----------|----------|-------------|------------|----|----------|--------|
| (MHz) |          | $\wedge$ |             | 3m(dBuV/m) |    |          |        |
| WELL  | H/V      | PK       | AV          | PK         | AV | PK       | AV     |
| 4874  | V        | 60.83    | 39.70       | 74         | 54 | -13.17   | -14.30 |
| 7311  | V        | 58.50    | 40.87       | 74         | 54 | -15.50   | -13.13 |
| 4874  | H        | 59.39    | 40.34       | 74         | 54 | -14.61   | -13.66 |
| 7311  | Ĥ        | 58.62    | 39.62       | 74         | 54 | -15.38   | -14.38 |

#### Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

| Temperature | <b>20</b> ℃ | Relative Humidity | 48%          |
|-------------|-------------|-------------------|--------------|
| Pressure    | 1010 hPa    | Test Mode         | Mode 4 TX V5 |
| Frequency   | 2452MHz     |                   |              |

| Freq.<br>(MHz) | Ant.Pol. | Emission Level(dBuV) |       | Limit<br>3m(dBuV/m) |    | Over(dB) |        |
|----------------|----------|----------------------|-------|---------------------|----|----------|--------|
|                | H/V      | PK                   | AV    | PK                  | AV | PK       | AV     |
| 4904           | V        | 58.63                | 41.89 | 74                  | 54 | -15.37   | -12.11 |
| 7356           | >        | 58.71                | 40.30 | 74                  | 54 | -15.29   | -13.70 |
| 4904           | NSCH L   | 59.68                | 39.68 | 74                  | 54 | -14.32   | -14.32 |
| 7356           | Н        | 59.19                | 40.19 | 74                  | 54 | -14.81   | -13.81 |

#### Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor.

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.









Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

For Question,
Please Contact with WSCT
www.wsct-cert.com

# 6. ANTENNA APPLICATION

#### 6.1 Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and 15.247

FCC part 15C section 15.247 requirements: Systems operating in the 2402-2480MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

#### 6.2 Result

NON \* PI

The EUT's antenna RP-SMA Antenna, The antenna's gain is 0.78dBi and meets the requirement.

| THE EUT | s antenna RP-SIVIA Ant | enna, The antenna's gain | is 0.7 odbi and meets the |                   |
|---------|------------------------|--------------------------|---------------------------|-------------------|
| WSET    | WSET                   | WSET                     | WSET                      | W5LT              |
| WS      | THE WE                 | SET WS                   | W.S.L                     | $\langle  \times$ |
| WSLT    | WSET                   | WSET                     | WSET                      | WSLT              |
| W       | TET W                  | SET WS                   | WS.                       | WSET              |
| WSET    | WSET                   | WSET                     | WSET                      | WSET              |
| W       | W.                     | SET WS                   |                           | WSET              |
| WSET    | WSET                   | WSET                     | WSET                      | WSET              |
|         |                        | SET WS                   |                           |                   |
| Set WSC | 7 Goup (Shenz)         | WSCT                     | WSUT                      | WSET              |

Page 27 of 58

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

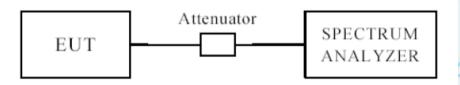
Member of the WSCT INC





Certificate Number 5768.01






Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

Please Contact with WSCT www.wsct-cert.com

# 7. 6DB BANDWIDTH MEASUREMENT

7.1 TEST SETUP



#### 7.2 LIMITS OF 6DB BANDWIDTH MEASUREMENT

The minimum of 6dB Bandwidth Measurement is >500 kHz

#### 7.3 TEST PROCEDURE

- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth (VBW)  $\geq$  3 x RBW.
- Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the

outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured

in the fundamental emission.

#### 7.4 TEST RESULT

6dB Occupied Bandwidth

| Mode     | 802.                          | 1b Humidity                        |                         | 56%                       | RH         |
|----------|-------------------------------|------------------------------------|-------------------------|---------------------------|------------|
| Temperat | ture 24 de                    | eg. C,                             | WSET WSE                |                           | 7°\        |
| Channel  | Channel<br>Frequency<br>(MHz) | Data<br>Transfer<br>Rate<br>(Mbps) | 6 dB Bandwidth<br>(kHz) | Minimum<br>Limit<br>(MHz) | Pass/ Fail |
| 1        | 2412                          |                                    | 13173.1                 | 0.5                       | Pass       |
| 6        | 2437                          | 1                                  | 13076.9                 | 0.5                       | Pass       |
| 11       | 2462                          | 1                                  | 13269.2                 | 0.5                       | Pass       |

| Ų | Mode     | 802.                          | Humidity 56% RH          |                     |         | RH |            |
|---|----------|-------------------------------|--------------------------|---------------------|---------|----|------------|
|   | Temperat | ure 24 de                     | eg. C,                   |                     |         |    |            |
|   | Channel  | Channel<br>Frequency<br>(MHz) | Data<br>Transfer<br>Rate | 6 dB Bandwidth Limi |         | t  | Pass/ Fail |
|   |          | (1711 12)                     | (Mbps)                   |                     | (1711)2 | ,  |            |
|   | 1        | 2412                          | 6                        | 18076.9             | 0.5     |    | Pass       |
|   | 6        | 2437                          | 6                        | 18077.9             | 0.5     |    | Pass       |
| d | 11       | 2462                          | 6                        | 17980.8             | 0.5     |    | Pass       |







Certificate Number 5768.01

Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

Toup (Shen

and zation Certification | Williams

Please Contact with WSCT

|   |          |                               |                                    |                                          | www.wsct-ce |            |     |  |
|---|----------|-------------------------------|------------------------------------|------------------------------------------|-------------|------------|-----|--|
|   | Mode     | 802.                          | 802.11n20<br>24 deg. C,            |                                          | 56%         | 56% RH     |     |  |
| 1 | Temperat | ure 24 de                     |                                    |                                          | W/5/        |            | 151 |  |
|   | Channel  | Channel<br>Frequency<br>(MHz) | Data<br>Transfer<br>Rate<br>(Mbps) | 6 dB Bandwidth (kHz) Minimum Limit (MHz) |             | Pass/ Fail |     |  |
|   | 1 /      | 2412                          | 6.5                                | 18173.1                                  | 0.5         | Pass       |     |  |
|   | 6        | 2437                          | 6.5                                | 17980.8                                  | 0.5         | Pass       |     |  |
|   | 11       | 2462                          | 6.5                                | 18076.9                                  | 0.5         | Pass       | V   |  |

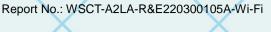
|   | Mode     | X                | 802.  | 11n40                      | Humidity                |               | 56% | RH         |          |
|---|----------|------------------|-------|----------------------------|-------------------------|---------------|-----|------------|----------|
|   | Temperat | ure              | 24 de | eg. C,                     |                         |               |     |            |          |
|   |          | Channe           | اد    | Data                       | W5                      | Minimu        | ım  | WSCT       |          |
| _ | Channel  | Frequen<br>(MHz) | су    | Transfer<br>Rate<br>(Mbps) | 6 dB Bandwidth<br>(kHz) | Limit<br>(MHz | ι,  | Pass/ Fail | $\times$ |
| 2 | 3        | 2422             |       | 13.5                       | 32948.7                 | 0.5           |     | Pass       |          |
|   | 75.6     | 2437             | W5    | 13.5                       | 32692.3                 | 0.5           | 15E | Pass       | 15E      |
|   | 9        | 2452             |       | 13.5                       | 33333.3                 | 0.5           |     | Pass       |          |

| WSET WSET WSET WSET WSET WS | TI                   |
|-----------------------------|----------------------|
| WSET WSET WSET WSET WS      | ET                   |
|                             |                      |
| WSET WSET WSET WSET         |                      |
|                             | $\overline{\langle}$ |
| WSET WSET WSET WSET WS      | ET                   |
| $\times$                    |                      |
| WSET WSET WSET WSET         |                      |
| WSIT WSIT WS                | $\leq$               |

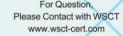
Page 29 of 58

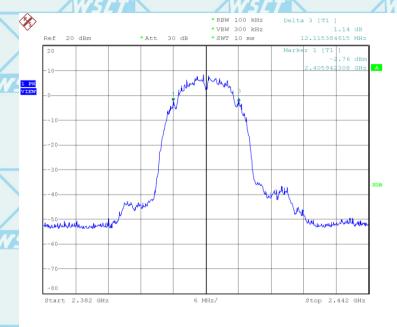
ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC



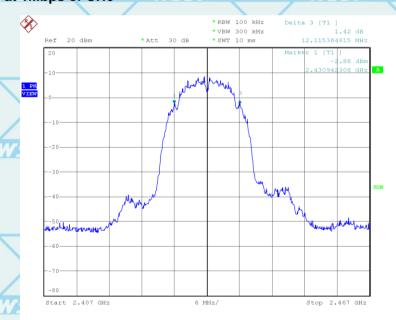



Certificate Number 5768.01




# 802.11b at 1Mbps of CH1





Date: 24.MAR.2022 14:03:21

# 802.11b at 1Mbps of CH6



Date: 24.MAR.2022 14:04:39

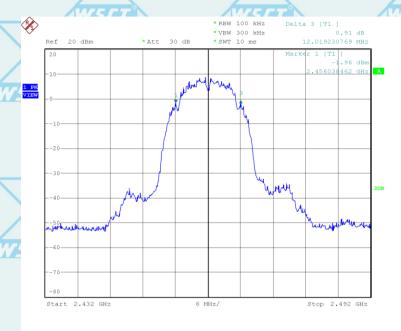
WSET Cation & Testing Garage

AND AND CERTIFICATION \* PIT

世标检测认证股份

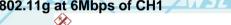


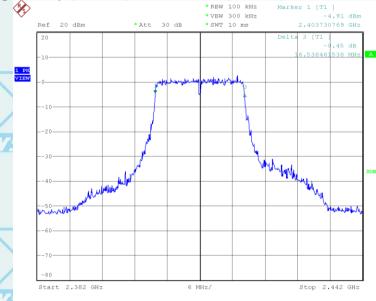







Certificate Number 5768.01

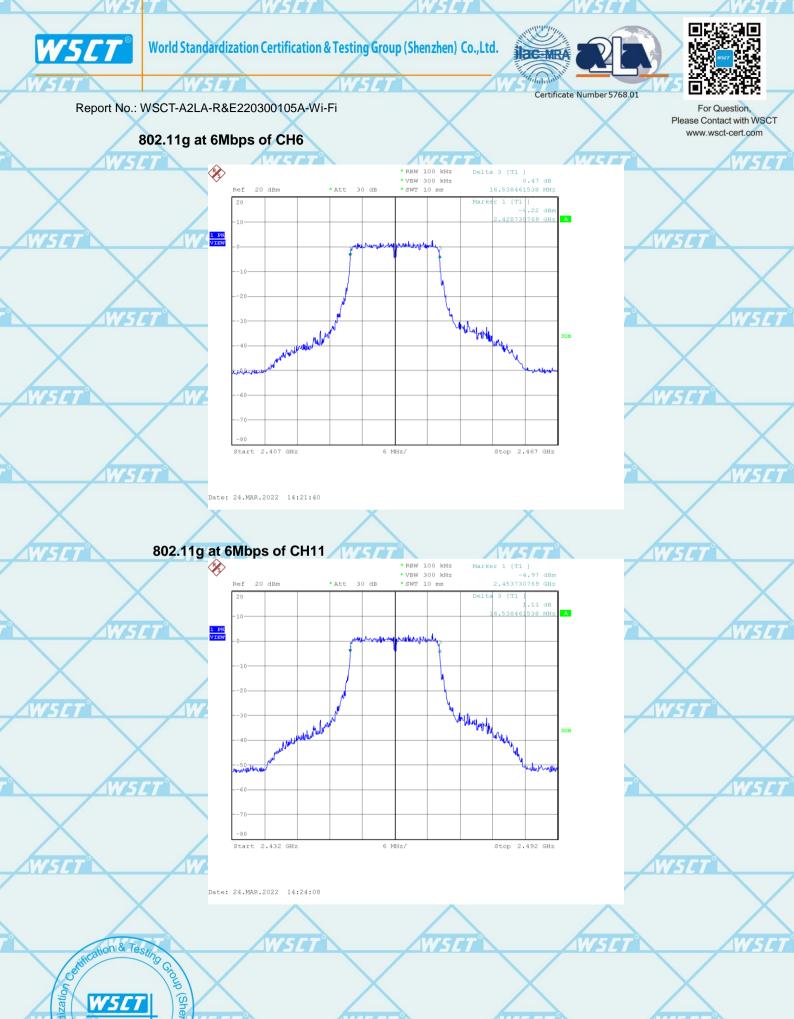

### 802.11b at 1Mbps of CH11



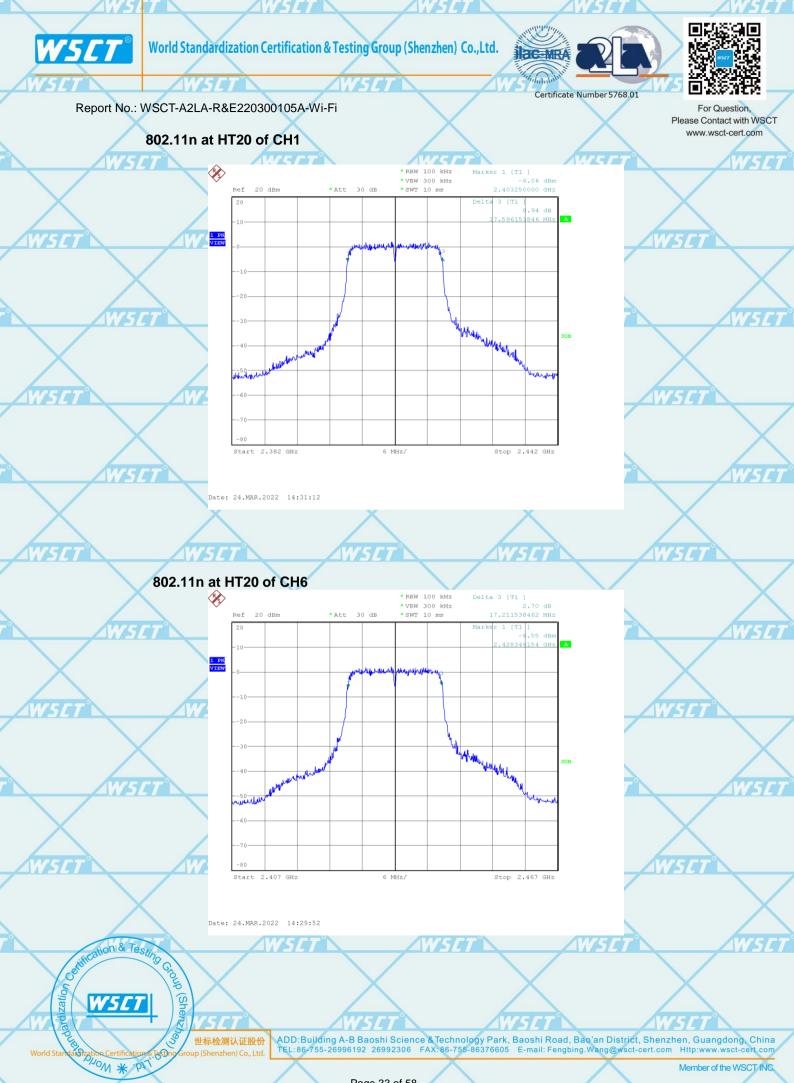



Date: 24.MAR.2022 14:06:17

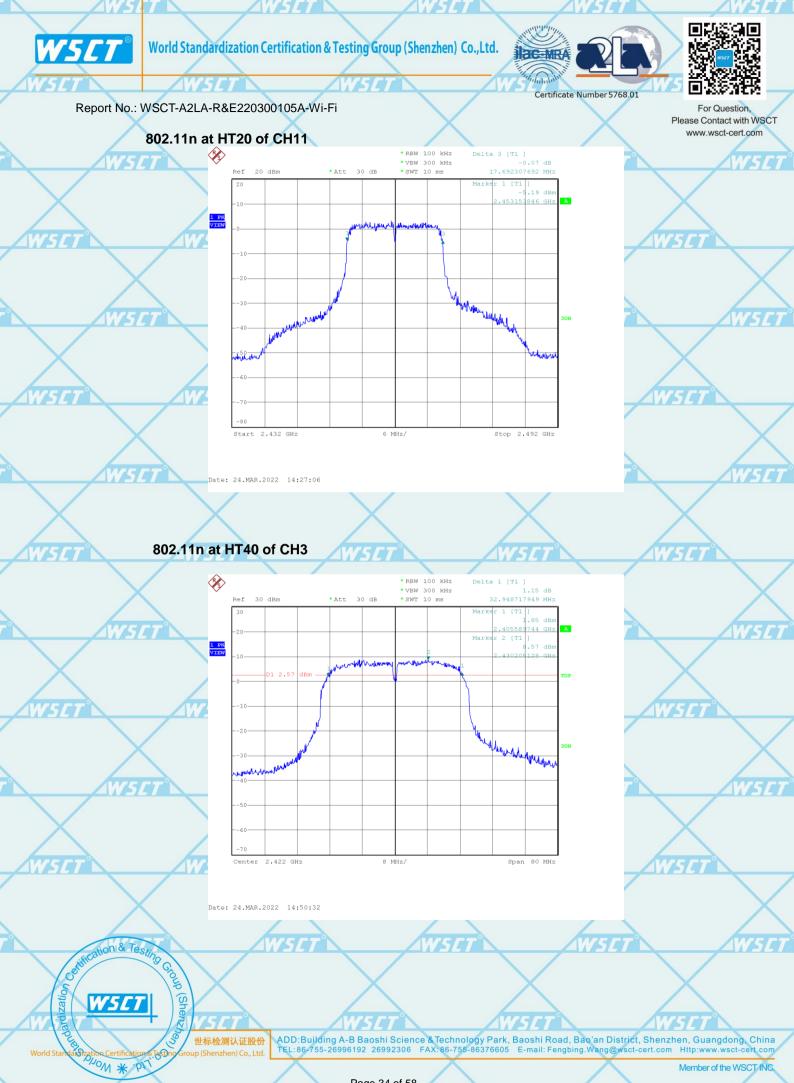
# 802.11g at 6Mbps of CH1

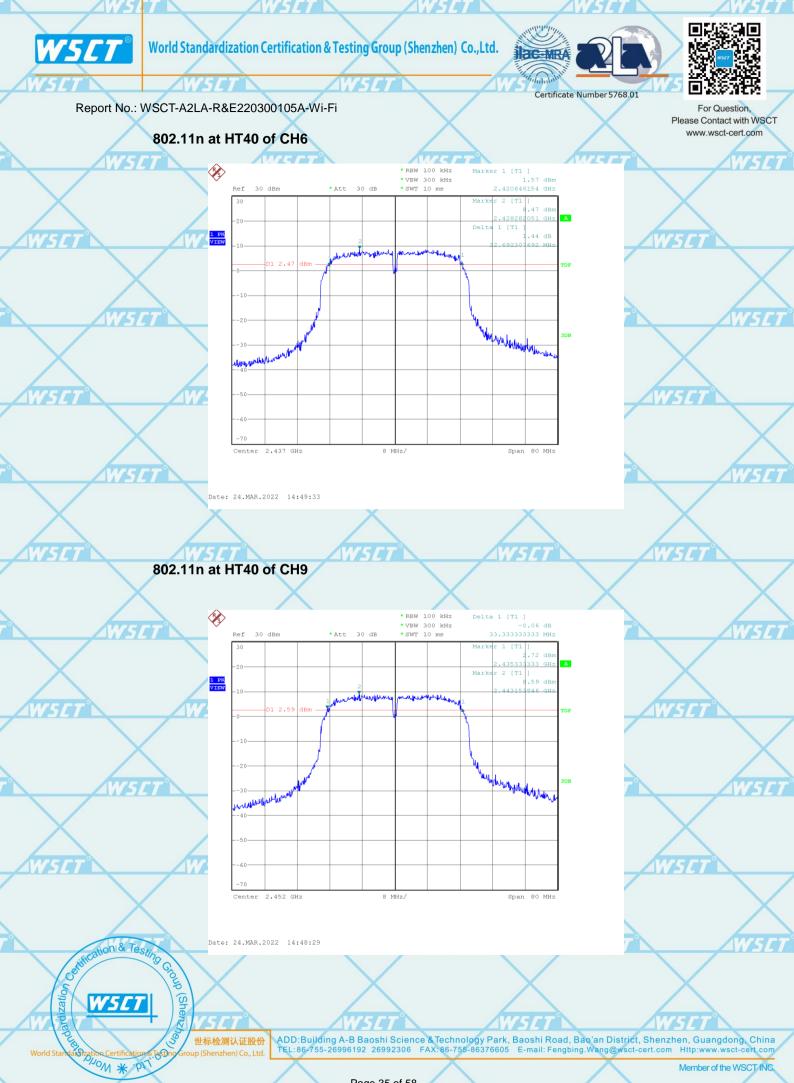






Date: 24.MAR.2022 14:09:08

AND AND CERTIFICATION \* PIT


roup (Shen




AND AND CERTIFICATION \* PIT



Member of the WSCT INC







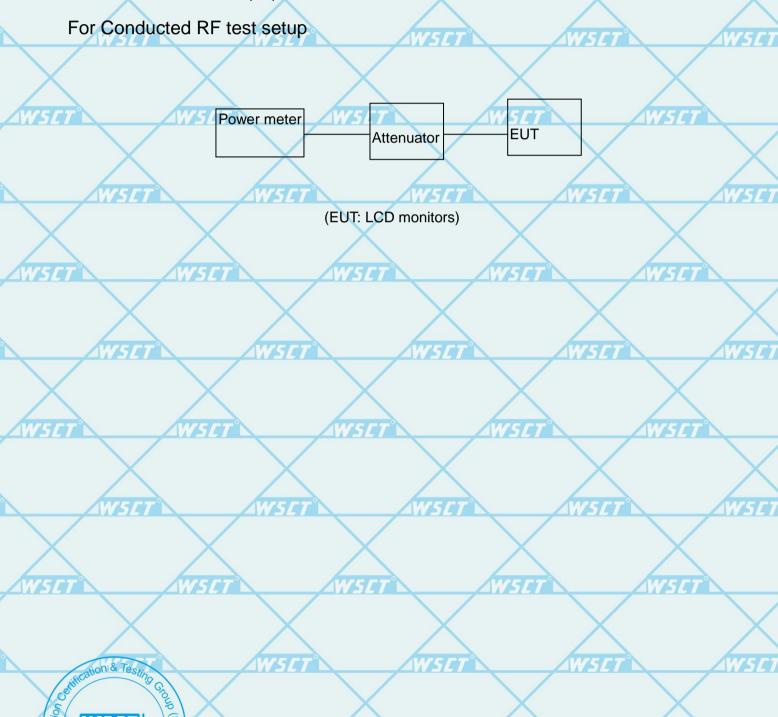




Certificate Number 5768.01



Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi


For Question,
Please Contact with WSCT
www.wsct-cert.com

#### 8. MAXIMUM CONDUCTED OUTPUT POWER

Test Requirement: FCC 47 CFR Part 15 Subpart C 15.247(b)
Test Method: KDB 789033 D02 v01r04 Section E.3.a (Method PM)
The Maximum Peak Output Power Measurement is 30dBm.

#### Test Procedure:

- 1. Connected the EUT's antenna port to measure device by 10dB attenuator.
- 2. Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of Tx on burst.



Member of the WSCT INC









Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

For Question, Please Contact with WSCT www.wsct-cert.com

**Test Data:** 

| / | Mode          | Channel/    | Maximum conducted | Limit(dBm) | Pass / Fail | Z |
|---|---------------|-------------|-------------------|------------|-------------|---|
|   |               | Frequency   | output            |            |             |   |
|   |               | (MHz)       | power (dBm)       |            |             |   |
| _ |               |             | Meas Power        |            |             |   |
|   | 802.11b       | 1(2412)     | 12.16             | 30         | Pass        | × |
| \ |               | 6(2437)     | 12.08             | 30         | Pass        |   |
| 7 |               | 11(2462)    | 12.13             | 30         | Pass        | 7 |
|   | 802.11g       | 1(2412)     | 11.18             | 30         | Pass        |   |
|   |               | 6(2437)     | 11.19             | 30         | Pass        |   |
|   | WSET          | 11(2462)    | 7 11.23 W5C       | 30         | W Pass      |   |
| / | 802.11n(HT20) | 1(2412)     | 11.41             | 30         | Pass        | J |
|   |               | 6(2437)     | 11.40             | 30         | Pass        |   |
| 7 |               | /5/11(2462) | 11.33             | V30        | Pass W      | 7 |
|   | 802.11n       | 3(2422)     | 10.26             | 30         | Pass        |   |
|   | (HT40)        | 6(2437)     | 10.31             | 30         | Pass        |   |
|   | WSET          | 9(2452)/5/  | 7 10.29 W5L       | 30         | W5 Pass     |   |

Group (Shenzh. W5C7

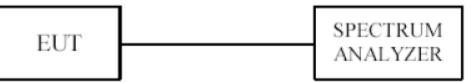
AND Zation Certification ( POT)

世标检测认证股份





Certificate Number 5768.01




Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

For Question,
Please Contact with WSCT
www.wsct-cert.com

## 9. POWER SPECTRAL DENSITY MEASUREMENT

9.1 TEST SETUP



J

### 9.2 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

The Maximum Power Spectral Density Measurement is 8dBm.

#### 9.3 TEST PROCEDURE

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used todemonstrate compliance.
- 2. Set the RBW = 3 kHz.
- 3. Set the VBW =10 kHz.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be ≤ 8 dBm.

|           | WSET      | WSET     | WSET | WSET                             | WSET   |
|-----------|-----------|----------|------|----------------------------------|--------|
| WSET      | WSET      | $\times$ |      |                                  |        |
|           | W5ET      | WSET     | WSET | WSLT                             | Wister |
| WSET      | WSET      |          |      | $\langle \hspace{0.1cm} \rangle$ |        |
|           | % Testing | WSET     | WSCT | WSET                             | WSCI   |
| ificality | - ung     |          |      |                                  |        |

世标检测认证股份 oup (Shenzhen) Co., Ltd.





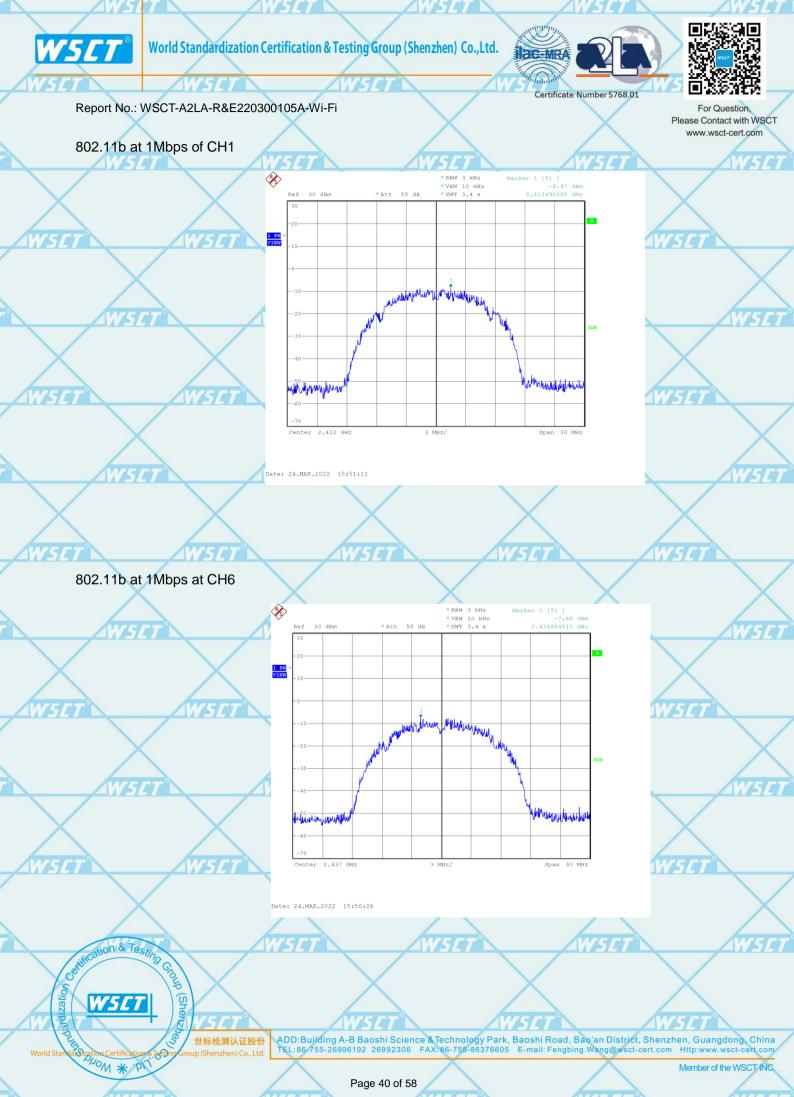


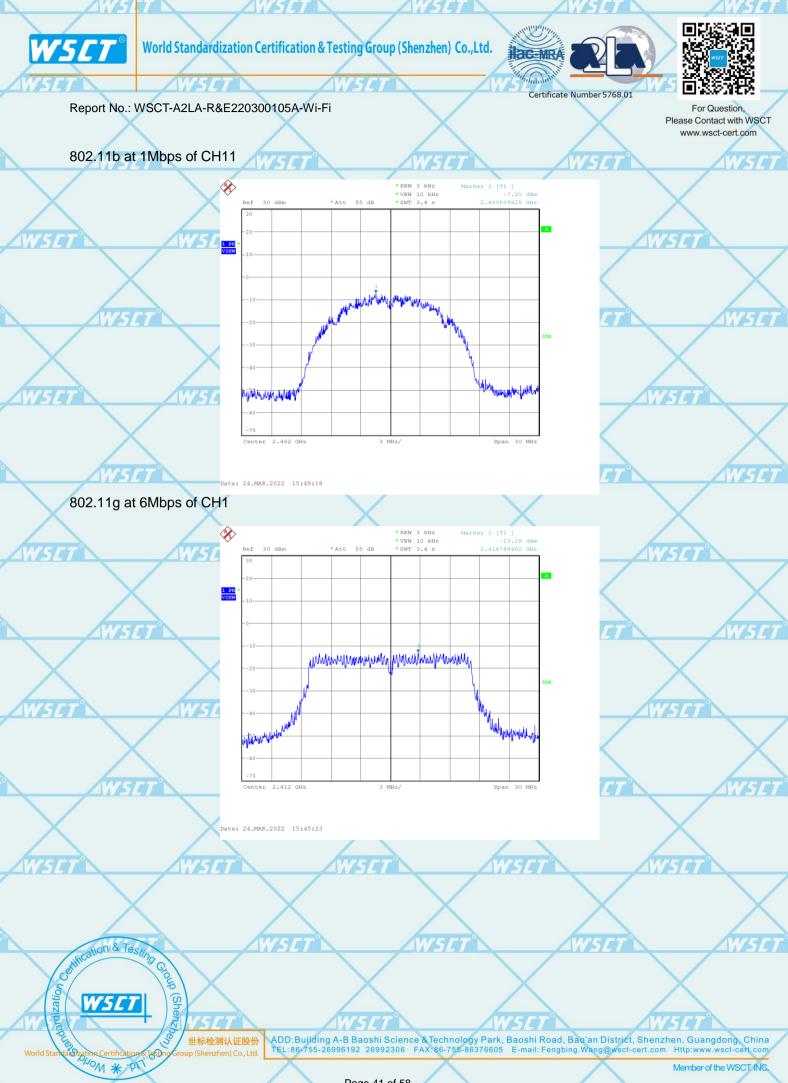
Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

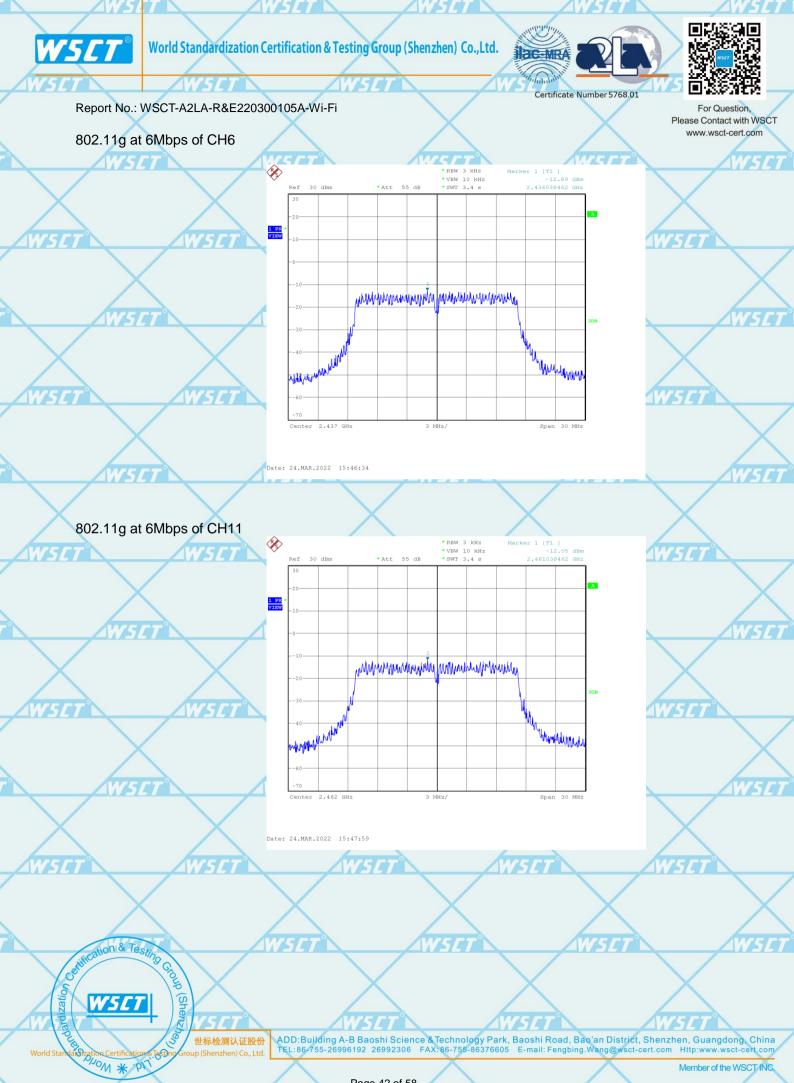
For Question,
Please Contact with WSCT
www.wsct-cert.com

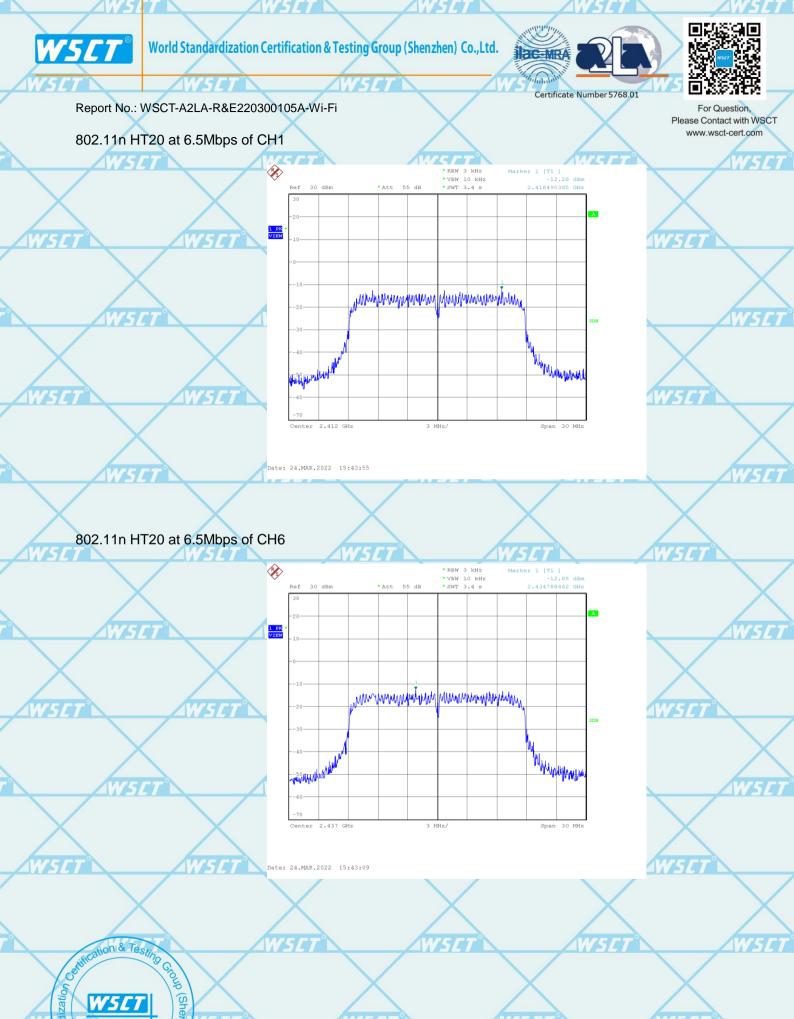
#### 9.4 TEST RESULT

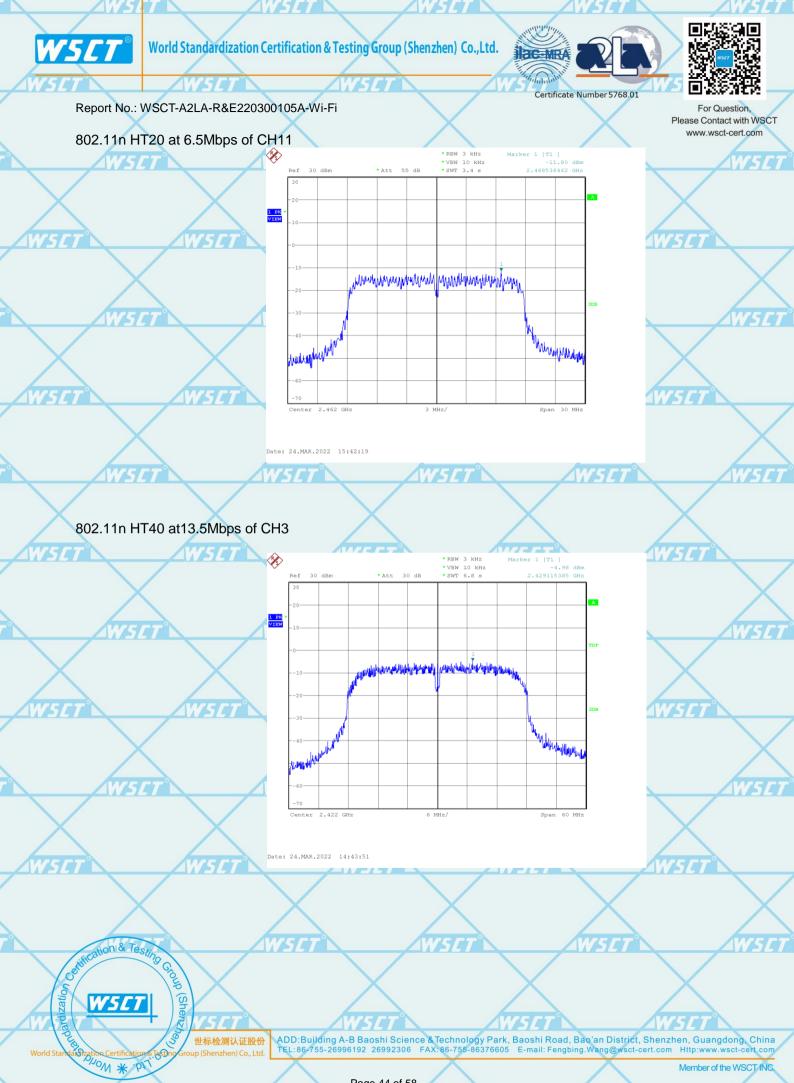
| Mode        | 802.11b          | Humidity       | 56%           | RH         |
|-------------|------------------|----------------|---------------|------------|
| Temperature | 24 deg. C,       |                |               |            |
| Channel     | Channel          | Final RF Power | Maximum Limit | Pass/ Fail |
|             | Frequency        | Level in (dBm) | (dBm)         |            |
|             | <b>5 7</b> (MHz) | WSET           | WSET          | WSCT N     |
|             |                  | 1Mbps          |               |            |
| 1           | 2412             | -8.47          | 8             | Pass       |
| 6           | 2437             | -7.68          | 8             | Pass       |
| 11          | 2462             | -7.20          | 8             | Pass       |
|             |                  |                |               |            |

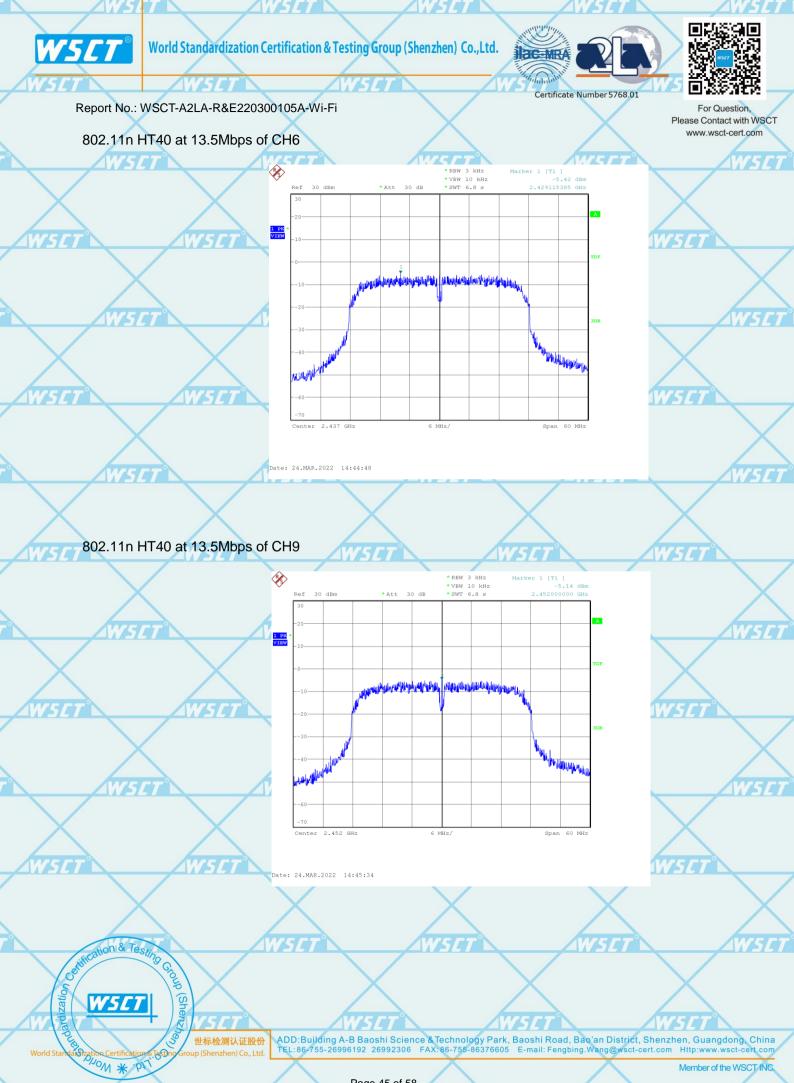

| Mode        | 802.11g            | Hum           | nidity   | 56% RH         |
|-------------|--------------------|---------------|----------|----------------|
| Temperature | 24 deg. C,         |               |          |                |
| Channel     | Channel            | Final RF Pow  |          | mit Pass/ Fail |
|             | Frequency<br>(MHz) | Level in (dBr | n) (dBm) |                |
|             |                    | 6Mbp          | S        |                |
| 1           | 2412               | -13.28        | 8        | Pass           |
| W516        | 2437               | -12.89        | 56 8     | Pass           |
| 11          | 2462               | -12.05        | 8        | Pass           |


| Mode        | 802.11n HT20 | Humidit        | y 56%         | %RH        |
|-------------|--------------|----------------|---------------|------------|
| Temperature | 24 deg. C,   | 1171           | 1177          |            |
| Channel     | Channel      | Final RF Power | Maximum Limit | Pass/ Fail |
| Frequency   |              | Level in (dBm) | (dBm)         | X          |
|             | (MHz)        |                |               |            |
| WSIT        | WSIT         | 6.5Mbps        | CT° W         | STT        |
| 1           | 2412         | -12.28         | 8             | Pass       |
| 6           | 2437         | -12.85         | 8             | Pass       |
| 11          | 2462         | -11.80         | 8             | Pass       |


| _ |             | JL/          | 4WJLI        |          |             |        |            |
|---|-------------|--------------|--------------|----------|-------------|--------|------------|
|   | Mode        | 802.11n HT40 |              | Humidity |             | 56% RH |            |
|   | Temperature | 24 deg. C,   |              | X        |             | X      |            |
|   | Channel     | Channel      | Final RF     | Power    | Maximum Lir | nit    | Pass/ Fail |
|   | WSCT        | Frequency    | Level ir     | n (dBm)  | (dBm)       | 177.32 |            |
| _ | WELFA       | (MHz)        |              |          |             |        |            |
|   |             |              | 13           | 3.5Mbps  |             |        |            |
|   | 3           | 2422         | <b>X-4</b> . | 98       | 8           |        | Pass       |
|   | 6           | 2437         | -5,          | 42       | 8           |        | Pass       |
|   | 9           | 2452         | M/5/-5.      | 14       | W (8-7°     |        | Pass       |


Remark: All of the modes have been investigated, and only worst mode is presented in this report.







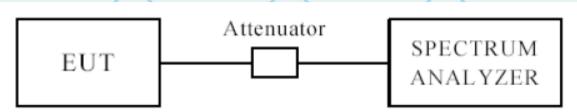











Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

Certificate Number 5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

# 10. OUT OF BAND MEASUREMENT 10.1 TEST SETUP FOR BAND EDGE



The restricted band requirement based on radiated emission test; please see the clause 6 for the test setup

#### 10.2 LIMITS OF OUT OF BAND EMISSIONS MEASUREMENT

- 1. Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

#### **10.3 TEST PROCEDURE**

For signals in the restricted bands above and below the 2.4-2.483GHz allocated band a measurement was made of radiated emission test. (Peak values with RBW=VBW=1MHz and PK detector. AV value with RBW=1MHz,VBW=10Hz and PK detector)

For bandage test, the spectrum set as follows: RBW=100 kHz, VBW=100 kHz. A conducted measurement used

#### **10.4 TEST RESULT**

Please see next pages

Note: This is a handhold device. The radiated emissions should be tested under 3-axes position (Lying, Stand), After pre-test. It was found that the worse radiated emission was get at the lying position.

WSET WSET WSET WSET WSET WSET WSET WSET

Member of the WSCT INC







Please Contact with WSCT www.wsct-cert.com

Certificate Number 5768.01

Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

#### Radiated measurement:

## 802.11b

| 1                     | Indica             | ted                                          |                   | Antenna              | Corre                    | ection Fa             | ctor                     | FCC                       | Part 15.24        | 17             |
|-----------------------|--------------------|----------------------------------------------|-------------------|----------------------|--------------------------|-----------------------|--------------------------|---------------------------|-------------------|----------------|
| 3                     | Frequency<br>(MHz) | Receiver<br>Reading<br>(dB <sub>µ</sub> V/m) | result<br>(PK/AV) | Polar<br>(H/V)       | Ant.<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Pre-Amp.<br>Gain<br>(dB) | Cord.<br>Amp.<br>(dBµV/m) | Limit<br>(dBμV/m) | Margin<br>(dB) |
| Low Channel (2412MHz) |                    |                                              |                   |                      |                          |                       |                          |                           |                   |                |
|                       | 2390               | 35.05                                        | AV                | V                    | 30.3                     | 4.1                   | 33.1                     | 36.35                     | 54                | 17.65          |
|                       | 2390               | 33.68                                        | AV                | /5/ <sub>1</sub> / 1 | 30.3                     | 4.1                   | 33.1                     | 34.98                     | 54                | 19.02          |
| /                     | 2390               | 50.84                                        | PK                | V                    | 30.3                     | 4.1                   | 33.1                     | 52.14                     | 74                | 21.86          |
| \                     | 2390               | 49.42                                        | PK                | Н                    | 30.3                     | 4.1                   | 33.1                     | 50.72                     | 74                | 23.28          |
| 7                     | 7                  | W5                                           | ET .              | Hi                   | gh Channel               | (2462MH               | z) W5/                   | 7                         | W                 | SET            |
|                       | 2483.5             | 30.54                                        | AV                | V                    | 31                       | 4.4                   | 32.7                     | 33.24                     | 54                | 20.76          |
|                       | 2483.5             | 30.11                                        | AV                | H                    | 31                       | 4.4                   | 32.7                     | 32.81                     | 54                | 21.19          |
|                       | 2483.5             | 39.43                                        | PK                | V                    | 31                       | 4.4                   | 32.7                     | 42.13                     | 74                | 31.87          |
|                       | 2483.5             | 41.33                                        | PK                | H                    | 31                       | 4.4                   | 32.7                     | 44.03                     | 74                | 29.97          |

#### 802.11g

|           | 802.11g            | Ave                                          |                   |                |                          |                       | Arres                    |                           | -                 |                |
|-----------|--------------------|----------------------------------------------|-------------------|----------------|--------------------------|-----------------------|--------------------------|---------------------------|-------------------|----------------|
| Indicated |                    |                                              | Antenna           | Corre          | Correction Factor        |                       |                          | FCC Part 15.247           |                   |                |
|           | Frequency<br>(MHz) | Receiver<br>Reading<br>(dB <sub>µ</sub> V/m) | result<br>(PK/AV) | Polar<br>(H/V) | Ant.<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Pre-Amp.<br>Gain<br>(dB) | Cord.<br>Amp.<br>(dBµV/m) | Limit<br>(dBμV/m) | Margin<br>(dB) |
|           | - II-15            |                                              |                   | Lo             | w Channel                | (2412MH               | z)                       |                           |                   |                |
|           | 2390               | 37.24                                        | AV                | V              | 30.3                     | 4.1                   | 33.1                     | 38.54                     | 54                | 15.46          |
|           | 2390               | 37.97                                        | AV                | Н              | 30.3                     | 4.1                   | 33.1                     | 39.27                     | 54                | 14.73          |
| 4         | 2390               | 54.83                                        | PK                | V              | 30.3                     | 4.1                   | 33.1                     | 56.13                     | 74                | 17.87          |
|           | 2390               | 53.97                                        | PK                | H              | 30.3                     | 4.1                   | 33.1                     | 55.27                     | 74                | 18.73          |
|           | $\sim$             |                                              |                   | Hi             | gh Channel               | (2462MH               | z)                       |                           | $\overline{}$     |                |
|           | 2483.5             | 32.86                                        | AV                | N5VT°          | 31                       | 4.45                  | 32.7                     | 35.56                     | 54                | 18.44          |
| ,         | 2483.5             | 32.21                                        | AV                | Н              | 31                       | 4.4                   | 32.7                     | 34.91                     | 54                | 19.09          |
|           | 2483.5             | 45.64                                        | PK                | V              | 31                       | 4.4                   | 32.7                     | 48.34                     | 74                | 25.66          |
| F         | 2483.5             | 46.42                                        | PK                | Н              | 31                       | 4.4                   | 32.7                     | 49.12                     | 74                | 24.88          |

Note: The BAND EDGE RESTRICTED BANDS emission is too low at least 20dB to the Fundamental.



世标检测认证股份 up (Shenzhen) Co., Ltd.





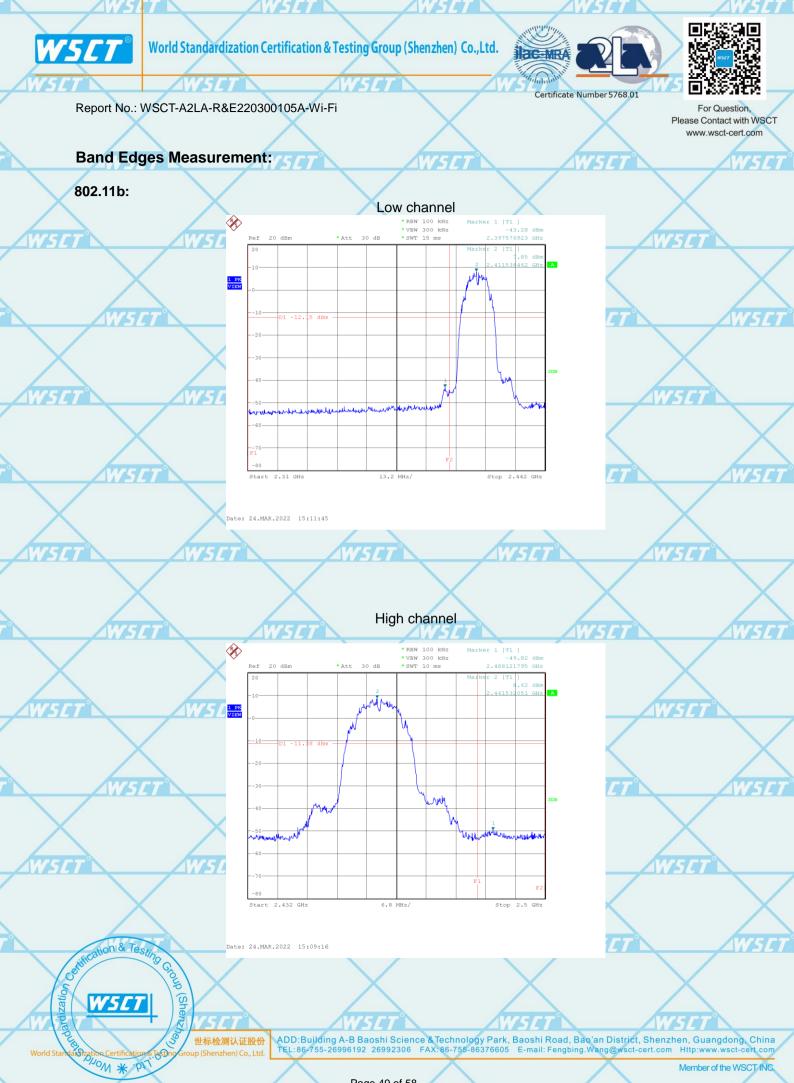


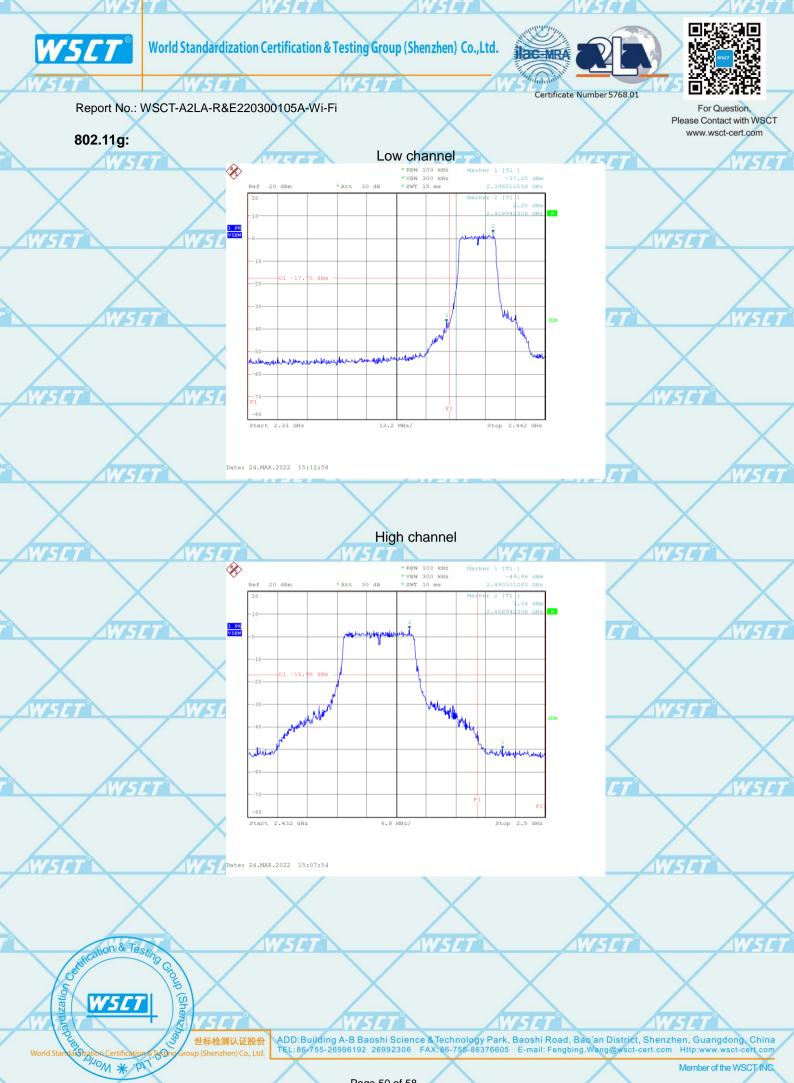


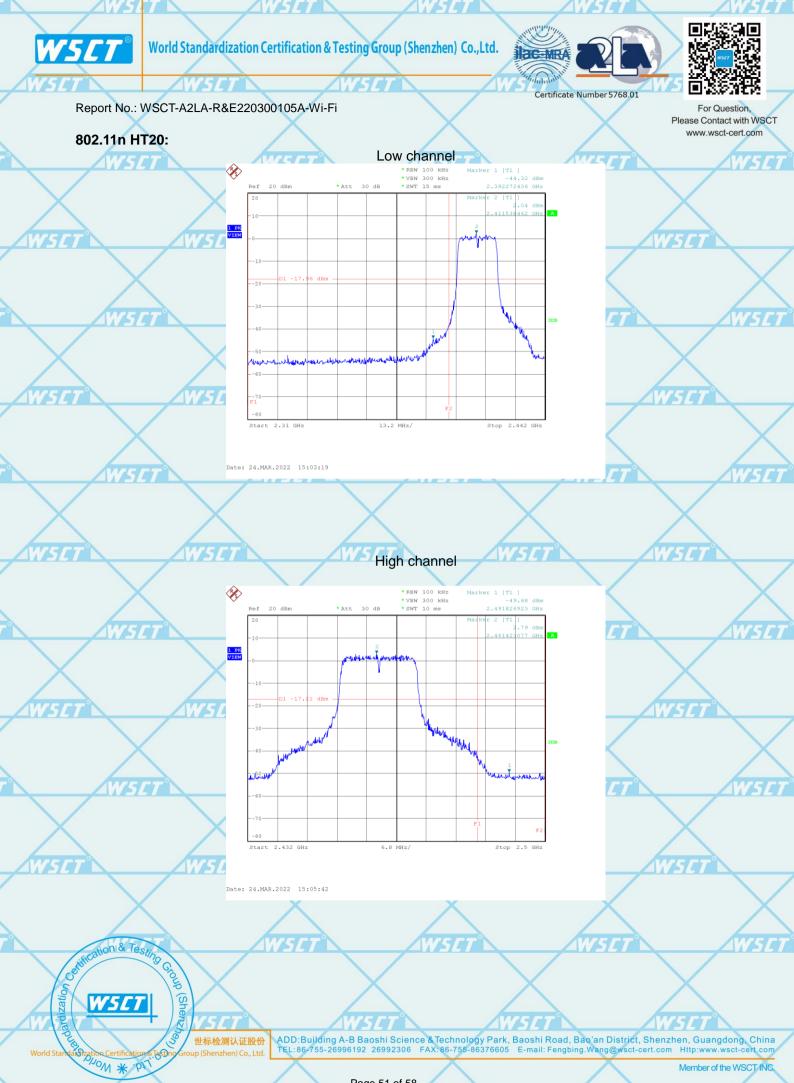
Report No.: WSCT-A2LA-R&E220300105A-Wi-Fi

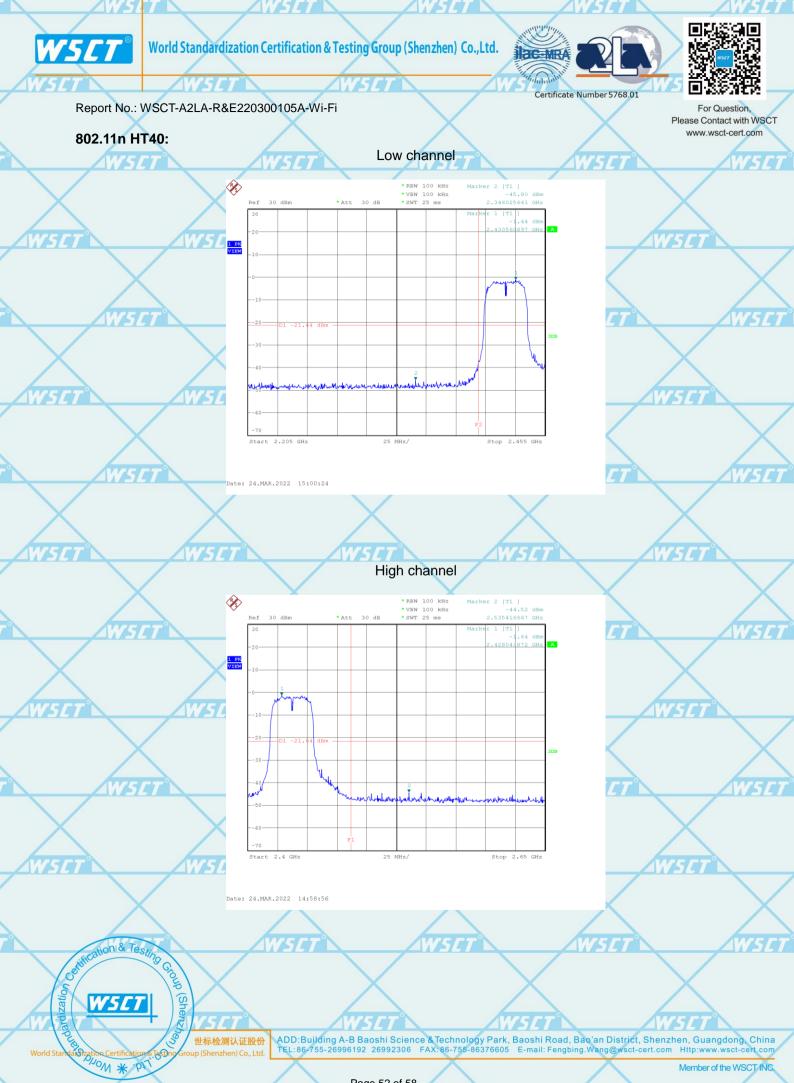
For Question,
Please Contact with WSCT
www.wsct-cert.com

#### 802.11n HT20


|                       | Indicated          |                                              | ., Antenna –      |                | Corre                    | Correction Factor     |                          |                           | FCC Part 15.247   |                |  |
|-----------------------|--------------------|----------------------------------------------|-------------------|----------------|--------------------------|-----------------------|--------------------------|---------------------------|-------------------|----------------|--|
|                       | Frequency<br>(MHz) | Receiver<br>Reading<br>(dB <sub>µ</sub> V/m) | result<br>(PK/AV) | Polar<br>(H/V) | Ant.<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Pre-Amp.<br>Gain<br>(dB) | Cord.<br>Amp.<br>(dBµV/m) | Limit<br>(dBμV/m) | Margin<br>(dB) |  |
| Low Channel (2412MHz) |                    |                                              |                   |                |                          |                       |                          |                           |                   |                |  |
|                       | 2390               | 36.79                                        | AV                | <b>V</b>       | 30.3                     | 4.1                   | 33.1                     | 38.09                     | 54                | 15.91          |  |
|                       | 2390               | 36.78                                        | AV                | H              | 30.3                     | 4.1                   | 33.1                     | 38.08                     | 54                | 15.92          |  |
| 1                     | 2390               | 53.34                                        | PK                | V              | 30.3                     | 4.1                   | 33.1                     | 54.64                     | 74                | 19.36          |  |
|                       | 2390               | 52.67                                        | PK                | Н              | 30.3                     | 4.1                   | 33.1                     | 53.97                     | 74                | 20.03          |  |
|                       |                    |                                              |                   | Hi             | gh Channel               | (2462MH               | z)                       |                           |                   |                |  |
| 9                     | 2483.5             | 31.57                                        | AV                | V              | 31                       | 4.4                   | 32.7                     | 34.27                     | 54                | 19.73          |  |
|                       | 2483.5             | 32.15                                        | AV                | H              | 31                       | 4.4                   | 32.7                     | 34.85                     | 54                | 19.15          |  |
|                       | 2483.5             | 44.49                                        | PK                | V              | 31                       | 4.4                   | 32.7                     | 47.19                     | 74                | 26.81          |  |
|                       | 2483.5             | 46.32                                        | PK                | 75 H7          | 31                       | 4.4                   | 32.7                     | 49.02                     | 74                | 24.98          |  |


#### 802 11n HT40


| ١         | 802.11n H I 2      | 10                                           |                           |                |                          |                       |                          |                           |                   |                |
|-----------|--------------------|----------------------------------------------|---------------------------|----------------|--------------------------|-----------------------|--------------------------|---------------------------|-------------------|----------------|
| Indicated |                    |                                              | Antenna Correction Factor |                |                          | FCC Part 15.247       |                          |                           |                   |                |
|           | Frequency<br>(MHz) | Receiver<br>Reading<br>(dB <sub>µ</sub> V/m) | result<br>(PK/AV)         | Polar<br>(H/V) | Ant.<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Pre-Amp.<br>Gain<br>(dB) | Cord.<br>Amp.<br>(dBµV/m) | Limit<br>(dBμV/m) | Margin<br>(dB) |
|           | W5C                | 7                                            | 1                         | V5/7LC         | w Channel                | (2422MH               | z)                       | W                         | 777               |                |
|           | 2390               | 33.70                                        | AV                        | V              | 30.3                     | 4.1                   | 33.1                     | 35.00                     | 54                | 19.00          |
|           | 2390               | 34.43                                        | AV                        | Н              | 30.3                     | 4.1                   | 33.1                     | 35.73                     | 54                | 18.27          |
|           | 2390               | 50.95                                        | PK                        | V              | 30.3                     | 4.1                   | 33.1                     | 52.25                     | 74                | 21.75          |
| 9         | 2390               | 51.72                                        | PK                        | H              | 30.3                     | 4.1                   | 33.1                     | 53.02                     | 74                | 20.98          |
|           | $\sim$             |                                              |                           | Hi             | gh Channel               | (2452MH               | z)                       |                           | <u> </u>          |                |
|           | 2483.5             | 29.59                                        | AV                        | V              | 31                       | 4.4                   | 32.7                     | 32.29                     | 54                | 21.71          |
|           | 2483.5             | 30.49                                        | AV                        | VSHT           | 31                       | 4.454                 | 32.7                     | 33.19                     | 54                | 20.81          |
|           | 2483.5             | 41.56                                        | PK                        | V              | 31                       | 4.4                   | 32.7                     | 44.26                     | 74                | 29.74          |
|           | 2483.5             | 41.77                                        | PK                        | Н              | 31                       | 4.4                   | 32.7                     | 44.47                     | 74                | 29.53          |


Note: The BAND EDGE RESTRICTED BANDS emission is too low at least 20dB to the Fundamental.







