

Report No.: JYTSZ-R12-2201512

FCC RF Test Report

Applicant:	SHENZHEN TRANSCHAN TECHNOLOGY LIMITED	
Address of Applicant:	Room 03, 23/F, Unit B Building, No 9, Shenzhen Bay Eco - Technology Park, Yuehai Street, Nanshan District, Shenzher China	
Equipment Under Test (E	UT)	
Product Name:	Mobile Phone	
Model No.:	S661LO	
Trade Mark:	VIMOQ	
FCC ID:	2A5RQ-S661LO-N	
Applicable Standards:	FCC CFR Title 47 Part 15C (§15.247)	
Date of Sample Receipt:	02 Aug., 2022	
Date of Test:	03 Aug., to 19 Aug., 2022	
Date of Report Issued:	22 Aug., 2022	
Test Result:	PASS	

Tested by:	Mike DU Test Engliteer	_ Date:	22 Aug., 2022
Reviewed by:	Reojeor Engineer	Date:	22 Aug., 2022
Approved by:	检验检测专用章 Manager	Date:	22 Aug., 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

1 Version

Version No.	Date	Description
00	22 Aug., 2022	Original

2 Contents

			Page
С	over Pa	ıge	1
1	Vers	sion	2
2	Con	itents	3
3	Gen	neral Information	4
	3.1	Client Information	4
	3.2	General Description of E.U.T.	4
	3.3	Test Mode and Test Environment	
	3.4	Description of Test Auxiliary Equipment	5
	3.5	Measurement Uncertainty	5
	3.6	Additions to, Deviations, or Exclusions from the Method	5
	3.7	Laboratory Facility	5
	3.8	Laboratory Location	5
	3.9	Test Instruments List	6
4	Меа	asurement Setup and Procedure	7
	4.1	Test Channel	7
	4.2	Test Setup	7
	4.3	Test Procedure	9
5	Tes	t Results	10
	5.1	Summary	10
	5.1.	1 Clause and Data Summary	10
	5.1.2	2 Test Limit	11
	5.2	Antenna requirement	12
	5.3	AC Power Line Conducted Emission	13
	5.4	Emissions in Restricted Frequency Bands	15
	5.5	Emissions in Non-restricted Frequency Bands	19

3 General Information

3.1 Client Information

Applicant:	SHENZHEN TRANSCHAN TECHNOLOGY LIMITED
Address:	Room 03, 23/F, Unit B Building, No 9, Shenzhen Bay Eco - Technology Park, Yuehai Street, Nanshan District, Shenzhen, China
Manufacturer:	SHENZHEN TRANSCHAN TECHNOLOGY LIMITED
Address:	Room 03, 23/F, Unit B Building, No 9, Shenzhen Bay Eco - Technology Park, Yuehai Street, Nanshan District, Shenzhen, China
Factory:	SHENZHEN TECNO TECHNOLOGY CO., LTD.
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China

3.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	S661LO
Operation Frequency:	2402 MHz - 2480 MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Technology:	GFSK
Data Speed:	1 Mbps (LE 1M PHY)
Antenna Type:	Internal Antenna
Antenna Gain:	1.2 dBi (declare by applicant)
Antenna transmit mode:	SISO (1TX, 1RX)
Power Supply:	Rechargeable Li-ion Polymer Battery DC3.85V, 4900mAh
AC Adapter:	Model: U050VSA
	Input: AC100-240V, 50/60Hz, 0.2A
	Output: DC 5.0V, 1A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

3.3 Test Mode and Test Environment

Test Mode:				
Transmitting mode	Keep the EUT in continuous transmitting with modulation			
Remark: For AC power line condu	ucted emission and radiated spurious emission (below 1GHz), pre-scan all data speed,			
found 1 Mbps (LE 1M PHY) was v	vorse case mode. The report only reflects the test data of worst mode.			
Operating Environment:				
Temperature:	15℃ ~ 35℃			
Humidity:	20 % ~ 75 % RH			
Atmospheric Pressure:	1008 mbar			

3.4 Description of Test Auxiliary Equipment

The EUT has been tested as an independent unit.

3.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 150kHz)	±3.11 dB
Conducted Emission for LISN (150kHz ~ 30MHz)	±2.62 dB
Radiated Emission (30MHz ~ 1GHz) (3m SAC)	±4.45 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	±5.34 dB
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	±5.34 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

3.6 Additions to, Deviations, or Exclusions from the Method

No

3.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

3.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: <u>http://jyt.lets.com</u>

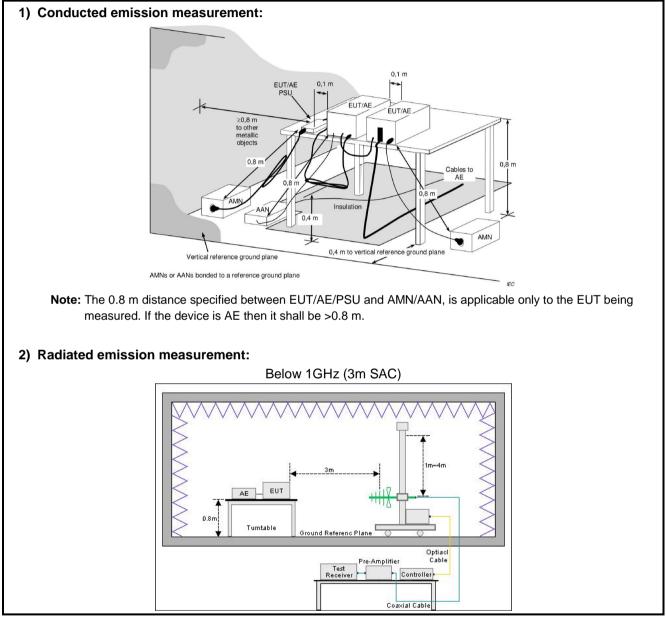
3.9 Test Instruments List

Radiated Emission(3m SAC):						
Test Equipment	Manufacturer	Model No. Manage No.		Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	WXJ001-1	04-14-2021	04-13-2024	
Loop Antenna	Schwarzbeck	FMZB 1519 B	WXJ002-4	03-07-2022	03-06-2023	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	03-08-2022	03-07-2023	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	03-08-2022	03-07-2023	
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-5	04-07-2022	04-06-2023	
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXJ001-2	01-20-2022	01-19-2023	
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXJ001-3	01-20-2022	01-19-2023	
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA-180400G45B	WXJ002-7	03-30-2022	03-29-2023	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	03-05-2022	03-04-2023	
Spectrum Analyzer	Rohde & Schwarz	FSP 30 WXJ004		01-20-2022	01-19-2023	
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	10-27-2021	10-26-2022	
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	01-20-2022	01-19-2023	
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG001-5	01-20-2022	01-19-2023	
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS-8M	WXG001-7	01-20-2022	01-19-2023	
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N/A		
Test Software	Tonscend	TS+		Version: 3.0.0.1		

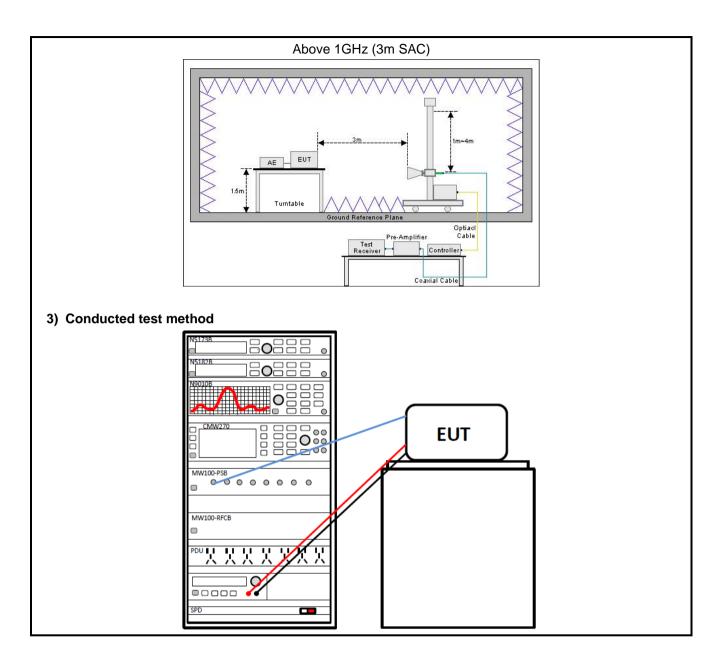
Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESR3	WXJ003-2	10-21-2021	10-20-2022		
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	02-24-2022	02-23-2023		
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	03-30-2022	03-29-2023		
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-24-2022	02-23-2023		
RF Switch	TOP PRECISION	RSU0301	WXG003	N/A			
Test Software	AUDIX	E3	V	Version: 6.110919b			

Conducted Method:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	10-27-2021	10-26-2022	
DC Power Supply	Keysight	E3642A	WXJ025-2	N/A		
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	03-19-2021	03-18-2023	
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	11-19-2021	11-18-2022	
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N/A		
Test Software	MWRFTEST	MTS 8310		Version: 2.0.0.0		

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366


4 Measurement Setup and Procedure

4.1 Test Channel


According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowe	Lowest channel		Middle channel Highest channel		Middle channel		st channel
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)		
0	2402	20	2442	39	2480		

4.2 Test Setup

4.3 Test Procedure

Test method	Test step
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Radiated emission	 For below 1GHz: The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m. EUT works in each mode of operation that needs to be tested , and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4
	 m in vertical and horizontal polarizations. 3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data. For above 1GHz: 1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the reaciving antenna in 2 m.
	 receiving antenna is 3 m. 2. EUT works in each mode of operation that needs to be tested , and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. 3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
Conducted test method	 The BLE antenna port of EUT was connected to the test port of the test system through an RF cable. The EUT is keeping in continuous transmission mode and tested in all modulation modes. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through the test software.

5 Test Results

5.1 Summary

5.1.1 Clause and Data Summary

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	See Section 6.2	Pass
AC Power Line Conducted Emission	15.207	See Section 6.3	Pass
Conducted Output Power	15.247 (b)(3)	Appendix – BLE	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix – BLE	Pass
Power Spectral Density	15.247 (e)	Appendix – BLE	Pass
Band-edge Emission Conduction Spurious Emission	15.247 (d)	Appendix – BLE	Pass
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	See Section 6.4	Pass
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	See Section 6.5	Pass
Remark: 1. Pass: The EUT complies with the 2. The cable insertion loss used by the customer).		n the standard. ther conduction measurement items is 0.5d.	B (provided by

Test Method:	ANSI C63.10-2013
rest method.	KDB 558074 D01 15.247 Meas Guidance v05r02

5.1.2 Test Limit

Test items		Lin	nit		
	Frequency		Limit (dB	βμV)	
	(MHz)	Quas	si-Peak	Average	
AC Power Line Conducted	0.15 – 0.5	66 to	56 Note 1	56 to 46 Note 1	
Emission	0.5 – 5		56	46	
Emission	5 – 30		60	50	
	Note 1: The limit level in dBµ Note 2: The more stringent li			of frequency.	
Conducted Output Power	For systems using digital r and 5725-5850 MHz band		the 902-928 N	1Hz, 2400-2483.5 MH	Ζ,
6dB Emission Bandwidth	The minimum 6 dB bandw	vidth shall be a	at least 500 kH	łz.	
99% Occupied Bandwidth	N/A				
Power Spectral Density	For digitally modulated system intentional radiator to the a band during any time inter	antenna shall	not be greater	than 8 dBm in any 3	
Band-edge Emission Conduction Spurious Emission	In any 100 kHz bandwidth spectrum or digitally modu frequency power that is pr dB below that in the 100 k highest level of the desired radiated measurement, pr the peak conducted powe power limits based on the permitted under paragraph this paragraph shall be 30 limits specified in §15.209 which fall in the restricted with the radiated emission	Ilated intentior oduced by the Hz bandwidth d power, base ovided the tra r limits. If the t use of RMS a h (b)(3) of this dB instead of (a) is not requised bands, as def	nal radiator is of intentional ra- within the bar d on either an nsmitter demo ransmitter cor veraging over section, the a 20 dB. Attenu ired. In additio ined in §15.20	operating, the radio idiator shall be at least and that contains the RF conducted or a ponstrates compliance w inplies with the conduct a time interval, as ttenuation required un uation below the gener pon, radiated emissions (5(a), must also compl	with cted nder ral
	Frequency		BµV/m)	Detector	
	(MHz) 30 – 88	@ 3m 40.0	@ 10m 30.0	Quasi-peak	1
Emissions in Restricted	88 - 216	40.0	33.5	Quasi-peak	+
Frequency Bands	216 - 960	45.5	36.0	Quasi-peak	1
Trequency Danus	960 - 1000	54.0	44.0	Quasi-peak Quasi-peak	
	Note: The more stringent limit			addor pour	1
Emissions in Non-restricted			Limit (dBµV/m) @ 3m	1
Frequency Bands	Frequency	Ave	rage	Peake	
	Above 1 GHz	54	1.0	74.0	
	Note: The measurement band	lwidth shall be 1 M	Hz or greater.		
			-		-

5.2 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)(4)

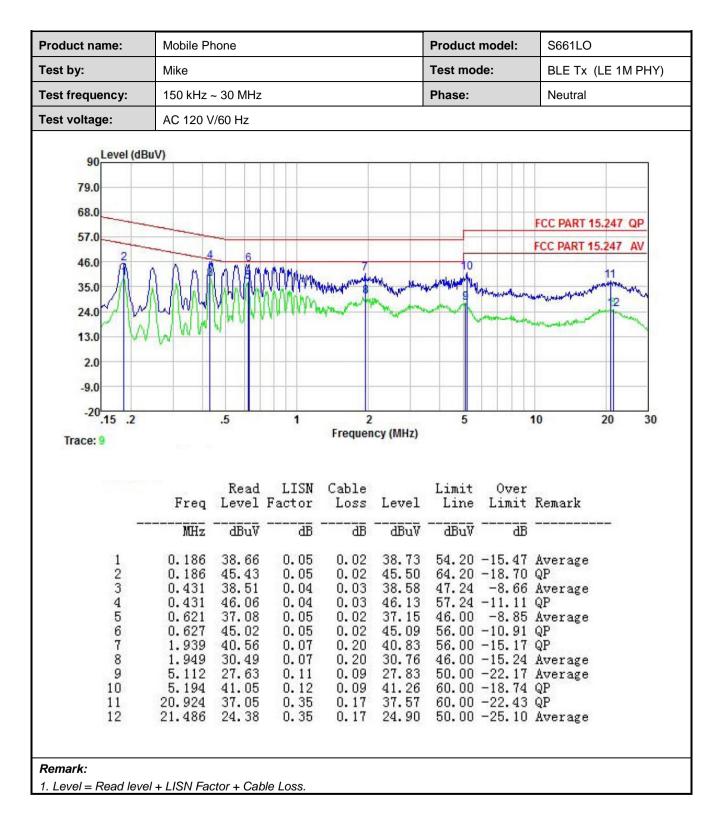
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:


The BLE antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.2 dBi. See product internal photos for details.

Product name:	Mobile Ph	one			F	Product m	nodel:	S661LO	
Гest by:	Mike				1	est mode	e :	BLE Tx (L	E 1M PHY)
Test frequency:	150 kHz ~	30 MHz			F	hase:		Line	
Test voltage:	AC 120 V	/60 Hz							
90 Level (dB	UV)								
90									
79.0									
68.0								FCC PART 1	5.247 OP
57.0		-				_		FCC PART 1	
46.0	2	9	5			10			J.241 AV
35.0 3	h n n w	Anna	h A (LE) MAY MAY	What month	} Mean calaan	mark	Westidence and		12
		H MANN	1 hallanna	The second second	Montal youther 18		" Manuta Make	havpaddaniation	10 Marine
24.0	WYM	TUNN.	AN LUL	Hardbard	and the second	- Color	and the second		1 V
13.0	WW	44 41							1
2.0	14 1								-
-9.0								-	
-20									
.15 .2		.5	1	2 Frequen	cy (MHz)	5		10	20 30
Trace: 11				•					
	Free	Read	LISN Factor		Level	Limit Line	Over Limit	Remark	
	_					and the families		ICEMAIN	
	MHz	dBuV	dB	dB	dBuV	dBu∛	dB		
1	0.186	32.79	0.05	0.02	32.86			Average	
2 3	0.246	42.27 42.76	0.06 0.05	0.01	42.34	61.91	-19.57	QP	
4	0.489 0.494	34.29	0.05	0.03 0.03	42.84 34.37		-13.35	Average	
	0.876	42.10	0.07	0.04	42.21	56.00	-13.79	QP	
5		32.56	0.07	0.04	32.67			Average	
6	0.918			11 11	27.57			Average	
6 7	1.296	27.39	0.07	0.11		56 00	-17 43		
6 7 8	1.296 2.121	27.39 38.30	0.08	0.19	38.57	56.00 50.00			
6 7	1.296	27.39			38.57 28.71 41.10	50.00		Average	
6 7 8 9	1.296 2.121 5.194	27.39 38.30 28.49	0.08 0.13	0.19 0.09	38.57 28.71	50.00 60.00 50.00	-21.29 -18.90	Average QP Average	

AC Power Line Conducted Emission

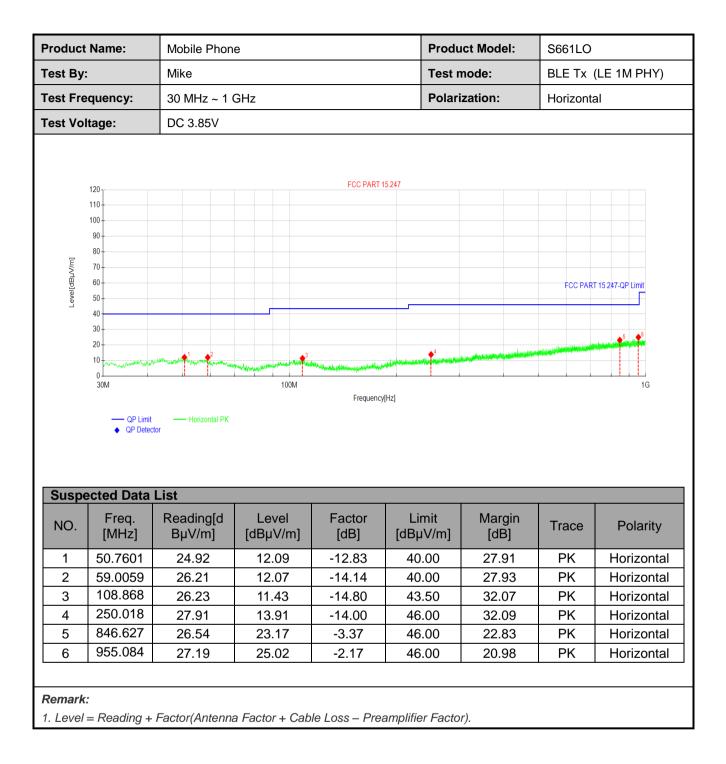
oduct N	vame.	Mobile Phone			Product I	Model:	S661LO	
st By:		Mike			Test mod	le:	BLE Tx (LI	E 1M PHY)
st Char	nnel:	Lowest channe	I		Polarizati	ion:	Vertical	
st Volta	age:	DC 3.85V						
10 9 8 (E)	10 00 90 80 70 60			FCC PART 15	C		F	RT 15 C- PK Limit
	← PK Limit ◆ PK Detec	or AV Detector	2.3382G 2: - Vertical PK Vert	3476G 2.357G Frequency[Hz ical AV	2.3664G	23758G 23	1852G 2.39	46G 2.404G
	40 30 20 10 0 231G 2. PK Limit	AV Limit -		Frequency[Hz		2.3758G 2.3	6.	
Suspe	40 30 20 10 0 231G 2 PK Limit • PK Detector • PK Detector	AV Limit or AV Detector	- Vertical PK Vert Factor	Frequency[Hz	Limit	Margin	1852G 2.39	46G 2.404G
Suspe NO.	40 30 20 10 0 231G 2 PK Limit PK Detect PK Detect Freq. [MHz] 2341.02 2341.02	AV Limit AV Detector AV Detector AV Detector AV Detector	- Vertical PK Vert Factor [dB]	Frequency[Hz ical AV	Limit [dBµV/m]	Margin [dB]	1852G 2.39	46G 2.404G Polarity
Suspe NO.	40 30 20 10 0 231G 2 PK Limit PK Detect PK Detect PK Detect PK Detect 2341.02 2341.02 2368.75	a List Reading [dBµV/m] 24.45	- Vertical PK - Vert Factor [dB] 35.23	Frequency[H2 ical AV	Limit [dBµV/m] 74.00	Margin [dB] 14.32	2.39 Trace PK	46G 2.404G Polarity Vertical
Suspe NO.	40 30 20 10 0 2316 2 PKLimit ◆ PKDetec PKDetec PKDetec 2341.02 2341.02 2368.75 2368.75	a List Reading [dBµV/m] 24.45 12.76	- Vertical PK - Vert [dB] 35.23 35.23	Level [dBμV/m] 59.68 47.99	Limit [dBµV/m] 74.00 54.00	Margin [dB] 14.32 6.01	1852G 2.39	46G 2.404G Polarity Vertical Vertical
Suspe NO. 1 2 3	40 30 20 10 0 231G 2 PK Limit PK Detect PK Detect PK Detect PK Detect 2341.02 2341.02 2368.75	AV Limit AV Detector AV Detector AV Detector (dBµV/m] 24.45 12.76 23.93	- Vertical PK Vert [dB] 35.23 35.23 35.44	Frequency[H2 ical AV Level [dBμV/m] 59.68 47.99 59.37	Limit [dBµV/m] 74.00 54.00 74.00	Margin [dB] 14.32 6.01 14.63	6 10522G 2.39 INFERENCE 2.39	46G 2.404G Polarity Vertical Vertical Vertical

5.4 Emissions in Restricted Frequency Bands

	Name:	Mobile Phone			Product I	Model:	S661LO	
st By:		Mike			Test mod	le:	BLE Tx (L	E 1M PHY)
st Cha	nnel:	Lowest channe	l		Polarizati	ion:	Horizontal	
st Volt	age:	DC 3.85V						
1 E	10 00 90 80 70 60 50		1	FCC PART 15			-	RT 15 C- PK Limit
	40 20 20 20 231G PK Lim • PK Dete	tor AV Detector		3476G 2.357G Frequency[Hz Horizontal AV	2.3664G]	2.3758G 2.3	3852G 2.39	46G 2.404G
	30 20 10 231G 231G PK Lim • PK Dete	AV Limit tor		Frequency[Hz		23758G 23	3852G 2.39	46G 2.404G Polarity
Suspe	30 20 10 231G → PKLim ◆ PKDete ected Dat Freq. [MHz] 2336.88	AV Limit AV Detector a List Reading	- Horizontal PK Factor	Frequency[Hz Horizontal AV	Limit	Margin		
Suspe NO.	30 20 10 0 2316 → PK Line → PK Dete ected Dat Freq. [MHz] 2336.88 2336.88	AV Limit AV Detector a List Reading [dBµV/m]	Factor [dB]	Frequency[Hz Horizontal AV	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
Suspe NO.	30 20 10 2316 2316 → PKLm → PKDete PKDete PKDete 2336.88 2336.88 2378.52	AV Limit AV Detector AV Detector AV Detector AV Detector AV Detector AV Detector AV Detector AV Detector	Factor [dB] 35.20	Frequency[Hz Horizontal AV	Limit [dBµV/m] 74.00	Margin [dB] 14.65	Trace	Polarity Horizontal
Suspe NO.	30 20 10 0 2316 → PK Line → PK Dete ected Dat Freq. [MHz] 2336.88 2336.88	AV Limit AV Detector AV Detector	Factor [dB] 35.20 35.20	Frequency[Hz Horizontal AV	Limit [dBµV/m] 74.00 54.00	Margin [dB] 14.65 6.10	Trace PK AV	Polarity Horizontal Horizontal
Suspe NO. 1 2 3	30 20 10 2316 2316 → PKLm → PKDete PKDete PKDete 2336.88 2336.88 2378.52	a List Reading [dBµV/m] 24.15 12.70 24.00	- Horizontal PK Factor [dB] 35.20 35.20 35.51	Frequency[Hz Horizontal AV Level [dBµV/m] 59.35 47.90 59.51	Limit [dBµV/m] 74.00 54.00 74.00	Margin [dB] 14.65 6.10 14.49	Trace PK AV PK	Polarity Horizontal Horizontal Horizontal

oduct N	Name:	Mobile Phone			Product I	Model:	S661LO	
est By:		Mike			Test mod	le:	BLE Tx (LE	E 1M PHY)
est Chai	nnel:	Highest channe	el l		Polarizat	ion:	Vertical	
est Volta	age:	DC 3.85V						
11 [w/\/r1gp	10 00 00 80 70 60 50		2	FCC PART 15	C			RT 15 C- PK Limit
:	40 30 20 10 0 2.478G 2. PK Limit ◆ PK Detec		2.4846G 2. – Vertical PK – Ver	4868G 2.489G Frequency[H tical AV	2.4912G z]	2 4934G 2	4956G 2.497	78G 2.5G
Suspe	20 10 0 2478G 2. → PKLimit ◆ PKDetec PKDetec PKDetec	AV Limit AV Detector	- Vertical PK - Ver Factor	Frequency(H tical AV	Limit	Margin		
Suspe NO.	20 10 2.478G 2.478G 2	AV Limit AV Detector AV Detector A List Reading [dBµV/m]	- Vertical PK Ver Factor [dB]	Frequency[H tical AV	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
Suspe NO.	30 20 10 2478G 2 → PKLimit → PKDetec ected Data Freq. [MHz] 2483.50	a List Reading [dBµV/m] 22.54	Factor [dB] 35.51	Frequency[H tical AV	ی Limit [dBµV/m] 74.00	Margin [dB] 15.95	Trace	Polarity Vertical
Suspe NO.	20 20 10 0 2.478G 2.4 PK Limit PK Detection PK Detection Freq. [MHz] 2483.50 2483.50	a List Reading [dBµV/m] 22.54 12.45	- Vertical PK Ver Factor [dB] 35.51 35.51	Frequency[H tical AV	Limit [dBµV/m] 74.00 54.00	Margin [dB] 15.95 6.04	Trace PK AV	Polarity Vertical Vertical
Suspe NO. 1 2 3	30 20 10 2478G 2.0 → PKLimit ◆ PKDetec • PKDetec • PKDetec • PKLimit • PKDetec • PKLimit • PKDetec • PKLimit • PKLIMIT	a List Reading [dBµV/m] 22.54 12.45 12.31	- Vertical PK	Frequency[H tical AV	Limit [dBµV/m] 74.00 54.00 54.00	Margin [dB] 15.95 6.04 6.19	Trace PK AV AV	Polarity Vertical Vertical Vertical
Suspe NO. 1 2 3 4	2483.50 2490.51 2490.51	a List Reading [dBµV/m] 22.54 12.45 12.31 23.62	Factor [dB] 35.51 35.50 35.50	Frequency[H tical AV	Limit [dBµV/m] 74.00 54.00 54.00 74.00	Margin [dB] 15.95 6.04 6.19 14.88	Trace PK AV AV PK	Polarity Vertical Vertical Vertical Vertical
Suspe NO. 1 2 3	30 20 10 2478G 2.0 → PKLimit ◆ PKDetec • PKDetec • PKDetec • PKLimit • PKDetec • PKLimit • PKDetec • PKLimit • PKLIMIT	a List Reading [dBµV/m] 22.54 12.45 12.31	- Vertical PK	Frequency[H tical AV	Limit [dBµV/m] 74.00 54.00 54.00	Margin [dB] 15.95 6.04 6.19	Trace PK AV AV	Polarity Vertical Vertical Vertical

ouuci	Name:	Mobile Phone			Product I	Model:	S661LO	
est By:		Mike			Test mod	le:	BLE Tx (L	E 1M PHY)
est Cha	innel:	Highest channe	9l		Polarizati	ion:	Horizontal	
est Volt	age:	DC 3.85V						
	110 100 90 80 70 60 50		1	FCC PART 15 C			• 5	ART 15 C- PK Limit
	 PK Limit PK Detect 	or AV Detector		868G 2.489G Frequency[Hz] Iorizontal AV	2.4912G	2.4934G 2.45	956G 2.49	78G 25G
	30 20 10 0 2.478G 2 PK Limit	AV Limit		Frequency[Hz]		2.4934G 2.49 Margin [dB]	956G 2.49	78G 25G Polarity
Suspe	30 20 10 0 2.478G 2 PK Limit PK Detector Freq.	AV Limit AV Detector	– Horizontal PK – H	Frequency[Hz] Iorizontal AV	Limit	Margin		
Suspe NO.	30 20 10 0 2.478G 2 PK Limit ◆ PK Detect Freq. [MHz]	AV Limit AV Detector AV Detector AV Detector AV Detector	Horizontal PK — H	Frequency[Hz] torizontal AV	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
Suspo NO. 1	30 20 10 0 2.478G 2 PK Limit ◆ PK Detect Freq. [MHz] 2483.50	AV Limit AV Detector AV Detector AV Detector AV Detector AV Detector	Factor [dB] 35.51	Frequency[Hz] Iorizontal AV	Limit [dBµV/m] 74.00	Margin [dB] 15.53	Trace	Polarity Horizontal
Suspe NO. 1 2	30 20 10 0 2.478G 2 PK Limit ◆ PK Detect Freq. [MHz] 2483.50 2483.50	AV Limit AV Detector AV Detector AV Detector AV Detector AV Detector AV Detector AV Detector AV Detector AV Detector	Factor [dB] 35.51 35.51	Frequency[Hz] Iorizontal AV	Limit [dBµV/m] 74.00 54.00	Margin [dB] 15.53 5.99	Trace PK AV	Polarity Horizontal Horizontal
Suspo NO. 1 2 3	30 20 10 0 2478G 2 PK Limit ◆ PK Detect Freq. [MHz] 2483.50 2483.50 2486.00	AV Limit AV Detector AV DETE	- Horizontal PK - H Factor [dB] 35.51 35.51 35.51	Frequency[Hz] Iorizontal AV	Limit [dBµV/m] 74.00 54.00 54.00	Margin [dB] 15.53 5.99 6.05	Trace PK AV AV	Polarity Horizontal Horizontal Horizontal



5.5 Emissions in Non-restricted Frequency Bands

Below 1GHz:

		Mobile Phone			TIOUU	Product Model: Test mode:		S661LO	
est By:	:	Mike			Test n	node:	BLE Tx (LE 1M PHY)	
est Fre	equency:	30 MHz ~ 1 0	GHz		Polari	zation:	Vertical		
est Vol	tage:	DC 3.85V			·				
	120			FCC PART 1	15.247				
	110								
	90								
	80-								
[m//	70								
Level[dBµV/m]	60						FCC PART	15.247-QP Limit	
Leve	50 40								
	30								
	30+						<u> </u>		
	20	▲1 ● ²	∳ ³				-		
	20- 10	ward and patrick menor wards	and the state of t	المواسط والمعادية وال	a lation for the section of the sect	المديدة فالمناجعة ومعادينا ومراجع المراجع		5	
	20	and the second second second	100M	an an der aller start for the start of the start				5 1G	
	20 10	Vertical PK	100M	Frequency				1G	
Suspe NO.	20 10	Vertical PK	Level [dBµV/m]			Margin [dB]	Trace	1G Polarity	
	ected Data Freq.		Level	Frequency	(Hz]		Trace		
NO.	Preq. [MHz]	Vertical PK tor List Reading[d BμV/m]	Level [dBµV/m]	Frequency Factor [dB]	Limit [dBµV/m]	[dB]		Polarity	
NO.	20 10 0 30M → QP Limit ◆ QP Detector ected Data Freq. [MHz] 44.9395	Vertical PK tor List Reading[d BµV/m] 26.82	Level [dBµV/m] 14.01	Frequency Factor [dB] -12.81	Limit [dBµV/m] 40.00	[dB] 25.99	PK	Polarity Vertical	
NO. 1 2	20 10 0 30M → QP Limit ◆ QP Detect Preq. [MHz] 44.9395 61.7222		Level [dBµV/m] 14.01 16.73	Frequency Factor [dB] -12.81 -14.51	Limit [dBµV/m] 40.00 40.00	[dB] 25.99 23.27	PK PK	Polarity Vertical Vertical	
NO. 1 2 3	20 10 0 30M OP Limit • OP Detector • OP Detector • OP Detector • OP Detector • OP Limit • OP Detector • OP Detector • OP Limit • OP Detector • OP De		Level [dBµV/m] 14.01 16.73 18.74	Frequency Factor [dB] -12.81 -14.51 -14.72	Limit [dBµV/m] 40.00 40.00 43.50	[dB] 25.99 23.27 24.76	PK PK PK	Polarity Vertical Vertical Vertical	

Above 1GHz:

			LE Tx (LE 1M PH channel: Lowest ch			
			etector: Peak Valu			
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarization
4804.00	54.26	-9.60	44.66	74.00	29.34	Vertical
4804.00	55.19	-9.60	45.59	74.00	28.41	Horizontal
+00+.00	33.13		tector: Average Va		20.41	Tionzontai
Frequency (MHz)	Read Level (dBµV)	Factor (dB)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Polarizatior
4804.00	47.86	-9.60	38.26	54.00	15.74	Vertical
4804.00	46.84	-9.60	37.24	54.00	16.76	Horizontal
		Test	channel: Middle ch	nannel		
		D	etector: Peak Valu	ue		
Frequency	Read Level	Factor	Level	Limit	Margin	Polarizatior
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	T UIAIIZALIUI
4884.00	54.26	-9.04	45.22	74.00	28.78	Vertical
4884.00	55.11	-9.04	46.07	74.00	27.93	Horizontal
		De	tector: Average Va	alue	1	T
Frequency	Read Level	Factor	Level	Limit	Margin	Polarizatio
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	1 Olarization
4884.00	47.57	-9.04	38.53	54.00	15.47	Vertical
4884.00	46.94	-9.04	37.90	54.00	16.10	Horizontal
			hannel: Highest c			
			etector: Peak Valu	[
Frequency	Read Level	Factor	Level	Limit	Margin	Polarizatior
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB))/artiaal
4960.00	54.63	-8.45	46.18	74.00	27.82	Vertical
4960.00	55.42	-8.45	46.97	74.00	27.03	Horizontal
	Road Loval		tector: Average Va	Limit	Margin	
Fraguanay	Read Level	Factor (dB)	(dBµV/m)	(dBµV/m)	Margin (dB)	Polarizatior
Frequency (MHz)	(dBµV)				. ,	1
	(dBµV) 47.91	-8.45	39.46	54.00	14.54	Vertical

2. Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

-----End of report-----