

For Question, Please Contact with WSCT www.wsct-cert.com

TEST REPORT

FCC ID: 2A5UI-BM5WR

Product: LCD monitors

Model No.: BM5 III WR

Additional Model No.: PT6L,LH5U,LH5W,BM5WR,BM5 IV WR ,BM5 V WR , LH5H II,LH5H III,LH5H V, LH5P III,LH5P III,BM7 II WR ,BM7 III WR ,RH8,OEYEWR, OEYEWR II,KEYGRIP II,BKEY,BKEY II,BKEYIII,Shooter,Shooter III, Shooter III,LH7P,LH7P II,LH7H,LH7H II,LH8P,LH8P II,LH8H,LH8H II

Trade Mark: PortKeys

Report No.: WSCT-A2LA-R&E220300105A-BT

Issued Date: 01 April 2022

Issued for:

SHENZHEN PORTKEYS ELECTRONIC TECHNOLOGY CO.,LTD
ROOM 201, BUILDING 1, NO. 101, SHANGWEI ROAD, SHANGWEI VILLAGE,
ZHANGKENGJING COMMUNITY, GUANHU STREET, LONGHUA DISTRICT,
SHENZHEN FOTAN NT

Issued By:

WORLD STANDARDIZATION CERTIFICATION & TESTING GROUP (SHENZHEN) CO., LTD.

Building A-B, Baoshi Road, Baoshi Science & Technology Park, Bao'an District,
Shenzhen, Guangdong, People's Republic of China

TEL: + (86) 13924678855

FAX: +86-755-86376605

Note: In recognition of the successful completion of the A2LA evaluation process, (including an assessment of the laboratory's compliance with A2LA's ENERGY STAR ® Accreditation Program requirements 1) accreditation is granted to this laboratory to perform the following tests: EMC, electromagnetic compatibility, telecommunications and Energy Star.

Standard Resiling Charles Certification & Testing Charles Char

世标检测认证股份 pup (Shenzhen) Co., Ltd. ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

on & Test

Report No.:WSCT-A2LA-R&E220300105A-BT

Certificate Number 5768.01

Please Contact with WSCT www.wsct-cert.com

Table of Contents

\bigvee	1. GENERAL INFORMATION	3	
	1.1 GENERAL DESCRIPTION OF EUT	4	
VSET.	1.2 FACILITIES AND ACCREDITATIONS	7.5	
	1.3 DESCRIPTION OF TEST MODES	6	
	1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	7	X
	1.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	8	
	2. SUMMARY OF TEST RESULTS	9	W5ET
\times	3. MEASUREMENT INSTRUMENTS	10	
	4. EMC EMISSION TEST	11	
V51474	4.1 CONDUCTED EMISSION MEASUREMENT	411	
	4.2 RADIATED EMISSION MEASUREMENT	14	
	5. NUMBER OF HOPPING CHANNEL	29	
	W 5.1 APPLIED PROCEDURES / LIMIT W5.77 W5.77	29 /	WSET"
\ /	5.2 TEST RESULTS	30	
X	6. AVERAGE TIME OF OCCUPANCY	32	
77-2-2	6.1 APPLIED PROCEDURES / LIMIT	32	
V5CT	6.2 TEST RESULTS	34	
	7. HOPPING CHANNEL SEPARATION MEASUREMENT	40	\sim
	7.1 APPLIED PROCEDURES / LIMIT	40	
	WS7.2 TEST RESULTS SET WSET WSET	41	WSET
\/	8. BANDWIDTH TEST	50	
X	8.1 APPLIED PROCEDURES / LIMIT	50	
VECT	8.2 TEST RESULTS	51	
V-15/	9. PEAK OUTPUT POWER TEST	60	
	9.1 APPLIED PROCEDURES / LIMIT	60	X
	9.2 TEST RESULTS	61	
	10. 100KHZ BAND EDGES MEASUREMENT 15. TT W5. TT	67	W5ET
//	10.1 APPLIED PROCEDURES / LIMIT	67	
	11. ANTENNA APPLICATION	77	
V5ET	11.1 ANTENNA REQUIREMENT 577	v77	

WSET 世标检测认证股份 antistization Certification (Jedno Group (Shenzhen) Co., Ltd.

Report No.:WSCT-A2LA-R&E220300105A-BT

For Question. Please Contact with WSCT www.wsct-cert.com

1. GENERAL INFORMATION

Product:

LCD monitors

Model No.:

BM5 III WR

Additional

PT6L,LH5U,LH5W,BM5WR,BM5 IV WR,BM5 V WR,LH5H II,LH5H

Model:

III,LH5H V, LH5P II,LH5P II,BM7 II WR,BM7 II WR,

RH8, OEYEWR, OEYEWR II, KEYGRIP II, BKEY, BKEY III, BKEY III,

Shooter, Shooter II, Shooter III, LH7P, LH7PII, LH7H, LH7H II, LH8P,

LH8P II, LH8H, LH8H II

Trade Mark:

PortKeys

Applicant: Address:

SHENZHEN PORTKEYS ELECTRONIC TECHNOLOGY CO.,LTD

ROOM 201, BUILDING 1, NO. 101, SHANGWEI ROAD, SHANGWEI VILLAGE, ZHANGKENGJING COMMUNITY, GUANHU STREET, COMMUNITY, GUANHU

LONGHUA DISTRICT, SHENZHEN FOTAN NT

Manufacturer:

SHENZHEN PORTKEYS ELECTRONIC TECHNOLOGY CO.,LTD

Address:

Room 201, Building 1, No. 101, ShangWei Road, ShangWei Village,

ZhangKengJing Community, GuanHu Street, LongHua District,

ShenZhen

Data of

11March 2022

receipt:

11March 2022 to 30March 2022

Date of Test: Applicable

FCC CFR Title 47 Part 15 Subpart C Section 15.247, 558074 D01 15.247

Standards:

Meas Guidance v05r02

Deviation from Applicable Standard

None

The above equipment has been tested by World Standardization Certification& Testing Group (Shenzhen)Co., Ltd. And found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

(Wang Xiang)

Check By:

(Chen Xu)

Approved By:

(Wang Fengbing)

World Standawn Zation Certification & Towns

sication & Testin

世标检测认证股份 Group (Shenzhen) Co., Ltd.

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Page 3 of 77

Report No.:WSCT-A2LA-R&E220300105A-BT Certificate Number 5768.01

1.1 GENERAL DESCRIPTION OF EUT

For Question,
Please Contact with WSCT
www.wsct-cert.com

	4		
1	Equipment Type:	LCD monitors	7
	Model No.:	BM5 III WR	
	Additional Model:	PT6L,LH5U,LH5W,BM5WR,BM5 IV WR ,BM5 V WR , LH5H II ,LH5H III ,LH5H V , LH5P III ,LH5P III ,BM7 II WR ,BM7 III WR ,RH8,OEYEWR,OEYEWR II ,KEYGRIP II ,BKEY,BKEY II ,BKEY III ,Shooter,Shooter II , Shooter III ,LH7P,LH7P II ,LH7H,LH7H II ,LH8P,LH8P II ,LH8H,LH8H II	3
1	Trade Mark	Port <u>Ke</u> ys	4
	Software version:	N/A	
	Hardware version:	NA WSET WSET WSET	
	Power Supply	DC 12V	>
_	Operating Frequency	2402-2480MHz(TX/RX) W5 W5	3
	Channels	79	
_	Channel Spacing	1MHz	
	Modulation Type	GFSK, π /4-DQPSK, 8-DPSK for BR+EDR	
	Antenna Type:	RP-SMA	>
	Antenna gain:	0.78dBi	3
	AL CALLA		

Note: N/A stands for no applicable.

Models difference

BM5 III WR, PT6L, LH5U, LH5W, BM5WR, BM5 IV WR, BM5 V WR, LH5H II, LH5H III, LH5H V, LH5P II, LH5P III, BM7 III WR, RH8, OEYEWR, OEYEWR II, KEYGRIP II, BKEY, BKEY II, BKEY III, Shooter III, Shooter III, LH7P, LH7PII, LH7H, LH7H II, LH8P, LH8H, LH8H II are series models, only the appearance size is different, the main test is BM5 III WR.

Certificate Number 5768.01

www.wsct-cert.com

Report No.:WSCT-A2LA-R&E220300105A-BT

For Question, Please Contact with WSCT

1.2 FACILITIES AND ACCREDITATIONS

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the WORLD STANDARDIZATION CERTIFICATION & TESTING GROUP (SHENZHEN) CO., LTD.

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

1.2.1 ACCREDITATIONS

China National Accreditation Service for Conformity Assessment (CNAS)
Registration number NO: L3732

American Association for Laboratory Accreditation(A2LA)

Registration NO: 5768.01

Copies of granted accreditation certificates are available for downloading from our web site, http://www.wsct-cert.com

1.2.2 TEST DESCRIPTION

1.2.2 1MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately $\mathbf{95}$ %.

	No.	Item	Uncertainty
	1	Conducted Emission Test	±3.2dB
>	2	RF power,conducted	±0.16dB
	3	Spurious emissions,conducted	±0.21dB
7	4	All emissions,radiated(<1G)	±4.7dB
	5	All emissions,radiated(>1G)	±4.7dB
	6	Temperature	±0.5°C
	7 W	Humidity W5/1	±2% W557

cation & Testi

Certificate Number 5768.01

Report No.:WSCT-A2LA-R&E220300105A-BT

1.3 DESCRIPTION OF TEST MODES

For Question,
Please Contact with WSCT
www.wsct-cert.com

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

	Modulation type	Mode
	1Mbps	X X X
	2Mbps	Mode 1、Mode 2、Mode 3、Mode 4
2	3Mbps	744

Pretest Mode	Description
Mode 1	CH00
Mode 2	CH39
Mode 3	CH78
Mode 4	Normal Hopping

For Conducted Emission				
Final Test Mode	Description			
Mode 4	Normal Hopping			

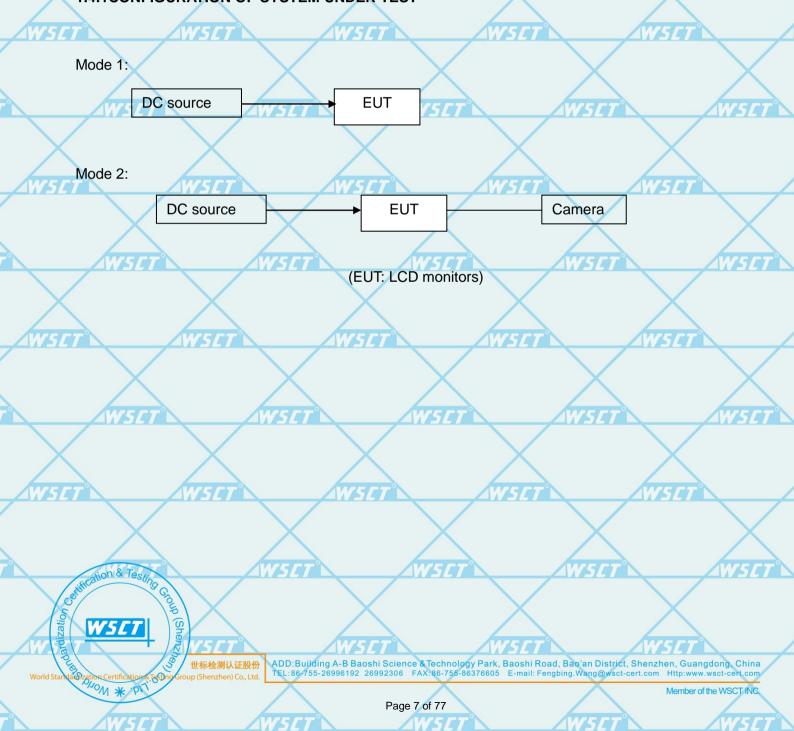
For Radiated Emission						
Final Test Mode	Description					
Mode 1	CH00					
Mode 2	CH39					
Mode 3	CH78					
Mode 4	Normal Hopping					

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The data rate was set in 1Mbps,2 Mbps,3 Mbps for radiated emission due to the highest RF output power.
- (3) Record the worst case of each test item in this report.

Report No.:WSCT-A2LA-R&E220300105A-BT

Certificate Number 5768.01


1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

For Question,
Please Contact with WSCT
www.wsct-cert.com

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

Test software Version	WSET	N/A	747
Frequency	2402 MHz	2441 MHz	2480 MHz
Parameters(1Mbps)	DEF	DEF	DEF
Parameters(2Mbps)	DEF	DEF	DEF
Parameters(3Mbps)	DEF	DEF	DEF

1.4.1CONFIGURATION OF SYSTEM UNDER TEST

Report No.:WSCT-A2LA-R&E220300105A-BT

Certificate Number 5768.01

1.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

For Question,
Please Contact with WSCT
www.wsct-cert.com

Member of the WSCT INC.

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ģ	Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
	1	DC source	/	/ /	1/	/
	2	Camera	1	/	1	/

Note:

OM * P

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

WSET	WSET	WSET	WSET	WSET
WSCT WS	W5		$\langle \hspace{0.1cm} \rangle$	7
WSET	WSET	WSET	WSET	WSET
WSET WS	W5	WSC	W5E	7
WSET	WSCT	WSET	WSET	WSET
WSET WS	T W5	WSG	WSE	7
	WSET	WSET	WSET	WSET
World Stankard Taglion & Tasting Control of the World Stankard Taglion Certification Taglion Group (Shen	TT WS	Wist	WSE	7°
World Standard Zation Certification (Techno Group (Shen	测认证股份 Zhen) Co., Ltd. TEL: 86-755-26996192 26	hi Science & Technology Park, Baoshi F 8992306 FAX:86-755-86376605 E-mail:	Road, Bao'an District, Shenzhen, G Fengbing.Wang@wsct-cert.com Http:	uangdong, China www.wsct-cert.com

Page 8 of 77

Certificate Number 5768.01

Report No.:WSCT-A2LA-R&E220300105A-BT

2. SUMMARY OF TEST RESULTS

For Question,
Please Contact with WSCT
www.wsct-cert.com

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C					
Standard Section	Test Item	Judgment	Remark		
15.207	Conducted Emission	PASS			
15.247(a)(1)	Hopping Channel Separation	PASS			
15.247(b)(1)	Peak Output Power	PASS			
15.247(c) 15.247(c)	Radiated Spurious Emission	PASS	WSE		
15.247(a)(iii)	Number of Hopping Frequency	PASS			
15.247(a)(iii)	W5ET Dwell Time W5ET	PASSW	CT°		
15.247(a)(1)	Bandwidth	PASS	\times		
15.247(d)	100kHz Band Edges	PASS	WSE		
15.205	Band Edge Emission	PASS			
15.203	Antenna Requirement	PASS			

NOTE:

- (1)" N/A" denotes test is not applicable in this test report.
- (2) The manufacture declare the equipment comply with the all the technical requirements in 15.247(g). 15.247(h).

The equipment are not required to employ all available hopping channels during each trans mission. it can be presented with a continuous data (or information) stream. the equipment can recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels.

Wall

Certificate Number 5768.01

Report No.:WSCT-A2LA-R&E220300105A-BT

3. MEASUREMENT INSTRUMENTS

For Question,
Please Contact with WSCT
www.wsct-cert.com

							_
/	NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	7
	EMI Test Receiver	R&S	ESCI	100005	11/05/2021	11/04/2022	
4	LISN	AFJ	5/ LS16	16010222119	11/05/2021	11/04/2022	
	LISN(EUT)	Mestec	AN3016	04/10040	11/05/2021	11/04/2022	
	Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	11/05/2021	11/04/2022	7
	Coaxial cable	Megalon	LMR400	N/A	11/05/2021	11/04/2022	
	GPIB cable	Megalon	GPIB	N/A	11/05/2021	11/04/2022	
4	Spectrum Analyzer	R&S	5 FSU	100114	11/05/2021	11/04/2022	
	Pre Amplifier	H.P.	HP8447E	2945A02715	11/05/2021	11/04/2022	
	Pre-Amplifier	CDSI	PAP-1G18-38		11/05/2021	11/04/2022	-
	Bi-log Antenna	SUNOL Sciences	JB3 <i>N5</i> [A021907	11/05/2021	11/04/2022	ď
/	9*6*6 Anechoic	/ `	V	\- <u>\</u>	11/05/2021	11/04/2022	
\	Horn Antenna	COMPLIANCE ENGINEERING	CE18000		11/05/2021	11/04/2022	
4	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2021	11/04/2022	
	Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2021	11/04/2022	
	System-Controller	ccs	N/A	N/A	N.C.R	N.C.R	
	Turn Table	ccs	N/A	N/A	N.C.R	N.C.R	
	Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R	
7	RF cable	Murata	MXHQ87WA3000	WSCT	11/05/2021	11/04/2022	
	Loop Antenna	EMCO	6502	00042960	11/05/2021	11/04/2022	
	Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2021	11/04/2022	
	Power meter	Anritsu	ML2487A	6K00003613	11/05/2021	11/04/2022	
/	Power sensor	Anritsu	MX248XD	\ <u>-</u> /	11/05/2021	11/04/2022	
						_	П

Please Contact with WSCT www.wsct-cert.com

Certificate Number 5768.01

Report No.:WSCT-A2LA-R&E220300105A-BT

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

FREQUENCY (MHz)	Conducted limit (dBµV)		Conducted
FREQUENCT (MITZ)	Quasi-peak	Quasi-peak	limit (dBµV)
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

ON * P

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth W500	W5 6 9 kHz W5 6 T

cation & Testin

Page 11 of 77

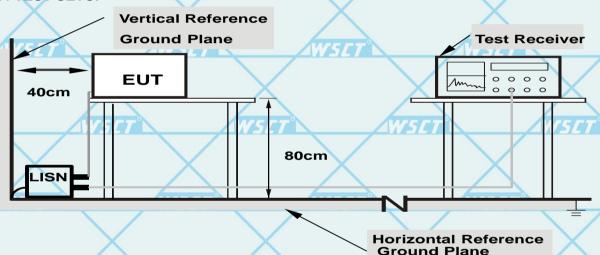
ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Please Contact with WSCT

www.wsct-cert.com

Certificate Number 5768.01

Report No.:WSCT-A2LA-R&E220300105A-BT


4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation

4.1.4 TEST SETUP

Note: 1. Support units were connected to second LISN

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

4.1.5 EUT OPERATING CONDITIONS

ion & Tes

M * P

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

世标检测认证股份 Ing Group (Shenzhen) Co., Ltd.

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC

Page 12 of 77

Report No.:WSCT-A2LA-R&E220300105A-BT

Certificate Number 5768.01

4.1.6TEST RESULTS

NOTE: The EUT is powered by a DC source, so conducted emissions are not applicable.

For Question,
Please Contact with WSCT
www.wsct-cert.com

	W557	io poworou b	7527	AV/5/41		W3747	WSET	
WS		WSLIT	W.51		Witt	W.		,
	\times		\times	\times		\times	\times	
	WSET*	\times	VSET	WSET	X	W5ET*	AWSEI	
W5	\times	WSET*	W51	\times	WSET	\times	TT V	
	WSET	\times	VSET	WSET	\times	W5ET*	WSE	
W5	\times	WSET*	W5	\times	W5ET*	X		
	WSET	\times	VSLT	WSET	\times	W5ET*	WSET	
	X	W5CT	W51	\times	WSET	\times	5/27°	/
	WSET [®]	X	V5CT*	WSUT	X	W5E7°	WSET	
W5		WSET	W51	\times	AWSET*	X	5.67°	
Zatio	WSET WSET		VSCT	Wister		WSET*	WSE	
World Sta	ntaolzation Certification Technol	世标检测认证股份 Group (Shenzhen) Co., Ltd.	ADD:Building A-B Baos TEL:86-755-26996192 2		gy Park, Baoshi Road, 16376605 E-mail: Fengb	Bao'an District, Shenzh ng.Wang@wsct-cert.com	en, Guangdong, China Http:www.wsct-cert.com Member of the WSCT INC.	/

Page 13 of 77

Certificate Number 5768.01

Report No.:WSCT-A2LA-R&E220300105A-BT 4.2 RADIATED EMISSION MEASUREMENT

For Question,
Please Contact with WSCT
www.wsct-cert.com

4.2.1Radiated Emission Limits (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	W5/1/3 W5
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

EDEOLIENCY (MU-)	Limit (dBuV/m) (at 3M)			
FREQUENCY (MHz)	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	/SET WSCAuto WSET
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted	WSST CONTRACTOR
band)	1MHz / 1MHz for Peak, 1 MHz / 1Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
ion & TestStart ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

W5ET

ON * P

世标检测认证股份

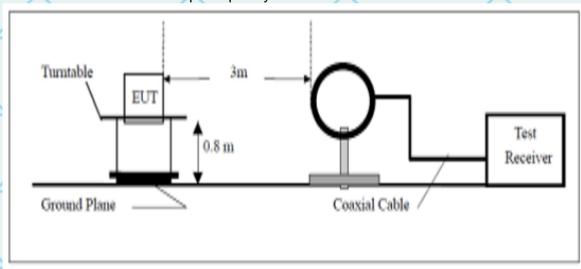
Report No.:WSCT-A2LA-R&E220300105A-BT

Certificate Number 5768.03

4.2.2 TEST PROCEDURE

For Question,
Please Contact with WSCT
www.wsct-cert.com

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

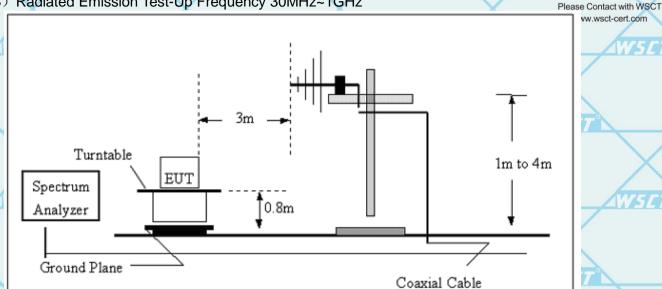
4.2.3 DEVIATION FROM TEST STANDARD

No deviation

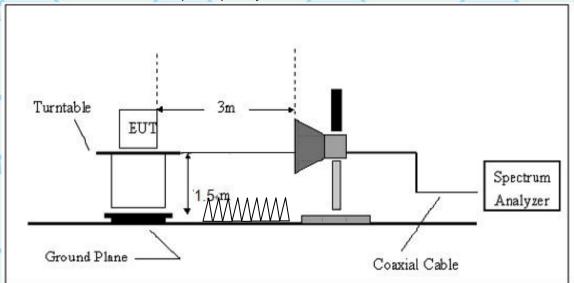
4.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

ion & Test



vw.wsct-cert.com


Certificate Number 5768.01

Report No.:WSCT-A2LA-R&E220300105A-BT

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Page 16 of 77

Report No.:WSCT-A2LA-R&E220300105A-BT

Certificate Number 5768.01

4.2.5.1 RESULTS (Below 30 MHz)

For Question,
Please Contact with WSC
www.wsct-cert.com

						J. 1
_	Test Mode	Mode 1/ Mode 2/ Mode	e 3	Polarization	Horizontal / Vertical	
	Temperature	20 ℃		Relative Humidity	48%	
	Pressure	1010 hPa				

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
WSCT	WSET	WESTER	W51	P
			/	P

NOTF:		
NOIH:		

No result in this part for margin above 20dB.

世标检测认证股份

DION * PIT

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

WSET	WSET	WSET	WSCT	WSET	
	$\langle \ \rangle$	$\langle \hspace{0.1cm} \rangle$			X
W	5CT W5	W5	77° W5	TT W	/SET®
WSET	WSET	WSET	WSUT	WSET	
					X
W	SET WS	FT W5	CT W5	CT N	SET .
WSET	WSET	WSET	WSET	WSET	
	\times				
Stiffcation &	Testing G	W5	CT° W5		VSET [®]

Page 17 of 77

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.:WSCT-A2LA-R&E220300105A-BT

Certificate Number 5768.01

4.2.5.2 TEST RESULTS (Between 30M - 1000 MHz)

For Question,
Please Contact with WSCT
www.wsct-cert.com

/	Test Mode	Mode 1 with GFSk	C modulation	Pressure	1010 hPa	
	Temperature	20 ℃		Relative Humidity	48%	

	No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	40
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	7	41.8596	26.98	-0.80	26.18	40.00	-13.82	QP
ı	2	ΖŪ	143.8295	33.06	-4.58	28.50	43.50	-15.00	QP
	3		222.9502	36.42	-5.95	30.47	46.00	-15.53	QP
	4	!	305.6800	41.56	-2.17	39.39	46.00	-6.61	QP
1	5	1	333.6867	42.58	-1.82	40.76	46.00	-5.24	QP
5	6		446,4141	34.74	-0.05	34.69	46.00	-11.31	QP

NOM * PIT

WSET WSET

SET WSET

V:

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Report No.:WSCT-A2LA-R&E220300105A-BT

Certificate Number 5768.01

Please Contact with WSCT www.wsct-cert.com

No	. Mk.	Freq.	Level	Factor	ment	Limit	Over	140
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	1	41.2765	28.74	-0.58	28.16	40.00	-11.84	QP
2	1	55.4147	32.45	-5.66	26.79	40.00	-13.21	QP
/3		119.8556	25.96	-2.82	23.14	43.50	-20.38	QP
4		223.7334	34.69	-5.92	28.77	46.00	-17.23	QP
4.5	47	340.7817	35.64	-1.72	33.92	46.00	-12.08	QP
6		432,5457	32.03	-0.48	31.55	46.00	-14.45	QP

Note: 1.All the modes have been investigated, and only worst mode is presented in this report.

2.Over=Reading Level+ Correct Factor - Limit. sication & Testino (Sher ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com OHOM * PIT Member of the WSCT INC.

Certificate Number 5768.01

Report No.:WSCT-A2LA-R&E220300105A-BT

4.2.5.3 TEST RESULTS(1GHz to 25GHz)

For Question,
Please Contact with WSCT
www.wsct-cert.com

Pressure	1010 hPa	Test Mode	Mode 1 TX(1Mbps)
Temperature	20 ℃	Relative Humidity	48%

	Freq.	Ant.Pol.	Emission		Limit 5 7 7		Over(dB)	
	(MHz)		Level(dBuV)		3m(dBuV/m)			
	X	H/V	PK	AV	PK	AV	PK	AV
	4804	V	59.27	41.15	74	54	-14.73	-12.85
1	7206	>	58.09	40.22	V 5 / 74	54	-15.91	-13.78
	4804	1	58.00	40.52	74	54	-16.00	-13.48
	7206	H	58.89	39.89	74	54	-15.11	-14.11

Remark: All emissions not reported were more than 20dB below the specified limit or in the noise floor.

Pressure	1010 hPa	Test Mode	Mode 2 TX(2Mbps)
Temperature	20 ℃	Relative Humidity	48%

Freq.	Ant.Pol.	Emission Level(dBuV)		Limit		Over(dB)	
(MHz)				3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
4882	V	58.02	41.45	74	54	-15.98	-12.55
7323	75 / V°	59.03	40.97	74	54	-14.97	-13.03
4882	H	59.89	40.30	74	54	-14.11	-13.70
7323	Н	58.79	39.79	74	54	-15.21	-14.21

Remark: All emissions not reported were more than 20dB below the specified limit or in the noise floor.

			-	A 20 AD	All the same of th	
1	Pressure	1010 hPa			Test Mode	Mode 3 TX(3Mbps)
	Temperature	20 ℃			Relative Humidity	48%

•	Freq.	Ant.Pol.	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)	
	(MHz)				3m(aB	uv/m)		
		H/V	PK	AV	PK	AV	PK	AV
	4960	V	59.59	40.64	74	54	-14.41	-13.36
	7440	V	59.02	40.09	74	54	-14.98	-13.91
1	4960	H	59.65	40.52	74	54	-14.35	-13.48
	7440	H	59.48	40.48	74	54	-14.52	-13.52

Remark: All emissions not reported were more than 20dB below the specified limit or in the noise floor.

Certificate Number 5768.01

Report No.:WSCT-A2LA-R&E220300105A-BT

4.2.5.4 TEST RESULTS (Restricted Bands Requirements)

For Question,
Please Contact with WSCT
www.wsct-cert.com

Test result for 1Mbps Mode: 57

Polarization	Vertical	Test Mode	TX /Mode1-1Mbps(CH0)
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa		THE STATE OF THE S

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2387	64.05	-8.76	55.29	74	18.71	peak
2387	53.74	-8.76	44.98	54	9.02	AVG
2390	62.65	-8.73	53.92	74	20.08	peak
2390	54.29	-8.73	45.56	54	8.44	AVG

Remark:

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

0	Polarization	Horizontal	Test Mode	TX /Mode1-1Mbps(CH0)
	Temperature	20 ℃	Relative Humidity	48%
	Pressure	1010 hPa		

	AVSTIT	Meter	474	Emission		17494	N/A
	Frequency	Reading	Factor	Level	Limits	Margin	Detector Type
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	X
0	2384	61.41	-8.76	52.65	74	21.35	peak
	2384	56.95	-8.76	48.19	54	5.81	AVG
	2390	60.47	-8.73	51.74	74	22.26	peak
	2390	54.90	-8.73	46.17	54	7.83	AVG

Remark:

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

WSCT 世标检测认证股份 世标检测认证股份 米 アン

Certificate Number 5768.01

WSCT

Report No.:WSCT-A2LA-R&E220300105A-BT

For Question,
Please Contact with WSCT
www.wsct-cert.com

Polarization	Vertical	Test Mode	TX /Mode 3-1Mbps(CH78)
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa		

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.5	64.79	-8.17	56.62	74	17.38	peak
2483.5	54.47	-8.17	46.30	54	7.70	AVG

Remark:

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

Polarization	Horizontal	Test Mode	TX /Mode 3-1Mbps(CH78)
Temperature	20 °C W5	Relative Humidity	48%5/7°
Pressure	1010 hPa		

Frequency	Meter Reading	Factor/5	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- ottobio: 1, po
2483.5	61.79	-8.17	53.62	74	20.38	peak
2483.5	53.91 W	56 -8.17	45.745	54	8.26	AVG

Remark:

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

WSET WSET WSET WSET

WSCT GOLD Sheet Street Street

OHOM * PIT

T WSET

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certificate Number 5768.01

Report No.:WSCT-A2LA-R&E220300105A-BT

Test result for 2Mbps Mode:

For Question,
Please Contact with WSCT

Polarization	Vertical	Test Mode	TX /Mode1-2Mbps(CH0)
Temperature	20 ℃ <i>W5[T</i>]	Relative Humidity	48%5 <i>[T]</i>
Pressure	1010 hPa		

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin W	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2387	62.72	-8.76	53.96	74	20.04	peak
2387	53.87	-8.76	45.11	54	8.89	AVG
2390	62.14	-8.73	53.41	74	20.59	peak
2390	54.57	-8.73	45.84	54	8.16	AVG

Remark:

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

Polarization	Horizontal //	Test Mode	TX /Mode1-2Mbps(CH0)	1.5
Temperature	20 ℃	Relative Humidity	48%	
Pressure	1010 hPa		X	

	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
7	2384	60.88	57-8.76	52.1256	74	21.88	peak W
	2384	55.37	-8.76	46.61	54	7.39	AVG
	2390	62.21	-8.73	53.48	74	20.52	peak
0	2390	57.59	-8.73	48.86	54577	5.14	W 5 AVG

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

WSCT Use WS

OHOM * PIT

VSET WSET

VSET WSET

Report No.:WSCT-A2LA-R&E220300105A-BT

For Question,

				Please Contact with WSCT
	Polarization	Vertical	Test Mode	TX /Mode3-2Mbps(@H78)ert.com
	Temperature	20 °C W5/7	Relative Humidity	48%
-	Pressure	1010 hPa		

	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
	2483.5	61.40	-8.17	53.23	74	20.77	peak
1	2483.5	53.76 W	5 <i>C</i> -8.17	45.595	54	8.41	AVG W

Remark:

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

Polarization	Horizontal	Test Mode	TX /Mode3-2Mbps(CH78)
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa		

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	WSCT
2483.5	64.10	-8.17	55.93	74	18.07	peak
2483.5	53.30	-8.17	45.13	54	8.87	AVG

Remark:

Stiffcation & Testino

DHOM * PIT

(Shenz)

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

WSET WSET WSET

WSET WSET WSET

WSGT WSGT WSGT WSGT

WSET WSET WSET

世标检测认证股份 ADD:Building TEL:86-755-26

www.wsct-cert.com

Certificate Number 5768.01

For Question,
Please Contact with WSCT

Report No.:WSCT-A2LA-R&E220300105A-BT

Test result for 3Mbps Mode:

4	Polarization	Vertical	41	Test Mode	TX /Model 1-3Mbps(CH0)
	Temperature	20 ℃		Relative Humidity	48%
	Pressure	1010 hPa			

	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
1	2387	64.44 W	-8.76	55.68	74	18.32	peak
	2387	53.35	-8.76	44.59	54	9.41	AVG
	2390	62.95	-8.73	54.22	74	19.78	peak
	2390	56.44	-8.73/5	47.71	V54	6.29	V5 AVG

Remark:

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

Polarization	Horizontal		Test Mode	TX /Mode 1-3Mbps(CH0)
Temperature	20 ℃		Relative Humidity	48%
Pressure	1010 hPa	ATTENDED TO		Average

	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
_	(MHz)	(dBµV)	5/7(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
	2384	60.85	-8.76	52.09	74	21.91	peak
	2384	56.51	-8.76	47.75	54	6.25	AVG
	2390	60.89	-8.73/5	52.16	V74	21.84	peak
	2390	56.42	-8.73	47.69	54	6.31	AVG

Remark:

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

World Standard Zealing Continued to the Continued to the

WSET WSET

Report No.:WSCT-A2LA-R&E220300105A-BT

For Question,
Please Contact with WSCT
www.wsct-cert.com

Polarization	Vertical V5/7	Test Mode	TX /Model 3-3Mbps(CH78)
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa		X

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2483.5	63.93	-8.17	55.76	74	18.24	peak W
2483.5	54.65	-8.17	46.48	54	7.52	AVG

Remark:

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

Polarization	Horizontal	Test Mode	TX /Model 3-3Mbps(CH78)
Temperature	20 °C W5[7"	Relative Humidity	48%577
Pressure	1010 hPa		

	Frequency	Meter Reading	Factor /5	Emission Level	Limits	Margin	Detector Type
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
	2483.5	63.80	-8.17	55.63	74	18.37	peak
4	2483.5	54.83 W	5/ -8.17	46.66	54	7.34	AVG

Remark:

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

WSCT Sherry

MOM * PIT

WSET WSET

WSLT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certificate Number 5768.01

Report No.:WSCT-A2LA-R&E220300105A-BT

Test result for hopping mode:

For Question,
Please Contact with WSCT
www.wsct-cert.com

Polarization	Vertical 5/7°	Test Mode	hopping mode-1Mbps
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa		X

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2387	61.73	-8.76	52.97	74	21.03	peak
2387	56.48	-8.76	47.72	54	6.28	AVG
2390	61.50	-8.73	52.77	74	21.23	peak
2390	57.68	-8.73	48.95	54	5.05	AVG

Remark:

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

_	Polarization	Horizontal	Test Mode	Hopping mode-1Mbps
	Temperature	20 ℃	Relative Humidity	48%
	Pressure	1010 hPa		X

	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
_	2387	64.20 W	5/7-8.76	55.44	74	18.56	peak W
	2387	54.45	-8.76	45.69	54	8.31	AVG
	2390	61.20	-8.73	52.47	74	21.53	peak
-	2390	56.36	-8.73/5	47.63	V54 / T	6.37	AVG

Remark:

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

WSE7

World Standard Zation Certification & Techno Group (She

WSET WSET

WSET WSET

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.:WSCT-A2LA-R&E220300105A-BT

			Please Contact with WSC
Polarization	Vertical	Test Mode	Hopping mode-1Mbpswsct-cert.com
Temperature	20 °C W5	Relative Humidity	48%
Pressure	1010 hPa		

	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
	2483.5	63.93	-8.17	55.76	74	18.24	peak
d	2483.5	54.35 W	5 7-8.17	46.185	54	7.82	AVG W

Remark:

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

////-			/\'\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Polarization	Horizontal	1	Test Mode	Hopping mode-1Mbps
Temperature	20 ℃		Relative Humidity	48%
Pressure	1010 hPa			

Frequency (MHz)	Reading Level		Limits (dBµV/m)	Margin (dB)	Detector Type	
2483.5	60.47	-8.17	52.30	74	21.70	peak
2483.5	53.54	-8.17	45.37	54	8.63	AVG

Remark:

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

No. * No.

Report No.:WSCT-A2LA-R&E220300105A-BT

Certificate Number 5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

5. NUMBER OF HOPPING CHANNEL

5.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C						
Santa W5Ei	Took Hom W50	7 Lineit	Frequency Range	7557t		
Section	Test Item	Limit	(MHz)	Result		
15.247 (a)(1)(iii)	Number of Hopping Channel	≥15	2400-2483.5	PASS		

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating Frequency Range
RB	1MHz
VB	3MHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 1MHz, VBW=3MHz, Sweep time = Auto.

5.1.2 DEVIATION FROM STANDARD

No deviation.

5.1.3 TEST SETUP

EUT SPECTRUM ANALYZER

5.1.4 EUT OPERATION CONDITIONS

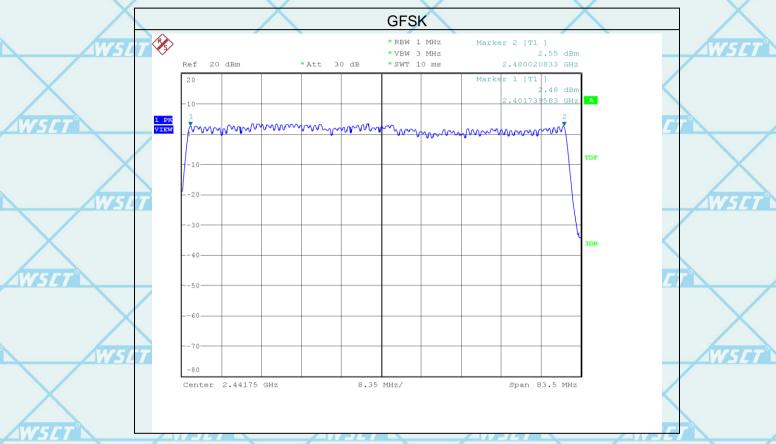
The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

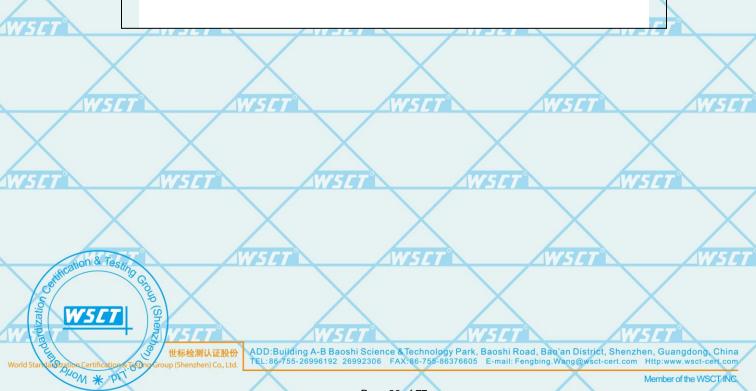
WSET Shows a Testing Cook Shows and Shows and Shows are the state of t

ON * P)

世标检测认证股份 roup (Shenzhen) Co., Ltd.

Certificate Number 5768.01




Report No.:WSCT-A2LA-R&E220300105A-BT

5.2 TEST RESULTS

For Question,
Please Contact with WSCT
www.wsct-cert.com

7 7	7 T T T T T T T T T T T T T T T T T T T				
Mode		Hopping channel numbers	Limit	Result	
	GFSK, P/4-DQPSK, 8DPSK	79	15	PASS	

Page 30 of 77

Report No.:WSCT-A2LA-R&E220300105A-BT

Certificate Number 5768.01

6. AVERAGE TIME OF OCCUPANCY

6.1 APPLIED PROCEDURES / LIMIT

For Question,
Please Contact with WSCT
www.wsct-cert.com

4	FCC Part15 (15.247) , Subpart C						
	Section	Test Item	Limit	Frequency Range (MHz)	Result		
-	15.247	Average Time	0.4sec	2400-2483.5	PASS		
	(a)(1)(iii)	of Occupancy					

6.1.2 TEST PROCEDURE

cation & Testin

OM * P

- a. The EUT test port was connected to the spectrum analyzer with RF cable and antenna connector.
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for 1DH5, 2DH5 and 3DH5 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. Dwell time = Pulse time*(1600/6/79)*31.6S

6.1.3 DEVIATION FROM STANDARD

No deviation. W5ET W5ET W5ET

WSET WSET WSET WSET WSET

WSET WSET WSET WSET

WSET WSET WSET

世标检测认证股份
ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

Certificate Number 5768.01

Report No.:WSCT-A2LA-R&E220300105A-BT

6.1.4 TEST SETUP

For Question,
Please Contact with WSCT
www.wsct-cert.com

EUT	SPECTRUM
	ANALYZER

6.1.5 EUT OPERATION CONDITIONS

世标检测认证股份

MON * PIT

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

WSET	WSET	WSET	WSET	WSET	,
NV/S		ET WS			
WSET	WSET	WSET	WSET	WSET	
W/S		V W/S	$\langle \ \ \ \rangle$		
WSET	WSET	WSET	WSET	WSET	
	$\langle \hspace{0.1cm} \rangle$	V W/S			
WSET	WSET	WSET	WSET	WSET	
		SET W/S			Ter 1
Confidence To See To Se	7 Que la companya de la companya del companya de la companya del companya de la c	X		X	

Page 33 of 77

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

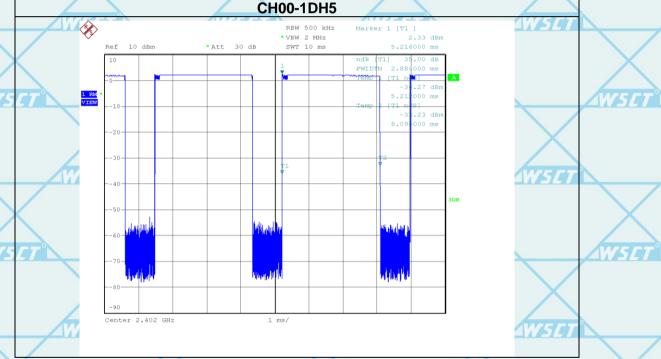
Please Contact with WSCT

www.wsct-cert.com

Certificate Number 5768.01

Report No.:WSCT-A2LA-R&E220300105A-BT

6.2 TEST RESULTS


Note: the worst case is 1Mbps as result in this part.

世标检测认证股份

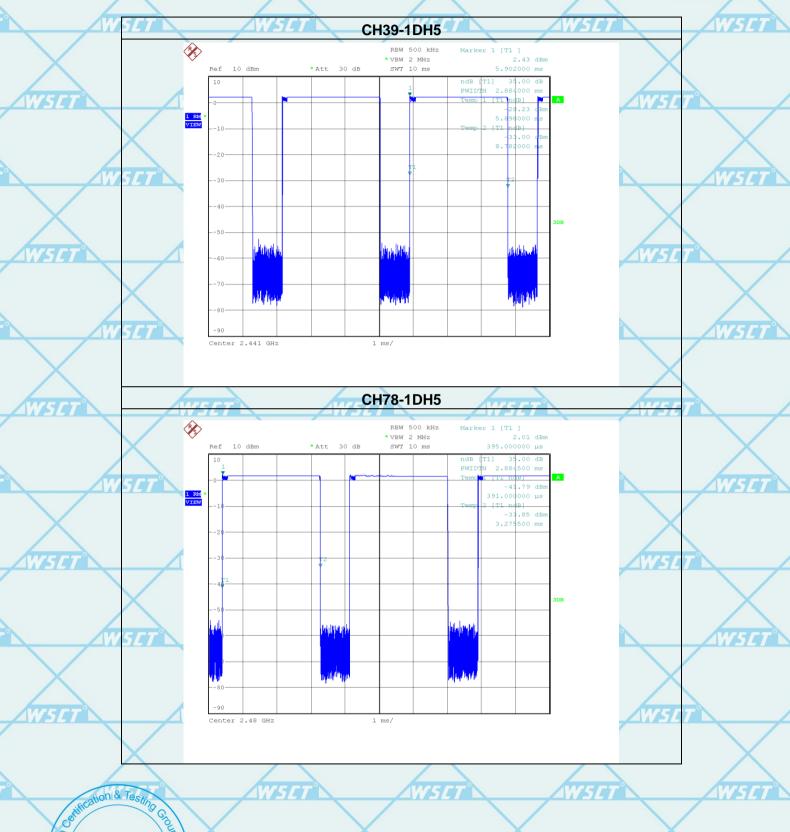
DIOM * PIT

Pressure	1012 hPa		Test Mode	DH1-1Mbps	
Temperature	25 ℃	X	Relative Humidity	60%	X

Data Packet	Frequency	Pulse time(ms)	Dwell Time(S)	Limits (S)
1DH5	2402MHz	2.884	0.308	0.4
1DH5	2441MHz	2.884	0.308	0.4
1DH5	2480MHz	2.885	0.308	0.4

Stiffcation & Testino (Shenz) ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Page 34 of 77

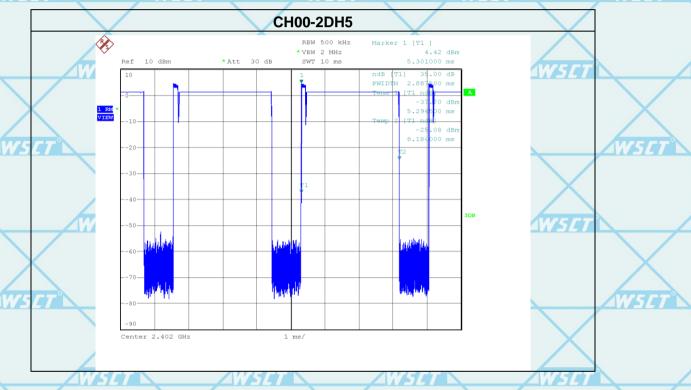


Certificate Number 5768.01

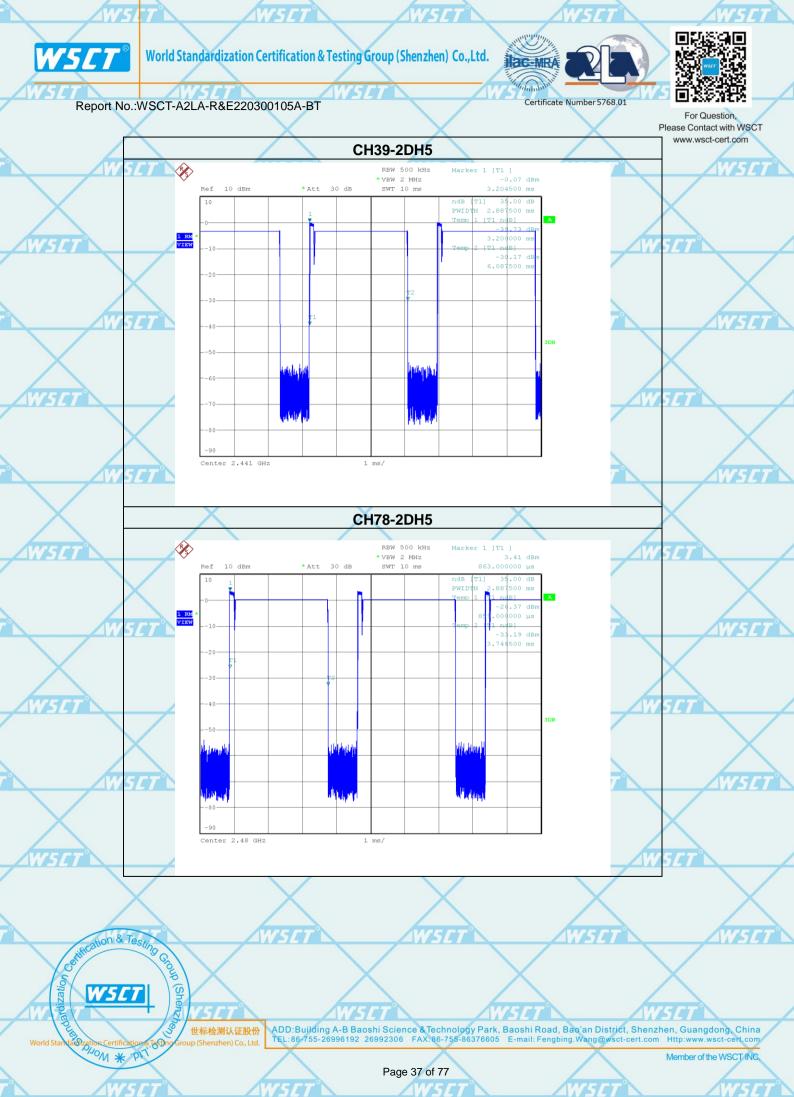
For Question,
Please Contact with WSCT
www.wsct-cert.com

世标检测认证股份 Dro-Group (Shenzhen) Co., Ltd.

DHOM * PIT


Certificate Number 5768.01

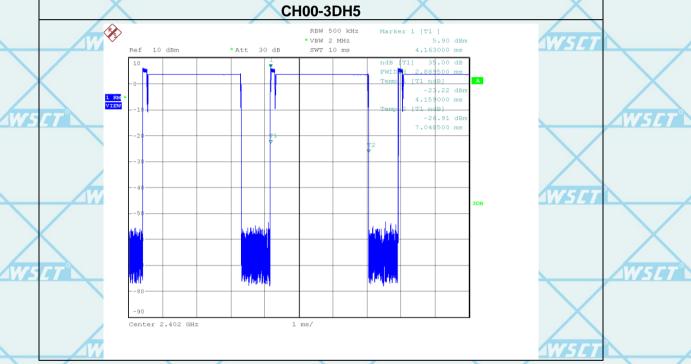
Report No.:WSCT-A2LA-R&E220300105A-BT


For Question, Please Contact with WSCT www.wsct-cert.com

	Pressure	1012 hPa	Test Mode	DH3-1Mbps	free a
,	Temperature	25 ℃	Relative Humidity	60%	- Alif-1
	Temperature	200	relative Humbley	0070	

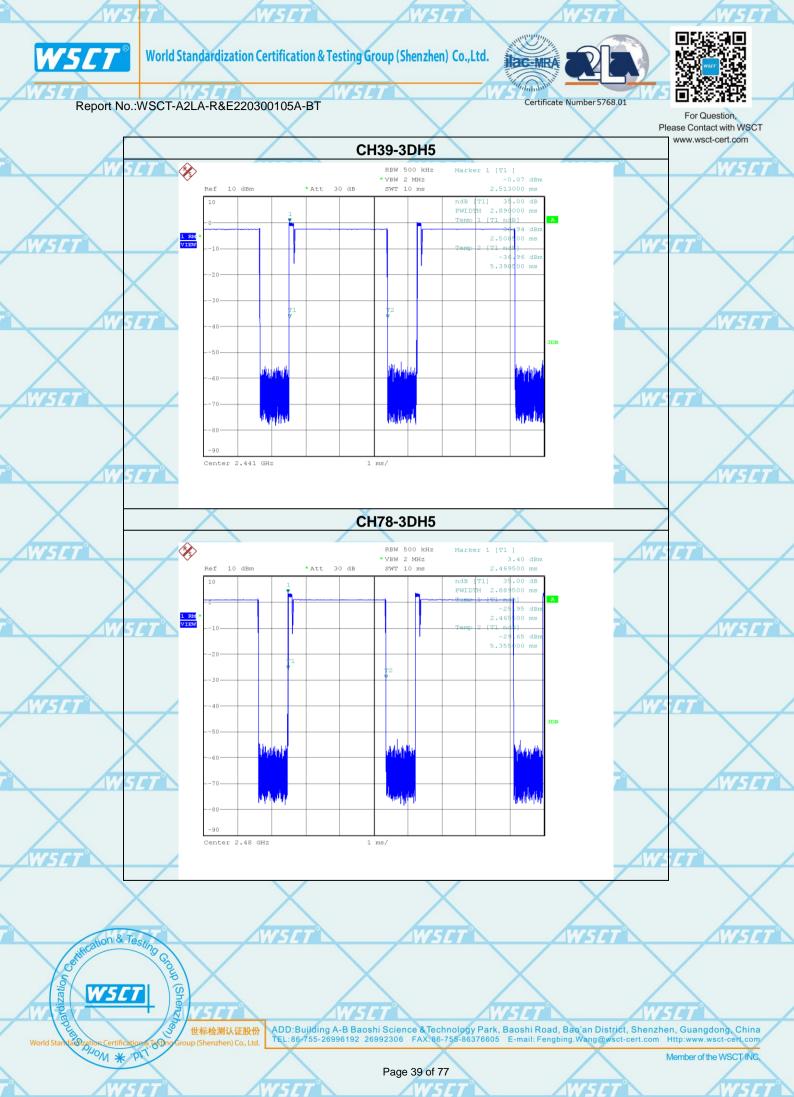
Data Packet	Frequency	Pulse time(ms)	Dwell Time(S)	Limits (S)
2DH5	2402MHz	2.888	0.308	0.4
2DH5	2441MHz	2.888	0.308	0.4
2DH5	2480MHz	2.888	0.308	0.4

Certificate Number 5768.01


Report No.:WSCT-A2LA-R&E220300105A-BT

For Question, Please Contact with WSCT www.wsct-cert.com

Member of the WSCT INC.


Pressure	1012 hPa	$\overline{}$	Test Mode	DH5-1Mbps	77-1
Temperature	25 ℃		Relative Humidity	60%	

	Data Packet	Frequency V50	Pulse time(ms)	Dwell Time(S)	Limits (S)
	3DH5	2402MHz	2.890	0.308	0.4
	3DH5	2441MHz	2.890	0.308	0.4
1	V 5 / 3DH5	2480MHz	2.890	0.3085	0.4

Page 38 of 77

Report No.:WSCT-A2LA-R&E220300105A-BT

For Question,
Please Contact with WSCT
www.wsct-cert.com

7. HOPPING CHANNEL SEPARATION MEASUREMENT

7.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

	Spectrum Parameter	Setting
	Attenuation	Auto
	Span Frequency	> Measurement Bandwidth or Channel Separation
2	W5CT RB	Resolution (or IF) Bandwidth (RBW) \geq 1% of the span
	VB	Video (or Average) Bandwidth (VBW) ≥ RBW
	Detector	Peak
	Trace	W5/7° Max hold ¬° W5/7°
	Sweep Time	Auto

7.1.2 TEST PROCEDURE

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- Set the spectrum analyzer as follows: Span = wide enough to capture the peaks of two adjacent channels: Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span; Video (or Average) Bandwidth (VBW) ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold
- 3. Measure the separation between the peaks of the adjacent channels using the marker-delta function.
- 4 Repeat above procedures until all frequencies measured were complete.

7.1.3 DEVIATION FROM STANDARD

No deviation.

7.1.4 TEST SETUP

EUT SPECTRUM ANALYZER

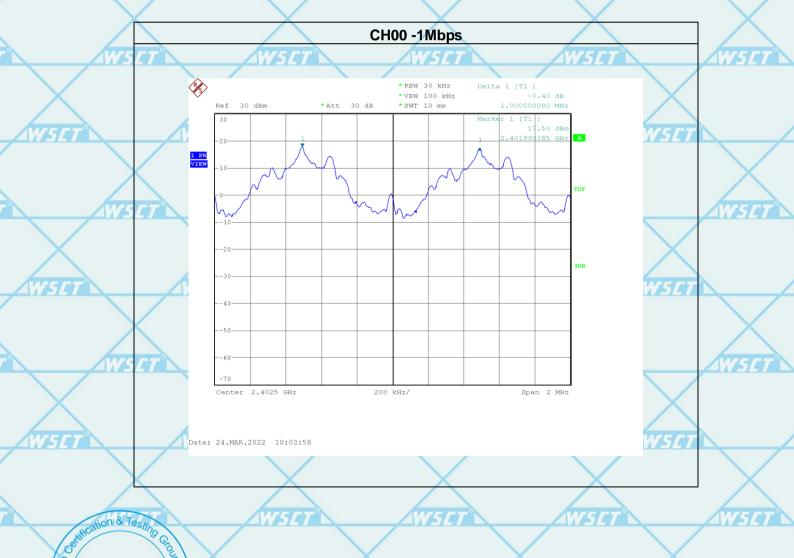
7.1.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

World Standard Partition & Testing Control of the World Standard Partition Certifications Technology (Shen

Certificate Number 5768.01

Report No.:WSCT-A2LA-R&E220300105A-BT


Please Contact with WSCT www.wsct-cert.com

7.2 TEST RESULTS

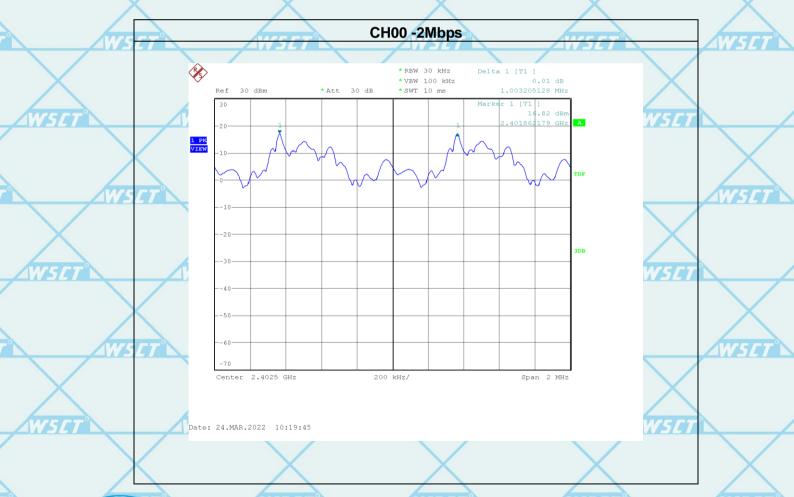
Pressure	1012 hPa	$\overline{}$		CH00 / CH39 /CH78 (1Mbps Mode)
Temperature	25 ℃	X	Relative Humidity	60%
Test Result	Pass	Augus		

Channel number	Channel frequency	Separation Read value	Separation limit
Shanner Hamber	(MHz)	(KHz)	(KHz)
W-5L 00	2402	1000	20dB BW
39	2441	1000	20dB BW
78	2480	1003	20dB BW

Note: 20db bandwidth refer to section9.6

Report No.:WSCT-A2LA-R&E220300105A-BT

Certificate Number 5768.01


Please Contact with WSCT www.wsct-cert.com

WSET WSET

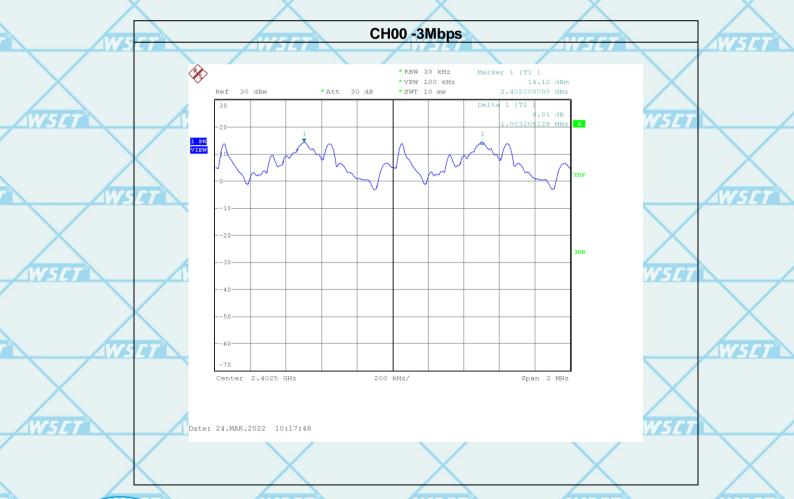
Pressure	1012 hPa	Test Mode	CH00 / CH39 /CH78 (2Mbps Mode)
Temperature	25 ℃	Relative Humidity	60%
Test Result	Pass W5CT		WSET

	Channel number	Channel frequency	Separation Read value	Separation limit
	WSCT	(MHz)°	(KHz)	W5 (KHz)
7	00	2402	1003	2/3 *20dB BW
	39	2441	1003	2/3 *20dB BW
	78 W.5	2480	1003 W57	2/3 *20dB BW

Note: 20db bandwidth refer to section 9.6

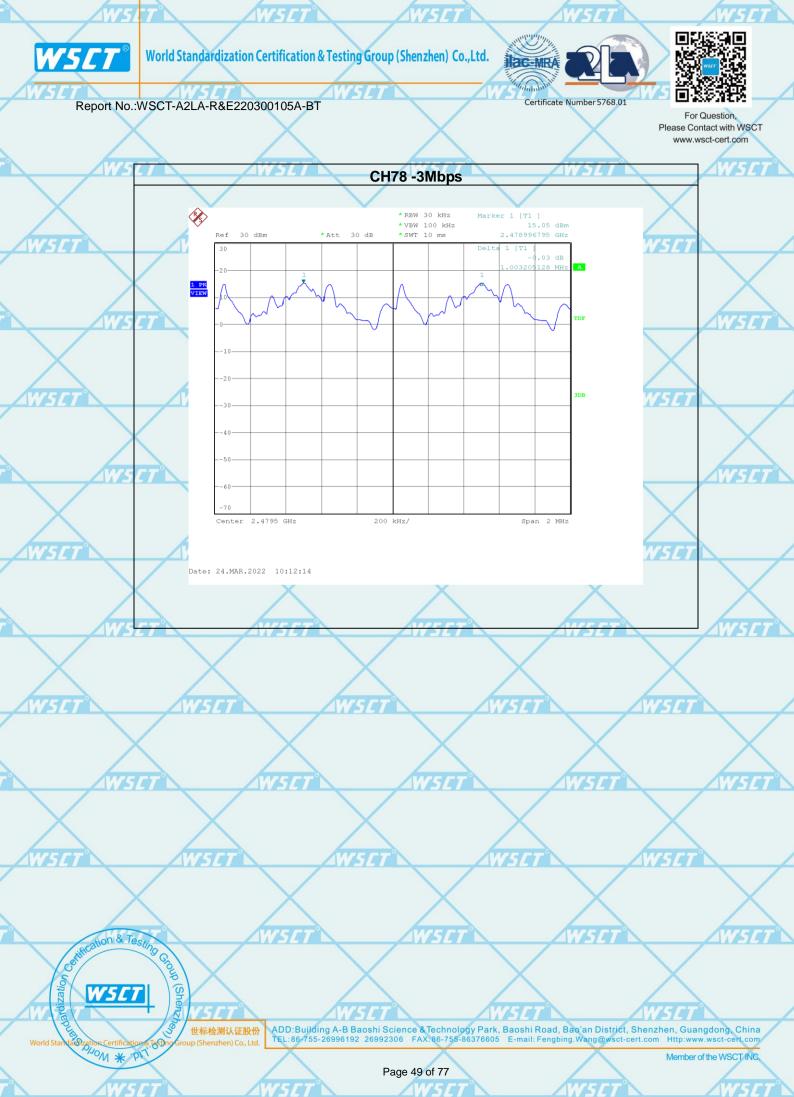
Report No.:WSCT-A2LA-R&E220300105A-BT

Certificate Number 5768.01


For Question,
Please Contact with WSCT
www.wsct-cert.com

WSET WSET WSET

Pressure	1012 hPa	\sim	1 1 1 2 2 1 1 1 1 2 2 1 1	CH00 / CH39 /CH78 (3Mbps Mode)
Temperature	25 ℃		Relative Humidity	60%
Test Result	Pass	AWSET .		WSET


	Channel number	Channel frequency	Separation Read value	Separation limit
	WSET	(MHz)	(KHz)	W5 (KHz)
_	00	2402	1003	2/3 *20dB BW
	39	2441	1003	2/3 *20dB BW
0	78 W.5	2480	1003 W5/	2/3 *20dB BW

Note: 20db bandwidth refer to section 9.6

WSET 世标检测认证股份 Material Language Control Co. Ltd.

Report No.:WSCT-A2LA-R&E220300105A-BT

For Question,
Please Contact with WSCT
www.wsct-cert.com

8. BANDWIDTH TEST

8.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C				
Section Section	Test Item	NSET Limit	Frequency Range	Result
Section	restitem	Liniit	(MHz)	Result
15.247 (a)(1)	Bandwidth	(20dB bandwidth)	2400-2483.5	PASS

	Spectrum Parameter	Setting	
	Attenuation	Auto	
	Span Frequency	> Measurement Bandwidth or Channel Separation	
	RB	30kHz	•
	VB	100 kHz	
	Detector	Peak	
4	Trace	Max hold	
	Sweep Time	Auto	

8.1.2 TEST PROCEDURE

- 1. Check the calibration of the measuring instrument (spectrum analyzer) using either an internal calibrator or a known signal from an external generator.
- 2. Set the spectrum analyzer as follows: VBW =30kHz, RBW=100kHz, Sweep = auto Detector function = peak ,Trace = max hold
- Measure the highest amplitude appearing on spectral display and record the level to calculate results.
- 4. Repeat above procedures until all frequencies measured were complete.

8.1.3 DEVIATION FROM STANDARD

No deviation.

8.1.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

8.1.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

OM * P

世标检测认证股份

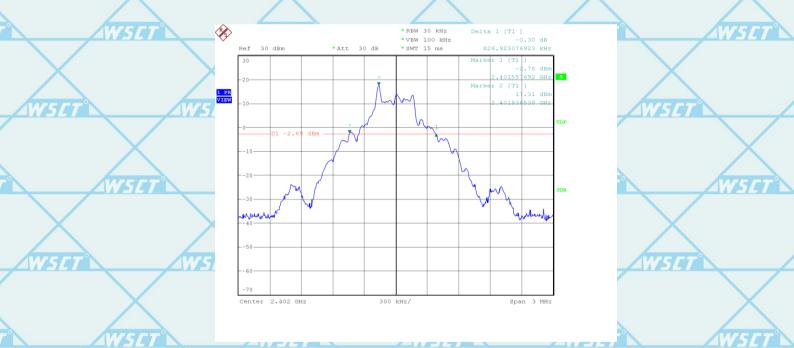
ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC.

Please Contact with WSCT

www.wsct-cert.com

Report No.:WSCT-A2LA-R&E220300105A-BT


8.2 TEST RESULTS

Note: the worst case is DH5 as result in this part.

-,						
_	Pressure	1012 hPa			Test Mode	CH00/CH39/C78(1Mbps)
	Temperature	25 ℃	\bigvee		Relative Humidity	60%

	Frequency	20dB Bandwidth (kHz)	SET WSET Result
	2402 MHz	827	PASS
1	W52441 MHz	822/5/7	W5 PASS
	2480 MHz	822	PASS

CH00 -1Mbps

Stiffcation & Testino (Shenz) 世标检测认证股份 DHOM * PIT

Certificate Number 5768.01

Report No.:WSCT-A2LA-R&E220300105A-BT

Please Contact with WSCT www.wsct-cert.com

Note: the worst case is DH5as result in this part.

Pressure	1012 hPa		Test Mode	CH00/CH39/C78(2Mbps)
Temperature	25 ℃	X	Relative Humidity	60%

<u> </u>	Frequency	20dB Bandwidth (kHz)	Result
	2402 MHz	1135	PASS
_	2441 MHz	1135	PASS
	2480 MHz	1130	PASS

CH00 -2Mbps

Stiffcation & Testino (Shenz) 世标检测认证股份 DIOM * PIT

Report No.:WSCT-A2LA-R&E220300105A-BT

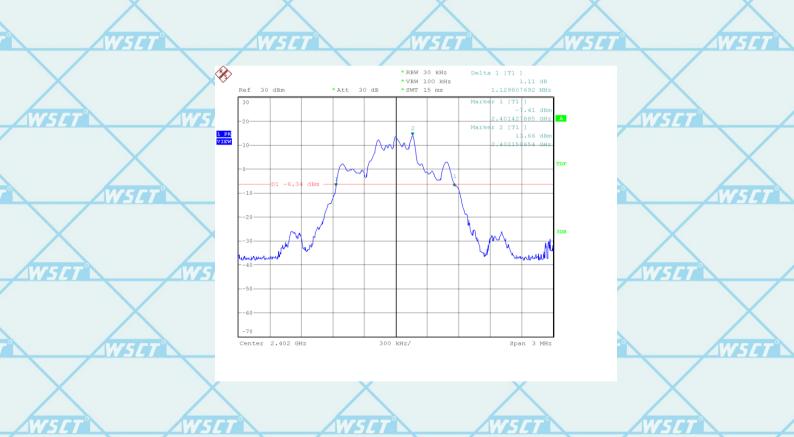
Certificate Number 5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

THE STATE OF THE S

Note: the worst case is DH5as result in this part.

Pressure	1012 hPa	X	Test Mode	CH00/CH39/C78(3Mbps)
Temperature	25 ℃		Relative Humidity	60%


 Frequency
 20dB Bandwidth (kHz)
 Result

 2402 MHz
 1130
 PASS

 2441 MHz
 1135
 PASS

 2480 MHz
 1130
 PASS

CH00 -3Mbps

World Start and Zathon Certification 不可以 Testing Control (Shenzhen) Co., Ltd.

Report No.:WSCT-A2LA-R&E220300105A-BT

9. PEAK OUTPUT POWER TEST

9.1 APPLIED PROCEDURES / LIMIT

Please Contact with WSCT www.wsct-cert.com

_	FCC Part15 (15.247) , Subpart C				
	Section	Test Item	Limit Frequency Range (MHz)		Result
	15.247 (b)(i)	Peak Output Power	1W for 1Mbps 0.125Wfor2/3Mbps	2400-2483.5	PASS

9.1.2 TEST PROCEDURE W/5/

- a. The EUT was directly connected to the spectrum analyze rand antenna output port as show in the block diagram below,
- b. Setting: RBW ≥ the 20 dB bandwidth of the emission being measured

Span ≥ approximately 3 times the 20 dB bandwidth, centered on a hop ping channel

VBW ≥ RBW Sweep = auto

Detector function = peak

Trace = max hold

9.1.3 DEVIATION FROM STANDARD

No deviation.

9.1.4 TEST SETUP

EUT Spectrum analyzer

9.1.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

World Standard Zation Certifications Testing Group (Shenzhen) (

WELL

WSET WSE

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC

Please Contact with WSCT www.wsct-cert.com

Certificate Number 5768.01

Report No.:WSCT-A2LA-R&E220300105A-BT

9.2 TEST RESULTS

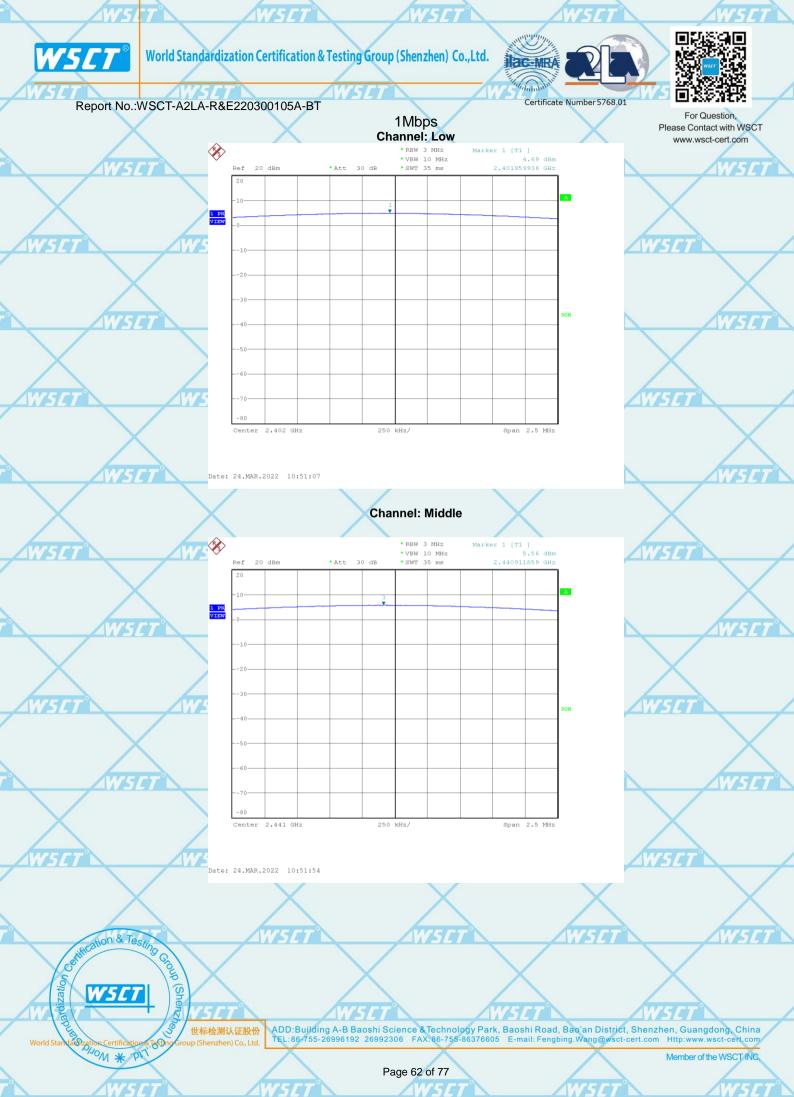
Stiff Cation & Testing Co

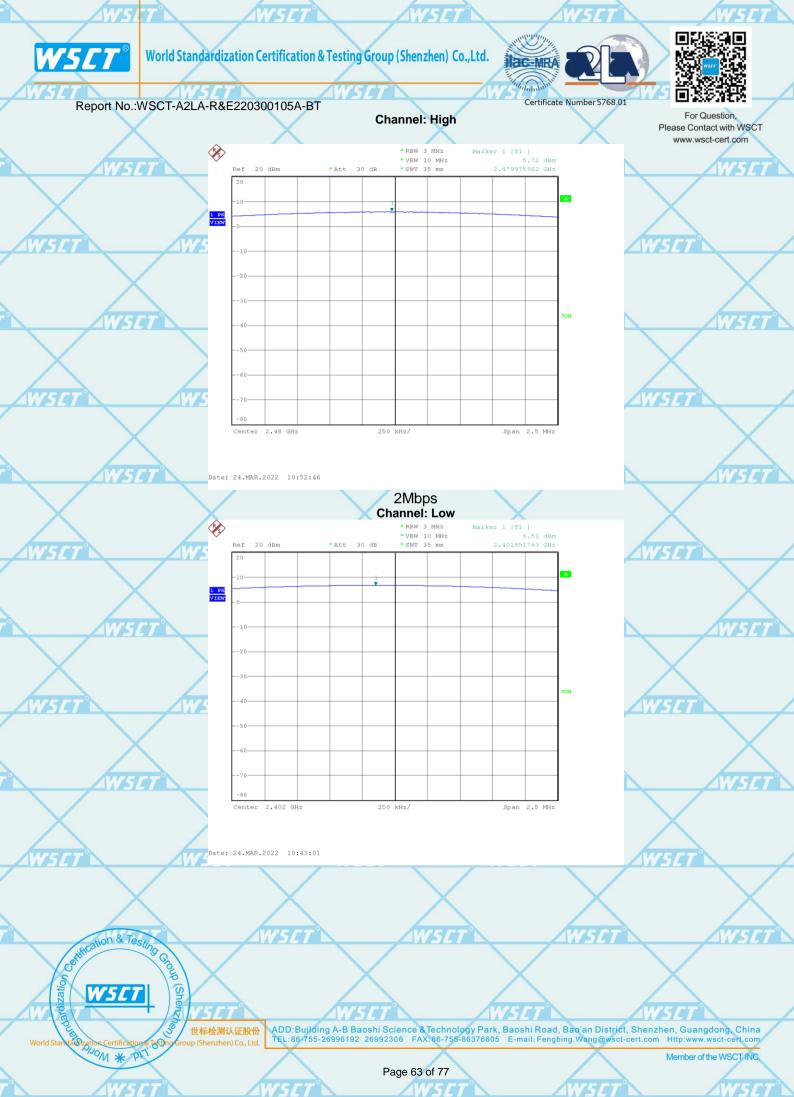
W5ET

MOM # PIT

(Shenz)

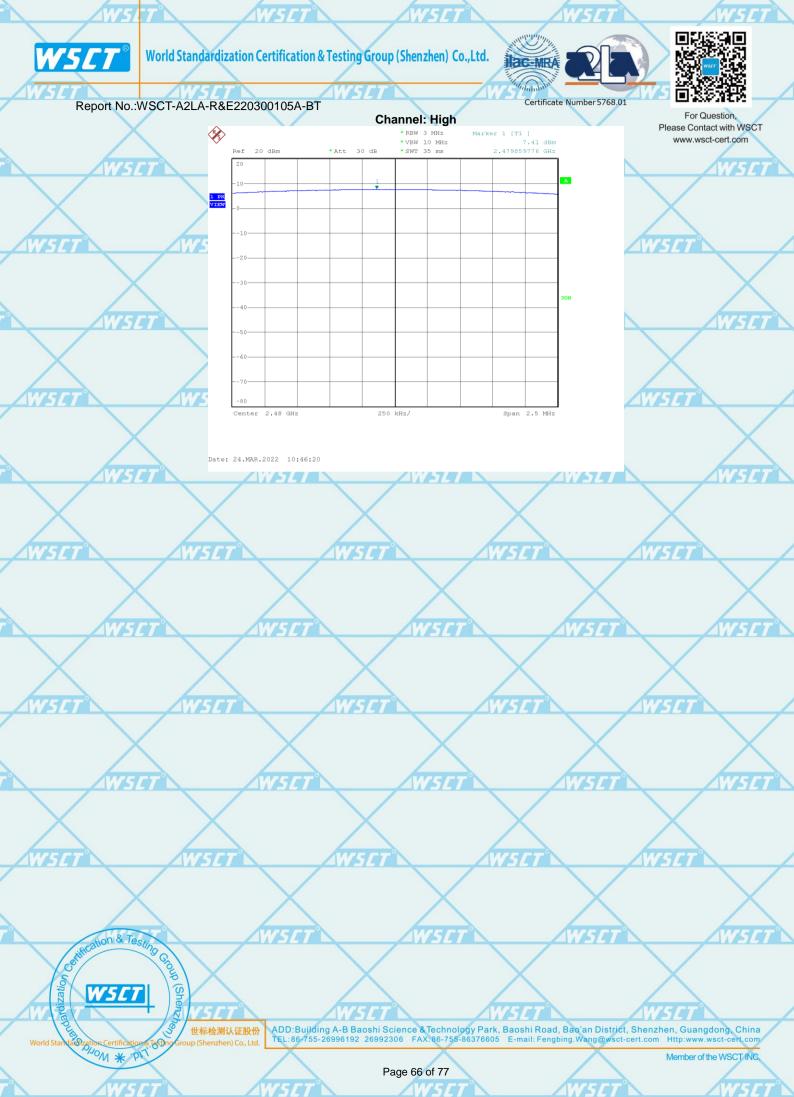
Pressure	1012 hPa		Test Mode	CH00/ CH39 /CH78 (1M/2M/3Mbps Mode)
Temperature	25 ℃	WSET	Relative Humidity	60% W5LT

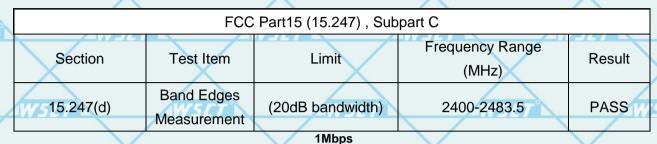

Test Channel	Frequency (MHz)	Peak Output Power (dBm)	LIMIT(dBm)	Result		
		1Mbps				
CH00	2402	4.69	30	Pass		
CH39	2441	5.56	30	Pass		
CH78	2480	5.72	30	Pass		
2Mbps						
CH00	2402	6.51	20.97	Pass		
W5 CH39	2441	6.94	20.97/5/	Pass		
CH78	2480	7.04	20.97	Pass		
CH00 W5/	2402	5 27 6.53	75 2 0.97	Pass		
CH39	2441	7.28	20.97	Pass		
CH78	2480	7.41	20.97	Pass		
	CH00 CH39 CH78 CH00 CH39 CH78	CH00 2402 CH39 2441 CH78 2480 CH00 2402 CH39 2441 CH78 2480 CH00 2402 CH39 2441 CH78 2480	CH00	CH00		


WSET WSET WSET WSET

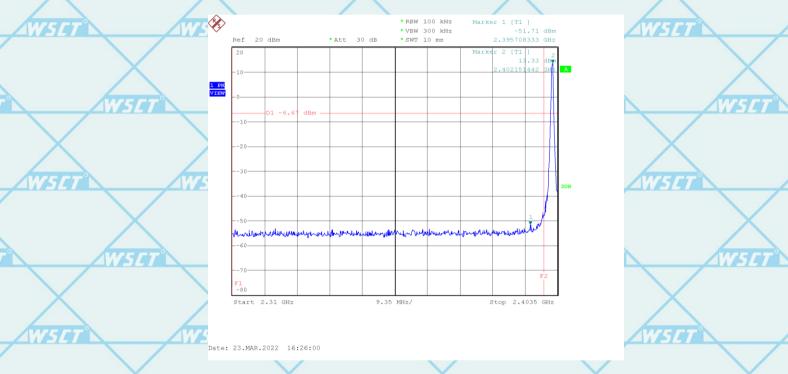
WSET WSET WSET WSET

WSET WSET WSET WSET


WSET WSET WSET


Report No.:WSCT-A2LA-R&E220300105A-BT

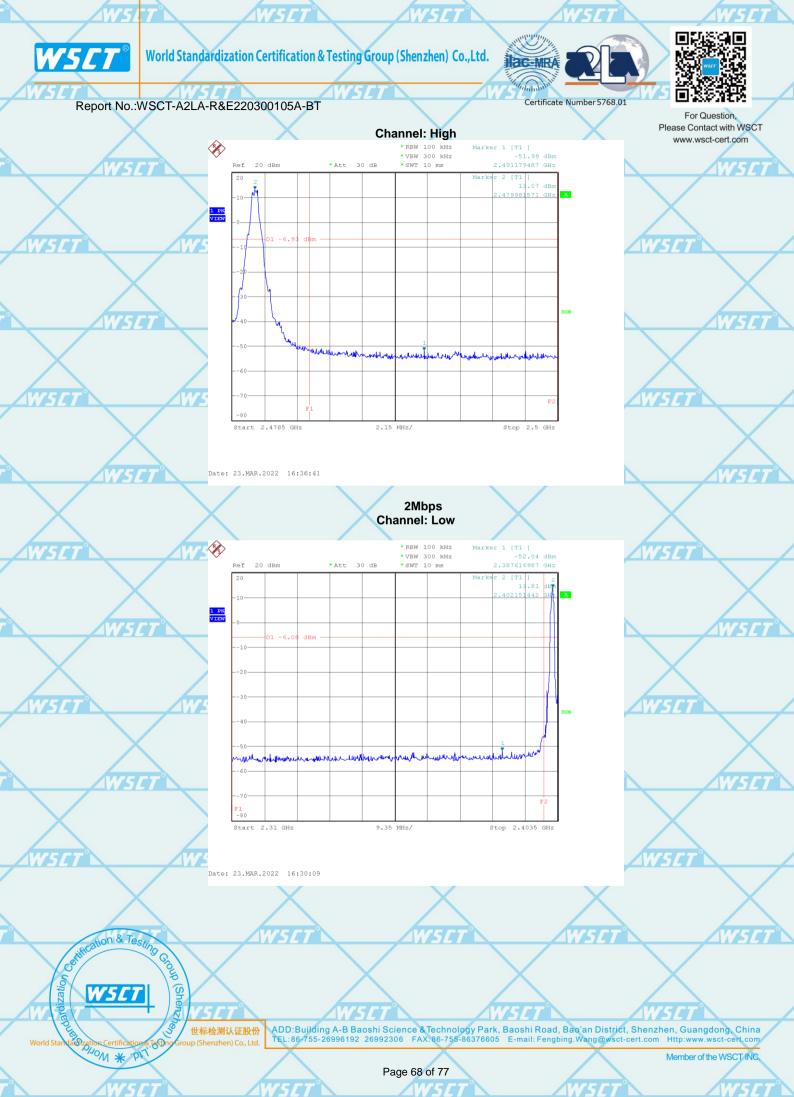
Certificate Number 5768.01

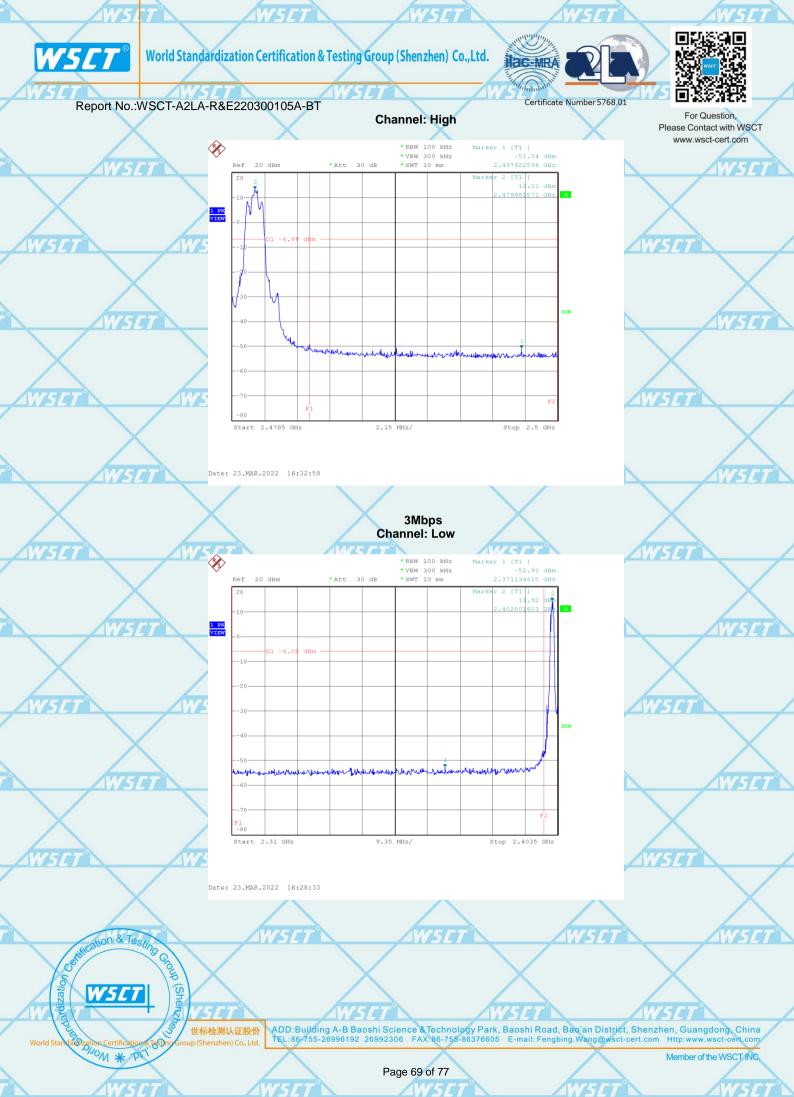

10. 100KHZ BAND EDGES MEASUREMENT

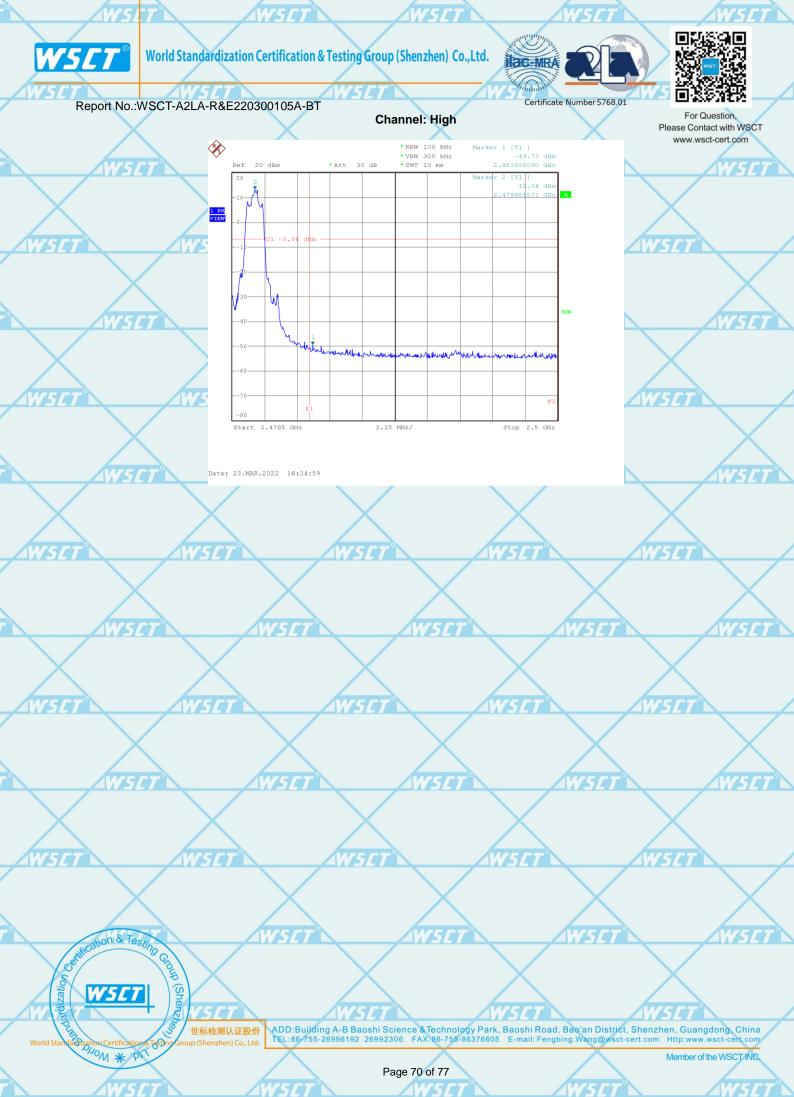
10.1 APPLIED PROCEDURES / LIMIT

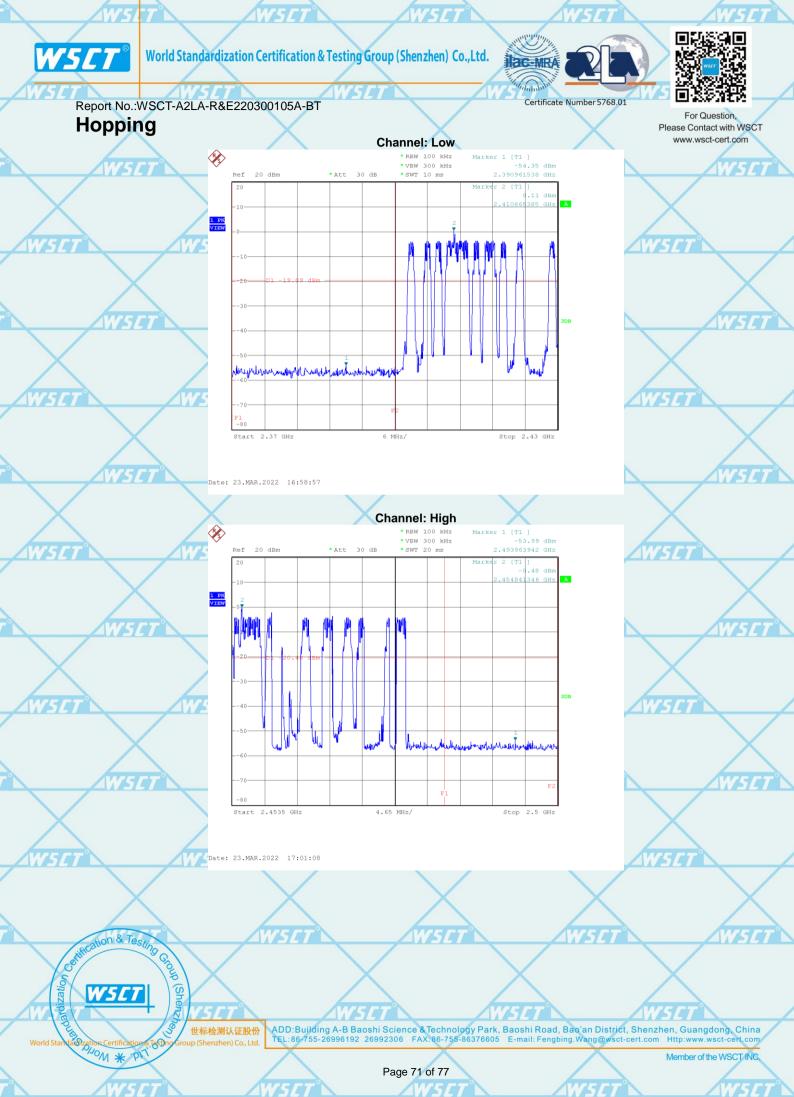
Please Contact with WSCT www.wsct-cert.com

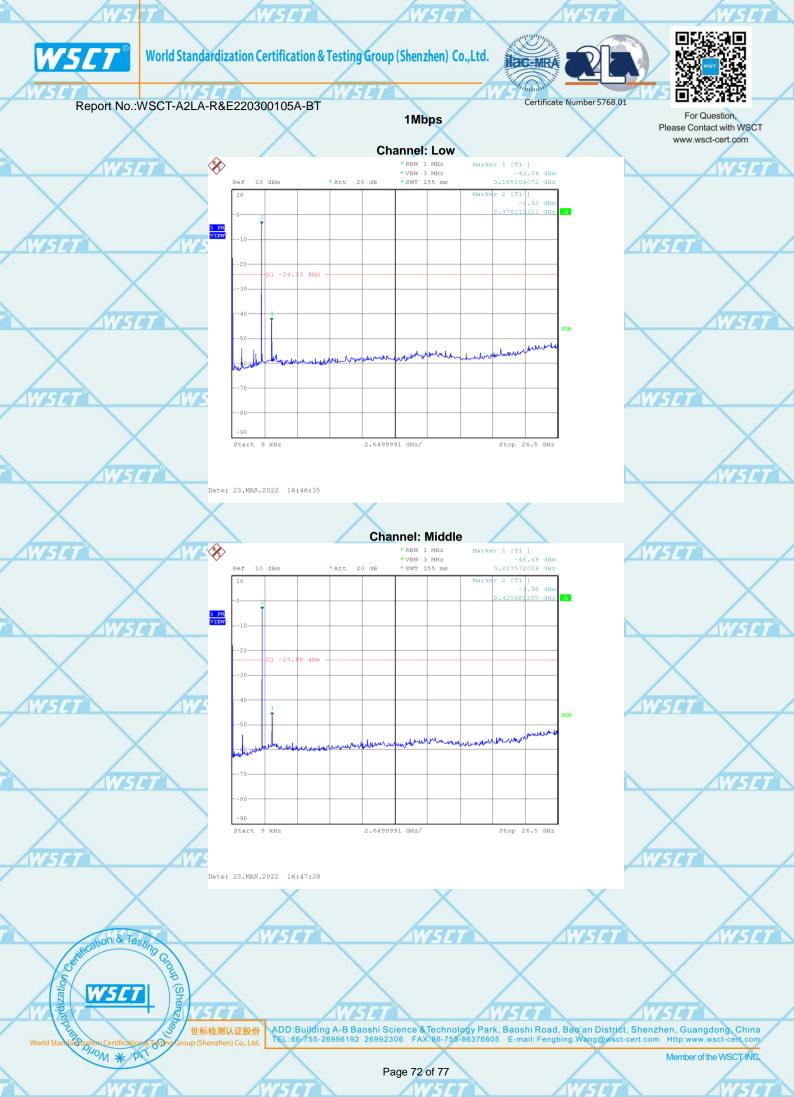
Channel: Low

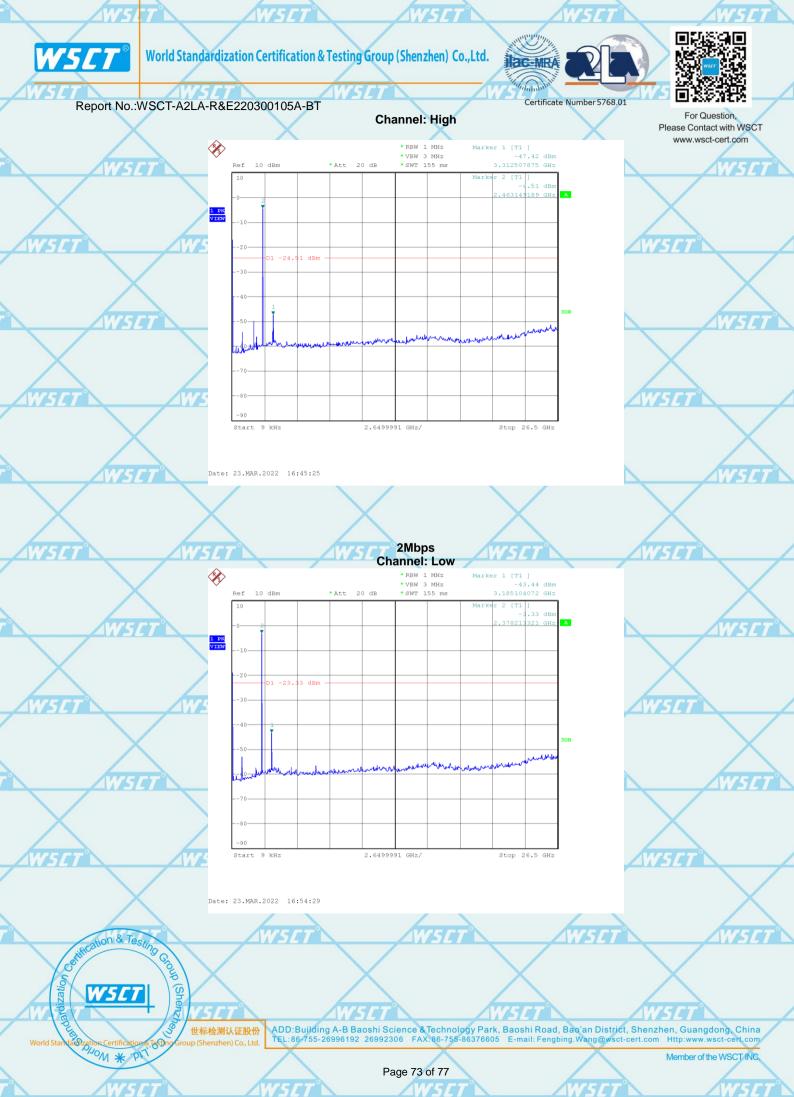


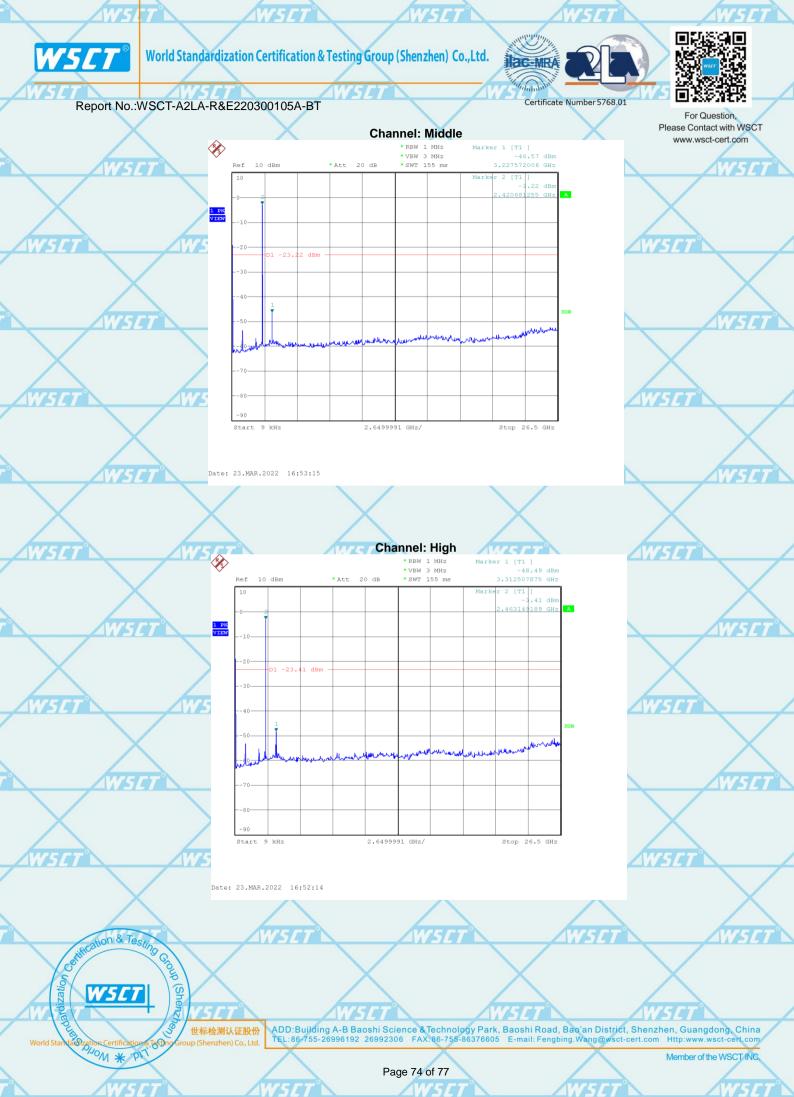

ET WSET

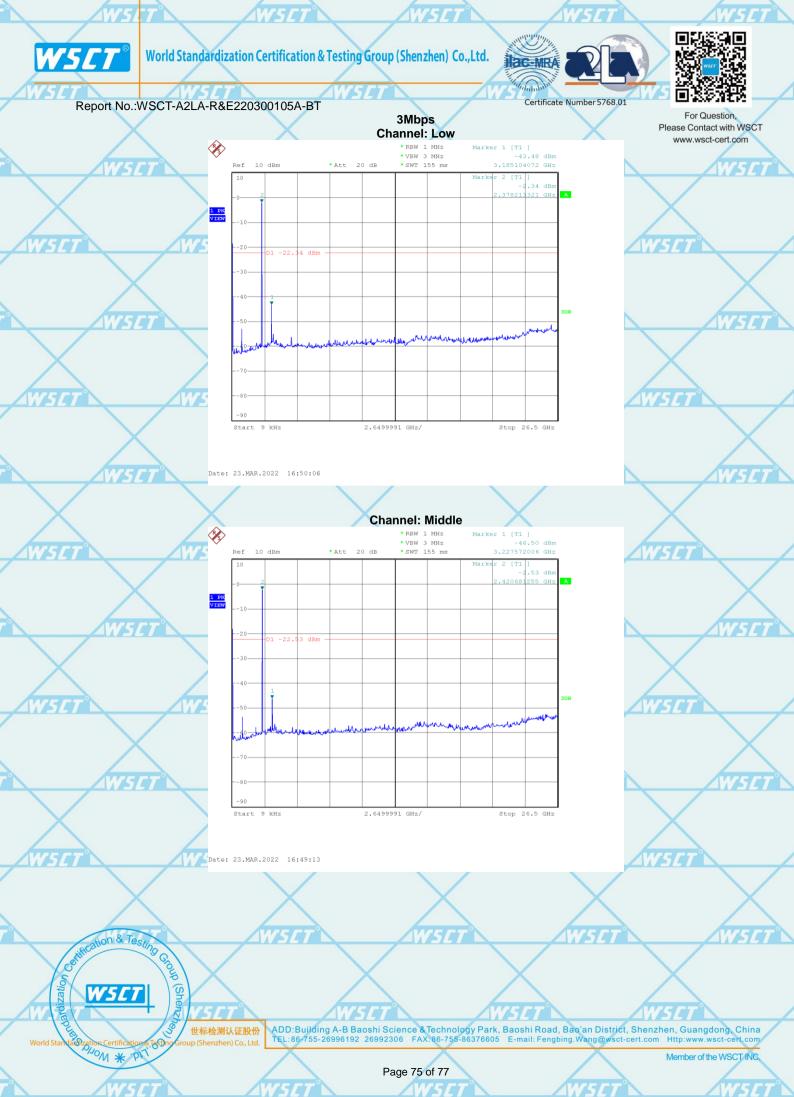

SET WSET


ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com


Member of the WSCT INC.







Report No.:WSCT-A2LA-R&E220300105A-BT

Certificate Number 5768.01

11. ANTENNA APPLICATION

Please Contact with WSCT www.wsct-cert.com

11.1 ANTENNA REQUIREMENT

The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and 15.247

FCC part 15C section 15.247 requirements: Systems operating in the 2402-2480MHz band that are used exclusively for fixed.

11.1.2 Result

The antenna of this EUT is an RP-SMA antenna, The antenna's gain is 0.78dBi and meets the requirement.

		AW3L/			
X	\times	\times	\times		<
WSET	WSET*	WSET	WSET WSET	Wister	WSET
WSLI	WSET	\times			567
	WSET	WSET	WSET	WSET	WSET
WSET	WSET	WSET			507
	\times	WSET	WSET	WSET	WSET
WSCT	WSET	\times			500
		WSET	WSET	WSET	WSET
adization of the state of the s	WS Testino Go Union & Testino G	WSET	WSET		SET
World Standard Zation	世标检测认证股 M 米 Pi	ADD:Building A-B Baoshi Sci	ience & Technology Park, Baoshi Ro 06 FAX:86-755-86376605 E-mail: Fo		en, Guangdong, China Http:www.wsct-cert.com Member of the WSCT INC.

Page 77 of 77