

RADIO TEST REPORT

S

3

Report No.: STS2203086W01

Issued for

Shenzhen Yibaifen Electronic Technology Co., Ltd.

Building e, Minle Science and Technology Park, Longhua district, Shenzhen, China

Product Name:	Smart phone
Brand Name:	Welcome
Model Name:	Note 10
Series Model:	MX4
FCC ID:	2A5MYNOTE10
Test Standard:	FCC Part 22H and 24E

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS, all test data presented in this report is only applicable to presented test sample.

Shenzhen STS Test Services Co., Ltd. A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com

TEST RESULT CERTIFICATION

Applicant's Name	Shenzhen Yibaifen Electronic Technology Co., Ltd.
Address	Building e, Minle Science and Technology Park, Longhua district, Shenzhen, China
Manufacturer's Name:	Shenzhen encyclopedia Innovation Technology Co., Ltd
Address	Room 2718, block C, Huaqiang North Electronic Technology Building, Futian District, Shenzhen, China
Product Description	
Product Name	Smart phone
Brand Name	Welcome
Model Name:	Note 10
Series Model	MX4
Test Standards	FCC Part 22H and 24E
Test Procedure:	KDB 971168 D01 v03r01,ANSI C63.26(2015)

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test.....

Date of receipt of test item: 11 Mar. 2022

Date (s) of performance of tests : 11 Mar. 2022 ~ 26 Apr. 2022

Date of Issue	:	26 Apr. 2022
---------------	---	--------------

Test Result Pass

Testing Engineer : Technical Manager : Authorized Signatory: Technical Signatory: Authorized Signatory: Dealth Yurry

Authorized Signatory :

(Bovey Yang)

Table of Contents	Page
1 INTRODUCTION	6
1.1 TEST FACTORY	6
1.2 MEASUREMENT UNCERTAINTY	6
2 PRODUCT INFORMATION	7
3 TEST CONFIGURATION OF EQUIPMENT UNDER TEST	8
4 MEASUREMENT INSTRUMENTS	9
5 TEST ITEMS	10
5.1 CONDUCTED OUTPUT POWER&TRANSMITTER RADIATED POWER	10
5.2 PEAK TO AVERAGE RATIO	11
5.3 OCCUPIED BANDWIDTH	12
5.4 FREQUENCY STABILITY	13
5.5 SPURIOUS EMISSIONS AT ANTENNA TERMINALS	14
5.6 BAND EDGE	15
5.7 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT	16
APPENDIX A.TESTRESULT	18
A1. CONDUCTED OUTPUT POWER&TRANSMITTER RADIATED POWER	18
A2. PEAK-TO-AVERAGE RADIO	20
A3. OCCUPIED BANDWIDTH (99% OCCUPIED BANDWIDTH/26DB BANDWI	DTH)25
A4. FREQUENCY STABILITY	30
A5. SPURIOUS EMISSIONS AT ANTENNA TERMINALS	33
A6. BAND EDGE	37
A7. FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT	40
APPENDIX-PHOTOS OF TEST SETUP	47

Page 4 of 47 Report No.: STS2203086W01

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	26 Apr. 2022	STS2203086W01	ALL	Initial Issue

Shenzhen STS Test Services Co., Ltd.

Т

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

The radiated emission testing was performed according to the procedures of KDB 971168 D01 v03r01 and ANSI C63.26(2015)

FCC Rules	Test Description	Test Limit	Test Result	Reference
2.1046	Conducted Output Power	Reporting Only	PASS	
22.913d 24.232d	Peak-to-Average Ratio	< 13 dB	PASS	
2.1046 22.913 24.232	Effective Radiated Power/Equivalent Isotropic Radiated Power	< 7 Watts max. ERP(Part 22) < 2 Watts max. EIRP(Part 24)	PASS	
2.1049 22.917 24.238	Occupied Bandwidth	Reporting Only	PASS	
2.1055 22.355 24.235	Frequency Stability	< 2.5 ppm (Part 22) Emission must remain in band (Part 24)	PASS	
2.1051 22.917 24.238	Spurious Emission at Antenna Terminals	< 43+10log10(P[Watts])	PASS	
2.1053 22.917 24.238	Field Strength of Spurious Radiation	< 43+10log10(P[Watts])	PASS	
2.1051 22.917 24.238	Band Edge	< 43+10log10(P[Watts])	PASS	

1 INTRODUCTION

1.1 TEST FACTORY
SHENZHEN STS TEST SERVICES CO., LTD
Add. : A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China
FCC test Firm Registration Number: 625569
IC test Firm Registration Number: 12108A
A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement data shown herein meets or exceeds the UCISPR measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

No.	Item	Uncertainty
1	RF output power, conducted	±0.87dB
2	Unwanted Emissions, conducted	±2.895dB
3	All emissions, radiated 9K-30MHz	±3.80dB
4	All emissions, radiated 30M-1GHz	±4.09dB
5	All emissions, radiated 1G-6GHz	±4.92dB
6	All emissions, radiated>6G	±5.49dB
7	Conducted Emission (9KHz-30MHz)	±2.73dB

Shenzhen STS Test Services Co., Ltd.

Page 7 of 47 Report No.: STS2203086W01

2 PRODUCT INFORMATION

PRODUCT INFORMATION					
Product Name	Smart phone				
Trade Name	Welcome				
Model Name	Note 10				
Series Model	MX4				
Model Difference	Only different in model name.				
Tx Frequency:	GSM/GPRS: 850: 824 MHz ~ 849MHz 1900: 1850 MHz ~ 1910MHz WCDMA: Band V: 824 MHz ~ 849 MHz				
Rx Frequency:	GSM/GPRS: 850: 869 MHz ~ 894 MHz 1900: 1930 MHz ~ 1990MHz WCDMA: Band V: 869 MHz ~ 894 MHz				
Max RF Output Power:	GSM850:31.27dBm, PCS1900:28.39dBm GPRS850(1-Slot):31.07dBm, GPRS1900(1-Slot):28.12dBm GPRS850(2-Slot):30.63dBm, GPRS1900(2-Slot):27.67dBm GPRS850(3-Slot):30.22dBm, GPRS1900(3-Slot):27.21dBm GPRS850(4-Slot):29.72dBm, GPRS1900(4-Slot):26.71dBm WCDMA Band V:22.80dBm				
Type of Emission:	GSM(850): 249KGXW; PCS(1900): 244KGXW GPRS(850): 246KGXW; GPRS(1900): 246KGXW WCDMA850: 4M17F9W				
Modulation Characteristics:	GMSK for GSM/GPRS WCDMA: QPSK; HSDPA:QPSK/16QAM; HSUPA:BPSK				
SIM Card:	SIM 1 and SIM 2 is a chipset unit and tested as single chipset, SIM 1 is used to tested.				
Antenna:	PIFA				
Antenna gain:	GSM 850: -1dBi, PCS 1900: -1.1dBi WCDMA 850:1dBi				
Battery:	Rated Voltage:3.8V Charge Limit Voltage:4.35V Capacity:5000mAh				
Adapter:	Input: 100-240V, 50/60Hz, 0.15A Output:5V=1000mA				
GPRS Class:	Multi-Class12				
Extreme Vol. Limits:	DC 3.65V~ DC 4.35V(Normal: DC 3.8V)				
Extreme Temp. Tolerance:	-20℃ to +60℃				
Hardware version number:	V213IM-1.0				
Software version number:	LRX21M test-keys				
** Note: The High Voltage 4.	35V and Low Voltage 3.65V was declared by manufacturer, The EUT				
couldn't be operate normally with higher or lower voltage.					

Ш

3 TEST CONFIGURATION OF EQUIPMENT UNDER TEST

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 and ANSI C63.26 2015 Power Meas. License Digital Systems with maximum output power.

Radiated measurements were performed with rotating EUT in different three orthogonal test planes to

find the maximum emission.

Radiated emissions were investigated as following frequency range:

1. 30 MHz to 10th harmonic for GSM850 and WCDMA Band V.

2. 30 MHz to 10th harmonic for GSM1900.

All modes and data rates and positions were investigated.

Test modes are chosen to be reported as the worst case configuration below:

	TEST MODES			
BAND	RADIATED TCS	CONDUCTED TCS		
GSM 850	GSM LINK GPRS CLASS 12 LINK	GSM LINK GPRS CLASS 12 LINK		
GSM 1900	GSM LINK GPRS CLASS 12 LINK	GSM LINK GPRS CLASS 12 LINK		
WCDMA BAND V	RMC 12.2KBPS LINK	RMC 12.2KBPS LINK		

4 MEASUREMENT INSTRUMENTS

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last	Calibrated	
Kind of Equipment	Manufacturer	Type No.	Senar No.	calibration	until	
Test Receiver	R&S	ESCI	101427	2021.09.30	2022.09.29	
Signal Analyzer	R&S	FSV 40-N	101823	2021.09.30	2022.09.29	
Signal Generator	Agilent	83752A	3610A02740	2021.09.30	2022.09.29	
Wireless Communications Test Set	R&S	CMW 500	133884	2022.03.01	2023.02.28	
Bilog Antenna	TESEQ	CBL6111D	34678	2020.10.12	2022.10.11	
Horn Antenna	SCHWARZBECK	BBHA 9120D	02014	2021.10.11	2023.10.10	
Bilog Antenna	TESEQ	CBL6111D	45873	2020.10.12	2022.10.11	
Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1343	2020.10.12	2022.10.11	
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	J211020657	2020.10.12	2022.10.11	
Pre-Amplifier (0.1M-3GHz)	EM	EM330	060665	2021.10.08	2022.10.07	
Pre-Amplifier (1G-18GHz)	SKET	LNPA-01018G-45	SK2018080901	2021.09.30	2022.09.29	
Pre-Amplifier (18G-40GHz)	SKET	LNPA-1840-50	SK2018101801	2021.09.28	2022.09.27	
Turn table	EM	SC100_1	60531	N/A	N/A	
Antenna mast	EM	SC100	N/A	N/A	N/A	
Temperature & Humidity	HH660	Mieo	N/A	2021.10.09	2022.10.08	
Test SW	BALUN		BL410-E/18	.905		
RF Connected Test						
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	
Universal Radio communication tester	R&S	CMU200	119907	2021.09.29	2022.09.28	
Wireless Communications Test Set	R&S	CMW 500	133884	2022.03.01	2023.02.28	
Signal Analyzer	Agilent	N9020A	MY52440124	2022.03.01	2023.02.28	
Temperature& Humidity test chamber	Safety test	AG80L	171200018	2022.03.01	2023.02.28	
Programmable power supply	Agilent	E3642A	MY40002025	2021.10.08	2022.10.07	
Temperature & Humidity	SW-108	SuWei N/A 2022.03.02		2023.03.01		
Test SW	FARAD	LZ-RF /LzRf-3A3				

Equipment with a calibration date of "NCR" shown in this list was not used to make direct calibrated measurements.

5 TEST ITEMS

5.1 CONDUCTED OUTPUT POWER&TRANSMITTER RADIATED POWER

TEST OVERVIEW

CONDUCTED OUTPUT POWER:

A system simulator was used to establish communication with the EUT. Its parameters were set to enforce EUT transmitting at the maximum power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

TRANSMITTER RADIATED POWER (EIRP/ERP)

Determining ERP and/or EIRP from conducted RF output power measurements according to ANSI C63.26 2015 Section 5.2.5.5.

In many cases, RF output power limits are specified in terms of the ERP or the EIRP. Typically, ERP is specified when the operating frequency is less than or equal to 1 GHz and EIRP is specified when the operating frequency is greater than 1 GHz. Both are defined as the product of the power supplied to the antenna and its gain (relative to a dipole antenna in the case of ERP, and relative to an isotropic antenna in the case of EIRP); however, when working in decibels (i.e., logarithmic scale), the ERP and EIRP represent the sum of the transmit antenna gain (in dBd or dBi, respectively) and the conducted RF output power (expressed in dB relative to watts or milliwatts). The relevant equation for determining the maximum ERP or EIRP from the measured RF output power is given in Equation (1) as follows:

(1) ERP or EIRP = PMeas + GT ERP= EIRP-2.15

where

ERP or EIRP effective radiated power or equivalent isotropically radiated power, respectively (expressed in the same units as PMeas, e.g., dBm or dBW)

PMeas measured transmitter output power or PSD, in dBm or dBW

GT gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP)

For devices utilizing multiple antennas, see 6.4 for guidance with respect to determining the effective array transmit antenna gain term to be used in the above equation.

The following equations demonstrate the mathematical relationship between ERP and EIRP:

a) ERP = EIRP - 2.15, where ERP and EIRP are expressed in consistent units.

b) EIRP = ERP + 2.15, where ERP and EIRP are expressed in consistent units.

TEST PROCEDURES

- 1. The transmitter output port was connected to the system simulator.
- 2. Set eut at maximum power through the system simulator.

3. Select lowest, middle, and highest channels for each band and different modulation.

4. Measure and record the power level from the system simulator.

TEST SETUP

<u>TEST RESULT</u>

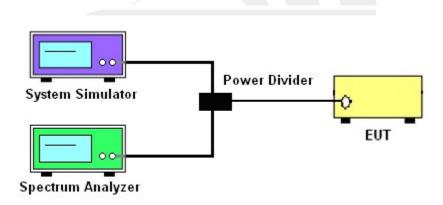
Note: Test data See Appendix 1.

Shenzhen STS Test Services Co., Ltd.

5.2 PEAK TO AVERAGE RATIO

TEST OVERVIEW

According to §24.232(d), power measurements for transmissions by stations authorized under this section may be made either in accordance with a commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 db.


TEST PROCEDURES

1. The testing follows FCCKDB 971168 v03r01 section.

2. The eut was connected to the spectrum analyzer and peak and av system simulator& spectrum analysis reads.

- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Set the test probe and measure average power of the spectrum analysis.

TEST SETUP

TEST RESULT

Note: Test data See Appendix 2.

5.3 OCCUPIED BANDWIDTH

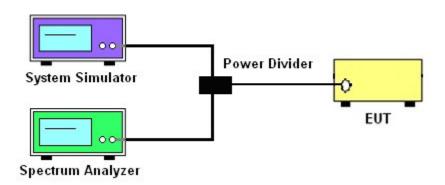
TEST OVERVIEW

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 Db below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

All modes of operation were investigated and the worst case configuration results are reported in this section.

TEST PROCEDURE


1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.

- 2. RBW = 1 5% of the expected OBW
- 3. VBW \ge 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize

8. If necessary, steps 2 - 7 were repeated after changing the RBW such that it would be within

1-5% of the 99% occupied bandwidth observed in Step 7

TEST SETUP

TEST RESULT

Note: Test data See Appendix 3.

Shenzhen STS Test Services Co., Ltd.

5.4 FREQUENCY STABILITY TEST OVERVIEW

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26 2015. The frequency stability of the transmitter is measured by:

a.) Temperature: The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.

b.) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 22, the frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency. For Part 24 the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

TEST PROCEDURE

Temperature Variation

1. The testing follows FCC KDB 971168 D01 section 9.0

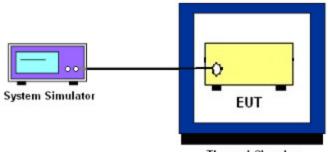
2. The EUT was set up in the thermal chamber and connected with the system simulator.

3. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing.

Power was applied and the maximum change in frequency was recorded within one minute.

4. With power OFF, the temperature was raised in 10°C steps up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

Voltage Variation


1. The testing follows FCC KDB 971168 D01 Section 9.0.

2. The EUT was placed in a temperature chamber at 25±5° C and connected with the system simulator.

3. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.

4. The variation in frequency was measured for the worst case.

TEST SETUP

Thermal Chamber

TEST RESULT

Note: Test data See Appendix 4.

Report No.: STS2203086W01

5.5 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

TEST OVERVIEW

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

TEST PROCEDURE

1. The testing FCC KDB 971168 D01 v03r01 Section 6.0 and ANSI C63.26-2015-Section 5.5.

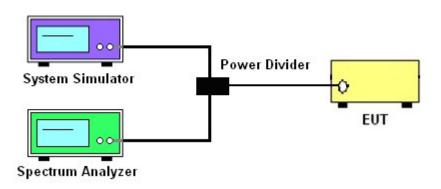
2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.

3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement.

4. The middle channel for the highest RF power within the transmitting frequency was measured.

5. The conducted spurious emission for the whole frequency range was taken.

6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


7. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)

= P(W) - [43 + 10log(P)] (dB)

= [30 + 10log(P)] (dBm) - [43 + 10log(P)] (dB)

= -13dBm.

TEST SETUP

TEST RESULT

Note: Test data See Appendix 5.

Shenzhen STS Test Services Co., Ltd.

5.6 BAND EDGE

TEST OVERVIEW

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is 43 + log10(P[Watts]), where P is the transmitter power in Watts.

TEST PROCEDURE

1. The testing FCC KDB 971168 D01 v03r01 Section 6.0 and ANSI C63.26-2015-Section 5.7.

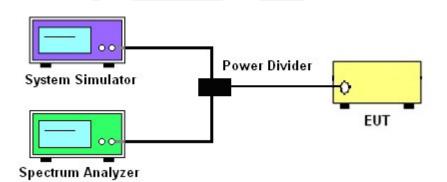
2. Start and stop frequency were set such that the band edge would be placed in the center of the Plot.

- 3. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
- 4. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator.

The path loss was compensated to the results for each measurement.

5. The band edges of low and high channels for the highest RF powers were measured.

6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


7. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)

= P(W) - [43 + 10log(P)] (dB)

= [30 + 10log(P)] (dBm) - [43 + 10log(P)] (dB)

= -13dBm.

TEST SETUP

TEST RESULT

Note: Test data See Appendix 6.

Shenzhen STS Test Services Co., Ltd.

5.7 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT

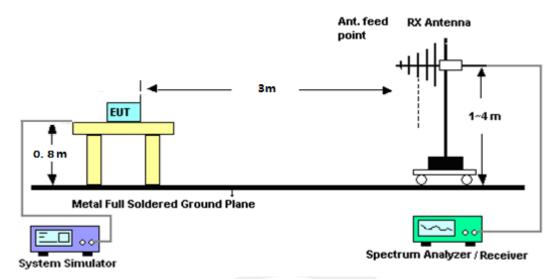
TEST OVERVIEW

Radiated spurious emissions measurements are performed using the substitution method described in ANSI C63.26-2015 with the EUT transmitting into an integral antenna. Measurements on signalsoperating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas.Measurements on signals operating above 1GHz are performed using vertically and horizontally polarizedhorn antennas. All measurements are performed as peak measurements while the EUT isoperating at maximum power and at the appropriate frequencies.

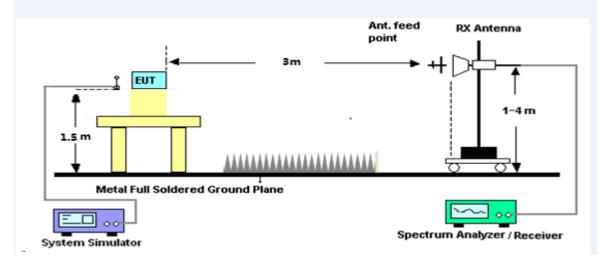
It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

TEST PROCEDURE

- 1. The testing FCC KDB 971168 D01 Section 5.8 and ANSI C63.26-2015-Section 5.5.
- 2. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 3. VBW \ge 3 x RBW
- 4. Span = 1.5 times the OBW
- 5.No. of sweep points > 2 x span/RBW
- 6. Detector = Peak
- 7. Trace mode = max hold
- 8. The trace was allowed to stabilize


9. Effective Isotropic Spurious Radiation was measured by substitution method according to TIA/EIA-603-E. The EUT was replaced by the substitution antenna at same location, and then a known power from S.G. was applied into the dipole antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. PMea=S.G Level+ Ant-Cable loss; Margin=PMea-Limit.

Page 17 of 47 Report No.: STS2203086W01



TEST SETUP

For radiated test from 30MHz to 1GHz

For radiated test from above 1GHz

TEST RESULT

Note: Test data See Appendix 7.

Shenzhen STS Test Services Co., Ltd.

Page 18 of 47

Report No.: STS2203086W01

APPENDIX A.TESTRESULT A1. CONDUCTED OUTPUT POWER&TRANSMITTER RADIATED POWER

GSM 850							
Mode	Frequency (MHz)	Conduction AVG Power(dBm)	Ant Gain (dBi)	ERP (dBm)	ERP Limit (W)	ERP Limit (dBm)	Conclusion
GSM	824.2	31.08	-1.00	27.93	7.00	38.45	PASS
(GMSK,1-Slot)	836.6	31.27	-1.00	28.12	7.00	38.45	PASS
(GIVISK, 1-SIOI)	848.8	31.15	-1.00	28.00	7.00	38.45	PASS
CDDC	824.2	30.84	-1.00	27.69	7.00	38.45	PASS
GPRS (GMSK,1-Slot)	836.6	31.07	-1.00	27.92	7.00	38.45	PASS
(GIVISK, 1-SIOI)	848.8	31.02	-1.00	27.87	7.00	38.45	PASS
CDDC	824.2	30.36	-1.00	27.21	7.00	38.45	PASS
GPRS	836.6	30.63	-1.00	27.48	7.00	38.45	PASS
(GMSK,2-Slot)	848.8	30.56	-1.00	27.41	7.00	38.45	PASS
GPRS	824.2	29.90	-1.00	26.75	7.00	38.45	PASS
	836.6	30.22	-1.00	27.07	7.00	38.45	PASS
(GMSK,3-Slot)	848.8	30.09	-1.00	26.94	7.00	38.45	PASS
CDDS	824.2	29.47	-1.00	26.32	7.00	38.45	PASS
GPRS (GMSK,4-Slot)	836.6	29.72	-1.00	26.57	7.00	38.45	PASS
(0101317,4-3101)	848.8	29.65	-1.00	26.50	7.00	38.45	PASS

PCS 1900							
Mode	Frequency (MHz)	Conduction AVG Power(dBm)	Ant Gain (dBi)	EIRP (dBm)	EIRP Limit (W)	EIRP Limit (dBm)	Conclusion
GSM	1850.2	28.14	-1.10	27.04	2.00	33.01	PASS
(GMSK,1-Slot)	1880.0	28.39	-1.10	27.29	2.00	33.01	PASS
(GIVIOR, 1-0101)	1909.8	28.25	-1.10	27.15	2.00	33.01	PASS
GPRS	1850.2	28.12	-1.10	27.02	2.00	33.01	PASS
(GMSK,1-Slot)	1880.0	27.81	-1.10	26.71	2.00	33.01	PASS
(GIVIOR, 1-0101)	1909.8	27.63	-1.10	26.53	2.00	33.01	PASS
GPRS	1850.2	27.67	-1.10	26.57	2.00	33.01	PASS
	1880.0	27.38	-1.10	26.28	2.00	33.01	PASS
(GMSK,2-Slot)	1909.8	27.16	-1.10	26.06	2.00	33.01	PASS
GPRS	1850.2	27.21	-1.10	26.11	2.00	33.01	PASS
	1880.0	26.92	-1.10	25.82	2.00	33.01	PASS
(GMSK,3-Slot)	1909.8	26.73	-1.10	25.63	2.00	33.01	PASS
GPRS	1850.2	26.71	-1.10	25.61	2.00	33.01	PASS
(GMSK,4-Slot)	1880.0	26.44	-1.10	25.34	2.00	33.01	PASS
(310131,4-3101)	1909.8	26.25	-1.10	25.15	2.00	33.01	PASS

Т

Page 19 of 47

Report No.: STS2203086W01

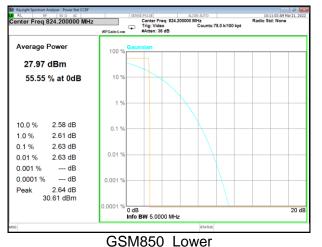
		Radiated Power	· (ERP) for W	/CDMA Ba	nd 5		
Mode	Frequency (MHz)	Conduction AVG Power(dBm)	Ant Gain (dBi)	ERP (dBm)	ERP Limit(W)	ERP Limit (dBm)	Conclusion
	826.40	22.80	-1.00	19.65	7.00	38.45	PASS
WCDMA	836.60	22.48	-1.00	19.33	7.00	38.45	PASS
	846.40	22.03	-1.00	18.88	7.00	38.45	PASS
	826.40	21.74	-1.00	18.59	7.00	38.45	PASS
HSDPA Subtest 1	836.60	22.35	-1.00	19.20	7.00	38.45	PASS
Sublest	846.40	22.60	-1.00	19.45	7.00	38.45	PASS
	826.40	21.30	-1.00	18.15	7.00	38.45	PASS
HSDPA Subtest 2	836.60	21.86	-1.00	18.71	7.00	38.45	PASS
Sublest 2	846.40	22.19	-1.00	19.04	7.00	38.45	PASS
HSDPA	826.40	20.94	-1.00	17.79	7.00	38.45	PASS
Subtest 3	836.60	21.40	-1.00	18.25	7.00	38.45	PASS
Sublest 3	846.40	21.83	-1.00	18.68	7.00	38.45	PASS
HSDPA	826.40	20.48	-1.00	17.33	7.00	38.45	PASS
Subtest 4	836.60	21.00	-1.00	17.85	7.00	38.45	PASS
Sublest 4	846.40	21.46	-1.00	18.31	7.00	38.45	PASS
HSUPA	826.40	21.68	-1.00	18.53	7.00	38.45	PASS
Subtest 1	836.60	22.41	-1.00	19.26	7.00	38.45	PASS
Sublest	846.40	22.36	-1.00	19.21	7.00	38.45	PASS
HSUPA	826.40	20.73	-1.00	17.58	7.00	38.45	PASS
Subtest 2	836.60	21.50	-1.00	18.35	7.00	38.45	PASS
Sublest 2	846.40	21.37	-1.00	18.22	7.00	38.45	PASS
HSUPA	826.40	20.59	-1.00	17.44	7.00	38.45	PASS
Subtest 3	836.60	21.01	-1.00	17.86	7.00	38.45	PASS
Sublest 3	846.40	20.99	-1.00	17.84	7.00	38.45	PASS
HSUPA	826.40	20.24	-1.00	17.09	7.00	38.45	PASS
HSUPA Subtest 4	836.60	20.51	-1.00	17.36	7.00	38.45	PASS
	846.40	20.64	-1.00	17.49	7.00	38.45	PASS
HSUPA	826.40	18.78	-1.00	15.63	7.00	38.45	PASS
Subtest 5	836.60	19.01	-1.00	15.86	7.00	38.45	PASS
Sublesi	846.40	19.19	-1.00	16.04	7.00	38.45	PASS

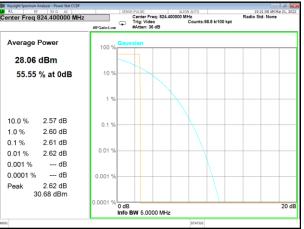
Shenzhen STS Test Services Co., Ltd.

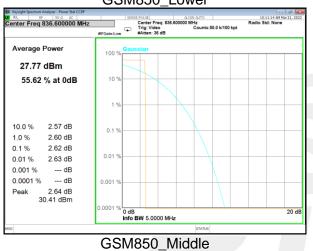
A2. PEAK-TO-AVERAGE RADIO

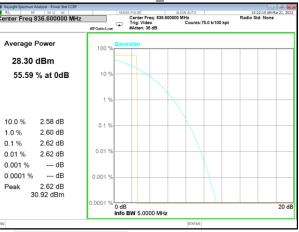
GSM 850					
Mode	Frequency (MHz)	PAR			
	824.2	2.63			
GSM 850	836.6	2.62			
	848.8	2.63			
	824.2	2.61			
GPRS 850	836.6	2.62			
	848.8	2.62			

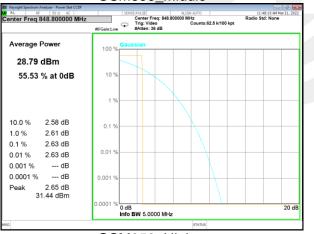
PCS 1900						
Mode	Frequency (MHz)	PAR				
	1850.2	2.64				
PCS1900	1880	2.64				
	1909.8	2.64				
	1850.2	2.66				
GPRS1900	1880	2.65				
	1909.8	2.64				


UMTS Band 5						
Mode	Frequency (MHz)	PAR				
WCDMA 850	826.4	3.07				
RMC	836.6	2.98				
	846.6	2.99				
	826.4	3.49				
HSDPA 850	836.6	3.41				
	846.6	3.37				
	826.4	3.43				
HSUPA 850	836.6	3.48				
	846.6	3.29				

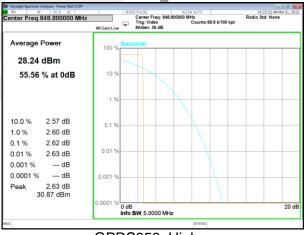

Shenzhen STS Test Services Co., Ltd.


Page 21 of 47


Report No.: STS2203086W01

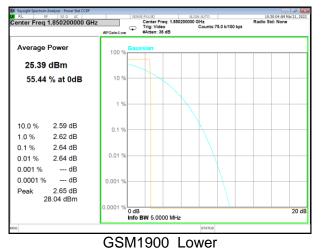


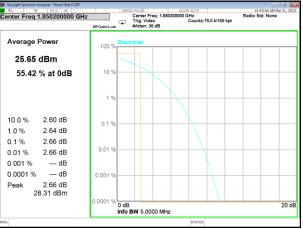
GPRS850_Lower

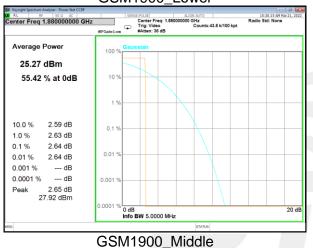


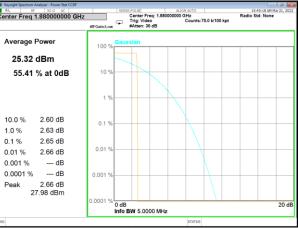
GPRS850_Middle

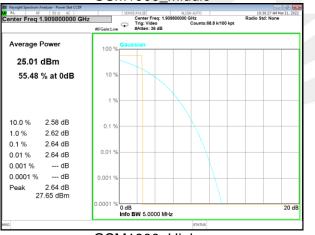
GSM850_Higher



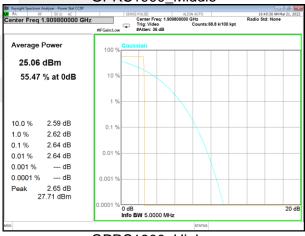

GPRS850_Higher


Page 22 of 47


Report No.: STS2203086W01

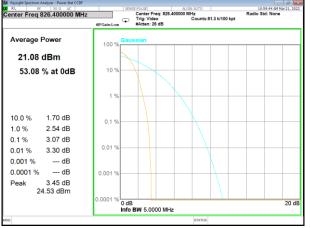


GPRS1900_Lower

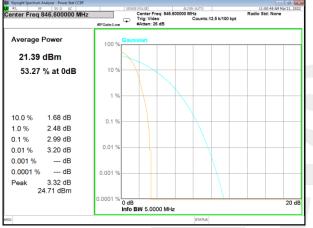


GPRS1900_Middle

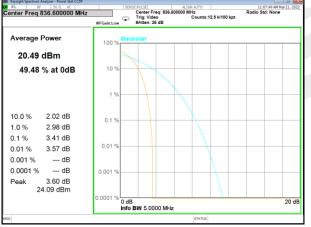
GSM1900_Higher



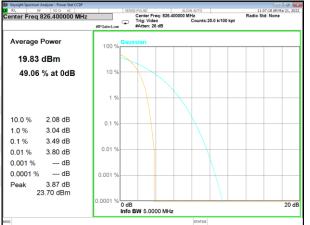
GPRS1900_Higher

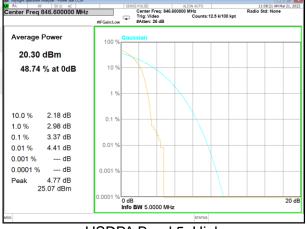


Page 23 of 47


Report No.: STS2203086W01

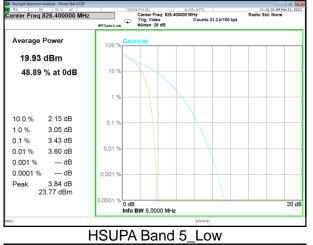
WCDMA Band 5_Low

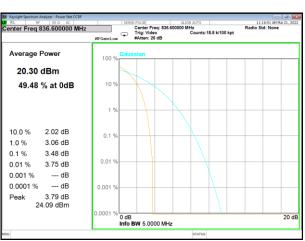

WCDMA Band 5_High

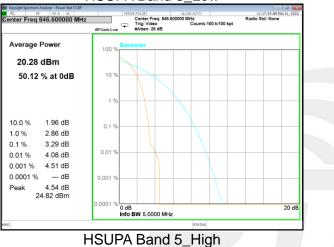

HSDPA Band 5_Middle

WCDMA Band 5_Middle

HSDPA Band 5_Low




HSDPA Band 5_High


Page 24 of 47

Report No.: STS2203086W01

HSUPA Band 5_Middle

Shenzhen STS Test Services Co., Ltd.

П

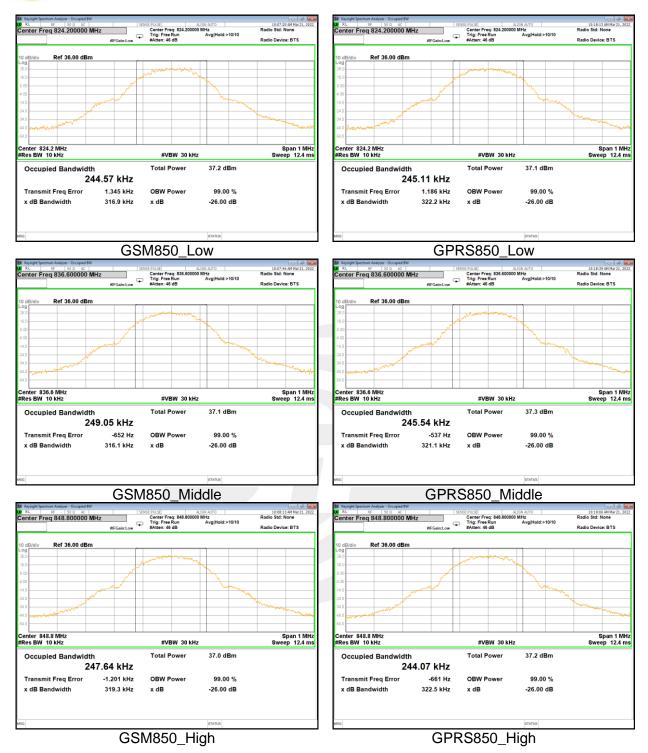
Page 25 of 47 Report No.: STS2203086W01

A3. OCCUPIED BANDWIDTH (99% OCCUPIED BANDWIDTH/26dB BANDWIDTH)

GSM Bandwidth [KHz]								
Mode	Lowest		Middle		Highest			
	99% BW	26dB BW	99% BW	26dB BW	99% BW	26dB BW		
GSM850	244.57	316.9	249.05	316.1	247.64	319.3		
GPRS850	245.11	322.2	245.54	321.1	244.07	322.5		

GSM Bandwidth [KHz]							
Mode	Lowest		Middle		Highest		
	99% BW	26dB BW	99% BW	26dB BW	99% BW	26dB BW	
GSM1900	243.39	312.8	240.39	310.9	243.82	314.7	
GPRS1900	246.32	318.9	243.67	308.1	244.92	317.9	

WCDMA Bandwidth [MHz]								
Mode	Lowest		Middle		Highest			
	99% BW	26dB BW	99% BW	26dB BW	99% BW	26dB BW		
WCDMA 5	4.158	4.658	4.142	4.664	4.169	4.667		
HSDPA 5	4.16	4.656	4.142	4.652	4.165	4.666		
HSUPA 5	4.162	4.671	4.142	4.654	4.166	4.662		



Shenzhen STS Test Services Co., Ltd.

Page 26 of 47

Report No.: STS2203086W01

Shenzhen STS Test Services Co., Ltd.

Page 27 of 47

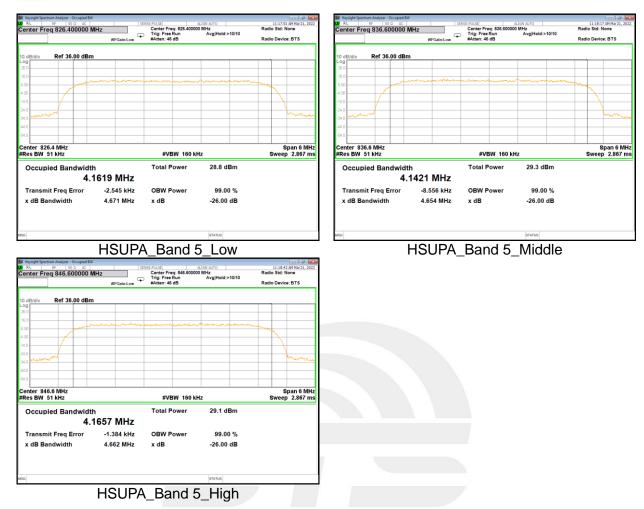
Report No.: STS2203086W01



Shenzhen STS Test Services Co., Ltd.

Page 28 of 47

Report No.: STS2203086W01



HSDPA_Band 5_Middle

Shenzhen STS Test Services Co., Ltd.

Page 29 of 47 Report No.: STS2203086W01

A4. FREQUENCY STABILITY

Normal Voltage = 3.8V; Battery End Point (BEP) = 3.65V; Maximum Voltage =4.35V

GSM 850 /836.6MHz								
Tomporature (°C)	Voltage	Freq. Dev.	Freq. Dev.	Limit	Result			
Temperature (°C)	(Volt)	(Hz)	(ppm)	LITTIL	Resuit			
50		14.84	0.018					
40		19.64	0.023					
30		27.93	0.033	2.5ppm	PASS			
20		30.92	0.037					
10	Normal Voltage	19.67	0.024					
0		27.60	0.033					
-10		24.74	0.030					
-20		18.88	0.023					
-30		23.14	0.028]				
20	Maximum Voltage	34.44	0.041					
20	BEP	23.50	0.028					

GPRS 850 /836.6MHz							
Tomporatura (°C)	Voltage	Freq. Dev.	Freq. Dev.	Limit	Result		
Temperature (°C)	(Volt)	(Hz)	(ppm)		Result		
50		25.92	0.031				
40		24.15	0.029				
30		32.98	0.039				
20		30.15	0.036				
10	Normal Voltage	23.44	0.028	2.5ppm	PASS		
0		20.44	0.024				
-10		16.49	0.020				
-20		29.13	0.035				
-30		19.66	0.023				
20	Maximum Voltage	14.49	0.017]			
20	BEP	18.53	0.022				

Shenzhen STS Test Services Co., Ltd.

Page 31 of 47 Report No.: STS2203086W01

	GSM 1900 / 1880MHz							
Temperature	Voltage	Freq.	Freq.	L ins it				
(°C)		Dev.	Dev.	Limit	Result			
(0)	(Volt)	(Hz)	(ppm)					
50		21.99	0.012					
40		34.50	0.018	Within Authorized Band	PASS			
30		29.46	0.016					
20		27.49	0.015					
10	Normal Voltage	22.43	0.012					
0		16.87	0.009					
-10		18.26	0.010					
-20		19.12	0.010					
-30		32.54	0.017					
20	Maximum Voltage	19.19	0.010					
20	BEP	27.17	0.014					

GPRS 1900 / 1880MHz							
Temperature	Voltage	Freq.	Freq.				
(°C)	Voltago	Dev.	Dev.	Limit	Result		
(0)	(Volt)	(Hz)	(ppm)				
50		19.65	0.010				
40		18.45	0.010				
30		22.38	0.012				
20		31.09	0.017				
10	Normal Voltage	21.58	0.011				
0		27.45	0.015	Within Authorized	PASS		
-10		32.94	0.018	Band	PASS		
-20		35.88	0.019				
-30		12.27	0.007				
20	Maximum Voltage	18.17	0.010				
20	BEP	18.54	0.010				

Shenzhen STS Test Services Co., Ltd.

Page 32 of 47

Report No.: STS2203086W01

UMTS Band 5 / 836.6MHz								
Tomporature (°C)	Voltage	Freq. Dev.	Freq. Dev.	Limit	Result			
Temperature (°C)	(Volt)	(Hz)	(ppm)	LITTIL	Result			
50		22.30	0.027					
40		24.46	0.029					
30		24.04	0.029	-				
20		26.07	0.031					
10	Normal Voltage	21.30	0.025					
0		21.08	0.025	2.5ppm	PASS			
-10		12.01	0.014					
-20		19.77	0.024					
-30		18.66	0.022					
20	Maximum Voltage	35.79	0.043					
20	BEP	28.21	0.034					

	HSDPA Ba	nd 5 / 836.6MF	lz		
Temperature (°C)	Voltage	Freq. Dev.	Freq. Dev.	Limit	Result
Temperature (°C)	(Volt)		(ppm)		Resuit
50		23.03	0.028		
40		25.68	0.031		
30		31.53	0.038	2.5ppm	PASS
20		30.40	0.036		
10	Normal Voltage	27.29	0.033		
0		12.11	0.014		
-10		31.13	0.037		
-20		12.29	0.015		
-30		29.56	0.035		
20	Maximum Voltage	33.11	0.040]	
20	BEP	25.45	0.030		

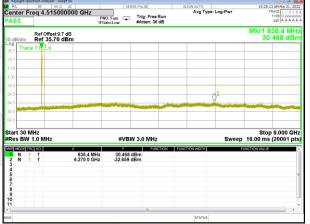
	HSUPA Bar	nd 5 / 836.6MH	lz		
Temperature (°C)	Voltage	Freq. Dev.	Freq. Dev.	Limit	Result
Temperature (C)	(Volt)	(Hz)	(ppm)		Result
50		14.60	0.017		
40		35.53	0.042		
30		25.54	0.031	2.5ppm	
20		25.23	0.030		
10	Normal Voltage	29.65	0.035		
0		26.06	0.031		PASS
-10		29.47	0.035		
-20		28.68	0.034		
-30		20.11	0.024		
20	Maximum Voltage	25.07	0.030		
20	BEP	28.83	0.034		

1. The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small.

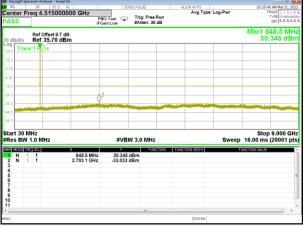
Shenzhen STS Test Services Co., Ltd.


Page 33 of 47

Report No.: STS2203086W01


A5. SPURIOUS EMISSIONS AT ANTENNA TERMINALS

GPRS850_Low



GSM850_Middle

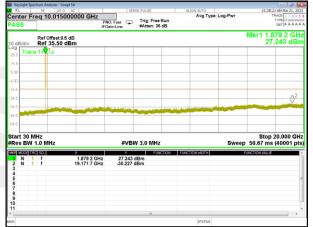
PNO: East	Trig: Free Run #Atten: 36 dB	ALIGN A	vg Type: L	og-Pwr	TF	AM Mar 21, RACE 1 2 3 TYPE MWW DET A A A
FGain:Low	#Atten: 36 dB					DELIARA
						48.5 M 245 de
						-
^ 2						
	1					and so at
#VBW	3.0 MHz			Sweep		9.000 ((20001
20.245 40		FUNCTION	MOTH	FU	NCTION VALUE	
			STATUS			_
	30.245 df	: 30,246 dBm -33,138 dBm	#VBW 3.0 MHz #VBW 3.0 MHz 30245 dBm -33.138 dBm 	#VEW 3.0 MHz 22.45 dBm 33.138 dBm	#VBW 3.0 MHz Sweep 92.45 dBm Ponction Ponction 33.138 dBm rm rm	#VBW 3.0 MHz Stop Sweep 16.00 ms (30.245 dBm #xx=troit #xx=troit -33.138 dBm #xx=troit #xx=troit

GSM850_High

GPRS850_Middle

GPRS850_High

Shenzhen STS Test Services Co., Ltd.


Page 34 of 47 Repo

Report No.: STS2203086W01

GPRS1900_Low

GPRS1900_Middle

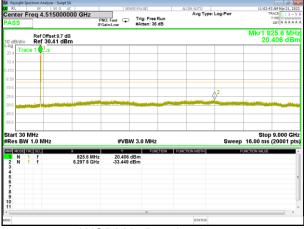
GPRS1900_High

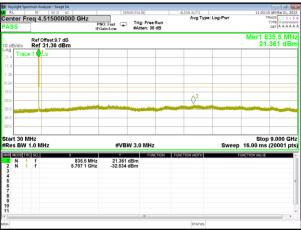
GSM1900_Low

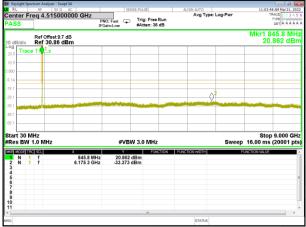
	ectrum Analyzer - Swept SA					
RL	RF 50 Ω AC	SENSE:PL	ULSE	ALIGN AUTO		10:28:20 AM Mar 21, 2022 TRACE 1 2 2 4 5 4
Center F	req 10.015000000 G	Hz	rig: Free Run	Avg Type:	Log-Pwr	TYPE MWWWWW
PASS		PNO: Fast Tr IFGain:Low #	Atten: 36 dB			DET A A A A A A
		il Guill.cow				(r1 1.879 7 GHz
	Ref Offset 9.5 dB				NI NI	27.226 dBm
10 dB/div Log	Ref 35.50 dBm					27.226 dBm
25.5 Trac	e 1 <mark>11</mark> s					
15.5						
5.50						
-4.50						
-14.5						
-24.5						
-34.5						Yes a
			ويعادف وتعريقهم	No. of Concession, Name		the second se
-44.5						
-64.6						
Start 30 I						Stop 20.000 GHz
#Res BW	1.0 MHz	#VBW 3.	.0 MHz		Sweep 50	.67 ms (40001 pts)
MAR MODE T	RC SCL X	Y	FUNCTION	FUNCTION WIDTH	FUNCT	ION VALUE
1 N 1		7 GHz 27.226 dBm				1
2 N	1 f 19.074	9 GHz -30.331 dBm				
3						
5						=
6						
7						
2 N 3 4 5 6 7 8 9 10						
10						
11						
						,
MSG				STATUS		

GSM1900_Middle

SENSE PULSE O: Fast Trig: Fi ain:Low #Atten:	ree Run	GN AUTO Avg Type: Li	-	TR T Mkr1 1.90	AM Mar 21, 2 ACE 1 2 3 4 YPE M WWW DET A A A A
		Avg Type: D	-	Mkr1 1.90	DET A A A A
	36 dB		-	Mkr1 1.90)9 2 GI
			1	Mkr1 1.90)9 2 GI
				27.	194 dB
					() ²
			and the start of the	11 Mars 11, 11 Aug	100 N
Statement of the local division of the local					-
					0.000 G
#VBW 3.0 M	Hz		Sweep	50.67 ms (40001
	FUNCTION FUNCT	ON WOTH	FU	INCTION VALUE	
-00.201 0.011					
ш					
	#VBW 3.0 M	#VBW 3.0 MHz 27.194 dBm	Y FUNCTION FUNCTION WDTH 27.194 dBm	#VBW 3.0 MHz Sweep */VBW 3.0 MHz Sweep *//144 dBm	#VBW 3.0 MHz Stop 2 Sweep 50.67 ms (*/ #weinow */ #weinow *// #weinow


GSM1900_High


Shenzhen STS Test Services Co., Ltd.


Page 35 of 47 Report I

Report No.: STS2203086W01

WCDMA_Band 5_Low

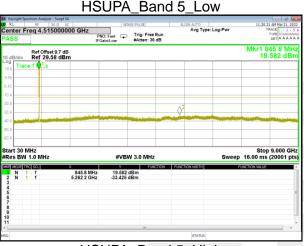
WCDMA_Band 5_High

HSDPA_Band 5_Middle

WCDMA_Band 5_Middle

HSDPA_Band 5_Low

HSDPA_Band 5_High



Page 36 of 47 Report No.: STS2203086W01

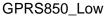
Keysight Sp RL	ectrum Analyzer - Sw	ept SA	SENSE:PULSE		ALIGN AUTO		11,10,1	
	reg 4.5150			-	Avg Type:	Log-Pwr	т	RACE 1 2 3 4 1
ASS			: Fast Trig: Fn in:Low #Atten:	ae Run 36 dB				DET A A A A
	Ref Offset 9.	7 dB						25.2 MH
0 dB/div	Ref 29.36	dBm					19.	355 dBr
19.4 Trac	e 1 🛄 s							
9.36				_				
.64								
0.6								
0.6						_		
0.6						0 ²		
0.6	and a second			and the second	ويتباد المتحمل المادي	No.	a state of the second	Conception in the
0.6								
0.6								
tart 30 P Res BW	VIHZ 1.0 MHz		#VBW 3.0 MH	Iz		Swee	stop 16.00 ms	9.000 GI
KR MODE T	RC SCL	×	Y F	UNCTION	FUNCTION WOTH		FUNCTION VALUE	
1 N 2 N		825.2 MHz 6.345 3 GHz	19.355 dBm -33.615 dBm					
3		6.345 3 GHZ	-55.615 dBm					
5								
6								
8								
10								
1								
6					STATUS			
_				and	E L o			

RL		DA Q0	SENSE:PULSE		ALIGN AUTO		11:19:50	4M Mar 21, 20
enter F <mark>ASS</mark>	req 4.515		NO: Fast Trig: Sain:Low #Atte	Free Run n: 36 dB	Avg Type: L	og-Pwr	т	CE 1 2 3 4 5 PE M WWW DET A A A A A
) dB/div	Ref Offset Ref 30.5						Mkr1 83 20.5	5.5 MH i41 dBr
0g Trac	e 1 🚺 s							
0.5								
30								
46								
40								
2.5					2			
			and the first second second second	المعدر المراجع	and the second second		-	
1.6						1		
1.6								
1.6								
tart 30 I Res BW	MHz 1.0 MHz		#VBW 3.01	ИНz		Sweep	Stop : 16.00 ms (9.000 GH 20001 pt
	RC SOL	x	Ÿ	FUNCTION	UNCTION WIDTH	FL	JNCTION VALUE	
		835.5 MHz	20.541 dBm -32.478 dBm					
1 N 1		5.796 8 GHz						
N 1 2 N		5.796 8 GHz	-32.478 dBm					
1 N 1 2 N 1 3 4 5		5.796 8 GHz	-32.476 dBm					
22 N 1 2 N 1 3 4 5 6 7		5.796 8 GHz	-52.478 dBm					
N 1 2 N 1 3 4 5 6 7 8		5.796 8 GHz	-32.4/8 dBm					
N 1 2 N 3 4 5 6 7		5.796 8 GHz	-32.4/8 dBm					

HSUPA_Band 5_Middle

HSUPA_Band 5_High

Shenzhen STS Test Services Co., Ltd.


A6. BAND EDGE

GSM850_Low

GSM850_High

GPRS850_High

Shenzhen STS Test Services Co., Ltd.

Page 38 of 47 Report No.: STS2203086W01

GPRS1900_Low

∮²

PNO: Wide Trig: Free Run IFGain:Low #Atten: 36 dB

AUTO AVIG Type: Log-Pwr

TYPE A WWWW

Mkr2 1.910 019 GH -27.10 dBr

Span 1.000 MHz Sweep 12.40 ms (1001 pts)

GSM1900_Low

GSM1900_High

GPRS1900_High

#VBW 30 kHz

nter Freq 1.910000000 GHz

Ref Offset 9.5 dB Ref 18.16 dBm

Center 1.9100000 GHz Res BW 10 kHz

Shenzhen STS Test Services Co., Ltd.

Page 39 of 47

RL RF 50 Q AC Center Freq 849.000000 MHz

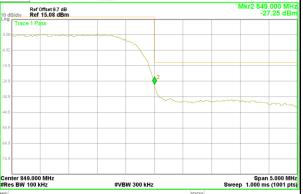
Ref Offset 9.7 dB div Ref 16.50 dBm

Report No.: STS2203086W01


AUTO Avg Type: Log-Pwr

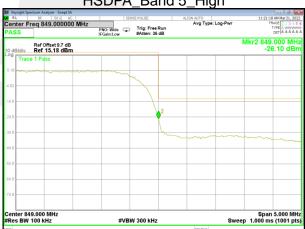
RACE 1 2 3 4 5 TYPE A WWWW DET A A A A A

1kr2 849.000 MH -25.44 dBr



WCDMA_Band 5_Low

Center 849.000 MHz #Res BW 100 kHz Span 5.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz WCDMA_Band 5_High AUTO Avg Type: Log-Pwr enter Freq 849.000000 MHz PNO: Wide Trig: Free Rur IFGain:Low #Atten: 36 dB kr2 849.000 MH -27.25 dBi Ref Offset 9.7 dB Ref 15.08 dBm


PNO: Wide Trig: Free Run ECain:Low #Atten: 36 dB

HSDPA_Band 5_High

HSUPA_Band 5_Low

HSUPA_Band 5_High

Shenzhen STS Test Services Co., Ltd.

A7. FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT

Note: (1) Spurious emissions which are attenuated by more than 20dB below the permissible value for

frequeny below 1000MHz.

(2) Above 3.5GHz amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value

(3)Test is divided into three directions, X/Y/Z. X pattern for the worst.

		GSM 85	50: (30-9	000)MHz					
	The Wo	orst Test Res	sults Cha	nnel 128/8	324.2 MHz				
	S			PMea	Limit	Margin			
Frequency(MHz)	G.Lev (dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity		
1648.32	-40.32	9.40	4.75	-35.67	-13.00	-22.67	Н		
2472.40	-40.29	10.60	8.39	-38.08	-13.00	-25.08	Н		
3296.54	-31.72	12.00	11.79	-31.51	-13.00	-18.51	Н		
1648.38	-43.43	9.40	4.75	-38.78	-13.00	-25.78	V		
2472.67	-44.94	10.60	8.39	-42.73	-13.00	-29.73	V		
3296.88	-43.84	12.00	11.79	-43.63	-13.00	-30.63	V		
The Worst Test Results Channel 190/836.6 MHz									
	S			PMea	Limit	Margin			
Frequency(MHz)	G.Lev (dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity		
1673.04	-40.60	9.50	4.76	-35.86	-13.00	-22.86	Н		
2509.69	-40.04	10.70	8.40	-37.74	-13.00	-24.74	Н		
3346.28	-32.28	12.20	11.80	-31.88	-13.00	-18.88	Н		
1672.81	-43.22	9.40	4.75	-38.57	-13.00	-25.57	V		
2509.42	-44.24	10.60	8.39	-42.03	-13.00	-29.03	V		
3346.04	-43.25	12.20	11.82	-42.87	-13.00	-29.87	V		
		orst Test Res	sults Cha	nnel 251/8	848.8 MHz				
	S			PMea	Limit	Margin			
Frequency(MHz)	G.Lev (dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity		
1697.21	-41.39	9.60	4.77	-36.56	-13.00	-23.56	Н		
2546.48	-39.86	10.80	8.50	-37.56	-13.00	-24.56	Н		
3395.04	-31.41	12.50	11.90	-30.81	-13.00	-17.81	Н		
1697.39	-43.69	9.60	4.77	-38.86	-13.00	-25.86	V		
2546.37	-45.00	10.80	8.50	-42.70	-13.00	-29.70	V		
3395.20	-43.85	12.50	11.90	-43.25	-13.00	-30.25	V		

Shenzhen STS Test Services Co., Ltd.

Page 41 of 47 Report No.: STS2203086W01

		GPRS 8	50: (30-9	000)MHz					
	The Wo	orst Test Res			324.2 MHz				
	S			PMea	Limit	Margin			
Frequency(MHz)	G.Lev (dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity		
1648.02	-40.96	9.40	4.75	-36.31	-13.00	-23.31	Н		
2472.22	-39.87	10.60	8.39	-37.66	-13.00	-24.66	Н		
3296.90	-31.24	12.00	11.79	-31.03	-13.00	-18.03	Н		
1648.34	-43.46	9.40	4.75	-38.81	-13.00	-25.81	V		
2472.58	-44.77	10.60	8.39	-42.56	-13.00	-29.56	V		
3296.64	-42.81	12.00	11.79	-42.60	-13.00	-29.60	V		
The Worst Test Results Channel 190/836.6 MHz									
	S			PMea	Limit	Margin			
Frequency(MHz)	G.Lev (dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity		
1673.23	-40.49	9.50	4.76	-35.75	-13.00	-22.75	Н		
2509.43	-39.26	10.70	8.40	-36.96	-13.00	-23.96	Н		
3346.30	-31.54	12.20	11.80	-31.14	-13.00	-18.14	Н		
1673.26	-43.35	9.40	4.75	-38.70	-13.00	-25.70	V		
2509.67	-44.10	10.60	8.39	-41.89	-13.00	-28.89	V		
3346.40	-42.57	12.20	11.82	-42.19	-13.00	-29.19	V		
		orst Test Res	sults Cha	nnel 251/8	348.8 MHz				
	S			PMea	Limit	Margin			
Frequency(MHz)	G.Lev (dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity		
1697.65	-40.86	9.60	4.77	-36.03	-13.00	-23.03	Н		
2546.12	-40.25	10.80	8.50	-37.95	-13.00	-24.95	Н		
3395.14	-31.97	12.50	11.90	-31.37	-13.00	-18.37	Н		
1697.43	-43.82	9.60	4.77	-38.99	-13.00	-25.99	V		
2546.24	-45.01	10.80	8.50	-42.71	-13.00	-29.71	V		
3395.21	-43.82	12.50	11.90	-43.22	-13.00	-30.22	V		

Page 42 of 47 Report No.: STS2203086W01

DCS 1900: (30-20000)MHz										
	The Wors				/1850.2MHz					
	S			PMea	Limit	Margin				
Frequency(MHz)	G.Lev (dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity			
3700.21	-34.35	12.60	12.93	-34.68	-13.00	-21.68	Н			
5550.46	-34.72	13.10	17.11	-38.73	-13.00	-25.73	Н			
7400.84	-32.68	11.50	22.20	-43.38	-13.00	-30.38	Н			
3700.06	-34.66	12.60	12.93	-34.99	-13.00	-21.99	V			
5550.36	-35.10	13.10	17.11	-39.11	-13.00	-26.11	V			
7400.79	-32.65	11.50	22.20	-43.35	-13.00	-30.35	V			
The Worst Test Results for Channel 661/1880.0MHz										
	S			PMea	Limit	Margin				
Frequency(MHz)	G.Lev (dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity			
3759.95	-34.87	12.60	12.93	-35.20	-13.00	-22.20	Н			
5640.30	-34.51	13.10	17.11	-38.52	-13.00	-25.52	Н			
7520.04	-32.18	11.50	22.20	-42.88	-13.00	-29.88	Н			
3759.90	-35.65	12.60	12.93	-35.98	-13.00	-22.98	V			
5640.25	-34.12	13.10	17.11	-38.13	-13.00	-25.13	V			
7519.90	-32.51	11.50	22.20	-43.21	-13.00	-30.21	V			
	The Wors	t Test Resu	Its for Ch	annel 810	/1909.8MHz					
	S			PMea	Limit	Margin				
Frequency(MHz)	G.Lev (dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity			
3819.24	-34.04	12.60	12.93	-34.37	-13.00	-21.37	Н			
5729.39	-34.31	13.10	17.11	-38.32	-13.00	-25.32	Н			
7639.27	-32.66	11.50	22.20	-43.36	-13.00	-30.36	Н			
3819.59	-35.84	12.60	12.93	-36.17	-13.00	-23.17	V			
5729.05	-34.80	13.10	17.11	-38.81	-13.00	-25.81	V			
7639.14	-32.33	11.50	22.20	-43.03	-13.00	-30.03	V			

Page 43 of 47 Report No.: STS2203086W01

		GPRS19	00: (30-2	0000)MHz	2				
_	The Wors				/1850.2MHz				
	S			PMea	Limit	Margin			
Frequency(MHz)	G.Lev (dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity		
3700.29	-34.53	12.60	12.93	-34.86	-13.00	-21.86	Н		
5550.52	-34.62	13.10	17.11	-38.63	-13.00	-25.63	Н		
7400.88	-32.89	11.50	22.20	-43.59	-13.00	-30.59	Н		
3700.02	-35.82	12.60	12.93	-36.15	-13.00	-23.15	V		
5550.25	-34.90	13.10	17.11	-38.91	-13.00	-25.91	V		
7400.98	-32.11	11.50	22.20	-42.81	-13.00	-29.81	V		
The Worst Test Results for Channel 661/1880.0MHz									
	S			PMea	Limit	Margin			
Frequency(MHz)	G.Lev (dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity		
3760.17	-33.45	12.60	12.93	-33.78	-13.00	-20.78	Н		
5640.16	-35.41	13.10	17.11	-39.42	-13.00	-26.42	Н		
7520.04	-32.98	11.50	22.20	-43.68	-13.00	-30.68	Н		
3759.87	-34.89	12.60	12.93	-35.22	-13.00	-22.22	V		
5640.23	-34.33	13.10	17.11	-38.34	-13.00	-25.34	V		
7519.87	-31.94	11.50	22.20	-42.64	-13.00	-29.64	V		
	The Wors	st Test Resu	Its for Ch	annel 810	/1909.8MHz				
	S			PMea	Limit	Margin			
Frequency(MHz)	G.Lev (dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity		
3819.36	-34.63	12.60	12.93	-34.96	-13.00	-21.96	Н		
5729.19	-35.49	13.10	17.11	-39.50	-13.00	-26.50	Н		
7638.97	-33.50	11.50	22.20	-44.20	-13.00	-31.20	Н		
3819.63	-35.93	12.60	12.93	-36.26	-13.00	-23.26	V		
5729.28	-34.58	13.10	17.11	-38.59	-13.00	-25.59	V		
7638.92	-31.96	11.50	22.20	-42.66	-13.00	-29.66	V		

Page 44 of 47 Report No.: STS2203086W01

		WCDMA Ba	and 5: (3	0-9000)MI	Hz				
	The w	ost testresu							
	S			PMea	Limit	Margin			
Frequency(MHz)	G.Lev (dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity		
1652.36	-40.49	9.40	4.75	-35.84	-13.00	-22.84	Н		
2479.48	-39.72	10.60	8.39	-37.51	-13.00	-24.51	Н		
3305.59	-31.52	12.00	11.79	-31.31	-13.00	-18.31	Н		
1652.30	-44.00	9.40	4.75	-39.35	-13.00	-26.35	V		
2479.68	-44.02	10.60	8.39	-41.81	-13.00	-28.81	V		
3305.59	-43.16	12.00	11.79	-42.95	-13.00	-29.95	V		
The Worst Test Results Channel 4183/836.6MHz									
	S			PMea	Limit	Margin			
Frequency(MHz)	G.Lev (dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity		
1672.99	-41.41	9.40	4.75	-36.76	-13.00	-23.76	Н		
2509.72	-39.29	10.60	8.39	-37.08	-13.00	-24.08	Н		
3346.15	-32.25	12.00	11.79	-32.04	-13.00	-19.04	Н		
1672.89	-44.20	9.40	4.75	-39.55	-13.00	-26.55	V		
2509.49	-44.47	10.60	8.39	-42.26	-13.00	-29.26	V		
3346.43	-43.95	12.00	11.79	-43.74	-13.00	-30.74	V		
	The Wo	rst Test Res	ults Cha	nnel 4233,	/846.6MHz				
	S			PMea	Limit	Margin			
Frequency(MHz)	G.Lev (dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity		
1693.55	-41.18	9.40	4.75	-36.53	-13.00	-23.53	Н		
2539.20	-40.49	10.60	8.39	-38.28	-13.00	-25.28	Н		
3386.24	-31.87	12.00	11.79	-31.66	-13.00	-18.66	Н		
1693.59	-44.54	9.40	4.75	-39.89	-13.00	-26.89	V		
2539.29	-45.02	10.60	8.39	-42.81	-13.00	-29.81	V		
3386.02	-43.97	12.00	11.79	-43.76	-13.00	-30.76	V		

Page 45 of 47 Report No.: STS2203086W01

HSUPA Band 5: (30-9000)MHz										
The wost testresults channel 4132/826.4MHz										
	S			PMea	Limit	Margin				
Frequency(MHz)	G.Lev (dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity			
1652.03	-41.07	9.40	4.75	-36.42	-13.00	-23.42	Н			
2479.25	-39.94	10.60	8.39	-37.73	-13.00	-24.73	Н			
3305.59	-30.87	12.00	11.79	-30.66	-13.00	-17.66	Н			
1652.14	-44.24	9.40	4.75	-39.59	-13.00	-26.59	V			
2479.59	-44.74	10.60	8.39	-42.53	-13.00	-29.53	V			
3305.44	-43.28	12.00	11.79	-43.07	-13.00	-30.07	V			
The Worst Test Results Channel 4183/836.6MHz										
	S		Loss	PMea	Limit	Margin	Polarity			
Frequency(MHz)	G.Lev (dBm)	· · · ·		(dBm)	(dBm)	(dBm)				
1673.13	-40.78	9.40	4.75	-36.13	-13.00	-23.13	Н			
2509.87	-40.41	10.60	8.39	-38.20	-13.00	-25.20	Н			
3346.43	-30.88	12.00	11.79	-30.67	-13.00	-17.67	Н			
1673.20	-44.10	9.40	4.75	-39.45	-13.00	-26.45	V			
2509.53	-44.17	10.60	8.39	-41.96	-13.00	-28.96	V			
3346.42	-43.81	12.00	11.79	-43.60	-13.00	-30.60	V			
	The Wo	rst Test Res	ults Cha	nnel 4233,	/846.6MHz					
Frequency(MHz)	S	.ev Ant(dBi)	Loss	PMea	Limit	Margin	Polarity			
	G.Lev (dBm)			(dBm)	(dBm)	(dBm)				
1693.37	-40.86	9.40	4.75	-36.21	-13.00	-23.21	Н			
2539.54	-40.63	10.60	8.39	-38.42	-13.00	-25.42	Н			
3385.93	-31.32	12.00	11.79	-31.11	-13.00	-18.11	Н			
1693.66	-43.23	9.40	4.75	-38.58	-13.00	-25.58	V			
2539.17	-45.08	10.60	8.39	-42.87	-13.00	-29.87	V			
3386.01	-42.52	12.00	11.79	-42.31	-13.00	-29.31	V			

Page 46 of 47 Report No.: STS2203086W01

HSDPA Band 5: (30-9000)MHz										
The wost testresults channel 4132/826.4MHz										
	S			PMea	Limit	Margin				
Frequency(MHz)	G.Lev (dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity			
1652.49	-40.65	9.40	4.75	-36.00	-13.00	-23.00	Н			
2479.25	-40.26	10.60	8.39	-38.05	-13.00	-25.05	Н			
3305.44	-31.10	12.00	11.79	-30.89	-13.00	-17.89	Н			
1652.24	-44.60	9.40	4.75	-39.95	-13.00	-26.95	V			
2479.70	-44.36	10.60	8.39	-42.15	-13.00	-29.15	V			
3305.91	-43.13	12.00	11.79	-42.92	-13.00	-29.92	V			
The Worst Test Results Channel 4183/836.6MHz										
	S	· · ·	Loss	PMea	Limit	Margin	Polarity			
Frequency(MHz)	G.Lev (dBm)			(dBm)	(dBm)	(dBm)				
1673.17	-41.41	9.40	4.75	-36.76	-13.00	-23.76	Н			
2509.49	-39.76	10.60	8.39	-37.55	-13.00	-24.55	Н			
3346.41	-31.38	12.00	11.79	-31.17	-13.00	-18.17	Н			
1673.09	-44.12	9.40	4.75	-39.47	-13.00	-26.47	V			
2509.59	-44.21	10.60	8.39	-42.00	-13.00	-29.00	V			
3346.12	-42.86	12.00	11.79	-42.65	-13.00	-29.65	V			
	The Wo	rst Test Res	ults Cha	nnel 4233,	/846.6MHz					
	S			PMea	Limit	Margin				
Frequency(MHz)	G.Lev (dBm)	Ant(dBi)	Loss	(dBm)	(dBm)	(dBm)	Polarity			
1693.47	-40.97	9.40	4.75	-36.32	-13.00	-23.32	Н			
2539.10	-39.48	10.60	8.39	-37.27	-13.00	-24.27	Н			
3386.25	-32.17	12.00	11.79	-31.96	-13.00	-18.96	Н			
1693.20	-43.19	9.40	4.75	-38.54	-13.00	-25.54	V			
2539.28	-44.11	10.60	8.39	-41.90	-13.00	-28.90	V			
3386.05	-42.63	12.00	11.79	-42.42	-13.00	-29.42	V			

Page 47 of 47 Report No.: STS2203086W01

APPENDIX-PHOTOS OF TEST SETUP

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

* * * * * END OF THE REPORT * * * * *

Shenzhen STS Test Services Co., Ltd.