

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao' an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

CTATESTING FCC PART 15 SUBPART C 15.249

Report Reference No..... CTA24071501101

FCC ID.....:: **2A5QB-K7**

Compiled by

(position+printed name+signature)... File administrators Jinghua Xiao

Supervised by

(position+printed name+signature)..: Project Engineer Xudong Zhang

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue....: Jul. 16, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Address....:

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name..... Shenzhen JiaFengHeSheng Technology Co., Ltd.

2nd FI C5 Buliding, HengFeng Industry City, ZhouShi Rd, Bao'an Address:

Dist., Shenzhen 518000 China

Test specification:

Standard FCC PART 15 SUBPART C 15.249

Shenzhen CTA Testing Technology Co., Ltd. TRF Originator.....

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description: Intelligent Hardwire Kit

Trade Mark: PRUVEEO, REXING

Manufacturer: Shenzhen JiaFengHeSheng Technology Co., Ltd. CTATESTIN

Model/Type reference....: K7

Listed Models: **IHWK**

Modulation: **GFSK**

Frequency..... 5778MHz

Ratings: DC 12-24V From external circuit

Result.....: CTATESTIN' Report No.: CTA24071501101 Page 2 of 25

TEST REPORT

Equipment under Test : Intelligent Hardwire Kit

Model /Type : K7

Serial Models : IHWK

Applicant : Shenzhen JiaFengHeSheng Technology Co., Ltd.

: 2nd FI C5 Buliding, HengFeng Industry City, ZhouShi Rd, Bao'an Address

Dist., Shenzhen 518000 China

Manufacturer : Shenzhen JiaFengHeSheng Technology Co., Ltd.

: 2nd FI C5 Buliding, HengFeng Industry City, ZhouShi Rd, Bao'an

Address	 2nd Fl C5 Bullding, HengFen Dist., Shenzhen 518000 Chir 	ng Industry City, ZhouShi Rd, Bao'an na
CTATES	ESTING	
Test Re	esult:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 3 of 25 Report No.: CTA24071501101

Contents

		Conte	ents	
	1 C	TEST STANDARDS	NG	4
	(T)	TEST		
	2	SUMMARY		NG
	<u> </u>	30 W W A K T		1 3
			CTA	
	2.1	General Remarks		5
	2.2	Product Description		5
	2.3	Equipment Under Test		5
	2.4	Short description of the Equipment under Te	est (EUT)	5
	2.5	EUT operation mode		5
	2.6	Block Diagram of Test Setup		6
	2.7	Related Submittal(s) / Grant (s)		6
' C	2.8	Modifications		6
1				
	_	C7^		_
	<u>3</u>	TEST ENVIRONMENT		<u> 7</u>
			CTA	
	3.1	Address of the test laboratory		1551 7 1
	3.2	Test Facility		7
	3.3	Environmental conditions		G \ 7
	3.4	Test Description		7 7 7 8 8
	3.5	Statement of the measurement uncertainty		8
	3.6	Equipments Used during the Test		8
	3.0	Equipments Osed during the Test		O
		STIN		
	<u>4</u>	TEST CONDITIONS AND RESULT	[\$	10
	All Co. Ltd		10	
		100 0 1 1 1 5 1 1 1 1 5 1		- 40
	4.1	AC Power Conducted Emission		10
	4.2	Radiated Emissions		11
	4.3	20dB Bandwidth Measurement	TATES	17
	4.4	Antenna Requirement	CTATEST!	19
	<u>5</u>	TEST SETUP PHOTOS OF THE E	UT	
	<u>~</u>	1201 02101 1110100 01 1112 2		
	<u>6</u>	PHOTOS OF THE EUT		21
CTATE				
			LES'I"	
		CTATESTING	CTATESTING	

Page 4 of 25 Report No.: CTA24071501101

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.249: Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 -5875 MHz, and 24.0 - 24.25 GHz.

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

ANSI C63.4: 2014: - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz Range of 9 kHz to 40GHz CTA TESTING

Report No.: CTA24071501101 Page 5 of 25

SUMMARY

2.1 General Remarks

2.1 General Remarks		CTATESTING
Date of receipt of test sample		Jul. 10, 2024
Total		1 1 40 0004
Testing commenced on	:	Jul. 10, 2024
Testing concluded on	:	Jul. 16, 2024

Product Description:	Intelligent Hardwire Kit
Model:	K7
Power supply:	DC 12-24V From external circuit
Power submit:	Model: HWK-07 Input: DC 12-24V Output: DC 5V 3A
testing sample ID:	CTA240715011-1# (Engineer sample), CTA240715011-2# (Normal sample)
Hardware version:	V1.0
Software version:	V1.0
SRD	
Operation frequency:	5778MHz
Modulation:	GFSK
Antenna type:	PCB antenna
Antenna gain:	0.42 dBi

2.3 Equipment Under Test

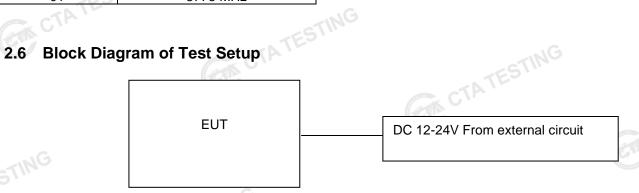
Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz	
CIFE		0	12 V DC	0	24 V DC	
(5)		•	Other (specified in blank be	low)	
	<u>D</u>	<u>C 1</u>	2-24V From external circuit		CTATEST	
2.4 Short description of the	Ec	lυμ	pment under Test (EU ⁻	T)		

Short description of the Equipment under Test (EUT)

This is an Intelligent Hardwire Kit.

For more details, refer to the user's manual of the EUT.


2.5 **EUT** operation mode

The Applicant provides communication tools software (CMD command) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing. All test performed at the low, middle and high of operational frequency range of each mode.

Testing Frequency List

Report No.: CTA24071501101 Page 6 of 25

Channel	Frequency
01	5778 MHz

CTATESTING Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended to comply with Section 15.407 of the FCC Part 15, Subpart E Rules. CTA TESTING

2.8 **Modifications**

No modifications were implemented to meet testing criteria.

Page 7 of 25 Report No.: CTA24071501101

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 **Environmental conditions**

During the measurement the environmental conditions were within the listed ranges: CTATESTING

Radiated Emission:

Temperature:	25 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

Conducted testing:

Temperature:	25 ° C
- INC	5
Humidity:	44 %
TATL	
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission

Temperature:	24 ° C
Humidity:	44 %
Atmospheric pressure:	950-1050mbar
	TATESTIN

Report No.: CTA24071501101 Page 8 of 25

Test Description

FCC PART 15.249		
FCC Part 15.249(a)	Field Strength of Fundamental	PASS
FCC Part 15.209	Spurious Emission	PASS
FCC Part 15.215(c)	20dB bandwidth	PASS
FCC Part 15.207	Conducted Emission	N/A
FCC Part 15.203	Antenna Requirement	PASS

Note 1: The measurement uncertainty is not included in the test result.

Note 2: NA = Not Applicable; NP = Not Performed

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	/	0.57 dB	(1)
Spectrum bandwidth	/	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

CTA TESTING (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

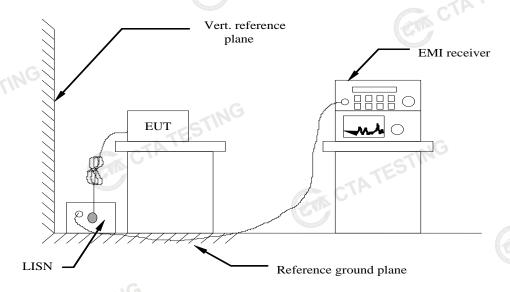
Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01
LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01
EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01
EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01

Page 9 of 25 Report No.: CTA24071501101

					No management	
	Spectrum Analyzer	G Agilent	N9020A	CTA-301	2023/08/02	2024/08/01
	Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01
	Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01
	Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01
	Universal Radio Communication	CMW500	R&S	CTA-302	2023/08/02	2024/08/01
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01
CTATE	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
CAL	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
1	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01
G	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01
	Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01
	Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01

TATE	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
CTA	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A


E CANA

Report No.: CTA24071501101 Page 10 of 25

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Fraguenov rango (MHz)	Limit (dBuV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
* Decreases with the logarithm of the freque	ncy.					

TEST RESULTS

The EUT is a vehicle device, So this test Item is not applicable for the EUT.

Report No.: CTA24071501101 Page 11 of 25

4.2 Radiated Emissions

Limit

The maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

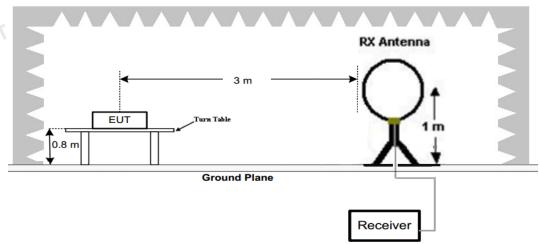
Undesirable emission limits

Requirement	Limit(EIRP)	Limit (Field strength at 3m) Note1
15.407(b)(1)		
15.407(b)(2)	PK:-27(dBm/MHz)	DK:69 2(dBu\//m)
15.407(b)(3)	PK27 (UBIT/IVITZ)	PK:68.2(dBµV/m)
15.407(b)(4)		

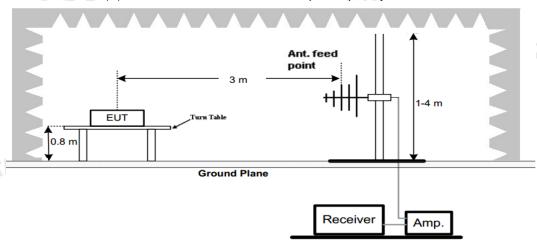
Note1: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \, \mu \text{V/m, where P is the eirp (Watts)}$$

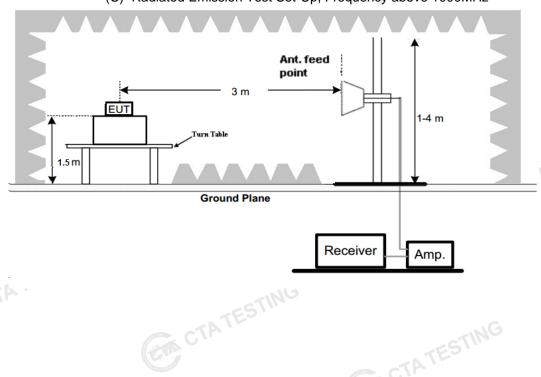
(5) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209 (6)In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)


Radiated emission limits

		radiated chilosoft lithits						
	Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)				
	0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)				
	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)				
	1.705-30	3	20log(30)+ 40log(30/3)	30				
	30-88	3	40.0	100				
Ī	88-216	3	43.5	150				
Ī	216-960	3	46.0	200				
Ī	Above 960	3	54.0	500				


Page 12 of 25 Report No.: CTA24071501101

TEST CONFIGURATION


(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Report No.: CTA24071501101 Page 13 of 25

Test Procedure

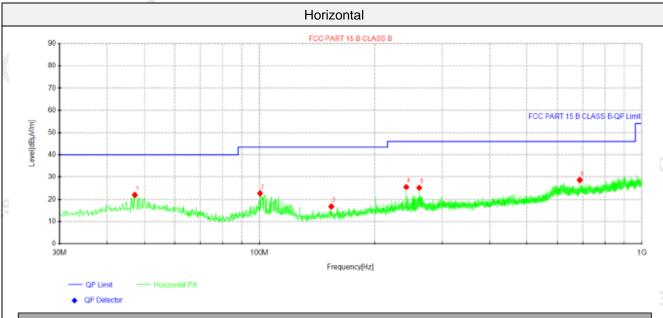
- Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- And also, each emission was to be maximized by changing the polarization of receiving antenna both 3. CTATE horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- Radiated emission test frequency band from 9KHz to 40GHz.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3
1GHz-18GHz	Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

Setting test receiver/spectrum as following table states:

18GHz-25GHz	Horn Anternna 1		
tting test receiver/spectrur	n as following table states:		ING
Test Frequency range	Test Receiver/Spectrum Setting	Detector	5111
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP	
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP	
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP	
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak	
RESULTS	TATESTING		
c:	Can Cir		

TEST RESULTS

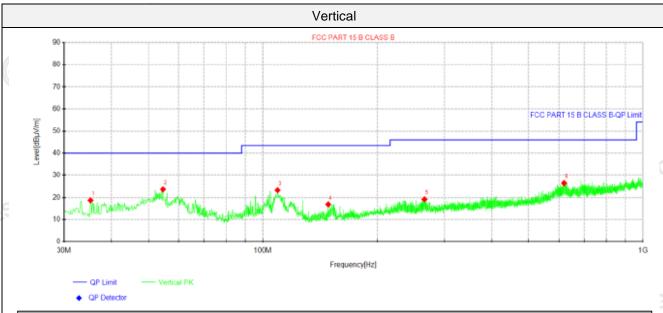

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- 1. All modes have been tested for below 1GHz test, only the worst case of Mid Channel was recorded
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

Page 14 of 25 Report No.: CTA24071501101

For 30MHz-1GHz

CTATESTING


Suspe	Suspected Data List									
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolorita	
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	47.2175	33.56	21.95	-11.61	40.00	18.05	100	338	Horizontal	
2	100.325	36.01	22.65	-13.36	43.50	20.85	100	357	Horizontal	
3	154.16	32.91	16.72	-16.19	43.50	26.78	100	245	Horizontal	
4	242.066	38.35	25.51	-12.84	46.00	20.49	100	210	Horizontal	
5	261.708	37.55	25.16	-12.39	46.00	20.84	100	46	Horizontal	
6	687.538	33.89	28.65	-5.24	46.00	17.35	100	210	Horizontal	

TATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Page 15 of 25 Report No.: CTA24071501101

Suspe	Suspected Data List									
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Doloritu	
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	35.2138	32.61	18.66	-13.95	40.00	21.34	100	360	Vertical	
2	54.6138	35.51	23.61	-11.90	40.00	16.39	100	357	Vertical	
3	109.297	36.86	23.21	-13.65	43.50	20.29	100	360	Vertical	
4	148.582	32.79	16.80	-15.99	43.50	26.70	100	360	Vertical	
5	266.195	31.45	19.15	-12.30	46.00	26.85	100	186	Vertical	
6	620.123	31.79	26.51	-5.28	46.00	19.49	100	244	Vertical	

CTATE

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA24071501101 Page 16 of 25

For 1GHz to 40GHz

Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
		(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
311	5778.00	99.12	PK	Н	114.00	14.88	33.87	33.96	6.21	42.38	-2.21
(5778MHz)	5778.00	80.12	AV	H	94.00	13.88	33.87	33.96	6.21	42.38	-2.21
	-			W.					:81"		
	5778.00	102.34	PK	V	114.00	11.66	33.87	33.96	6.21	42.38	-2.21
(5778MHz)	5778.00	81.47	AV	V	94.00	12.53	33.87	33.96	6.21	42.38	-2.21
							-5				
							A To marten				10-110
ING											The state of the s

GFSK Mode (above 1GHz)

Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
		(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
Low	5720.00	47.98	PK	Н	79.60	31.62	50.73	33.43	6.04	42.22	-2.75
(5778MHz)	5855.00	45.67	PK	Н	79.60	33.93	47.93	33.87	6.17	42.3	-2.26
	11556.00	48.18	PK	Н	68.20	20.02	43.67	38.8	11.12	45.41	4.51
										-175	
					Vanish.				S.Com. U.C.	211.	
									15 A2 02 H 5 H 17 A		
		.NG									

REMARKS:

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m) 1.
- Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- Margin value = Limit value- Emission level.
- -- Mean the other emission levels were very low against the limit.
- 5. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is CTATE for AV value.

Report No.: CTA24071501101 Page 17 of 25

4.3 20dB Bandwidth Measurement

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30KHz RBW and 300KHz VBW.

.s hig The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

LIMIT

Test Results

<u>LIMIT</u> <u>Test Results</u>	CT CT	ATESI	TATESTING
Туре	Channel	20dB Bandwidth (MHz)	Result
GFSK	5778MHz	103.9	Pass
CTATES (CTATESTING	CTATESTING	>

Report No.: CTA24071501101 Page 18 of 25

Report No.: CTA24071501101 Page 19 of 25

Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

CTATE And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Antenna Information

The maximum gain of antenna was 0.42 dBi.

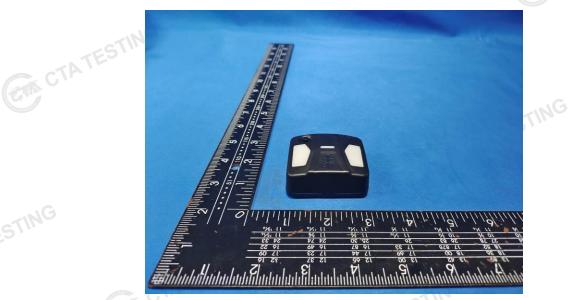
Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTA TESTING

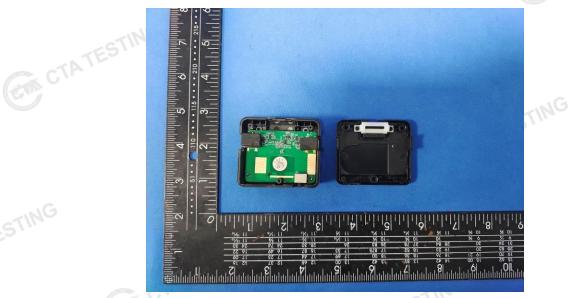
Page 20 of 25 Report No.: CTA24071501101

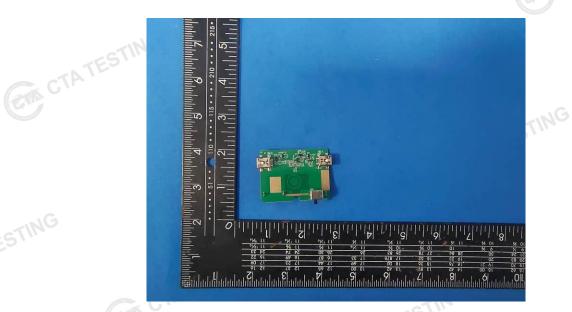
Test Setup Photos of the EUT CTATE!

Page 21 of 25 Report No.: CTA24071501101

Photos of the EUT


Page 22 of 25 Report No.: CTA24071501101


Report No.: CTA24071501101 Page 23 of 25


Page 24 of 25 Report No.: CTA24071501101

Page 25 of 25 Report No.: CTA24071501101

