

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R01-2200294

FCC EMC Test Report

Applicant: SHENZHEN TRANSCHAN TECHNOLOGY LIMITED

Address of Applicant: Room 03, 23/F, Unit B Building, No 9, Shenzhen Bay Eco -

Technology Park, Yuehai Street, Nanshan District, Shenzhen,

China

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: A512WS

Trade Mark: VIMOQ

FCC ID: 2A5RQ-A512WS

Applicable Standards: FCC CFR Title 47 Part 15B

Date of Sample Receipt: 30 May, 2022

Date of Test: 31 May, to 26 Jun., 2022

Date of report Issued: 27 Jun., 2022

Test Result: PASS

Reviewed by: Date: 27 Jun., 2022

Approved by: _____ Date: ____ 27 Jun., 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	27 Jun., 2022	Original

3 Contents

			Page
1	Cov	ver Page	1
2	Vers	sion	2
3		ntents	
4		neral Information	
	4.1	Client Information	4
	4.2	General Description of E.U.T.	
	4.3	Test Mode	
	4.4	Description of Support Units	
	4.5	Description of Cable Used	
	4.6	Measurement Uncertainty	
	4.7	Additions to, Deviations, or Exclusions from the Method	
	4.8	Laboratory Facility	5
	4.9	Laboratory Location	5
	4.10	Test Instruments List	6
5	Mea	asurement Setup and Procedure	7
	5.1	Test Setup	7
	5.2	Test Procedure	
6	Tes	t Results	10
	6.1	Summary	10
	6.2	Conducted Emission	
	6.3	Radiated Emission	40

4 General Information

4.1 Client Information

Applicant:	SHENZHEN TRANSCHAN TECHNOLOGY LIMITED	
Address:	Room 03, 23/F, Unit B Building, No 9, Shenzhen Bay Eco - Technology Park, Yuehai Street, Nanshan District, Shenzhen, China	
Manufacturer:	SHENZHEN TRANSCHAN TECHNOLOGY LIMITED	
Address:	Room 03, 23/F, Unit B Building, No 9, Shenzhen Bay Eco - Technology Park, Yuehai Street, Nanshan District, Shenzhen, China	
Factory:	SHENZHEN TECNO TECHNOLOGY CO., LTD.	
Address:	101, Building 24, Waijing Industrial Park, Fumin Community, Fucheng Street, Longhua District, Shenzhen City, P.R.China	

4.2 General Description of E.U.T.

Product Name:	Mobile Phone	
Model No.:	A512WS	
Power Supply:	Rechargeable Li-ion Battery DC3.8V, 2350mAh	
AC Adapter:	Model: U050VSA	
	Input: AC100-240V, 50/60Hz, 0.2A	
	Output: DC 5.0V, 1.0A	
Test Sample Condition:	The test samples were provided in good working order with no visible defects.	

4.3 Test Mode

Operating Mode	Detail Description
PC mode	Keep the EUT in Downloading mode(Worst case)
Charging+Recording mode	Keep the EUT in Charging+Recording mode
Charging+Playing mode	Keep the EUT in Charging+Playing mode
FM mode	Keep the EUT in FM receiver mode
GPS mode	Keep the EUT in GPS receiver mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

Report No.: JYTSZ-R01-2200294

4.4 Description of Support Units

Manufacturer	Description	Model S/N		FCC ID/DoC
Lenovo	Laptop	ThinkPad T14 Gen 1	SL10Z47277	DoC
HP	Printer	HP LaserJet P1007	VNFP409729	DoC

4.5 Description of Cable Used

Cable Type	Description	Length	From	То
Detached USB Cable	Shielding	0.8m	EUT	PC/Adapter
Detached headset cable	Unshielded	1.0m	EUT	Headset

4.6 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))	
Conducted Emission for LISN (9kHz ~ 150kHz)	±3.11 dB	
Conducted Emission for LISN (150kHz ~ 30MHz)	±2.62 dB	
Radiated Emission (30MHz ~ 1GHz) (3m SAC)	±4.45 dB	
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	±5.34 dB	

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

4.7 Additions to, Deviations, or Exclusions from the Method

No

4.8 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

■ ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

4.9 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

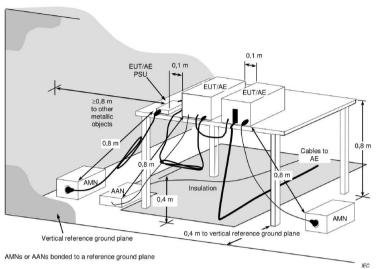
Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-147-C No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

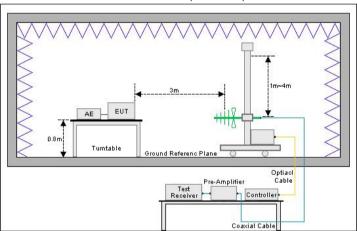
4.10 Test Instruments List

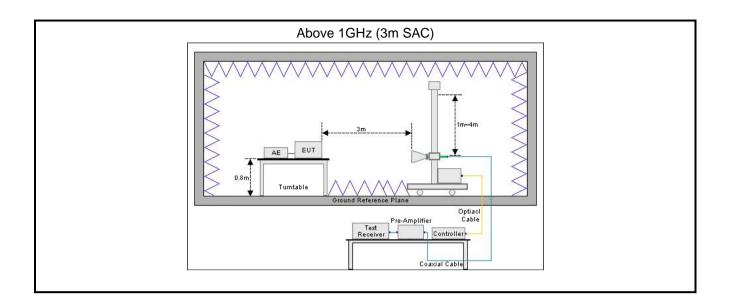
Radiated Emission(3m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	WXJ001-1	04-14-2021	04-13-2024	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	03-08-2022	03-07-2023	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	03-08-2022	03-07-2023	
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXJ001-2	01-20-2022	01-19-2023	
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXJ001-3	01-20-2022	01-19-2023	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	03-05-2022	03-04-2023	
Spectrum Analyzer	Rohde & Schwarz	FSP 30	WXJ004	01-20-2022	01-19-2023	
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	01-20-2022	01-19-2023	
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG001-5	01-20-2022	01-19-2023	
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N	/A	
Test Software	Tonscend	TS+		Version: 3.0.0.1		


Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESR3	WXJ003-2	10-21-2021	10-20-2022
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	02-24-2022	02-23-2023
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	03-30-2022	03-29-2023
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-24-2022	02-23-2023
RF Switch	TOP PRECISION	RSU0301	WXG003	N/A	
Test Software	AUDIX	E3	V	Version: 6.110919b	

5 Measurement Setup and Procedure

5.1 Test Setup


1) Conducted emission measurement:


Note: The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.

2) Radiated emission measurement:

Below 1GHz (3m SAC)

5.2 Test Procedure

Test method	Test step
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4 on conducted measurement.
Radiated emission	 The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
	 For above 1GHz: The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.

6 Test Results

6.1 Summary

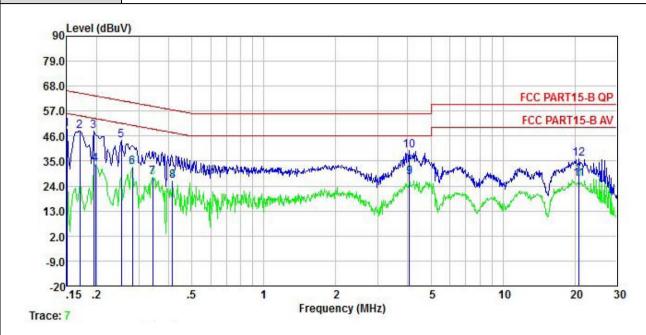
6.1.1 Clause and data summary

Test items	Standard clause	Test data	Result
Conducted Emission	Part 15.107	See Section 6.2	Pass
Radiated Emission	Part 15.109	See Section 6.3	Pass

Remark:

- 1. The EUT is a Class B digital device.
- 2. Pass: The EUT complies with the essential requirements in the standard.
- 3. N/A: Not Applicable.

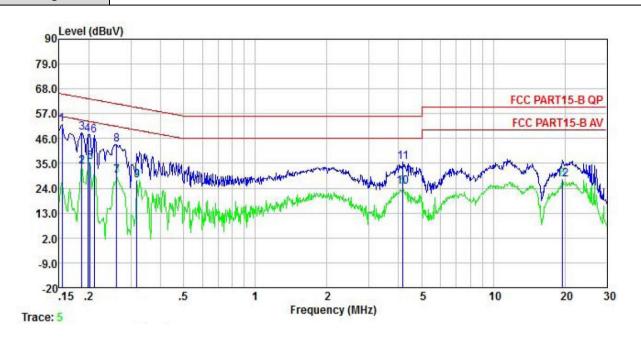
Test Method: ANSI C63.4:2014


6.1.2 Test Limit

Test items	Limit							
	Frequency	Class A Li	imit (dBµV)	Class B Li	mit (dBµV)			
	(MHz)	Quasi-Peak	Average	Quasi-Peak	Average			
	0.15 - 0.5	79	66	66 to 56 Note 1	56 to 46 Note 1			
Conducted Emission	0.5 – 5	73	60	56	46			
	5 – 30	73	60	60	50			
	Note 1: The limit lev Note 2: The more st		•		icy.			
	_	Class A Lin	Class A Limit (dBµV/m)		it (dBµV/m)			
	Frequency (MHz)	Quasi-Peak @ 3m	Quasi-Peak @ 10m	Quasi-Peak @ 3m	Quasi-Peak @ 10m			
	30 – 88	49.0	39.0	40.0	30.0			
	88 – 216	53.5	43.5	43.5	33.5			
	216 – 960	56.0	46.0	46.0	36.0			
	960 – 1000	60.0	50.0	54.0	44.0			
Radiated Emission	Note: The more stringent limit applies at transition frequencies.							
Radiated Emission	Note: The more strir	ngent limit applies at	transition frequenc	ies.				
Radiated Emission		Ĭ ii	transition frequence (dBµV/m) @ 3m		dΒμV/m) @ 3m			
Radiated Emission	Note: The more strir	Ĭ ii	•		dBμV/m) @ 3m Peake			

6.2 Conducted Emission

Product name:	Mobile Phone	Product model:	A512WS
Test by:	Mike	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz		


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu√	<u>dB</u>	dB	dBu₹	dBu∇	<u>dB</u>	
1 2 3 4 5 6 7 8 9	0.150	49.04	0.04	0.01	49.09		-16.91	
2	0.170	48.06	0.04	0.01	48.11		-16.83	
3	0.194	48.18	0.04	0.03	48.25	63.84	-15.59	QP
4	0.198	33.70	0.04	0.04	33.78	53.71	-19.93	Average
5	0.253	43.88	0.04	0.01	43.93		-17.71	Application of the state of the
6	0.282	32.11	0.04	0.02	32.17			Average
7	0.343	27.74	0.04	0.02	27.80			Average
8	0.415	26.33	0.04	0.04	26.41			Average
9	4.070	27.64	0.11	0.08	27.83			Average
10	4.070	39.32	0.11	0.08	39.51		-16.49	
11	20.814	26.67	0.33	0.18	27.18			Average
12	20.814	35.31	0.33	0.18	35.82		-24.18	

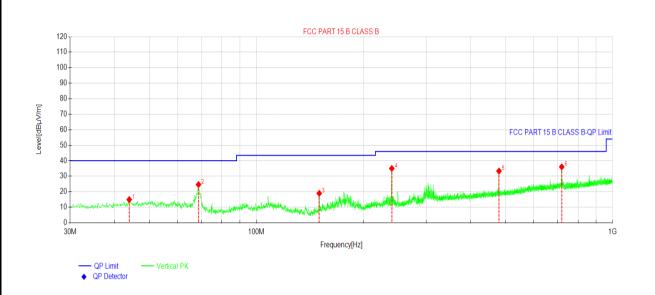
Remark:

1. Level = Read level + LISN Factor + Cable Loss.

Product name:	Mobile Phone	Product model:	A512WS
Test by:	Mike	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	_	

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu√	dB		dBu₹	dBu∀	<u>dB</u>	
1	0.154	52.20	0.06	0.01	52.27	65.78	-13.51	QP
2	0.186	33.67	0.05	0.02	33.74	54.20	-20.46	Average
3	0.186	48.51	0.05	0.02	48.58	64.20	-15.62	QP
2 3 4 5 6 7 8 9	0.198	47.78	0.05	0.04	47.87	63.71	-15.84	QP
5	0.202	35.66	0.05	0.04	35.75	53.54	-17.79	Average
6	0.211	47.38	0.05	0.03	47.46	63.18	-15.72	QP
7	0.262	29.38	0.05	0.01	29.44	51.38	-21.94	Average
8	0.262	43.45	0.05	0.01	43.51	61.38	-17.87	QP
9	0.318	27.44	0.05	0.03	27.52	49.75	-22.23	Average
10	4.180	24.59	0.10	0.08	24.77	46.00	-21.23	Average
11	4.180	35.35	0.10	0.08	35.53		-20.47	
12	19.532	27.51	0.32	0.15	27.98	50.00	-22.02	Average

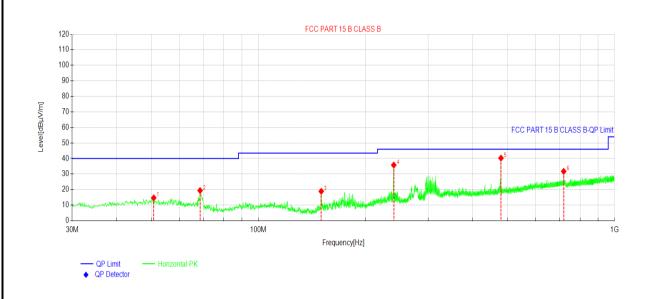
Remark:


1. Level = Read level + LISN Factor + Cable Loss.

6.3 Radiated Emission

Below 1GHz:

Product Name:	Mobile Phone	Product Model:	A512WS
Test By:	Mike	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz		

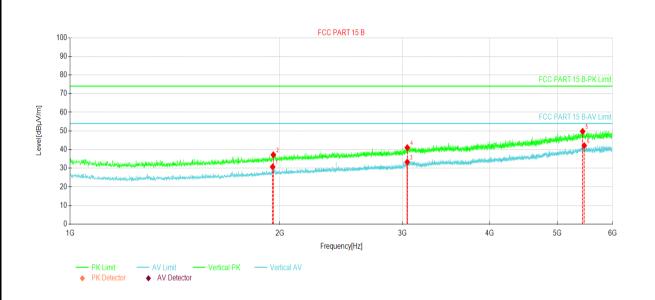

Susp	ected Data	List						
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	43.9694	29.11	14.96	-14.15	40.00	25.04	PK	Vertical
2	68.8039	42.42	24.66	-17.76	40.00	15.34	PK	Vertical
3	150.195	38.21	18.99	-19.22	43.50	24.51	PK	Vertical
4	240.026	49.28	35.02	-14.26	46.00	10.98	PK	Vertical
5	480.028	42.04	33.37	-8.67	46.00	12.63	PK	Vertical
6	720.127	40.14	36.04	-4.10	46.00	9.96	PK	Vertical

Remark:

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	Mobile Phone	Product Model:	A512WS
Test By:	Mike	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz		

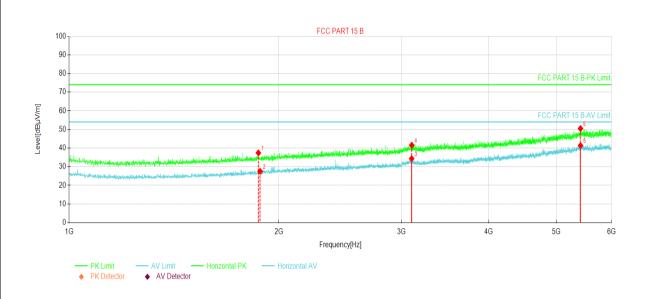
Susp	Suspected Data List								
NO	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Delerity	
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	Trace	Polarity	
1	50.8571	28.67	14.67	-14.00	40.00	25.33	PK	Horizontal	
2	68.6099	37.05	19.37	-17.68	40.00	20.63	PK	Horizontal	
3	150.195	38.10	18.88	-19.22	43.50	24.62	PK	Horizontal	
4	240.026	50.03	35.77	-14.26	46.00	10.23	PK	Horizontal	
5	480.028	48.94	40.27	-8.67	46.00	5.73	PK	Horizontal	
6	720.030	35.80	31.70	-4.10	46.00	14.30	PK	Horizontal	


Remark:

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Above 1GHz:

Product Name:	Mobile Phone	Product Model:	A512WS
Test By:	Mike	Test mode:	PC mode
Test Frequency:	1000 MHz ~ 6000 MHz	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz		


Susp	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity	
1	1952.50	51.20	30.70	-20.50	54.00	23.30	AV	Vertical	
2	1956.87	57.66	37.20	-20.46	74.00	36.80	PK	Vertical	
3	3045.62	49.78	33.32	-16.46	54.00	20.68	AV	Vertical	
4	3046.25	57.49	41.04	-16.45	74.00	32.96	PK	Vertical	
5	5436.25	55.75	49.77	-5.98	74.00	24.23	PK	Vertical	
6	5465.00	48.16	42.13	-6.03	54.00	11.87	AV	Vertical	

Remark:

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Product Name:	Mobile Phone	Product Model:	A512WS
Test By:	Mike	Test mode:	PC mode
Test Frequency:	1000 MHz ~ 6000 MHz	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz		

Suspected Data List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Trace	Polarity
	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]		
1	1868.75	58.46	37.40	-21.06	74.00	36.60	PK	Horizontal
2	1879.37	48.56	27.56	-21.00	54.00	26.44	AV	Horizontal
3	3100.62	50.29	34.34	-15.95	54.00	19.66	AV	Horizontal
4	3101.87	57.52	41.57	-15.95	74.00	32.43	PK	Horizontal
5	5416.25	47.29	41.34	-5.95	54.00	12.66	AV	Horizontal
6	5416.25	56.44	50.49	-5.95	74.00	23.51	PK	Horizontal

Remark:

1. Level = Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

-----End of report-----