

Test Report 21-1-0167501T01a-C2

Number of pages: 36 Date of Report: 2022-Jun-17

Testing company: CETECOM GmbH

Im Teelbruch 116 45219 Essen Germany Tel. + 49 (0) 20 54 / 95 19-0 Fax: + 49 (0) 20 54 / 95 19-150 Applicant: UAB Pulsetto

Product: Nerve stimulator

Model: Pulsetto

FCC ID: 2A5T3-BXN-PU-22V001

Testing has been carried out in

Title 47 CFR, Chapter I

FCC Regulations, Subchapter A

accordance with: Subpart C: §15.247 (DTS)

Deviations, modifications or clarifications (if any) to above mentioned documents are written

in each section under "Test method and limit".

Tested Technology: BLE

Test Results:

The EUT complies with the requirements in respect of all parameters subject to the test.

The test results relate only to devices specified in this document

Test report 21-1-0167501T01a-C2 is replacing original test report 21-1-0167501T01a-C1,

dated 2022-Jun-14. The replaced test report gets invalid herewith.

Signatures:

Dipl.-Ing. Ninovic Perez

Test Lab Manager

Authorization of test report

Salih Öztan

Test manager

Responsible of test report

Table of Contents

Ta	ble of	Annex	3
1	Ge	neral information	4
	1.1	Disclaimer and Notes	4
	1.2	Attestation	4
	1.3	Summary of Test Results	5
	1.4	Summary of Test Methods	5
2	Ad	ministrative Data	6
	2.1	Identification of the Testing Laboratory	6
	2.2	General limits for environmental conditions	6
	2.3	Test Laboratories sub-contracted	6
	2.4	Organizational Items	6
	2.5	Applicant's details	6
	2.6	Manufacturer's details	6
	2.7	Equipment under Test (EUT)	7
	2.8	Untested Variant (VAR)	7
	2.9	Auxiliary Equipment (AE)	7
	2.10	Connected cables (CAB)	7
	2.11	Software (SW)	7
	2.12	EUT set-ups	7
	2.13	EUT operation modes	8
3	Eq	uipment under test (EUT)	9
	3.1	General Data of Main EUT as Declared by Applicant	9
	3.2	Detailed Technical data of Main EUT as Declared by Applicant	9
	3.3	Modifications on Test sample	9
4	Me	easurements	10
	4.1	Duty-Cycle	10
	4.2	Peak output power (Sweep)	11
	4.3	Power spectral density	13
	4.4	Minimum Emission Bandwidth 6 dB	14
	4.5	Occupied Channel Bandwidth 99%	15
	4.6	Emissions in non-restricted frequency bands	16
	4.7	Radiated field strength emissions below 30 MHz	18
	4.8	Radiated field strength emissions 30 MHz – 1 GHz	22
	4.9	Radiated field strength emissions above 1 GHz	24
	4.10	Radiated Band-Edge emissions	27
	4.11	AC-Power Lines Conducted Emissions	29
	4.12	Equipment lists	31
CE.	TECOM	TP31.1.0167E01701a. C2	2/26

Test Report 21-1-0167501T01a-C2

5	Results from external laboratory	34
6	Opinions and interpretations	34
7	List of abbreviations	34
8	Measurement Uncertainty valid for conducted/radiated measurements	35
9	Versions of test reports (change history)	36

	Table of Annex					
Annex No.	Contents	Reference Description	Total Pages			
Annex 1 Test result diagrams		CETECOM_TR21-1-0167501T01a-A1_C2	60			
Annex 2	Internal photographs of EUT	Provided by applicant	-			
Annex 3	External photographs of EUT	CETECOM_TR21-1-0167501T01a-A3_C2	7			
Annex 4 Test set-up photographs CETECOM_TR21-1-0167501T01a-A4_C2 7						
	The listed attachments are separate documents.					

1 General information

1.1 Disclaimer and Notes

The test results of this test report relate exclusively to the test item specified in this test report as specified in chapter 2.7. CETECOM does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM.

The testing service provided by CETECOM has been rendered under the current "General Terms and Conditions for CETECOM". CETECOM will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM test report include or imply any product or service warranties from CETECOM, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM.

All rights and remedies regarding vendor's products and services for which CETECOM has prepared this test report shall be provided by the party offering such products or services and not by CETECOM.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory. The documentation of the testing performed on the tested devices is archived for 10 years at CETECOM.

Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

1.2 Attestation

I declare that all measurements were performed by me or under my supervision and that all measurements have been performed and are correct to my best knowledge and belief to Industry Canada standards. All of the above requirements are met in accordance with enumerated standards.

1.3 Summary of Test Results

The EUT integrates a BLE transmitter. Other implemented wireless technologies were not considered within this test report.

Test case	Reference Clause FCC 🗵	Page	Remark	Result
<u>Duty-Cycle</u>	§15.35(c)	10		PASSED
Minimum Emission Bandwidth 6 dB	§15.247 5.2(a)	14		PASSED
Occupied Channel Bandwidth 99%	2.1049(h)	15		PASSED
Peak output power (Sweep)	§15.247(b)(3)	12		PASSED
Transmitter Peak output power radiated	§15.247(b)(4)(c)(i)			NP
Emissions in non-restricted frequency bands	§15.247(d)	17		PASSED
Radiated Band-Edge emissions	§15.205(b)	28		PASSED
	§15.247(d)			
Power spectral density	§15.247(e)	13		PASSED
Radiated field strength emissions below 30	§15.205(a)	21		PASSED
MHz	§15.209(a)			
Radiated field strength emissions 30 MHz – 1	§15.209	23		PASSED
GHz	§15.247(d)			
Radiated field strength emissions above 1 GHz	§15.209(a)	26		PASSED
	§15.247(d)			
AC-Power Lines Conducted Emissions	§15.207	30		PASSED

PASSED The EUT complies with the essential requirements in the standard.

FAILED The EUT does not comply with the essential requirements in the standard.

NP The test was not performed by the CETECOM Laboratory.

1.4 Summary of Test Methods

Test case	Test method	
Duty-Cycle	ANSI C63.10:2013, §11.6(b)	
Minimum Emission Bandwidth 6 dB	ANSI C63.10:2013, §6.9.2, §11.8	
Occupied Channel Bandwidth 99%	ANSI C63.10:2013, §6.9.3	
Peak output power (Sweep)	ANSI C63.10:2013, §11.9	
Power spectral density	ANSI C63.10:2013, §11.10	
Emissions in non-restricted frequency bands	ANSI C63.10:2013, §11.11, §6.10.5	
Radiated Band-Edge emissions	ANSI C63.10-2013; "Marker-Delta method", §6.10.5, §11.13	
Transmitter Peak output power radiated	Result calculated with measured conducted RF-power value and	
	stated/measured antenna gain for band of interest	
Radiated field strength emissions below 30 MHz	ANSI C63.10-2013 §6.3, §6.4	
Radiated field strength emissions 30 MHz- 1 GHz	ANSI C63.4-2014 §8.2.3, ANSI C63.10-2013 §6.3, §6.5	
Radiated field strength emissions above 1 GHz	ANSI C63.4-2014 §8.3, ANSI C63.10-2013 §6.3, §6.6	
AC-Power Lines Conducted Emissions	ANSI C63.4-2014 §7, ANSI C63.10-2013 §6.2	

And reference also to Test methods in KDB558074

^{*}The calculation of the measurement uncertainty shows compliance with the "maximum measurement uncertainties" of the tested standard and therefore for result evaluation the stated uncertainties will not be additionally added to the measured results.

2 Administrative Data

2.1 Identification of the Testing Laboratory

Company name: CETECOM GmbH
Address: Im Teelbruch 116

45219 Essen - Kettwig

Germany

Responsible for testing laboratory: Dipl.-Ing. Ninovic Perez

Accreditation scope: DAkkS Webpage: FCC ISED

IC Lab company No. / CAB ID: 3462D / DE0005

Test location: CETECOM GmbH; Im Teelbruch 116; 45219 Essen - Kettwig

2.2 General limits for environmental conditions

Temperature:	22±2 °C
Relative. humidity:	45±15% rH

2.3 Test Laboratories sub-contracted

Company name: --

2.4 Organizational Items

Responsible test manager: M.Sc. Patrick Marzotko

Receipt of EUT: 2022-Apr-20

Date(s) of test: 04-25-2022 to 05-05-2022

Version of template: 22.0301

2.5 Applicant's details

Applicant's name: UAB Pulsetto

Address: Babiniu Sodu 18-oji g. 29

08456 Vilnius

Lithuania

Contact Person: Vitalijus Majorovas

Contact Person's Email: vitalijus.majorovas@gmail.com

2.6 Manufacturer's details

Manufacturer's name: UAB Pulsetto

Address: Babiniu Sodu 18-oji g. 29

08456 Vilnius Litauen

2.7 Equipment under Test (EUT)

EUT	Sample No.	Product	Model	Туре	SN	HW	sw
No.*) EUT 1	21-1-01675S02_C01	Nerve stimulator	Pulsetto	Pulsetto_ST	N/A	1.0.0	1.0.0
EUT 2	21-1-01675S03_C01	Nerve stimulator	Pulsetto	Pulsetto_ST	N/A	1.0.0	1.0.0

^{*)} EUT short description is used to simplify the identification of the EUT in this test report.

2.8 Untested Variant (VAR)

VAR	Sample No.	Product	Model	Туре	SN	HW	SW
No.*)							

^{*)} The listed additional untested model variant(s) (VAR) is/are not object of evaluation of compliance. For further information please see Annex 5: Declaration of applicant of model differences.

If the table above does not show any other line than the headline, no untested variants are available.

2.9 Auxiliary Equipment (AE)

AE	Sample No.	Auxiliary Equipment	Model	SN	HW	SW
No.*)						
AE 1	21-1-01675S04_C01	Battery	N/A	N/A	N/A	N/A
AE 2	21-1-01675S05_C01	Battery	N/A	N/A	N/A	N/A
AE 3	-	Laptop	N/A	N/A	N/A	N/A
AE 4	-	Power Charger	N/A	N/A	N/A	N/A

^{*)} AE short description is used to simplify the identification of the auxiliary equipment in this test report. If the table above does not show any other line than the headline, no AE was used during testing nor was taken into account for evaluation

2.10 Connected cables (CAB)

CAB No.*)	Sample No.	Cable Type	Connectors / Details	Length
CAB 1	-	USB	Micro USB-B to USB-A	1m
CAB 2	-	USB	Micro USB-B to USB-A	1m

^{*)} CAB short description is used to simplify the identification of the connected cables in this test report. If the table above does not show any other line than the headline, no cable was used during testing nor was taken into account for evaluation

2.11 Software (SW)

SW	Sample No.	SW Name	Description	SW Status
No.*)				
SW 1	21-1-01675S07_C01	YAT	-	2.4.1

^{*)} SW short description is used to simplify the identification of the used software in this test report. If the table above does not show any other line than the headline, no SW was used during testing nor was taken into account for evaluation.

2.12 EUT set-ups

set-up no.*)	Combination of EUT and AE	Description
1	EUT 1 + AE 1 + AE 3 + AE 4 + CAB 1	Used for Radiated measurements
2	EUT 2 + AE 2 + AE 3 + AE 4 + CAB 2	Used for Conducted measurements
3	EUT 1 + AE 1 + AE 3 + AE 4 + CAB 1	Used for AC-Power Lines Conducted Emissions Test

^{*)} EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

2.13 EUT operation modes

EUT operating mode no.*)	Operating modes	Additional information
op. 1	BLE_TX-Mode	With help of special test firmware TX-mode was set-up. We refer to applicants information/papers for details about necessary commands.

^{*)} EUT operating mode no. is used to simplify the test report.

2.14 Test Software

Via SW1 special test mode was set up with 0 dBm power setting. use of following commands:

BLE low channel: "a 02 m 1 p 0 o" BLE mid channel: "a 40 m 1 p 0 o" BLE high channel: "a 80 m 1 p 0 o"

```
Usage:
a: Enter start channel for sweep/channel for constant carrier
b: Enter end channel for sweep
c: Start TX carrier
d: Enter time on each channel (1ms-99ms)
e: Cancel sweep/carrier
m: Enter data rate
o: Start modulated TX carrier
p: Enter output power
s: Print current delay, channels and so on
r: Start RX sweep
t: Start TX sweep
x: Start RX carrier
```

CETECOM_TR21-1-0167501T01a_C2

3 Equipment under test (EUT)

3.1 General Data of Main EUT as Declared by Applicant

Firmware	☐ for normal use ☐ Special version for test execution			
Power supply	☐ AC Mains	-		
	☑ DC Mains	via AE 4		
	⊠ Battery	3.7 V Lithium Ion battery		
Operational conditions	$T_{\text{nom}} = \text{n/a}$ $T_{\text{min}} = \text{n/a}$ $T_{\text{max}} = \text{n/a}$			
EUT sample type	Engineering Samples			
Weight	0.1 kg			
Size [LxWxH]	11.0 cm x 10.0 cm x 4.0 cm			
Interfaces/Ports	USB-C			
For further details refer Applicants Declaration & following technical documents				
For further details regarding radio parameters, please refer to Bluetooth Core Specification				

3.2 Detailed Technical data of Main EUT as Declared by Applicant

Frequency Band	2.4 GHz ISM Band (2400 MHz - 2483.5 MHz)			
Number of Channels (USA/Canada -bands)	40 (37 Hopping + 3 Advertising)			
Nominal Channel Bandwidth	1 MHz			
Type of Modulation Data Rate	⊠ GFSK 1 Mbit / s		\square GFSK 2 Mbit / s	
Type of Modulation Data Nate	☐ GFSK 500 kbit / s		☐ GFSK 125 kbit / s	
	☐ a/n/ac mode			
Other wireless options	□ b/g/n mode			
Other wireless options	☐ Bluetooth EDR (not tested within this report)			
	☐ Cellular transceiver (2G/3G/4G/5G/GPS, not tested in this report)			
Max. Conducted Output Power	-2.5 dBm			
EIRP Power (Calculated EIRP)	-2.5 dBm + 0.5 dBi = -2 dBm			
Antenna Type	Integrated			
Antenna Gain	+0.5 dBi			
FCC label attached	No			
Test firmware / software and storage location	EUT 1/EUT 2, AE 1			
For further details refer Applicants Declaration & following technical documents				
Description of Reference Document (supp	Version		Total Pages	
E38_Pulsetto device Testing Instuctions_F			3	

3.3 Modifications on Test sample

Additions/deviations or exclusions	

4 Measurements

4.1 Duty-Cycle

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

The necessary duty-cycle correction factor is determined on nominal conditions on middle channel only. It is assumed that no noticeable changes occur when tested on other channels or climatic conditions.

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

A special firmware program is used for test purposes. In opposite to normal operating mode a higher duty-cycle is set in order to facilitate the measurements. This is maximized at the extent possible.

The necessary duty-cycle correction factor is determined on nominal conditions on one channel in each operable frequency-band. It is assumed that no noticeable changes occur when tested on other channels or climatic conditions. The Duty-Cycle was constant, means without variations.

Formula to calculate Duty-Cycle:

Duty cycle calculations:	Duta and factor DC	Regarding power: $10*log(^1\!/_{\chi})$ dB
$x = {}^{TX_{ON}}/_{(TX_{ON} + TX_{OFF})}$	Duty cycle factor: DC=	Regarding field strength: $20*log(1/\chi)$ dB

oxtimes The results were corrected in order to evaluate for worst-case result each time when average values are necessary	ıry
for example average radiated emissions or similar	

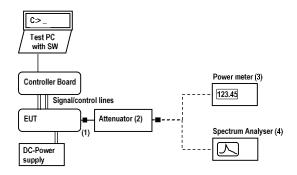
 \square No correction necessary: Duty-Cycle > 98%

4.1.1 Measurement Location

Test site	120910 - Radio Laboratory 1 (TS 8997)
-----------	---------------------------------------

4.1.2 Result

Duty-Cycle [%]	Duty-Cycle correction Power [dB]	Duty-Cycle correction Field Strength [dB]
96.25	0.17	0.33



4.2 Peak output power (Sweep)

4.2.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to power meter (3) or spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

Measurement is made using Rohde & Schwarz TS8997 test system.

	,
Test method	Choose Test method.
Remarks	

The measurement was performed in non-hopping transmission mode with the carrier set to lowest/middle and highest channel.

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate

4.2.2 Measurement Location

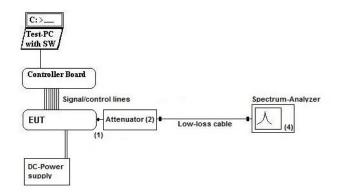
Test site	120910 - Radio Laboratory 1 (TS 8997)

4.2.3 Limit

Frequency Range [MHz]	Limit [W]	Limit [dBm]	Detector	RBW / VBW [MHz]
2400 - 2483.5	1	30	MaxPeak	3 / 10

4.2.4 Result

Mode	Channel	Frequency [MHz]	Max Peak Power [dBm]	Result
1	1	2402	-2.5	Passed
1	19	2440	-3.0	Passed
1	39	2480	-3.1	Passed



4.3 Power spectral density

4.3.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

Measurement is made using Rohde & Schwarz TS8997 test system.

	,
Test method	Choose Test method.
Remarks	

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions.

4.3.2 Measurement Location

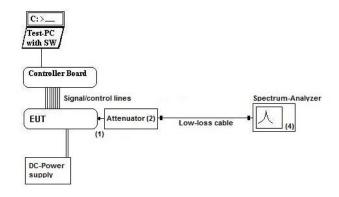
Test site	120910 - Radio Laboratory 1 (TS 8997)

4.3.3 Limit

Limit [dBm] @ 3 kHz	Detector [MaxHold]	RBW / VBW [kHz]	
≤ 8	Peak	3 / 10	

4.3.4 Result

Mode	Channel	Frequency [MHz]	PSD [dBm]	Result
1	1	2402	-6.063	Passed
1	19	2440	-7.665	Passed
1	39	2480	-7.980	Passed



4.4 Minimum Emission Bandwidth 6 dB

4.4.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Measurement is made using Rohde & Schwarz TS8997 test system.

4.4.2 Measurement Location

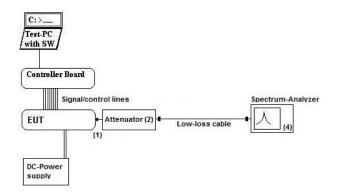
Test site	120910 - Radio Laboratory 1 (TS 8997)
-----------	---------------------------------------

4.4.3 Limit

Limit [kHz]	Detector [MaxHold]	RBW / VBW [kHz]	
≥ 500	MaxPeak	100 / 300	

4.4.4 Result

Mode	Channel	Frequency [MHz]	6 dB bandwidth [MHz]	Result
1	1	2402	0.534654	Passed
1	19	2440	0.554456	Passed
1	39	2480	0.554456	Passed



4.5 Occupied Channel Bandwidth 99%

4.5.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

Measurement is made using Rohde & Schwarz TS8997 test system.

4.5.2 Measurement Location

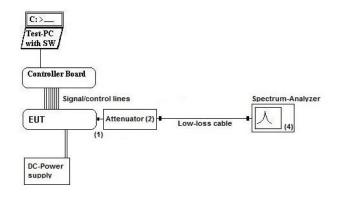
Test site	120910 - Radio Laboratory 1 (TS 8997)
-----------	---------------------------------------

4.5.3 Limit

When the occupied bandwidth limit is not stated in the applicable reference measurement method, the transmitted signal bandwidth shall be reported as the 99% emission bandwidth, as calculated or measured.

4.5.4 Result

Mode	Channel	Frequency [MHz]	99% Occupied bandwidth [MHz]	Result
1	1	2402	0.850000	Passed
1	19	2440	0.875000	Passed
1	39	2480	0.895000	Passed



4.6 Emissions in non-restricted frequency bands

4.6.1 Description of the general conducted test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Measurement is made using Rohde & Schwarz TS8997 test system.

The measurements were performed with the RBW set to 100 kHz & maximum carrier level was indicated with MAX-Hold positive peak detector using markers. Then a frequency line was set 20 or 30 dB below this measured maximum carrier level.

Then using RBW 100 kHz & spectrum analyzer span from 150 kHz to 25 GHz in three steps spurious emissions were measured with MAX-Hold positive peak detector.

The sweep time set as long as necessary to capture the full signal burst per hopping channel. The burst on-period is captured by setting appropriate markers in the rising and falling edges.

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked e.g. data rates which EUT can operate.

4.6.2 Measurement Location

Test site 120910 - Radio Laboratory 1 (TS 8997)

4.6.3 Limit

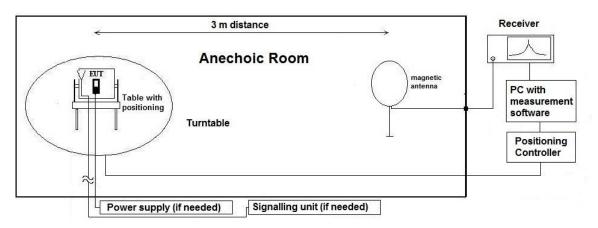
Frequency Range [MHz]	Limit [dBc]
0.15 – 25000	-20 / -30

4.6.4 **Result**

Maximum Level Peak [dBc]

Mode	Channel	Frequency [MHz]	Result
1	1	2402	Passed
1	19	2440	Passed
1	39	2480	Passed

Remark1: every RF-Port tested separatelly in case on MIMO device


4.7 Radiated field strength emissions below 30 MHz

4.7.1 Description of the general test setup and methodology, see below example:

Evaluating the radiated field emissions are done first by an exploratory emission measurement and a final measurement for most critical frequencies determined.

The loop antenna was placed at 1 m height above ground plane and 3 m measurement distance from set-up for investigations. Because of reduced measurement distance, correction data were applied, as stated in chapter "General Limit - Radiated field strength emissions below 30 MHz". The tests are performed in the semi anechoic room recognized by the regulatory commission.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (step 90°, range 0°to 360°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT), the emission spectrum was recorded.

The loop antenna was moved at least to 2-perpendicular axes (antenna vector in direction of EUT and parallel to EUT) in order to maximize the emissions. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a data reduction table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position).

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A \hspace{1cm} AF = Antenna factor$

C_L = Cable loss

 $M = L_T - E_C$ $D_F = Distance correction factor (if used)$

 E_C = Electrical field – corrected value

E_R = Receiver reading

G_A = Gain of pre-amplifier (if used)

 L_T = Limit M = Margin

All units are dB-units, positive margin means value is below limit.

4.7.2 Sample calculation

Raw-Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss	Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
19.83	18.9	-70.75	0.18		-51.67	-31.83	30 to 3 m correction used according ANSI C63.10-2013

Remark: This calculation is based on an example value at 458 kHz

4.7.3 Measurement Location

Test site 120901 - SAC - Radiated Emission <1GHz

4.7.4 Correction factors due to reduced meas. distance (f < 30 MHz):

The used correction factors when the measurement distance is reduced compared to regulatory measurement distance, are calculated according Extrapolation formulas valid for EUT's with maximum dimension of 0.625xLambda. Formula 2+3+4 as presented in ANSI C63.10, Chapter 6.4.4 are used for the calculations of proper extrapolation factors

Frequency	f	Lambda	Far-Field	Distance Limit	1st	2nd Condition	Distance
Range	[kHz/MHz]	[m]	Point	accord. 15.209	Condition	(Limit distance	Correction
ge	[2,2]	[]	[m]	[m]	(dmeas <	bigger dnear-	accord.
			נייין	[]	Dnear-field)	field)	Formula
	0	22222 22	F20F 47		-	•	
	9	33333.33	5305.17		fullfilled	not fullfilled	-80.00
	10	30000.00	4774.65	-	fullfilled	not fullfilled	-80.00
	20	15000.00	2387.33	-	fullfilled	not fullfilled	-80.00
	30	10000.00	1591.55	-	fullfilled	not fullfilled	-80.00
	40	7500.00	1193.66	-	fullfilled	not fullfilled not fullfilled	-80.00
	50	6000.00	954.93	-	fullfilled		-80.00
	60	5000.00	795.78	-	fullfilled fullfilled	not fullfilled	-80.00
	70 80	4285.71	682.09	300	fullfilled	not fullfilled	-80.00
		3750.00	596.83	-		not fullfilled	-80.00
kHz	90	3333.33	530.52	-	fullfilled fullfilled	not fullfilled	-80.00
KIIZ	100	3000.00	477.47	-		not fullfilled	-80.00
	125	2400.00	381.97	-	fullfilled	not fullfilled	-80.00
	200	1500.00	238.73	-	fullfilled	fullfilled	-78.02
	300	1000.00	159.16	-	fullfilled	fullfilled	-74.49
	400	750.00	119.37	-	fullfilled	fullfilled	-72.00
	490	612.24	97.44		fullfilled	fullfilled	-70.23
	500	600.00	95.49	-	fullfilled	not fullfilled	-40.00
	600	500.00	79.58	-	fullfilled	not fullfilled	-40.00
	700	428.57	68.21		fullfilled	not fullfilled	-40.00
	800	375.00	59.68		fullfilled	not fullfilled	-40.00
	900	333.33	53.05		fullfilled	not fullfilled	-40.00
	1.00	300.00	47.75		fullfilled	not fullfilled	-40.00
	1.59	188.50	30.00		fullfilled	not fullfilled	-40.00
	2.00	150.00	23.87	-	fullfilled	fullfilled	-38.02
	3.00	100.00	15.92	-	fullfilled	fullfilled	-34.49
	4.00	75.00	11.94	-	fullfilled	fullfilled	-32.00
	5.00	60.00	9.55	-	fullfilled	fullfilled	-30.06
	6.00	50.00	7.96	-	fullfilled	fullfilled	-28.47
	7.00	42.86	6.82 5.97	-	fullfilled	fullfilled	-27.13
	8.00	37.50		-	fullfilled	fullfilled	-25.97
	9.00	33.33	5.31	30	fullfilled	fullfilled	-24.95
	10.00	30.00	4.77	30	fullfilled	fullfilled	-24.04
	10.60	28.30 27.27	4.50	-	fullfilled fullfilled	fullfilled fullfilled	-23.53
MHz	11.00		4.34	-			-23.21
	12.00	25.00	3.98	-	fullfilled	fullfilled	-22.45
	13.56	22.12	3.52	-	fullfilled	fullfilled	-21.39
	15.00	20.00	3.18		fullfilled	fullfilled	-20.51
	15.92	18.85	3.00		fullfilled	fullfilled	-20.00
	17.00	17.65	2.81	-	not fullfilled	fullfilled	-20.00
	18.00	16.67	2.65	1	not fullfilled	fullfilled	-20.00
	20.00	15.00	2.39	1	not fullfilled	fullfilled	-20.00
-	21.00	14.29	2.27	1	not fullfilled	fullfilled	-20.00
	23.00	13.04	2.08	1	not fullfilled	fullfilled	-20.00
	25.00	12.00	1.91	1	not fullfilled	fullfilled	-20.00
	27.00	11.11	1.77	1	not fullfilled	fullfilled	-20.00
	29.00	10.34	1.65	-	not fullfilled	fullfilled	-20.00
	30.00	10.00	1.59		not fullfilled	fullfilled	-20.00

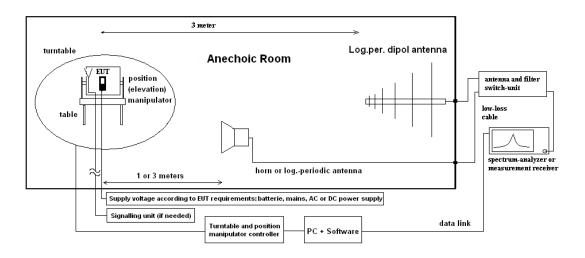
4.7.5 Limit

	Radiated emissions limits, (3 meters)							
Frequency Range [MHz]	Limit [μV/m]	Limit [dBµV/m] *	Distance [m]	Detector	RBW [kHz]			
0.009 - 0.09	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	0.2			
0.09 - 0.11	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Quasi peak	0.2			
0.11 - 0.15	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	0.2			
0.15 - 0.49	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	9			
0.49 – 1.705	24000 / f [kHz]	87.6 – 20Log(f) (kHz)	30	Quasi peak	9			
1.705 - 30	30	29.5	30	Quasi peak	9			

^{*}Remark: In Canada same limits apply, just unit reference is different

4.7.6 Result

Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 0.009 – 30 MHz	Result
<u>2.01a</u>	Low	1	No peaks found	Passed
2.01b	Low	1	No peaks found	Passed
<u>2.02a</u>	Mid	1	No peaks found	Passed
<u>2.02b</u>	Mid	1	No peaks found	Passed
<u>2.03a</u>	High	1	No peaks found	Passed
2.03b	High	1	No peaks found	Passed



4.8 Radiated field strength emissions 30 MHz - 1 GHz

4.8.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 16-1-4:2010 compliant semi anechoic room (SAR) and fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 90°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

Measurement antenna: horizontal and vertical, heights: 1,0 m and 1,82 m as worst-case determined by an exploratory emission measurements. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by main-taining the EUT's worst-case operation mode, cable position, etc. either on 10m OATS or 3m semi-anechoic room.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position). The measurement antenna height between 1 m and 4 m.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A$ (1) AF = Antenna factor $C_L = Cable loss$

 $M = L_T - E_C$ (2) $D_F = Distance correction factor (if used)$

E_C = Electrical field – corrected value

E_R = Receiver reading

G_A = Gain of pre-amplifier (if used)

 L_T = Limit M = Margin

All units are dB-units, positive margin means value is below limit.

4.8.2 Sample calculation

Raw- Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss	Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
32.7	22.25		3.1		25.35	58.05	

Remark: This calculation is based on an example value at 800.4 MHz

4.8.3 Measurement Location

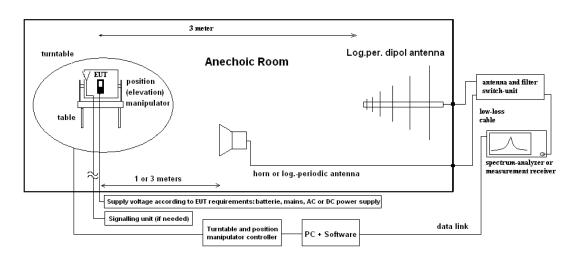
Test site	120901 - SAC - Radiated Emission <1GHz
-----------	--

4.8.4 Limit

	Radiated emissions limits, (3 meters)							
Frequency Range [MHz]	Limit [μV/m]	Limit [dBµV/m]	Detector	RBW / VBW [kHz]				
30 - 88	100	40.0	Quasi peak	100 / 300				
88 - 216	150	43.5	Quasi peak	100 / 300				
216 - 960	200	46.0	Quasi peak	100 / 300				
960 - 1000	500	54.0	Quasi peak	100 / 300				

4.8.5 **Result**

Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 30 – 1000 MHz	Result
<u>3.01a</u>	Low	1	30.766 @ 210.180 MHz	Passed
3.01b	Low	1	25.347 @ 190.320 MHz	Passed
<u>3.02a</u>	Mid	1	No peaks found	Passed
3.02b	Mid	1	29.543 @ 214.470 MHz	Passed
3.03a	High	1	26.483 @ 214.530 MHz	Passed
3.03b	High	1	No peaks found	Passed



4.9 Radiated field strength emissions above 1 GHz

4.9.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 18-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 15°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3-orthogonal axis and the height for EUT with large dimensions or three axis scan for portable/small equipment.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

 $E_C = E_R + A_F + C_L + D_F - G_A$ (1) $E_C = Electrical field - corrected value$

E_R = Receiver reading

 $M = L_T - E_C$ (2) M = Margin

 $L_T = Limit$

A_F = Antenna factor

C_L = Cable loss

D_F = Distance correction factor (if used)

G_A = Gain of pre-amplifier (if used)

All units are dB-units, positive margin means value is below limit.

4.9.2 Sample calculation

Raw- Value [dBuV/m]	Antenna factor	Distance Correction [dB]	Cable Loss + Preamplifier	Resulting correction value [dB]	Final result [dBuV/m]	Remarks
29.37	41.20		24.28	16.92	46.3	CableLoss and PreAmp data in one data correction file

Remark: This calculation is based on an example value at 10 GHz

4.9.3 Measurement Location

Test site 1 – 15 GHz	120904 - FAC1 - Radiated Emissions
Test site 15 – 18 GHz	120907 - FAC2
Test site 18 – 26.5 GHz	120907 - FAC2

4.9.4 Limit

	Radiated emissions limits, (3 meters)						
Frequency Range [MHz]	Limit [μV/m]	Limit [dBµV/m]	Detector	RBW / VBW [kHz]			
Above 1000	500	54	Average	1000 / 3000			
Above 1000	5000	74	Peak	1000 / 3000			

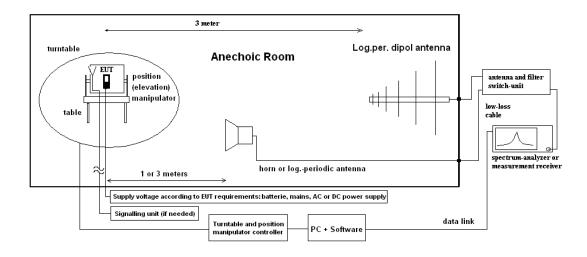
4.9.5 Result

Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 1 – 15 GHz	Result
<u>4.01a</u>	Low	1	No peaks found	Passed
<u>4.02a</u>	Mid	1	No peaks found	Passed
4.03a	High	1	No peaks found	Passed

Remark: for more information and graphical plot see annex A1 CETECOM_TR21-1-0167501T01a-A1_C2

Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 15 – 18 GHz	Result
<u>4.01b</u>	Low	1	No peaks found	Passed
<u>4.01c</u>	Low	1	No peaks found	Passed
4.02b	Mid	1	No peaks found	Passed
<u>4.02c</u>	Mid	1	No peaks found	Passed
4.03b	High	1	No peaks found	Passed
4.03c	High	1	No peaks found	Passed

Remark: for more information and graphical plot see annex A1 CETECOM_TR21-1-0167501T01a-A1_C2


Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 18 – 26.5 GHz	Result
<u>4.01d</u>	Low	1	No peaks found	Passed
<u>4.01e</u>	Low	1	No peaks found	Passed
4.02d	Mid	1	No peaks found	Passed
<u>4.02e</u>	Mid	1	No peaks found	Passed
<u>4.03d</u>	High	1	No peaks found	Passed
<u>4.03e</u>	High	1	No peaks found	Passed

4.10 Radiated Band-Edge emissions

4.10.1 Description of the general test setup and methodology, see below example:

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

For uncritical results where a measurement resolution bandwidth of 1MHz can clearly show the compliance without influencing the results, a field strength measurement was performed to show compliance.

For critical results a Marker-Delta marker method was used for showing compliance to restricted bands. The method consists of three independent steps:

- 1. Step: Prior to the measurement the fundamental radiated In-Band field strength was performed. The determined value is used as reference value.
- 2. Step: Second step consist of finding the relative attenuation between the fundamental emission and the maximum local out-of-band emission (within 2 MHz range around the band edge either on the band-edge directly or some modulation product if the level is greater than that on the band-edge) when measured with lower resolution bandwidth.
- 3. .Step: The delta value recorded in step 2 will be subtracted from value recorded in step 1, thus giving the required field strength at the band-edge. This value must fulfil the requirements for radiated spurious emissions in restricted bands in FCC §15.205 with the general limits of FCC §15.209

The EUT was instructed to send with maximum power (if adjustable) according to applicants instructions.

4.10.2 Measurement Location

Test site 120904 - FAC1 - Radiated Emissions

CETECOM_TR21-1-0167501T01a_C2 27 / 36

4.10.3 Limit

Frequency Range [MHz]	Pk Limit [dBc]	Avg Limit [dBc]	Avg Limit [dBμV/m]	Pk Limit [dBμV/m]	Detector	RBW / VBW [kHz]
Below 2390	-	-	54	74	Average / Peak	100 / 300
Above 2483.5	-	-	54	74	Average / Peak	1000 / 3000
2390 - 2400	-20	-	-	-	Peak	100 / 300
2390 - 2400	-	-30	-	-	Average	100 / 300

4.10.4 Result

Non-restricted bands near-by

Diagram	Channel	Mode	Peak [dBc]	Average [dBc]	Result
9.01	Low	1	38.905	40.173	Passed

Remark: for more information and graphical plot see annex A1 CETECOM_TR21-1-0167501T01a-A1_C2

Restricted bands near-by

Diagram	Channel	Mode	Peak [dBμV/m]	Average [dBμV/m]	Result
9.02	High	1	59.444	47.861	Passed

Remark1: Average value corrected with Duty Cycle - Factor

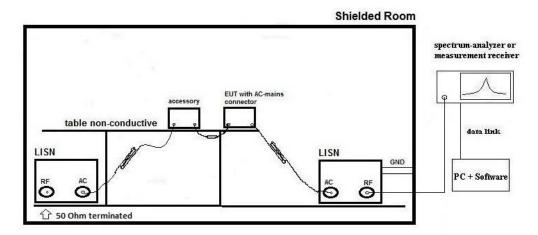
4.11 AC-Power Lines Conducted Emissions

4.11.1 Description of the general test setup and methodology, see below example:

The radio frequency voltage conducted back into the AC power line in the frequency range 150 kHz to 30 MHz has to be investigated.

Compliance should be tested by measuring the radio frequency voltage between each power line and ground at the power terminals in the stated frequency range.

A 50 Ohm / 50 μ H line impedance stabilization network (LISN) is used coupling the interface to the measurement equipment.


The EUT power input leads are connected through the LISN to the AC-power source. The LISN enclosure is electrically connected to the ground plane. The measuring instrument is connected to the coaxial output of the LISN.

Tabletop devices were set-up on an 80 cm height above reference ground plane, floor standing equipment 10 cm raised above ground plane.

Measurements have been performed on each phase line and neutral line of the devices AC-power lines.

The EUT was power supplied with 120 V/60 Hz. The EUT was tested in the defined operating mode and installed (connected) to accessory equipment according the general description of use given by the applicant.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

Exploratory, preliminary measurements

As a first step, determines the worst-case phase line (neutral or phase) as well as the most critical operating mode of the equipment. A complete frequency-sweep with PK-Detector is performed on each current-carrying conductor.

Final measurement on critical frequencies

For power phases and critical frequencies (Margin to AV- or QP limit lower than 3 dB) as a second step includes measurements with receivers detector set to Quasi-Peak and Average.

Formula:

 $V_C = V_R + C_L$ (1) $V_C =$ measured Voltage –corrected value

 $M=L_{T^{-}}V_{C} \hspace{0.5cm} (2) \hspace{1cm} V_{R}=Receiver\ reading$

C_L = Cable loss

M = Margin

 $L_T = Limit$

All units are dB-units, positive margin means value is below limit.

4.11.2 Measurement Location

Test site	120919 – Conducted Emission
-----------	-----------------------------

4.11.3 Limit

Frequency Range [MHz]	QUASI-Peak [dBμV]	AVERAGE [dBμV]
0.15 – 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 – 30	60	50

4.11.4 Result

Diagram	Mode	Power Line	Max [dBμV]	Detector	Result
<u>1.01</u>	1	N/L1	45.91	QP	Passed

Remark: see more in diagrams in separate document CETECOM_TR21-1-0167501T01a-A1_C2

4.12 Equipment lists

ID	Description	Manufacturer	SerNo	CheckType	Last Check	Interval	Next Check
	120901 - SAC - Radiated Emission <1GHz			calchk	cal: 07-21-2015 chk: 07-27-2021	cal: 10Y chk: 12M	cal: July 2025
20574	Biconilog Hybrid Antenna BTA-L	Frankonia GmbH	980026L	cal	cal: 05-03-2019	cal: 36M	chk: July 2022 cal: May 2022
20482	filter matrix Filter matrix SAR 1	CETECOM GmbH	-	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
25038	Loop Antenna HFH2-Z2	Rohde & Schwarz Messgerätebau GmbH	879824/13	cal	cal: 04-07-2020	cal: 24M	cal: August 2022
20885	Power Supply EA3632A	Agilent Technologies Deutschland GmbH	75305850	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20442	Semi Anechoic Chamber	ETS-Lindgren Gmbh / Taufkirchen	-	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20620	Test Receiver ESU26	Rohde & Schwarz Messgerätebau GmbH /	100362	cal	cal: 05-21-2021	cal: 12M	cal: May 2022
	120904 - FAC1 - Radiated Emissions	Memmingen		chk			
					chk: 06-11-2021	chk: 12M	chk: June 2022
20341	Digital Multimeter Fluke 112	Fluke Deutschland GmbH	81650455	cal	cal: 05-25-2020	cal: 24M	cal: May 2022
20558	Fully Anechoic Chamber 1	ETS-Lindgren Gmbh / Taufkirchen	=	cnn	cal: - chk: -	cal: - chk: -	cal: -
20254	High Pass Filter 5HC 2600/12750-1.5KK	Trilithic	23042	chk	Clik	CIIK	chk: -
					chk: 06-11-2021	chk: 12M	chk: June 2022
20868	High Pass Filter AFH-07000	AtlanTecRF	16071300004	chk			
20291	High Pass Filter WHJ 2200-4EE	Wainwright Instruments GmbH	14	chk	chk: 06-11-2021	chk: 12M	chk: June 2022
20291	nigii Pass Filter Whi 2200-4cc	wanwiight instruments dinon	14	Clik	chk: 06-11-2021	chk: 12M	chk: June 2022
20020	Horn Antenna 3115 (Subst 1)	EMCO Elektronik GmbH	9107-3699	calchk	cal: 08-17-2021	cal: 36M	cal: August 2024
					chk: 04-20-2013	chk: 12M	
20302	Horn Antenna BBHA9170 (Meas 1)	Schwarzbeck Mess-Elektronik OHG / Schönau	155	cpu	able 04 15 2020	chk: 12M	
20549	Log. Per. Antenna HL025	Rohde & Schwarz Messgerätebau GmbH	1000060	calchk	chk: 04-15-2020 cal: 08-18-2021	cal: 36M	cal: August 2024
20313	Edg. Fel. Falleting Fiedes	Nonae a sermare messgeratesaa emsir	100000	Colonik	tal. 55 15 2521	chk: 12M	can riagast 2024
20720	Measurement Software EMC32 [FAC]	Rohde & Schwarz Messgerätebau GmbH	V10.xx	cnn	cal: -	cal: -	cal: -
20542	Alexade Files AMRCA 000/000 03/40 CFFW	Web white the transport of Control	24	-61	chk: -	chk: -	chk: -
20512	Notch Filter WRCA 800/960-02/40-6EEK (GSM 850)	Wainwright Instruments GmbH	24	chk	chk: 06-11-2021	chk: 12M	chk: June 2022
20290	Notch Filter WRCA 901,9/903,1SS	Wainwright Instruments GmbH	3RR	chk			
					chk: 06-11-2021	chk: 12M	chk: June 2022
20122	Notch Filter WRCB 1747/1748	Wainwright Instruments GmbH	12	chk			
20121	Notch Filter WRCB 1879,5/1880,5EE	Wainwright Instruments GmbH	15	chk	chk: 06-11-2021	chk: 12M	chk: June 2022
20121	Note Title Wiles 107 5/5/ 1000/5EE	Walling the line and all cites dillori	13	Cink	chk: 06-11-2021	chk: 12M	chk: June 2022
20448	Notch Filter WRCT 1850.0/2170.0-5/40-	Wainwright Instruments GmbH	5	chk			
	10SSK				chk: 06-11-2021	chk: 12M	chk: June 2022
20066	Notch Filter WRCT 1900/2200-5/40-10EEK	Wainwright Instruments GmbH	5	chk	chk: 06-11-2021	chk: 12M	chk: June 2022
20449	Notch Filter WRCT 824.0/894.0-5/40-8SSK	Wainwright Instruments GmbH	1	chk	CIM. 00 11 2021	CINC ILIV	CHAIR TOTAL
					chk: 06-11-2021	chk: 12M	chk: June 2022
20611	Power Supply E3632A	Agilent Technologies Deutschland GmbH	KR 75305854	cpu			
20338	Pre-Amplifier 100MHz - 26GHz JS4- 00102600-38-5P	Miteq Inc.	838697	chk	chk: 06-11-2021	chk: 12M	chk: June 2022
20484	Pre-Amplifier 2,5GHz - 18GHz AMF-5D-	Miteq Inc.	1244554	chk		•	
	02501800-25-10P				chk: 06-11-2021	chk: 12M	chk: June 2022
20287	Pre-Amplifier 25MHz - 4GHz AMF-2D-	Miteq Inc.	379418	chk	-hi- oc 44 2024	-bl- 4214	-hl- l 2022
20670	100M4G-35-10P Radio Communication Tester CMU200	Rohde & Schwarz Messgerätebau GmbH	106833	cal	chk: 06-11-2021 cal: 06-16-2020	chk: 12M cal: 24M	chk: June 2022 cal: June 2022
20690	Spectrum Analyzer FSU	Rohde & Schwarz Messgerätebau GmbH	100302/026	cal	cal: 05-20-2021	cal: 24M	cal: May 2023
20489	Test Receiver ESU40	Rohde & Schwarz Messgerätebau GmbH /	100030	cal	cal: 05-19-2021	cal: 12M	cal: May 2022
		Memmingen	100010		1 00 10 0017		
20439	Ultrabroadband-Antenna HL562	Rohde & Schwarz Messgerätebau GmbH	100248	calchk	cal: 03-10-2017	cal: 72M chk: 12M	cal: March 2023
	120907 - FAC2 - Radiated Emissions		+	chk		CINC ILIV	
					chk: 08-30-2021	chk: 12M	chk: August 2022
20836	1-18 GHz Amplifier	Wright Technologies, Inc., Inc.	0001	chk		able 2CM	
20005	AC - LISN 50 Ohm/50μH ESH2-Z5	Rohde & Schwarz Messgerätebau GmbH	861741/005	cal	cal: 05-20-2021	chk: 36M cal: 12M	cal: May 2022
20910	Frequency Multiplier 936VF-10/385	MI-Wave, Millimeter Wave Products Inc.	142	cnn	cal: -	cal: -	cal: -
		,			chk: -	chk: -	chk: -
20911	Frequency Multiplier 938WF-10/387	MI-Wave, Millimeter Wave Products Inc.	141	cnn	cal: -	cal: -	cal: -
20730	FS-Z110	Rohde & Schwarz Messgerätebau GmbH	101468	cal	chk: - cal: 06-19-2020	chk: - cal: 36M	chk: - cal: June 2023
20730	FS-Z110 FS-Z140	Rohde & Schwarz Messgerätebau GmbH	101468	cal	cal: 05-26-2020	cal: 36M	cal: May 2023
20731	FS-Z75	Rohde & Schwarz Messgerätebau GmbH	101022	cal	cal: 07-05-2019	cal: 36M	cal: June 2022
20412	Fully Anechoic Chamber 2	ETS-Lindgren Gmbh / Taufkirchen	without	cnn	cal: -	cal: -	cal: -
20722	Harmania Minas FC 7330	DDC Dadiometra Divisira Co. 111	101000	 	chk: -	chk: -	chk: -
20733 20734	Harmonic Mixer FS-Z220 Harmonic Mixer FS-Z325	RPG-Radiometer Physics GmbH RPG-Radiometer Physics GmbH	101009 101005	cal	cal: 05-27-2021 cal: 05-27-2021	cal: 36M cal: 36M	cal: May 2024 cal: May 2024
20133	Horn Antenna 3115 (Meas 1)	EMCO Elektronik GmbH	9012-3629	cal	cal: 04-08-2020	cal: 36M	cal: April 2023
20811	Horn Antenna ASY-SGH-124-SMA	Antenna Systems Solutions S.L	29F14182337	cal	cal: 10-20-2021	cal: 36M	cal: October 2024
20877	JS42-08001800-16-8P Verstärker	Miteq Inc.	2079991 /	chk			-
20912	Low noise Amplifier Module 0.5-4GHz	DE Lambda Europa Genhill	2079992 19041200083		chk: 02-27-2020 cal: -	chk: 3M	chk: May 2020 cal: -
20312	Low Hoise Amplitier Module 0.5-40HZ	RF-Lambda Europe GmbH	17041200083	cnn	cal: - chk: -	cal: - chk: -	cal: - chk: -
20913	Phase Amplitude Stable Cable Assembly DC-	RF-Lambda Europe GmbH	AC19040001	cnn	cal: -	cal: -	cal: -
	40GHz				chk: -	chk: -	chk: -
20813 20765	Pickett-Potter Horn Antenna	RPG-Radiometer Physics GmbH	10006 010001	cal	cal: 09-09-2020 cal: 09-15-2020	cal: 36M	cal: September 2023
20765	Pickett-Potter Horn Antenna Pickett-Potter Horn Antenna FH-PP 110	RPG-Radiometer Physics GmbH RPG-Radiometer Physics GmbH	10014	cal cal	cal: 09-15-2020 cal: 09-04-2020	cal: 36M cal: 36M	cal: September 2023 cal: September 2023
20814	Pickett-Potter Horn Antenna FH-PP 140	RPG-Radiometer Physics GmbH	10008	cnn	cal: -	cal: -	cal: -

ID	Description	Manufacturer	SerNo	CheckType	Last Check	Interval	Next Check
					chk: -	chk: -	chk: -
20767	Pickett-Potter Horn Antenna FH-PP 140-220	RPG-Radiometer Physics GmbH	010011	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20812	Pickett-Potter Horn Antenna FH-PP-325	RPG-Radiometer Physics GmbH	10024	cnn	cal: -	cal: -	cal:
					chk: -	chk: -	chk: -
20816	SGH Antenna SGH-26-WR10	Anteral S.L.	1144	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20732	Signal- and Spectrum Analyzer FSW67	Rohde & Schwarz Messgerätebau GmbH	104023	cal	cal: 05-27-2021	cal: 12M	cal: May 2022
20909	Waveguide Horn Antenna PE9881-24	Pasternack Enterprises, Inc.	37/2016	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20817	Waveguide Rectangular Horn Antenna SAR-	ERAVAN	13254-01	cal	cal: 07-29-2020	cal: 36M	cal: July 2023
	2309-22-52						
20908	Waveguide WR 10 attenuator STA-30-10-M2	SAGE Millimeter Inc.	13256-01	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20907	Waveguide WR-15 attenuator STA-30-15-M2	SAGE Millimeter Inc.	13256-01	cnn	cal: -	cal: -	cal:
					chk: -	chk: -	chk: -
	120910 - Radio Laboratory 1 (TS 8997)			chk			
					chk: 03-16-2022	chk: 12M	chk: March 2023
20904	Climatic Chamber ClimeEvent C/1000/70a/5	Weiss Umwelttechnik GmbH	58226223240010	cal	cal: 05-09-2020	cal: 12M	cal: May 2022
20871	NRP-Z81	Rohde & Schwarz Messgerätebau GmbH	104631	cal	cal: 05-20-2021	cal: 12M	cal: May 2022
20805	Open Switch and control Platform OSP	Rohde & Schwarz Messgerätebau GmbH	101264	cal	cal: 05-13-2020	cal: 36M	cal: May 2023
	B157WX 40GHz 8Port Switch						
20691	Open Switch and control Platform OSP120	Rohde & Schwarz Messgerätebau GmbH	101056	cal	cal: 05-13-2020	cal: 36M	cal: May 2023
20866	Signal Analyzer FSV3030	Rohde & Schwarz Messgerätebau GmbH	101247	cal	cal: 09-24-2021	cal: 12M	cal: September 2022
20559	Vector Signal Generator SMU200A	Rohde & Schwarz Messgerätebau GmbH	103736	cal	cal: 05-20-2021	cal: 24M	cal: May 2023
	120919 - Conducted Emission			cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20300	AC - LISN (50 Ohm/50μH, 1-phase) ESH3-Z5	Rohde & Schwarz Messgerätebau GmbH	892 239/020	cal	cal: 05-20-2021	cal: 12M	cal: May 2022
20468	Digital Multimeter Fluke 112	Fluke Deutschland GmbH	90090455	cal	cal: 06-01-2021	cal: 36M	cal: June 2024
20536	Impedance Stabilization Network ISN ST08	Teseq GmbH	25867	cal	cal: 05-20-2020	cal: 36M	cal: May 2023
20533	Impedance Stabilization Network ISN T200A	Teseq GmbH	25706	cal	cal: 05-20-2020	cal: 36M	cal: May 2023
20534	Impedance Stabilization Network ISN T400A	Teseq GmbH	24881	cal	cal: 05-20-2020	cal: 36M	cal: May 2023
20541	Impedance Stabilization Network ISN T8-	Teseq GmbH	26373	cal	cal: 05-20-2020	cal: 36M	cal: May 2023
	Cat6	· ·					•
20535	Impedance Stabilization Network ISN T800	Teseg GmbH	26321	cal	cal: 05-20-2020	cal: 36M	cal: May 2023
20099	Passive Voltage Probe ESH2-Z3	Rohde & Schwarz Messgerätebau GmbH	299.7810.52	сри			,
20100	Passive Voltage Probe TK 9416	Schwarzbeck Mess-Elektronik OHG /	without	cpu			
		Schönau		, ,			
20033	RF-current probe (100kHz-30MHz) ESH2-Z1	Rohde & Schwarz Messgerätebau GmbH	879581/18	cal	cal: 06-01-2021	cal: 24M	cal: June 2023
20373	Single-Line V-Network (50 Ohm/5μH) ESH3-	Rohde & Schwarz Messgerätebau GmbH	100535	cal	cal: 05-20-2021	cal: 12M	cal: May 2022
	Z6						,
20007	Single-Line V-Network (50 Ohm/5μH) ESH3-	Rohde & Schwarz Messgerätebau GmbH	892563/002	cal	cal: 05-20-2021	cal: 12M	cal: May 2022
	Z6	0					
20377	Test Receiver ESCS30	Rohde & Schwarz Messgerätebau GmbH /	100160	cal	cal: 05-18-2021	cal: 12M	cal: May 2022
_00,,		Memmingen			03 03.10.2021	CO 12.11	CO 1110 Y 2022
20556	Thermo-/Hygrometer WS-9400	Conrad Electronic GmbH	-	chk		-	
20330	memo / Hygrometer ws-5400	comaa ziccii onic amon		CIIK	chk: 07-15-2021	chk: 24M	chk: July 2023
		•					12.7 2025

Tools used in 'P1M1'

4.12.1 Legend

Note / remarks	Interval of calibration & Verification
12M	12 months
24M	24 months
36M	36 months
10Y	10 Years

Abbreviation Check Type	Description
cnn	Calibration and verification not necessary
cal	Calibration
calchk	Calibration plus intermediate Verification
chk	Verification
сри	Verification before usage

5 Results f	Results from external laboratory					
None	-					
6 Opinions	s and interpreta	ations				
None	-					
7 List of al	bbreviations					
None	-					

8 Measurement Uncertainty valid for conducted/radiated measurements

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor \mathbf{k} , such that a confidence level of approximately 95% is achieved. For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it contribution to the overall uncertainty according its statistical distribution calculated.

Measurement type	Frequency range of measurement Start [MHz] Stop [MHz]	Calculated Uncertainty based on confidence level of 95.54%	Remarks
Magnetic field strength	0.009 30	4.86	Magnetic loop antenna, Pre-amp on
RF-Output power (eirp) Unwanted emissions (eirp) [dB]	30 100 30 100 100 1000 100 1000	4.57 4.91 4.02 4.26	without Pre-Amp with Pre-Amp without Pre-Amp with Pre-Amp
	1000 18000 1000 18000 18000 33000 33000 50000 40000 60000	4.36 5.23 4.92 4.17 4.69	without Pre-Amp with PreAmp Schwarzbeck BBHA9170 (#20302) Antenna set-up non-waveguide antenna) Set-up for Q-Band (WR-22), non-wave guide antenna Set-up U-Band (WR-19), non-waveguide antenna
	50000 75000 75000 110000 90000 140000 140000 225000 225000 325000	4.06 4.17 5.49 6.22 7.04	External Mixer set-up V-Band (WR-15) External Mixer set-up W-Band (WR-6) External Mixer set-up F-Band (WR-8) External Mixer set-up G-Band (WR-5) External Mixer set-up (WR-3)
Radiated Blocking [dB]	325000 500000 1000 18000 18000 33000	2.85 4.66	External Mixer set-up (WR-2.2) Typical set-up with microwave generator and antenna, value for 7GHz calculated Typical set-up with microwave generator and antenna
	33000 50000 50000 75000 75000 110000	3.48 3.73 4.26	WR-22 set-up WR-15 set-up WR-6 set-up calculated for 77 GHz (FMCW) carrier
Frequency Error [kHz]	6000 7000	33.92	calculated for 6.5GHz UWB Ch.5
TS 8997 conducted Parameters	30 6000 30 6000 30 6000 30 7500 0,009 30	1.11 1.20 1.20 1.20 2.56	Power measurement with Fast-sampling-detector Power measurement with Spectrum-Analyzer Power Spectrum-Density measurement Conducted Spurious emissions: Conducted Spurious emissions:
	2.4 2.48 5.18 5.825 5.18 5.825 30 6000	1.95 ppm 7.180 ppm 1.099 ppm 0.11561µs	6a. Bandwidth / 2-Marker Method for 2.4GHz ISM 6b. Bandwidth / 2-Marker Method for 5GHz WLAN 7 Frequency (Marker method) for 5GHz WLAN 8 Medium-Utilization factor / Timing
Conducted emissions	30 6000 30 6000 0.009 30	1.85 1.62 3.57	9 Blocking-Level of companion device 9 Blocking Generator level

9 Versions of test reports (change history)

Version	Applied changes	Date of release
	Initial release	2022-Jun-17

End Of Test Report