

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202204323F01

TEST Report

Applicant: HuiZhou Si HuiDa DianZi YouXianGongSi

Address of Applicant: Room 04, Floor 22, Building 4, Pengde Mingyuan, Danshui

Renmin 6th Road, Huizhou, Huiyang, Guangdong CN

Manufacturer: HuiZhou Si HuiDa DianZi YouXianGongSi

Address of Room 04, Floor 22, Building 4, Pengde Mingyuan, Danshui

Manufacturer: Renmin 6th Road, Huizhou, Huiyang, Guangdong CN

Equipment Under Test (EUT)

Product Name: Multimedia MP3 Player

Model No.: XR162

Series model: XR166, XR168

Trade Mark: N/A

FCC ID: 2A5PP-XR162

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Apr.24,2022

Date of Test: Apr.24,2022~Apr.28,2022

Date of report issued: Apr.28,2022

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Apr.28,2022	Original

Tested/ Prepared By	Ervin Xu	Date:	Apr.28,2022
	Project Engineer	_	
Check By:	Bruce Zhu	Date:	Apr.28,2022
	Reviewer		
Approved By :	Kein Yang	Date:	Apr.28,2022
	Authorized Signature	_	

2. Contents

		Page
1. '	VERSION	2
	CONTENTS	
-	TEST SUMMARY	
4.	GENERAL INFORMATION	5
4.1	. GENERAL DESCRIPTION OF EUT	5
4.2		
4.3		
4.4	1. DEVIATION FROM STANDARDS	7
4.5	5. ABNORMALITIES FROM STANDARD CONDITIONS	7
4.6		
4.7		
4.8	3. ADDITIONAL INSTRUCTIONS	7
5. ·	TEST INSTRUMENTS LIST	8
6.	TEST RESULTS AND MEASUREMENT DATA	9
6.1	CONDUCTED EMISSIONS	9
6.2	2. CONDUCTED PEAK OUTPUT POWER	12
6.3	B. 20DB EMISSION BANDWIDTH	13
6.4	1. Frequencies Separation	17
6.5	5. HOPPING CHANNEL NUMBER	19
6.6		
6.7		
	6.7.1. Conducted Emission Method	
	6.7.2. Radiated Emission Method	
6.8		
	6.8.1. Conducted Emission Method	
7.	TEST SETUP PHOTO	45
8.	EUT CONSTRUCTIONAL DETAILS	45

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	30~1000MHz	3.45 dB	(1)		
Radiated Emission	1~6GHz	3.54 dB	(1)		
Radiated Emission	6~40GHz	5.38 dB	(1)		
Conducted Disturbance 0.15~30MHz 2.66 dB					
Note (1): The measurement unce	ertainty is for coverage factor of ka	=2 and a level of confidence of 9	15%.		

4. General Information

4.1. General Description of EUT

<u> </u>	
Product Name:	Multimedia MP3 Player
Model No.:	XR162
Series model:	XR166, XR168
Test sample(s) ID:	HTT202204323-1(Engineer sample)
	HTT202204323-2(Normal sample)
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	PCB Antenna
Antenna gain:	0 dBi
Power Supply:	DC 3.7V/350mAh Form Battery and DC 5V From External Circuit
Adapter Information	Mode: CD122
(Auxiliary test provided by the lab):	Input: AC100-240V, 50/60Hz, 500mA
	Output: DC 5V, 2A

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

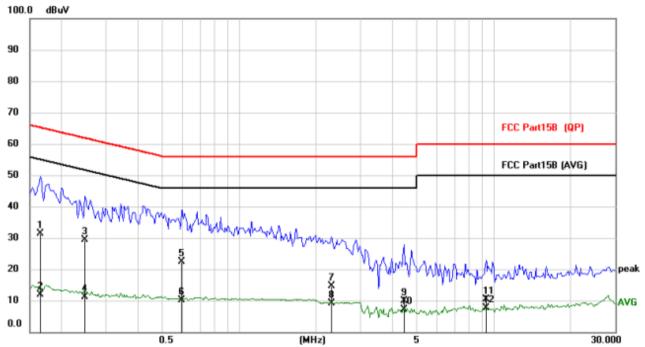
Shenzhen HTT Technology Co.,Ltd.

5. Test Instruments list

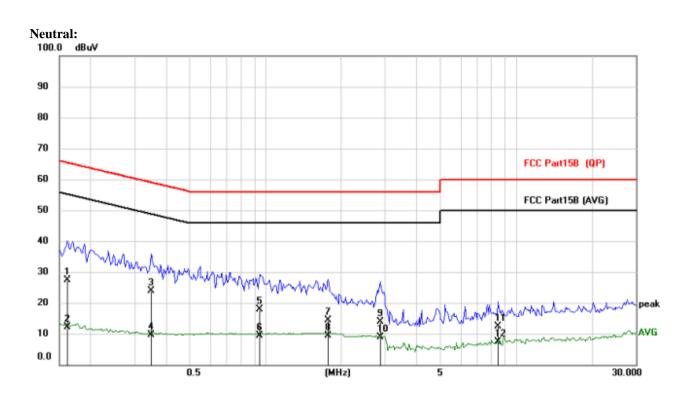
<u>J.</u>									
Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date			
	Toot Equipment	manarastars		No.	(mm-dd-yy)	(mm-dd-yy)			
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2020	Aug. 09 2024			
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2020	Aug. 09 2024			
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	May 21 2021	May 20 2022			
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	May 21 2021	May 20 2022			
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	May 21 2021	May 20 2022			
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	May 21 2021	May 20 2022			
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	May 21 2021	May 20 2022			
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	May 21 2021	May 20 2022			
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	Aug. 22 2021	Aug. 21 2022			
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	Aug. 22 2021	Aug. 21 2022			
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Aug. 22 2021	Aug. 21 2022			
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Aug. 22 2021	Aug. 21 2022			
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	May 21 2021	May 20 2022			
14	high-frequency Amplifier	HP	8449B	HTT-E014	May 21 2021	May 20 2022			
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	May 21 2021	May 20 2022			
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	May 21 2021	May 20 2022			
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May 21 2021	May 20 2022			
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May 21 2021	May 20 2022			
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	May 21 2021	May 20 2022			
20	Attenuator	Robinson	6810.17A	HTT-E007	May 21 2021	May 20 2022			
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	May 21 2021	May 20 2022			
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	May 21 2021	May 20 2022			
23	DC power supply	Agilent	E3632A	HTT-E023	May 21 2021	May 20 2022			
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	May 21 2021	May 20 2022			
25	Analog signal generator	Agilent	N5181A	HTT-E025	May 21 2021	May 20 2022			
26	Vector signal generator	Agilent	N5182A	HTT-E026	May 21 2021	May 20 2022			
27	Power sensor	Keysight	U2021XA	HTT-E027	May 21 2021	May 20 2022			
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	May 21 2021	May 20 2022			
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A			
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A			
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A			

6. Test results and Measurement Data

6.1. Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto				
Limit:	Fragues ou renge (MHz)	Limit	: (dBuV)			
	Frequency range (MHz)	Quasi-peak		erage		
	0.15-0.5	66 to 56*		o 46*		
	0.5-5	56		16		
	5-30 * Decreases with the logarithm	60	5	50		
Test setup:	Reference Plane	Tor the frequency.				
Test procedure:	LISN AUX Equipment Test table/Insulation plane Remark: EUT: Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.					
	 The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test environment:	Temp.: 25 °C Hum	nid.: 52%	Press.:	1012mbar		
Test voltage:	AC 120V, 60Hz	1	l.			
Test results:	Pass					

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.


Measurement data:

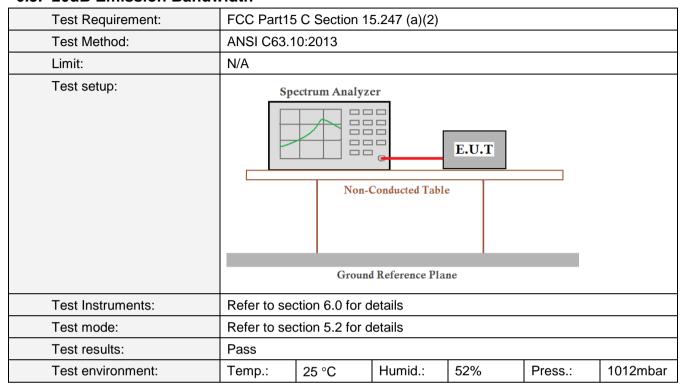
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1655	21.07	10.38	31.45	65.18	-33.73	QP
2	0.1655	1.52	10.38	11.90	55.18	-43.28	AVG
3 *	0.2475	19.08	10.40	29.48	61.84	-32.36	QP
4	0.2475	0.84	10.40	11.24	51.84	-40.60	AVG
5	0.5946	11.83	10.59	22.42	56.00	-33.58	QP
6	0.5946	-0.35	10.59	10.24	46.00	-35.76	AVG
7	2.2989	3.86	10.83	14.69	56.00	-41.31	QP
8	2.2989	-1.78	10.83	9.05	46.00	-36.95	AVG
9	4.4312	-0.99	10.95	9.96	56.00	-46.04	QP
10	4.4312	-3.86	10.95	7.09	46.00	-38.91	AVG
11	9.3414	-0.99	11.49	10.50	60.00	-49.50	QP
12	9.3414	-3.82	11.49	7.67	50.00	-42.33	AVG

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1617	17.07	10.26	27.33	65.38	-38.05	QP
2	0.1617	1.87	10.26	12.13	55.38	-43.25	AVG
3 *	0.3489	13.50	10.27	23.77	58.99	-35.22	QP
4	0.3489	-0.55	10.27	9.72	48.99	-39.27	AVG
5	0.9456	7.04	10.77	17.81	56.00	-38.19	QP
6	0.9456	-1.27	10.77	9.50	46.00	-36.50	AVG
7	1.7724	3.49	10.82	14.31	56.00	-41.69	QP
8	1.7724	-1.49	10.82	9.33	46.00	-36.67	AVG
9	2.8605	3.16	10.84	14.00	56.00	-42.00	QP
10	2.8605	-1.95	10.84	8.89	46.00	-37.11	AVG
11	8.4288	1.18	11.20	12.38	60.00	-47.62	QP
12	8.4288	-3.87	11.20	7.33	50.00	-42.67	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

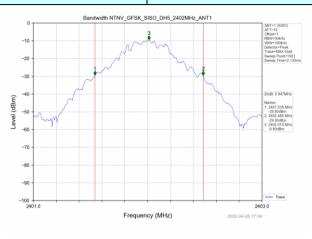
6.2. Conducted Peak Output Power


Test Requirement:	FCC Part15 C Section 15.247 (b)(3)						
Test Method:	ANSI C63.1	10:2013					
Limit:	30dBm(for	GFSK),20.97	dBm(for EDF	₹)			
Test setup:	Power sensor and Spectrum analyzer E.U.T Non-Conducted Table						
		Ground Reference Pla	ane				
Test Instruments:	Refer to se	ction 6.0 for c	letails				
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	

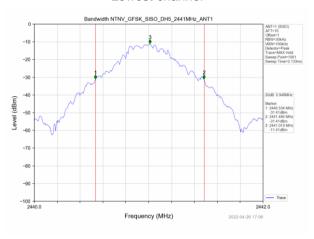
Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	-7.23		
GFSK	Middle	-8.81	30.00	Pass
	Highest	-9.71		
	Lowest	-4.99		
π/4-DQPSK	Middle	-6.60	20.97	Pass
	Highest	-7.51		
	Lowest	-7.05		
8-DPSK	Middle	-7.23	20.97	Pass
	Highest	-8.81		

6.3. 20dB Emission Bandwidth


Measurement Data

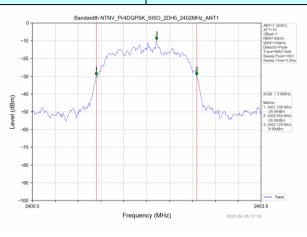
Mode	Test channel 20dB Emission Band (MHz)		Result
	Lowest	0.947	
GFSK	Middle	0.949	Pass
	Highest	0.947	
	Lowest	1.316	
π/4-DQPSK	Middle	1.312	Pass
	Highest	1.317	
	Lowest	1.302	
8-DPSK	Middle	1.303	Pass
	Highest	1.313	

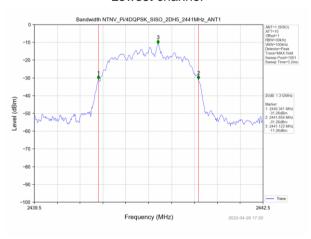


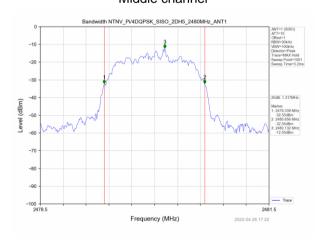
Test plot as follows:

Test mode: GFSK mode

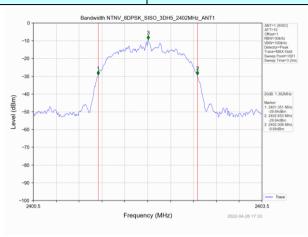
Lowest channel

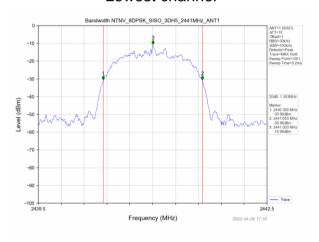

Middle channel

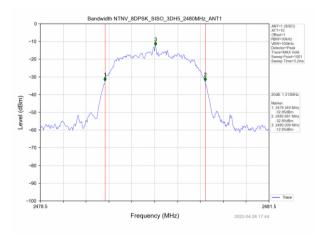

Highest channel


Test mode: $\pi/4$ -DQPSK mode

Lowest channel


Middle channel


Highest channel


Test mode: 8-DPSK mode

Lowest channel

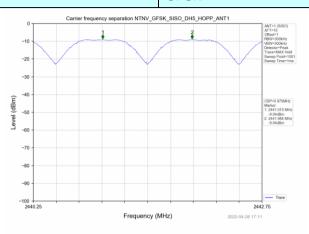
Middle channel

Highest channel

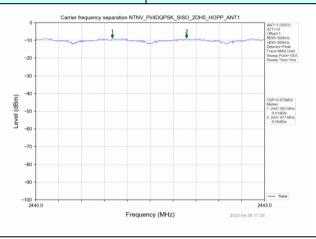
6.4. Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)							
Test Method:		ANSI C63.10:2013						
Receiver setup:		RBW=100KHz, VBW=300KHz, detector=Peak						
Limit:		GFSK: 20dB bandwidth π/4-DQPSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)						
Test setup:	Sp							
Test Instruments:	Refer to se	ction 6.0 for c	letails					
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

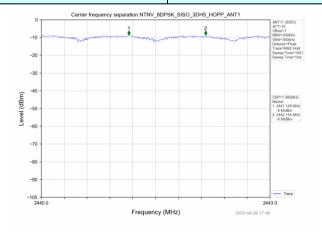
Measurement Data


Measurement Date	1			
Mode	Test channel	Frequencies Separation (MHz)	Limit (kHz)	Result
			25KHz or	
GFSK	Middle	0.975	2/3*20dB	Pass
			bandwidth	
			25KHz or	
π/4-DQPSK	Middle	0.975	2/3*20dB	Pass
			bandwidth	
			25KHz or	
8-DPSK	Middle	1.005	2/3*20dB	Pass
			bandwidth	

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle



Test plot as follows:


Modulation mode: GFSK

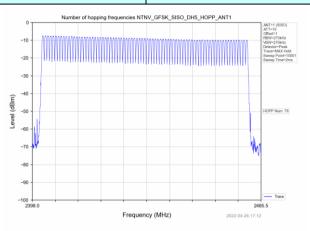
Test mode: $\pi/4$ -DQPSK

Modulation mode: 8-DPSK

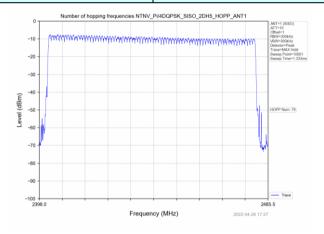
Shenzhen HTT Technology Co.,Ltd.

6.5. Hopping Channel Number

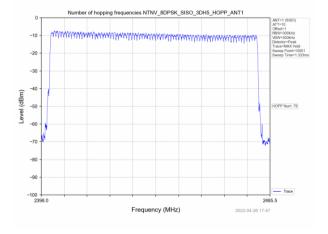
Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (a)(1)(iii)						
Test Method:	ANSI C63.1	ANSI C63.10:2013						
Receiver setup:		RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak						
Limit:	15 channels	S						
Test setup:	Spe	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to se	ction 6.0 for c	letails					
Test mode:	Refer to se	Refer to section 5.2 for details						
Test results:	Pass	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		


Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79		Pass
π/4-DQPSK	79	≥15	Pass
8-DPSK	79		Pass



Test plot as follows:


Test mode: GFSK

Test mode: $\pi/4$ -DQPSK

Test mode: 8-DPSK

Shenzhen HTT Technology Co.,Ltd.

6.6. Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)						
Test Method:	ANSI C63.10:	:2013					
Receiver setup:	RBW=1MHz,	VBW=1MH	z, Span=0Hz	z, Detector=P	'eak		
Limit:	0.4 Second						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section	on 6.0 for d	etails				
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
Test environment:	Temp.: 2	25 °C	Humid.:	52%	Press.:	1012mbar	

Measurement Data

GFSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	DH1	0.389	124.480	400	Pass
Hopping	DH3	1.644	266.328	400	Pass
Hopping	DH5	2.903	351.263	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

$\pi/4$ -DOPSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	2DH1	0.405	129.600	400	Pass
Hopping	2DH3	1.653	272.745	400	Pass
Hopping	2DH5	2.909	314.172	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 \div 2 \div 79) x31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

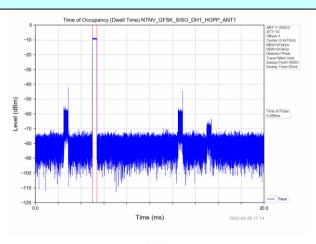
Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

8-DPSK mode:

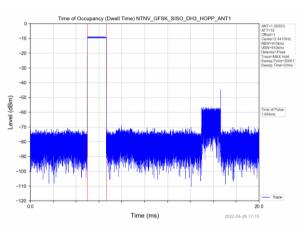
Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	3DH1	0.415	133.215	400	Pass
Hopping	3DH3	1.630	262.430	400	Pass
Hopping	3DH5	2.911	311.477	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

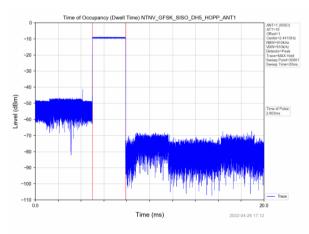
Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second for DH1, 2-DH1, 3-DH1

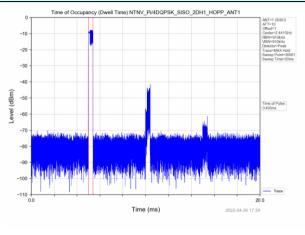

Dwell time=Pulse time (ms) x (1600 \div 4 \div 79) x31.6 Second for DH3, 2-DH3, 3-DH3

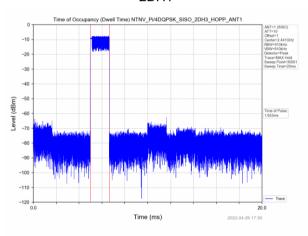
Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5



Test plot as follows:

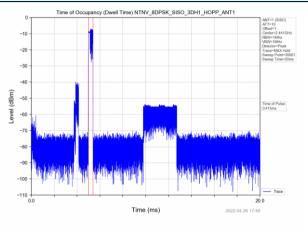

GFSK mode


DH3

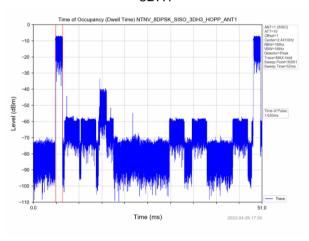

DH5

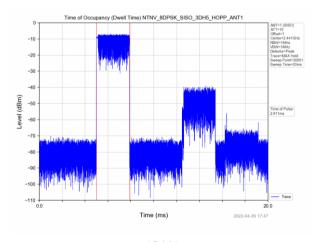
π/4-DQPSK mode

2DH1



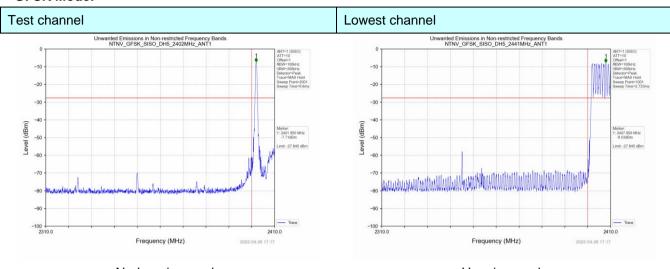
2DH3




8-DPSK mode

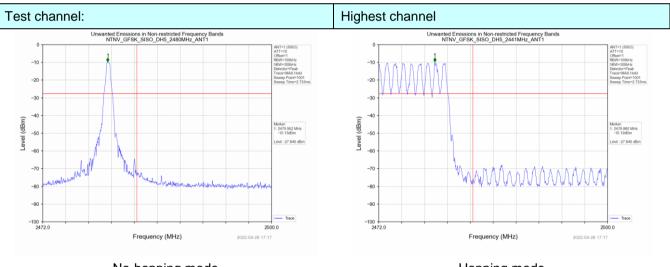
3DH3

3DH5


6.7. Band Edge

6.7.1. Conducted Emission Method

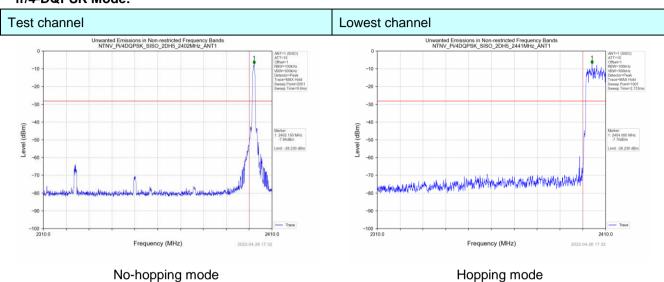
Test Requirement:	FCC Part15	C Section 1	5.247 (d)						
Test Method:	ANSI C63.1	ANSI C63.10:2013							
Receiver setup:	RBW=100k	Hz, VBW=30	00kHz, Detect	tor=Peak					
Limit:	spectrum ir produced b 100 kHz ba	kHz bandwidt atentional radi y the intention ndwidth within wer, based on ent.	iator is opera nal radiator si n the band th	ting, the radic hall be at leas at contains th	o frequency p st 20 dB belov ne highest lev	ower that is w that in the			
Test setup:	Spec		E.U ducted Table	т					
Test Instruments:	Refer to se	ction 6.0 for c	letails						
Test mode:	Refer to see	ction 5.2 for c	letails						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			



Test plot as follows: GFSK Mode:

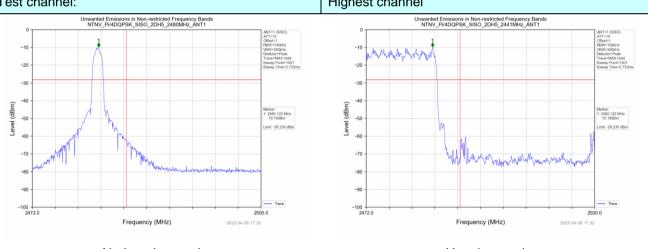
No-hopping mode

Hopping mode



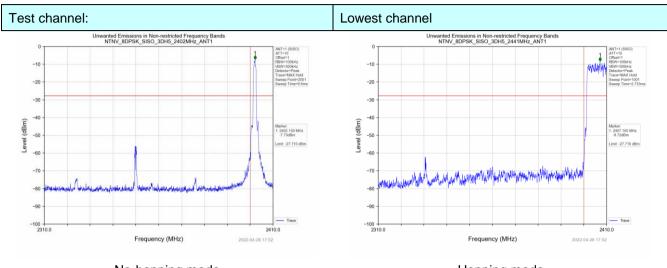
No-hopping mode

Hopping mode

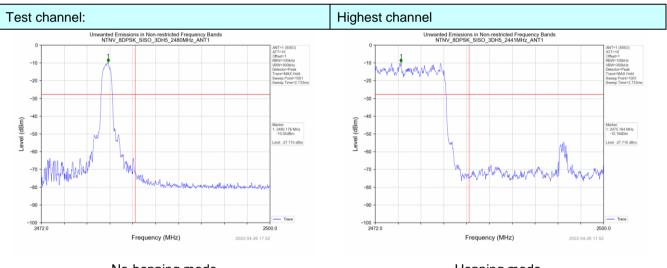


π/4-DQPSK Mode:

Test channel:


Highest channel

Hopping mode



8-DPSK Mode:

No-hopping mode

Hopping mode

No-hopping mode

Hopping mode

6.7.2. Radiated Emission Method

	IIII33IUII IVIC						
Test Requirement:	FCC Part15	C Section 1	5.209 a	nd 15.205			
Test Method:	ANSI C63.1	0:2013					
Test Frequency Range:				tested, only	the wo	rst band's (2310MHz to
Test site:	Measureme	nt Distance:	3m				
Receiver setup:	Frequenc			RBW			
	Above 1GI	- 7		1MHz 1MHz			
Limit:	Fre			RBW VBW Remark 1MHz 3MHz Peak Value 1MHz 10Hz Average Value Limit (dBuV/m @3m) Remark 54.00 Average Value 74.00 Peak Value 2 top of a rotating table 1.5 meters above the r. The table was rotated 360 degrees to e highest radiation. away from the interference-receiving ed on the top of a variable-height antenna d from one meter to four meters above the aximum value of the field strength. Both rizations of the antenna are set to make the con, the EUT was arranged to its worst case uned to heights from 1 meter to 4 meters ad from 0 degrees to 360 degrees to find the could be stopped and the peak values of the newise the emissions that did not have 100 one by one using peak, quasi-peak or ad and then reported in a data sheet.			
	Above 1GHz Peak 1MHz 10Hz Average Value						
Test setup:		7		Test Antenna			
Test Procedure:	1 The FUT	was nlaced				le 1.5 meter	s above the
	ground ar determine 2. The EUT antenna, tower. 3. The anterground to horizonta measured 4. For each and then and the ramaximum 5. The test-Bandwidt 6. If the emilimit specieut wou margin w	t a 3 meter ce the position was set 3 meter was set 3 meter which was not a table was not a ta	amber. of the eters a nounted varied he max polariz mission was tur s turned em was num Ho f the El sting cod. Othe ested or	The table was highest race way from the don the top from one maximum value exations of the cast to Peasold Mode. UT in peak bould be stoperwise the eart one one of the cast one of the cast of the c	was rota diation. The interfer of a variable of the from grees to tak Detect mode w pped and emission sing pea	erence-receiriable-height four meters field strength na are set to anged to its v 1 meter to 4 360 degree et Function a ras 10dB low d the peak v as that did no ak, quasi-pea	ving antenna above the and Both of make the worst case 4 meters are to find the and Specified for than the alues of the other than the ak or
Test Instruments:	Refer to sec	tion 6.0 for c	letails				
Test mode:	Refer to sec	tion 5.2 for c	letails				
Test results:	Pass		1	T			<u> </u>
Test environment:	Temp.:	25 °C	Humi	d.: 52%	, D	Press.:	1012mbar

Shenzhen HTT Technology Co.,Ltd.

Measurement Data

Remark: GFSK, Pi/4 DQPSK,8-DPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

1 10112011	iai (VVOISI C	<i>asc)</i>						
	Mater Deading	Antenna		Preamp	Emission Level	Limits	Marain	
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBuV/m)	(dB)	Type
(1711 12)	(СВДТ)	(dD/111)	(dB)	(GD)	(αΒμν/ιιι)	(αΒμν/π)	(GB)	
2390	58.46	26.20	5.72	33.30	57.08	74.00	-16.92	peak
2000	00.10	20.20	0=	00.00	000			Pount
2390	45.16	26.20	5.72	33.30	43.78	54.00	-10.22	AVG
		_00	0=	00.00	.00	000		· ··· •

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2390	60.31	26.20	5.72	33.30	58.93	74.00	-15.07	peak
2390	45.68	26.20	5.72	33.30	44.30	54.00	-9.70	AVG

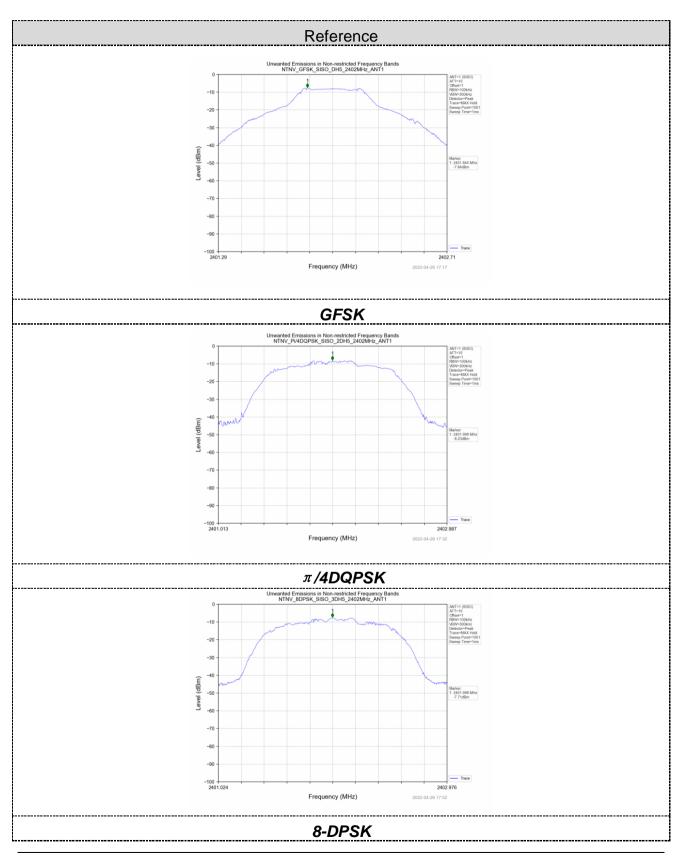
Operation Mode: GFSK TX High channel (2480MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	56.24	28.60	6.97	32.70	59.11	74.00	-14.89	peak
2483.5	41.36	28.60	6.97	32.70	44.23	54.00	-9.77	AVG

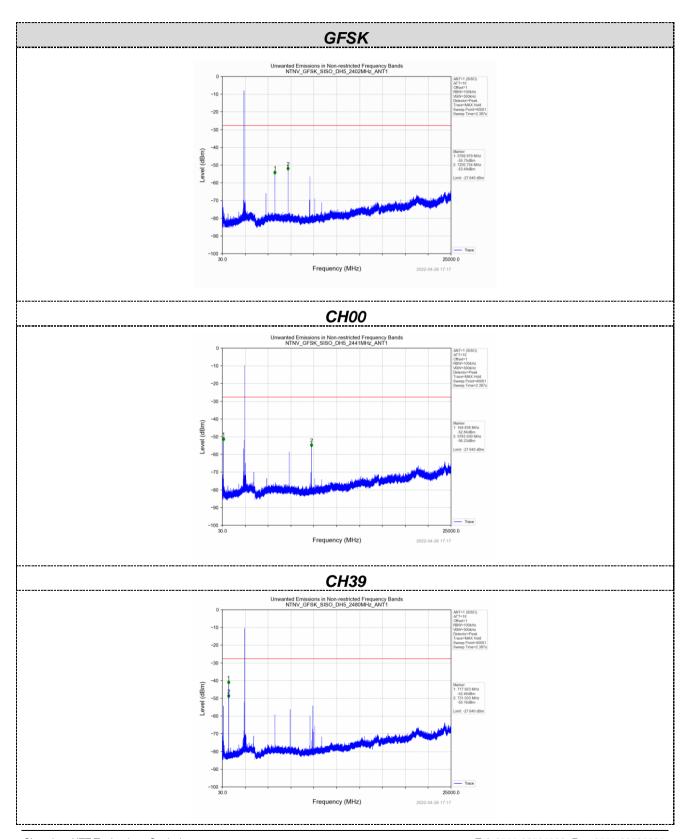
Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	54.86	28.60	6.97	32.70	57.73	74.00	-16.27	peak
2483.5	42.30	28.60	6.97	32.70	45.17	54.00	-8.83	AVG

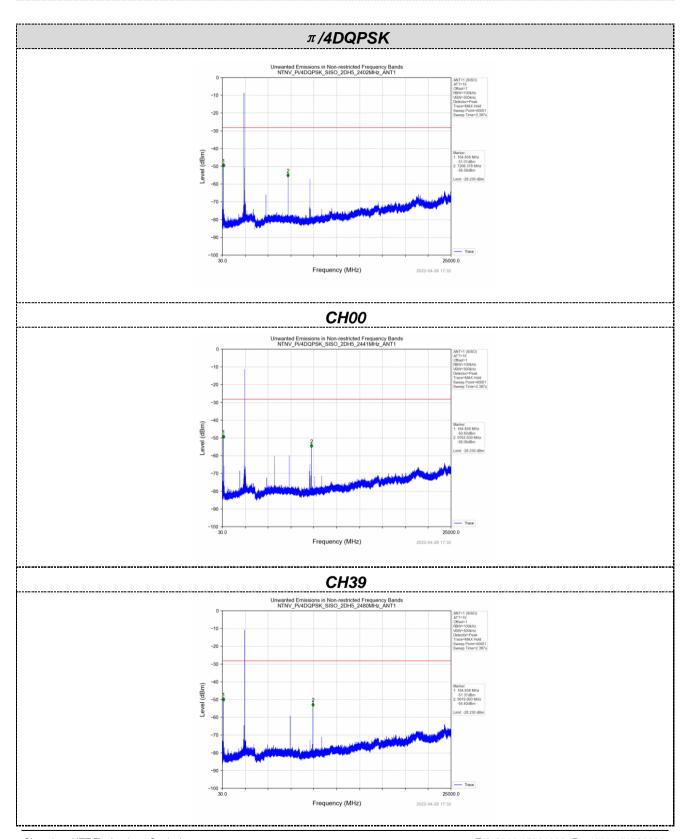


6.8. Spurious Emission

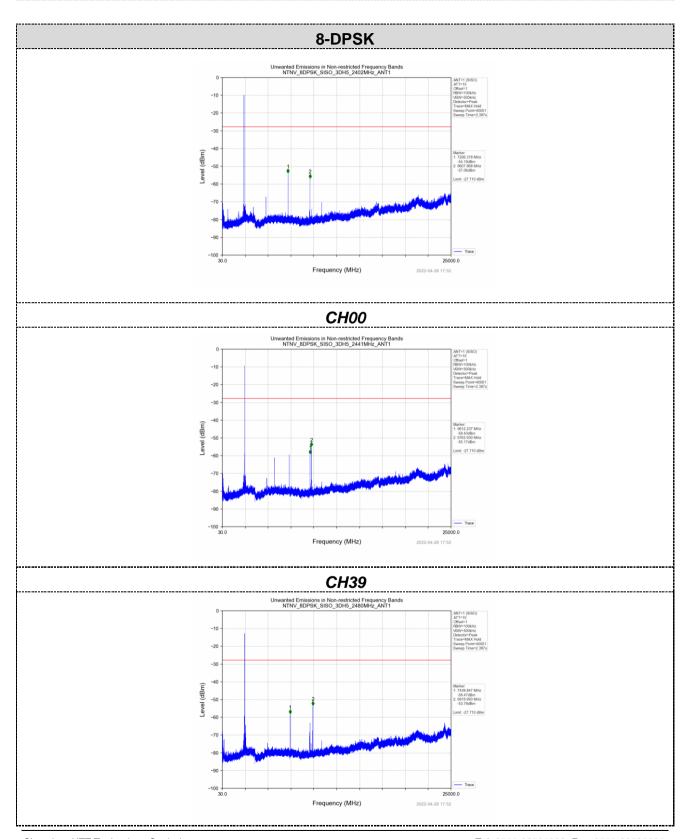
6.8.1. Conducted Emission Method


Test Requirement:	FCC Part1	5 C Section	15.247 (d)			
Test Method:	ANSI C63.	10:2013				
Limit:	spectrum ir produced b 100 kHz ba	ntentional rac by the intention andwidth with wer, based o	diator is opera onal radiator s iin the band tl	e frequency b ating, the radion shall be at lea hat contains the F conducted o	o frequency st 20 dB belone he highest le	power that is ow that in the evel of the
Test setup:	Sp	Non				
Test Instruments:	Refer to se	ction 6.0 for	details			
Test mode:	Refer to se	ction 5.2 for	details			
Test results:	Pass					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar

Shenzhen HTT Technology Co.,Ltd.



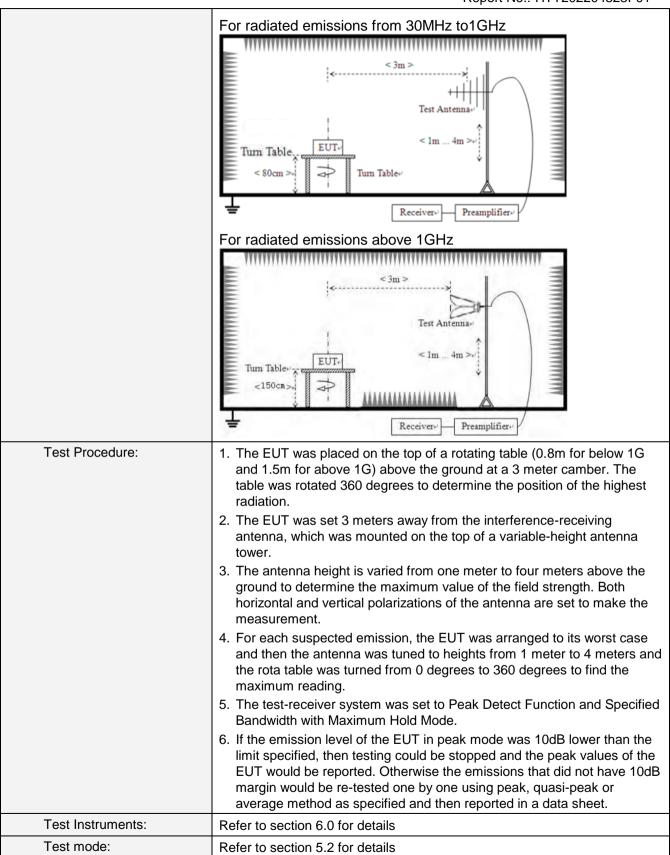
Shenzhen HTT Technology Co.,Ltd.


CH78

Shenzhen HTT Technology Co.,Ltd.

CH78

Shenzhen HTT Technology Co.,Ltd.



CH78

6.8.2. Radiated Emission Method

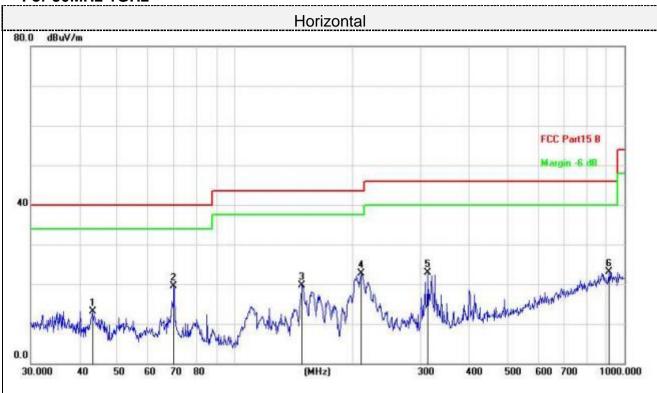
6.8.2. Radiated El	mission Method							
Test Requirement:	FCC Part15 C Section	on 15	5.209					
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distar	nce: 3	3m					
Receiver setup:	Frequency		Detector	RB\	N	VBW		Value
	9KHz-150KHz	Q	ıasi-peak	200l	Ηz	600Hz	Z	Quasi-peak
	150KHz-30MHz	Qι	uasi-peak	9KF	łz	30KHz	Z	Quasi-peak
	30MHz-1GHz	Qı	uasi-peak	120KHz		300KH	lz	Quasi-peak
	Above 1GHz		Peak	1MF	łz	3MHz	<u>'</u>	Peak
	710070 10112		Peak	1MF	łz	10Hz		Average
Limit:	Frequency	Limit (uV/		//m)	V	alue	M	leasurement Distance
	0.009MHz-0.490M	Hz 2400/F(KI		(Hz)	(QP		300m
	0.490MHz-1.705M	Hz	24000/F(KHz)	(QP		30m
	1.705MHz-30MH					QP		30m
	30MHz-88MHz					QP		
	88MHz-216MHz		150			QP		
	216MHz-960MH				QP			3m
	960MHz-1GHz	500				QP .		
	Above 1GHz					verage		
			5000		P	eak		
Test setup:	For radiated emiss	ions	from 9kH	z to 30)MHz	Z		_
	Turn Table EUT	T	< 3m > Test A	ntenna lm				

Shenzhen HTT Technology Co.,Ltd.

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 6	AC 120V, 60Hz				
Test results:	Pass					

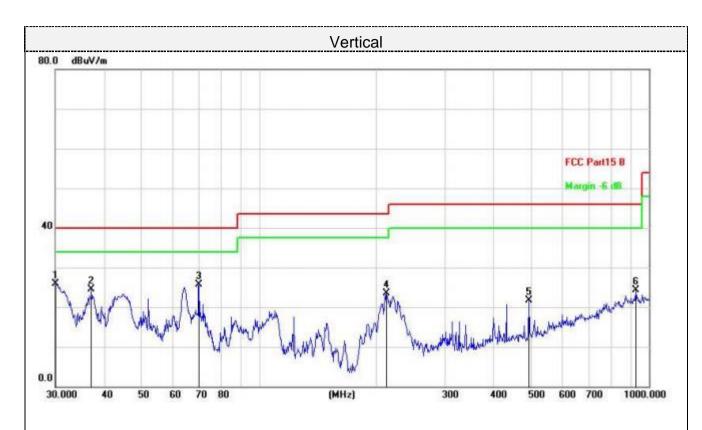
Measurement data:

Remarks:


- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


For 30MHz-1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		43.2017	30.48	-17.30	13.18	40.00	-26.82	QP
2	*	69.8450	39.52	-19.94	19.58	40.00	-20.42	QP
3		148.9625	37.46	-17.80	19.66	43.50	-23.84	QP
4		211.5265	43.00	-20.32	22.68	43.50	-20.82	QP
5		313.2760	40.24	-17.26	22.98	46.00	-23.02	QP
6		912.8620	27.83	-4.66	23.17	46.00	-22.83	QP

Final Level =Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	30.0000	44.58	-18.59	25.99	40.00	-14.01	QP
2		37.1550	42.33	-17.79	24.54	40.00	-15.46	QP
3		70.0903	45.76	-19.99	25.77	40.00	-14.23	QP
4		212.2695	43.85	-20.28	23.57	43.50	-19.93	QP
5		492.4685	35.32	-13.57	21.75	46.00	-24.25	QP
6		925.7563	29.20	-4.89	24.31	46.00	-21.69	QP

Final Level =Receiver Read level + Correct Factor

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK,Pi/4 DQPSK and 8-DPSK were test at Low, Middle, and

High

channel; only the worst result of GFSK was reported as below:

CH Low (2402MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4804	51.32	31.40	8.18	31.50	59.40	74.00	-14.60	peak
4804	37.65	31.40	8.18	31.50	45.73	54.00	-8.27	AVG
7206	45.11	35.80	10.83	31.40	60.34	74.00	-13.66	peak
7206	28.13	35.80	10.83	31.40	43.36	54.00	-10.64	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier

Vertical:

eading Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
\/\ (dD/m)	(AD)	(dD)	(dBµV/m)	(dBµV/m)	(dD)	Detector
V) (dB/m)	(dB)	(dB)	(αΒμν/π)	(αΒμν/π)	(dB)	Туре
39 31.40	8.18	31.50	59.47	74.00	-14.53	peak
45 31.40	8.18	31.50	45.53	54.00	-8.47	AVG
29 35.80	10.83	31.40	59.52	74.00	-14.48	peak
77 35.80	10.83	31.40	44.00	54.00	-10.00	AVG
-	45 31.40 29 35.80	45 31.40 8.18 29 35.80 10.83 77 35.80 10.83	45 31.40 8.18 31.50 29 35.80 10.83 31.40 77 35.80 10.83 31.40	45 31.40 8.18 31.50 45.53 29 35.80 10.83 31.40 59.52 77 35.80 10.83 31.40 44.00	45 31.40 8.18 31.50 45.53 54.00 29 35.80 10.83 31.40 59.52 74.00 77 35.80 10.83 31.40 44.00 54.00	45 31.40 8.18 31.50 45.53 54.00 -8.47 29 35.80 10.83 31.40 59.52 74.00 -14.48 77 35.80 10.83 31.40 44.00 54.00 -10.00

CH Middle (2441MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4880	51.26	31.40	9.17	32.10	59.73	74.00	-14.27	peak
4880	37.14	31.40	9.17	32.10	45.61	54.00	-8.39	AVG
7320	44.39	35.80	10.83	31.40	59.62	74.00	-14.38	peak
7320	28.76	35.80	10.83	31.40	43.99	54.00	-10.01	AVG

<u> kemark: Factor = Antenna Factor + Cable Loss – Pre-amplille</u>

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4880	51.67	31.40	9.17	32.10	60.14	74.00	-13.86	peak
4880	37.16	31.40	9.17	32.10	45.63	54.00	-8.37	AVG
7320	42.98	35.80	10.83	31.40	58.21	74.00	-15.79	peak
7220	27.74	25.00	40.00	24.40	40.07	E4.00	44.00	A V C
7320	27.74	35.80	10.83	31.40	42.97	54.00	-11.03	AVG
	_							
Remark: Facto	or = Antenna Fac	tor + Cable Los	<u>s – Pre-amplifier</u>	·				

CH High (2480MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detecto
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4960	52.32	31.40	9.17	32.10	60.79	74.00	-13.21	peak
4960	37.08	31.40	9.17	32.10	45.55	54.00	-8.45	AVG
7440	44.69	35.80	10.83	31.40	59.92	74.00	-14.08	peak
7440	27.65	35.80	10.83	31.40	42.88	54.00	-11.12	AVG

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4960	51.48	31.40	9.17	32.10	59.95	74.00	-14.05	peak
4960	37.45	31.40	9.17	32.10	45.92	54.00	-8.08	AVG
7440	41.99	35.80	10.83	31.40	57.22	74.00	-16.78	peak
7440	28.67	35.80	10.83	31.40	43.90	54.00	-10.10	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

