

Report No.: JYTSZ-R12-2301059

FCC RF Test Report

Applicant:	SHENZHEN TRANSCHAN TECHNOLOGY LIMITED
Address of Applicant:	Room 03, 23/F, Unit B Building, No 9, Shenzhen Bay Eco - Technology Park, Yuehai Street, Nanshan District, Shenzhen, China
Equipment Under Test (E	UT)
Product Name:	Mobile Phone
Model No.:	P662LS
Trade Mark:	VIMOQ
FCC ID:	2A5RQ-P662LS
Applicable Standards:	FCC CFR Title 47 Part 15C (§15.247)
Date of Sample Receipt:	25 Jul., 2023
Date of Test:	26 Jul., to 15 Aug., 2023
Date of Report Issued:	16 Aug., 2023
Test Result:	PASS

Tested by:	Luna Ding	_ Date:	16 Aug., 2023
Reviewed by:		Date:	16 Aug., 2023
Approved by:	在設設満ち用車 Manager	Date:	16 Aug., 2023

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

1 Version

Version No.	Date	Description
00	16 Aug., 2023	Original

2 Contents

			Page
С	over Pa	ıge	1
1	Ver	sion	2
2	Cor	ntents	3
3		neral Information	
	3.1	Client Information	4
	3.2	General Description of E.U.T.	
	3.3	Test Mode and Test Environment	5
	3.4	Description of Test Auxiliary Equipment	5
	3.5	Measurement Uncertainty	5
	3.6	Additions to, Deviations, or Exclusions from the Method	5
	3.7	Laboratory Facility	5
	3.8	Laboratory Location	6
	3.9	Test Instruments List	6
4	Меа	asurement Setup and Procedure	7
	4.1	Test Channel	7
	4.2	Test Setup	7
	4.3	Test Procedure	9
5	Tes	t Results	10
	5.1	Summary	10
	5.1.	1 Clause and Data Summary	
	5.1.	2 Test Limit	11
	5.2	Conducted Output Power	12

3 General Information

3.1 Client Information

Applicant:	SHENZHEN TRANSCHAN TECHNOLOGY LIMITED
Address:	Room 03, 23/F, Unit B Building, No 9, Shenzhen Bay Eco -Technology Park, Yuehai Street, Nanshan District, Shenzhen, China
Manufacturer:	SHENZHEN TRANSCHAN TECHNOLOGY LIMITED
Address:	Room 03, 23/F, Unit B Building, No 9, Shenzhen Bay Eco -Technology Park, Yuehai Street, Nanshan District, Shenzhen, China
Factory:	SHENZHEN TECNO TECHNOLOGY CO., LTD.
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China

3.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	P662LS
Operation Frequency:	2402 MHz - 2480 MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Technology:	GFSK
Data Speed:	1 Mbps (LE 1M PHY)
Antenna Type:	Internal Antenna
Antenna Gain:	1.0dBi (declare by applicant)
Antenna transmit mode:	SISO (1TX, 1RX)
Power Supply:	Rechargeable Li-ion Polymer Battery DC3.87V, 5850mAh
AC Adapter:	Model: U180VSA
	Input: AC100-240V, 50/60Hz, 0.6A
	Output: DC 5.0V, 2.4A or 7.5V, 2.4A 18.0W Max
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

3.3 Test Mode and Test Environment

Test Mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation
Remark:	
-	mission and radiated spurious emission (below 1GHz), pre-scan all data speed, found e case mode. The report only reflects the test data of worst mode.
2. Channel Low, Mid and High for each type band with rated data rate were chosen for full testing. The field strength of spurious radiation emission was measured as EUT stand-up position (H mode) and lie down position (E1, E2 mode) for these modes. Just the worst case position (H mode) shown in report.	
Oneseting Environment	

Operating Environment:	
Temperature:	15℃ ~ 35℃
Humidity:	20 % ~ 75 % RH
Atmospheric Pressure:	1008 mbar

3.4 Description of Test Auxiliary Equipment

The EUT has been tested as an independent unit.

3.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 10MHz)	1.9 dB
Conducted Emission for LISN (10MHz ~ 30MHz)	2.6 dB
Radiated Emission (30MHz ~ 1GHz) (3m SAC)	3.8 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	3.6 dB
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	5.34 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

3.6 Additions to, Deviations, or Exclusions from the Method

No

3.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

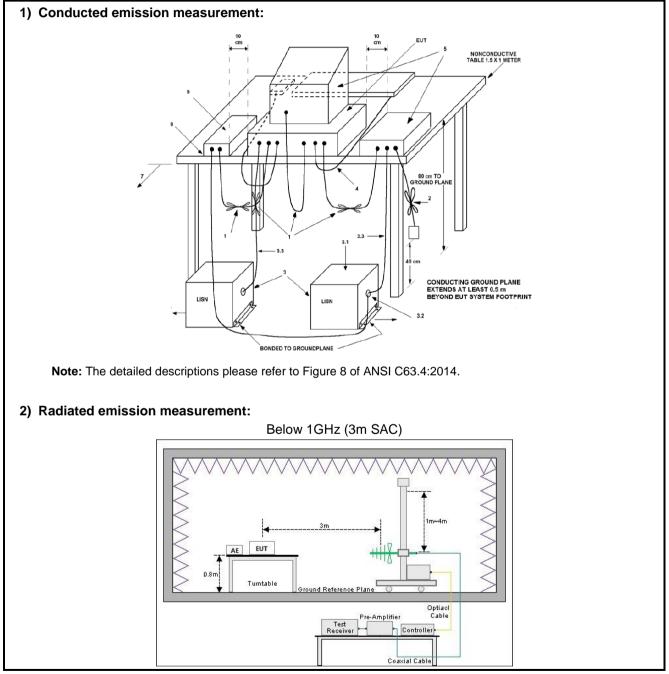
This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

3.8 Laboratory Location

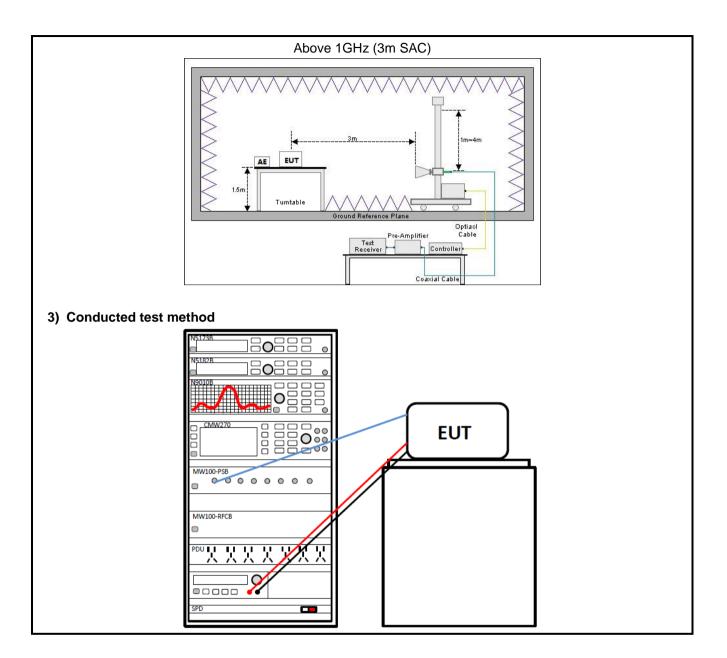
JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: http://jyt.lets.com

3.9 Test Instruments List

Conducted Method:					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	10-17-2022	10-16-2023
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	01-09-2023	01-08-2025
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	10-17-2022	10-16-2023
DC Power Supply	Keysight	E3642A	WXJ025-2	N	I/A
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N/A	
Test Software	MWRFTEST	MTS 8310	Version: 2.0.0.0		


4 Measurement Setup and Procedure

4.1 Test Channel


According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel Middle channel		le channel	Highe	st channel	
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	20	2442	39	2480

4.2 Test Setup

4.3 Test Procedure

Test method	Test step
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Radiated emission	For below 1GHz:
	1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
	 EUT works in each mode of operation that needs to be tested , and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
	For above 1GHz:
	 The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
	3. Open the test software to control the test antenna and test turntable. Perform
Conducted test method	 the test, save the test results, and export the test data. The BLE antenna port of EUT was connected to the test port of the test
	system through an RF cable.
	 The EUT is keeping in continuous transmission mode and tested in all modulation modes.
	3. Open the test software, prepare a test plan, and control the system through
	the software. After the test is completed, the test report is exported through
	the test software.

5 Test Results

5.1 Summary

5.1.1 Clause and Data Summary

This report is revised according to the JYTSZ-R12-2300402 report, FCC ID: 2A5RQ-P662LO issued by JianYan Testing Group Shenzhen Co., Ltd. Differences: Memory increased, updated model and FCC ID, so need to Spot test Conducted Output Power.

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	Please refer to report No.: JYTSZ- R12-2300402.	Pass*
AC Power Line Conducted Emission	15.207	Please refer to report No.: JYTSZ- R12-2300402.	Pass*
Conducted Output Power	15.247 (b)(3)	See Section 5.2	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Please refer to report No.: JYTSZ- R12-2300402.	Pass*
Power Spectral Density	15.247 (e)	Please refer to report No.: JYTSZ- R12-2300402.	Pass*
Band-edge Emission Conduction Spurious Emission	15.247 (d)	Please refer to report No.: JYTSZ- R12-2300402.	Pass*
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	Please refer to report No.: JYTSZ- R12-2300402.	Pass*
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	Please refer to report No.: JYTSZ- R12-2300402.	Pass*

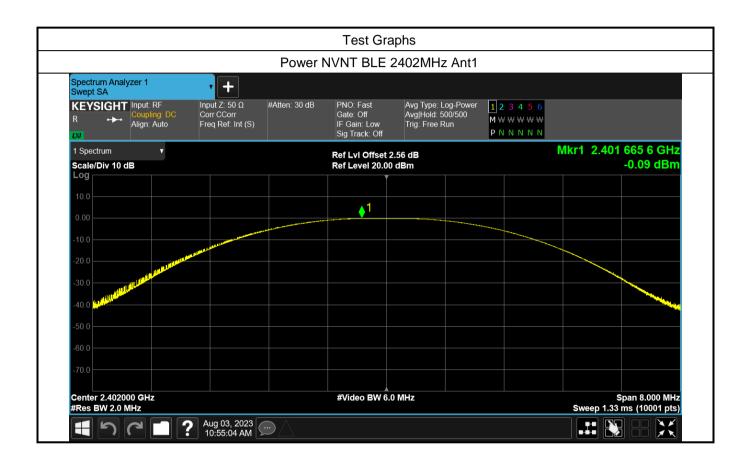
Remark:

1. Pass: The EUT complies with the essential requirements in the standard.

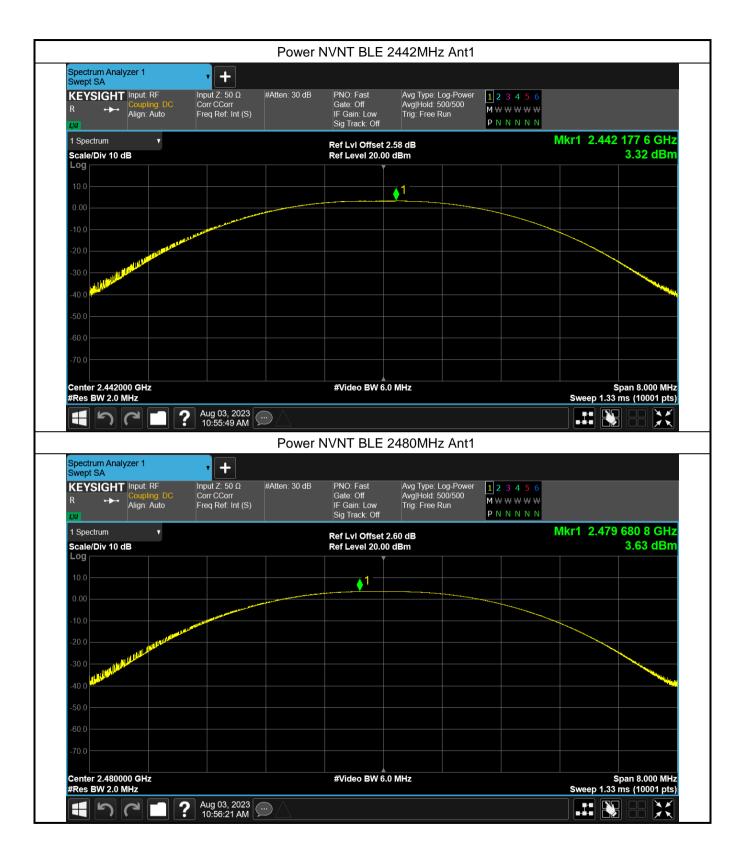
2. Pass*: Please refer to FCC ID: 2A5RQ-P662LO, report No.: JYTSZ-R12-2300402 issue by JianYan Testing Group Shenzhen Co., Ltd.

3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method:	ANSI C63.10-2013		
rest method.	KDB 558074 D01 15.247 Meas Guidance v05r02		


5.1.2 Test Limit

AC Power Line Conducted Image: Conducted Conducted Output Power Note 1: The Note 2: The N		66 to 5 5	Limit (dB) i-Peak 56 Note 1 56	μV) Average 56 to 46 ^{Note 1}		
AC Power Line Conducted Image: Conducted Conducted Output Power Note 1: The Note 2: The N	(MHz) 0.15 – 0.5 0.5 – 5 5 – 30 e limit level in dBµV	66 to 5 5	56 Note 1	-		
AC Power Line Conducted Image: Conducted Conduction Conduction Spurious For systems of and 5725-585 6dB Emission Bandwidth The minimum 99% Occupied Bandwidth N/A Power Spectral Density For digitally minitentional radio band during a band du	0.5 – 5 5 – 30 e limit level in dBµV	5		56 to 46 Note 1		
EmissionConducted Output PowerFor systems or and 5725-5856dB Emission BandwidthThe minimum99% Occupied BandwidthN/APower Spectral DensityFor digitally mintentional radiband during a band during aBand-edge EmissionIn any 100 kH spectrum or of frequency poid dB below that highest level or radiated meat the peak condition power limits b permitted und this paragrapi limits specifie which fall in the with the radiaEmissions in Restricted Frequency BandsFrequency Bands	5 – 30 e limit level in dBµV	6	6			
Note 1: The Note 2: The Note 2: TheConducted Output PowerFor systems of and 5725-5886dB Emission BandwidthThe minimum99% Occupied BandwidthN/APower Spectral DensityFor digitally mintentional radiband during a 	e limit level in dBµV	-		46		
Note 2: TheConducted Output PowerFor systems or and 5725-5856dB Emission BandwidthThe minimum99% Occupied BandwidthN/APower Spectral DensityFor digitally m intentional rad band during aBand-edge EmissionIn any 100 kH spectrum or or frequency power limits b permitted und this paragraph limits specifie which fall in the with the radiaEmissions in Restricted Frequency BandsFrequency Bands		I de avec a a a lles a adri	60	50		
Conducted Output Powerand 5725-5856dB Emission BandwidthThe minimum99% Occupied BandwidthN/APower Spectral DensityFor digitally m intentional rad band during aBand-edge EmissionIn any 100 kH spectrum or of frequency power limits b power limits b permitted und this paragraph limits specifie which fall in th with the radiaEmissions in Restricted Frequency BandsFrequency Bands		Note 1: The limit level in dBµV decreases linearly with the logarithm of frequency. Note 2: The more stringent limit applies at transition frequencies.				
99% Occupied Bandwidth N/A Power Spectral Density For digitally mintentional radiaband during a band during a band during a band during a lin any 100 kH spectrum or of frequency poind B below that highest level or radiated mean the peak compower limits be permitted und this paragraph limits specifie which fall in the with the radia a specifie which fall in the with the radia a limits specifie which fall in the withe which fall in the with the radia a limits specin a l	For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.					
Power Spectral DensityFor digitally m intentional rad band during a band during aBand-edge EmissionIn any 100 kH 	6 dB bandwi	idth shall be a	t least 500 kH	Z.		
Power Spectral Densityintentional radius band during aIn any 100 kH spectrum or of frequency power limits band ated means the peak compower limits b permitted und this paragraph limits specifie which fall in the with the radiaEmissions in Restricted Frequency BandsFrequency Bands	N/A					
Band-edge Emissionspectrum or of frequency por dB below that highest level radiated meas the peak compower limits b permitted und this paragraph limits specifie which fall in th with the radiaEmissions in Restricted Frequency BandsFrequency Bands	For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.					
Emissions in Restricted Frequency Bands	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).					
Emissions in Restricted 88 - Frequency Bands 216	uency	Limit (di	BμV/m) @ 10m	Detector		
Emissions in Restricted88Frequency Bands216	- 88	@ 3m 40.0	30.0	Quasi-peak		
Frequency Bands 216	- 216	43.5	33.5	Quasi-peak Quasi-peak		
	- 960	46.0	36.0	Quasi-peak		
		54.0	44.0	Quasi-peak		
Emissions in Non-restricted Note: The mo		Note: The more stringent limit applies at transition frequencies.				
	- 1000	applies at transitio				
Frequency Bands Freq	- 1000	applies at transitio	Limit (dBuV/m)	(<i>w</i> all)		
Above	- 1000	applies at transition	Limit (dBµV/m) age	Peake		
Note: The me	- 1000 pre stringent limit a		age	-		



5.2 Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-0.092	30	Pass
NVNT	BLE	2442	Ant1	3.316	30	Pass
NVNT	BLE	2480	Ant1	3.63	30	Pass

-----End of report-----

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Project No.: JYTSZR2307093