

RF TEST REPORT

Product Name: wireless headset

Model Name: G9, A2, A11, G7, PRO9, G6, V12, G3, G5, K22

FCC ID: 2A5M3-G9

Issued For : Sunfly Electronics Co., Ltd

5/F, building E, Jinxiongda Science and Technology Park, Rd Huangguang south, Longhua District, ShenZhen, China

Issued By : Shenzhen LGT Test Service Co., Ltd. Room 205, Building 13, Zone B, Zhenxiong Industrial Park, No.177, Renmin West Road, Jinsha, Kengzi Street, Pingshan District, Shenzhen, Guangdong, China

Report Number:	LGT23G045RF01
Sample Received Date:	Jun. 17, 2023
Date of Test:	Jun. 17, 2023 – Jul. 27, 2023
Date of Issue:	Jul. 27, 2023

TEST REPORT CERTIFICATION

Applicant:	Sunfly Electronics Co., Ltd
Address:	5/F, building E, Jinxiongda Science and Technology Park, Rd Huangguang south, Longhua District, ShenZhen, China
Manufacturer:	Shenzhen Sunfly Electronics Co., Ltd
Address:	5/F, building E, Jinxiongda Science and Technology Park, Rd Huangguang south, Longhua District, ShenZhen, China
Product Name:	wireless headset
Trademark:	N/A
Model Name:	G9, A2, A11, G7, PRO9, G6, V12, G3, G5, K22
Sample Status:	Normal

APPLICABLE STANDARDS			
STANDARD TEST RESULTS			
FCC Part 15.247, Subpart C ANSI C63.10-2013	PASS		

Prepared by:

Zane Shan

Zane Shan Engineer

Approved by:

Nati

Vita Li Technical Director

Table of Contents

Page

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	10
2.3 FREQUENCY HOPPING SYSTEM REQUIREMENTS	10
2.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING	12
2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	12
2.6 EQUIPMENTS LIST	13
3. EMC EMISSION TEST	14
3.1 CONDUCTED EMISSION MEASUREMENT	14
3.2 RADIATED EMISSION MEASUREMENT	18
4. CONDUCTED SPURIOUS & BAND EDGE EMISSION	30
4.1 LIMIT	30
4.2 TEST PROCEDURE	30
4.3 TEST SETUP	31
4.4 EUT OPERATION CONDITIONS	31
4.5 TEST RESULTS	31
5. NUMBER OF HOPPING CHANNEL	32
5.1 LIMIT	32
5.2 TEST PROCEDURE	32
5.3 TEST SETUP	32
5.4 EUT OPERATION CONDITIONS	32
5.5 TEST RESULTS	32
6. AVERAGE TIME OF OCCUPANCY	33
6.1 LIMIT	33
6.2 TEST PROCEDURE	33
6.3 TEST SETUP	33
6.4 EUT OPERATION CONDITIONS	33
6.5 TEST RESULTS	33
7. HOPPING CHANNEL SEPARATION MEASUREMEN	34
7.1 LIMIT	34
7.2 TEST PROCEDURE	34

Table of Contents

Page

	7.3 TEST SETUP	34
	7.4 EUT OPERATION CONDITIONS	34
	7.5 TEST RESULTS	34
8.	BANDWIDTH TEST	35
	8.1 LIMIT	35
	8.2 TEST PROCEDURE	35
	8.3 TEST SETUP	35
	8.4 EUT OPERATION CONDITIONS	35
	8.5 TEST RESULTS	35
9.	OUTPUT POWER TEST	36
	9.1 LIMIT	36
	9.2 TEST PROCEDURE	36
	9.3 TEST SETUP	36
	9.4 EUT OPERATION CONDITIONS	36
	9.5 TEST RESULTS	36
1(D. ANTENNA REQUIREMENT	37
	10.1 STANDARD REQUIREMENT	37
	10.2 EUT ANTENNA	37
A	PPENDIX I:TEST RESULTS	38
	DWELL TIME	38
	DUTY CYCLE	45
	MAXIMUM PEAK CONDUCTED OUTPUT POWER	49
	-20DB BANDWIDTH	50
	OCCUPIED CHANNEL BANDWIDTH	54
	CARRIER FREQUENCIES SEPARATION	58
	BAND EDGE	62
	BAND EDGE(HOPPING)	67
	CONDUCTED RF SPURIOUS EMISSION	72
	NUMBER OF HOPPING CHANNEL	79

Revision History

Rev.	Issue Date	Contents
00	Jul. 27, 2023	Initial Issue

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC Part 15.247, Subpart C			
Standard Section	Test Item	Judgment	Remark
15.207	Conducted Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(a)(1)&(b)(1)	Output Power	PASS	
15.209	Radiated Spurious Emission	PASS	
15.247(d)	Conducted Spurious & Band Edge Emission	PASS	
15.247(a)(1)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(1)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.205	Restricted bands of operation	PASS	
Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS	
15.203	Antenna Requirement	PASS	

NOTE:

(1) 'N/A' denotes test is not applicable in this Test Report.

(2) All tests are according to ANSI C63.10-2013.

1.1 TEST FACTORY

Company Name:	Shenzhen LGT Test Service Co., Ltd.	
Address:	Room 205, Building 13, Zone B, Zhenxiong Industrial Park, No.177, Renmin West Road, Jinsha, Kengzi Street, Pingshan District, Shenzhen, Guangdong, China	
	A2LA Certificate No.: 6727.01	
Accreditation Certificate	FCC Registration No.: 746540	
	CAB ID: CN0136	

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.68dB
2	Unwanted Emissions, conducted	±2.988dB
3	All emissions, radiated 9K-30MHz	±2.84dB
4	All emissions, radiated 30M-1GHz	±4.39dB
5	All emissions, radiated 1G-6GHz	±5.10dB
6	All emissions, radiated>6G	±5.48dB
7	Conducted Emission (9KHz-150KHz)	±2.79dB
8	Conducted Emission (150KHz-30MHz)	±2.80dB

Note: The measurement uncertainty is not included in the test result.

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name:	wireless headset
Trademark:	N/A
Model Name:	G9
Series Model:	A2, A11, G7, PRO9, G6, V12, G3, G5, K22
Model Difference:	Only the model color is different.
Channel List:	Please refer to the Note 2.
Bluetooth:	Frequency:2402 – 2480 MHz Modulation: GFSK(1Mbps), π/4-DQPSK(2Mbps), 8DPSK(3Mbps)
Antenna Type:	Chip Antenna
Antenna Gain:	1.75dBi
Rating:	Input: DC 5V
Battery:	Capacity: 150mAh Rated Voltage: 3.7 V
Hardware Version:	G9_BT8925B2_V2
Software Version:	G9_8925B2_EN&CN_230525A
Connecting I/O Port(s):	Please refer to the Note 1.

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.
- 2. The antenna information refers to the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer.

		Chan	nel List		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

2.

2.2 DESCRIPTION OF THE TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Worst Mode	Description	Data Rate/Modulation	
Mode 1	TX CH00	1Mbps/GFSK	
Mode 2	TX CH39	1Mbps/GFSK	
Mode 3	TX CH78	1Mbps/GFSK	
Mode 4	TX CH00	2 Mbps/π/4-DQPSK	
Mode 5	TX CH39	2 Mbps/π/4-DQPSK	
Mode 6	TX CH78	2 Mbps/π/4-DQPSK	
Mode 7	TX CH00	3 Mbps/8DPSK	
Mode 8	TX CH39	3 Mbps/8DPSK	
Mode 9	TX CH78	3 Mbps/8DPSK	
Mode 10	Hopping	GFSK	
Mode 11	Hopping	π/4-DQPSK	
Mode 12	Hopping	8DPSK	

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

(2) We tested for all available U.S. voltage and frequencies (For 120V, 50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/ 60Hz is shown in the report.

(3) The battery is fully charged during the radiated and RF conducted test.

For AC Conducted Emission

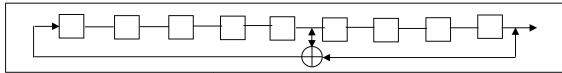
Test Case			
	AC Conducted Emission	Mode 13: Keeping BT TX	

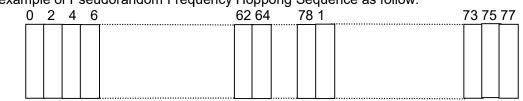
2.3 FREQUENCY HOPPING SYSTEM REQUIREMENTS

(1) Standard and Limit

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.


(2) The Pseudorandom sequence may be generated in a nin-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones: i.e. the shift register is initialized with nine ones.

Numver of shift register stages:9

Length of pseudo-random sequence:2⁹-1=511bits Longest sequence of zeros: 8(non-inverted signal)

Liner Feedback Shift Register for Generator of the PRBS sequence An example of Pseudorandom Frequency Hoppong Sequence as follow:

Each frequency used equally on the average by each transmitter. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies ini synchronization with the transmitted signals.

(3) Frequency Hopping System

This transmitter device is frequency hopping device and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless device are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with a bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements FCC Part 15.247 rule.

2.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS.

Test software Version	Test program: Bluetooth			
	Mode Or Modulation type	Power setting		
PT Tool 1120	1M	7		
BT_Tool_1.1.2.0	2M	7		
	3M	7		

2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Accessories Equipment

Description	Manufacturer	Model	S/N	Rating

Auxiliary Equipment

Description	Manufacturer	Model	S/N	Rating
Laptop	HUAWEI	HKF-16	N/A	N/A
Adapter	Tenpao	S005CAU05001 00	N/A	Input: 100-240V ~ 50/60Hz 0.2A Output: 5V, 1A
USB-A to USB-C Cable	UGREEN	US287	N/A	1m, shielded, without ferrite core

Note:

(1) For detachable type I/O cable should be specified the length in cm in $\[\]$ Length $\[\]$ column.

(2) "YES" is means "with core"; "NO" is means "without core".

2.6 EQUIPMENTS LIST

Conducted Emission								
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until			
EMI Test Receiver	R&S	ESU8	100372	2023.04.13	2024.04.12			
LISN	COM-POWER	LI-115	02032	2023.04.07	2024.04.06			
LISN	SCHWARZBECK	NNLK 8121	00847	2023.04.07	2024.04.06			
LISN	SCHWARZBECK	NNLK 8122	00160	2023.04.07	2024.04.06			
Transient Limiter	CYBERTEK	EM5010A	E225010004 9	2023.04.07	2024.04.06			
Temperature & Humidity	KTJ	TA218B	N.A	2023.04.24	2024.04.23			
Testing Software	EMC-I_\	/1.4.0.3_SKET						

Radiated Test equipment							
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until		
EMI Test Receiver	R&S	ESU8	100372	2023.04.13	2024.04.12		
Active loop Antenna	ETS	6502	00049544	2022.06.02	2025.06.01		
Spectrum Analyzer	Keysight	N9010B	MY60242508	2023.04.10	2024.04.09		
Bilog Antenna(30M-1G)	SCHWARZBECK	VULB 9168	01447	2022.06.05	2025.06.04		
Horn Antenna(1-18G)	SCHWARZBECK	3115	10SL0060	2022.06.02	2025.06.01		
Horn Antenna(18-40G)	A-INFO	LB-180400-KF	J211060273	2022.06.08	2025.06.07		
Pre-amplifier(30M-1G)	EMtrace	RP01A	02019	2023.04.07	2024.04.06		
Pre-amplifier(1-26.5G)	Agilent	8449B	3008A4722	2023.04.07	2024.04.06		
Pre-amplifier(18-40G)	com-mw	LNPA_18-40-0 1	18050003	2023.04.07	2024.04.06		
Wireless Communications Test Set	R&S	CMW 500	137737	2023.04.13	2024.04.12		
Temperature & Humidity	KTJ	TA218B	N.A	2023.04.24	2024.04.23		
Testing Software		_	/1.4.0.3_SKET	2020.04.24	2024.04.20		

Conducted Test equipment						
Equipment	Manufacturer	Model No.	Serial No. Cal. Dat		Cal. Until	
Signal Analyzer	Keysight	N9010B	MY60242508	2023.04.10	2024.04.09	
Wireless Communications Test Set	R&S	CMW 500	137737	2023.04.13	2024.04.12	
MXG Vector Signal Generator	Keysight	N5182B	MY59100717	2023.04.07	2024.04.06	
Power Sensor	MW	MW100-RFCB	MW220324LG-33	2023.04.13	2024.04.12	
Temperature & Humidity	KTJ	TA218B	N.A	2023.04.24	2024.04.23	
Temperature& Humidity test chamber	AISRY	LX-1000L	171200018	2023.05.10	2024.05.09	
Attenuator	eastsheep	90db	N.A	2023.04.10	2024.04.09	
Testing Software		MTS8	200_V2.0.0.0_MW			

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

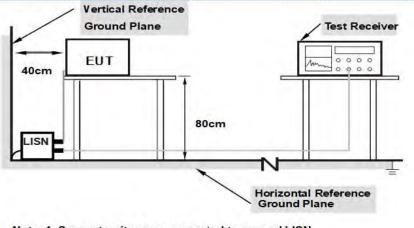
	Conducted Emissionlimit (dBuV)			
FREQUENCY (MHz)	Quasi-peak	Average		
0.15 -0.5	66 - 56 *	56 - 46 *		
0.50 -5.0	56.00	46.00		
5.0 -30.0	60.00	50.00		

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.2 TEST PROCEDURE

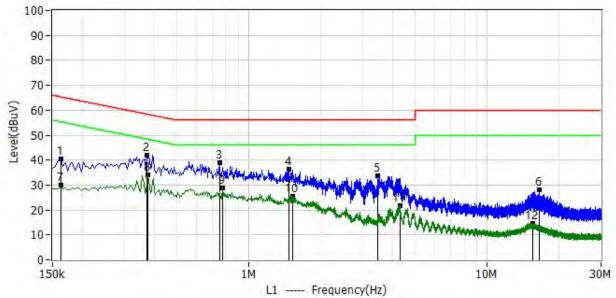
- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.1.3 TEST SETUP

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm

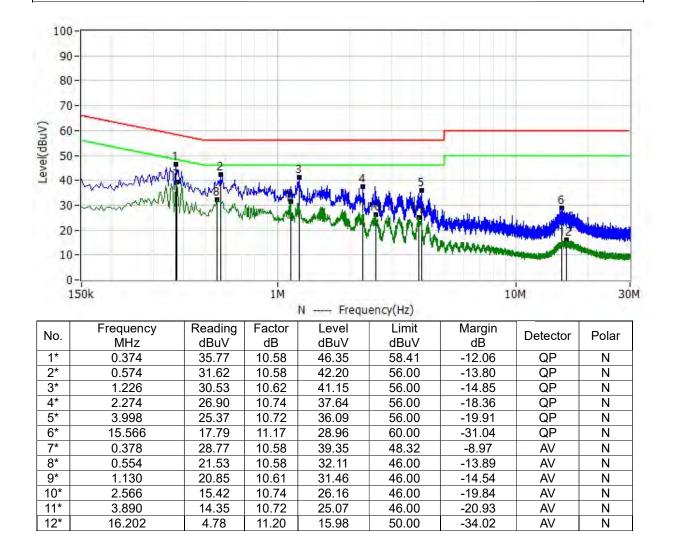
from other units and other metal planes support units.


3.1.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.5 TEST RESULT

Project: LGT23G045	Test Engineer: LiuH
EUT: wireless headset	Temperature: 26.96°C
M/N: G9	Humidity: 47%RH
Test Voltage: AC 120V/60Hz	Test Data: 2023-07-17
Test Mode: BT TX	
Note:	



1.4	Francisco - /II-	
LI	 Frequency(Hz	1

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
NO.	MHz	dBuV	dB	dBuV	dBuV	dB	Delector	Fulai
1*	0.162	30.01	10.57	40.58	65.36	-24.78	QP	L1
2*	0.374	31.46	10.59	42.05	58.41	-16.36	QP	L1
3*	0.754	28.24	10.58	38.82	56.00	-17.18	QP	L1
4*	1.478	25.48	10.67	36.15	56.00	-19.85	QP	L1
5*	3.466	22.95	10.73	33.68	56.00	-22.32	QP	L1
6*	16.490	16.95	11.16	28.11	60.00	-31.89	QP	L1
7*	0.162	19.23	10.57	29.80	55.36	-25.56	AV	L1
8*	0.378	23.66	10.59	34.25	48.32	-14.07	AV	L1
9*	0.778	18.11	10.58	28.69	46.00	-17.31	AV	L1
10*	1.526	14.87	10.67	25.54	46.00	-20.46	AV	L1
11*	4.298	10.88	10.71	21.59	46.00	-24.41	AV	L1
12*	15.486	3.65	11.11	14.76	50.00	-35.24	AV	L1

Project: LGT23G045	Test Engineer: LiuH
EUT: wireless headset	Temperature: 26.96°C
M/N: G9	Humidity: 47%RH
Test Voltage: AC 120V/60Hz	Test Data: 2023-07-17
Test Mode: BT TX	
Note:	

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205 (a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)			
	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

For Radiated Emission

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP/AV
Start Frequency	9 KHz/150KHz (Peak/QP/AV)
Stop Frequency	150KHz/30MHz (Peak/QP/AV)
RB / VB (emission in restricted band)	200Hz (From 9kHz to 0.15MHz)/
	9KHz (From 0.15MHz to 30MHz);
	200Hz (From 9kHz to 0.15MHz)/
	9KHz (From 0.15MHz to 30MHz)

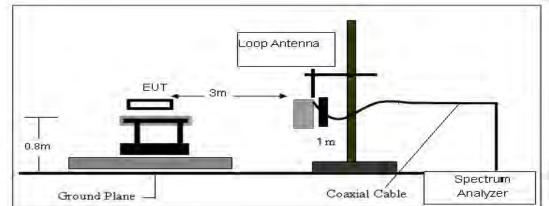
Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP
Start Frequency	30 MHz (Peak/QP)
Stop Frequency	1000 MHz (Peak/QP)
RB / VB (emission in restricted band)	120 KHz / 300 KHz

Spectrum Parameter	Setting			
Attenuation	Auto			
Detector	Peak			
Start Frequency	1000 MHz (Peak/AV)			
Stop Frequency	10th carrier hamonic (Peak/AV)			
	1 MHz / 3 MHz(Peak)			
RB / VB (emission in restricted band)	1 MHz/1/T MHz(AVG)			
For Restricted band				
Spectrum Parameter	Setting			

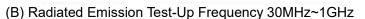
opectrum rarameter	Octaing
Detector	Peak
Start/Stop Frequency	Lower Band Edge: 2310 to 2410 MHz
	Upper Band Edge: 2476 to 2500 MHz
	1 MHz / 3 MHz(Peak)
RB / VB	1 MHz/1/T MHz(AVG)

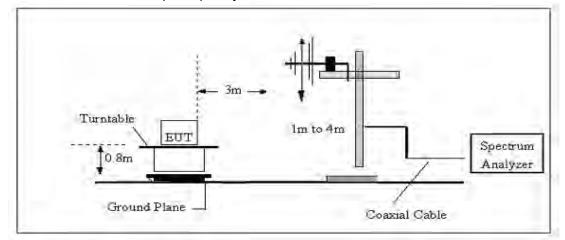
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

3.2.2 TEST PROCEDURE

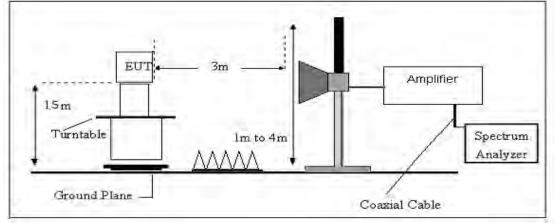

- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.


3.2.3 DEVIATION FROM TEST STANDARD No deviation.



3.2.4 TESTSETUP



(A) Radiated Emission Test-Up Frequency Below 30MHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.5 EUT OPERATING CONDITIONS Please refer to section 3.1.4 of this report.

3.2.6 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

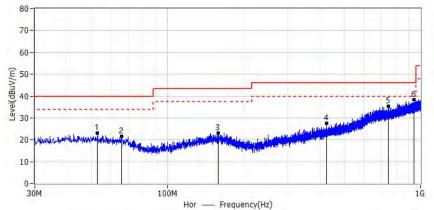
3.2.7 TEST RESULTS

Results of Radiated Emissions (9 KHz~30MHz)

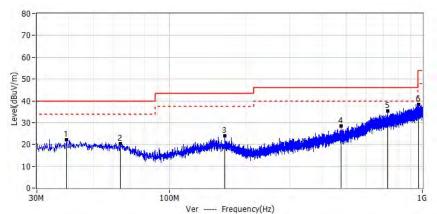
No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Remark
1*	-	-	-	-	-	-	-	See Note

Note:

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and the permissible value has no need to be reported.


Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

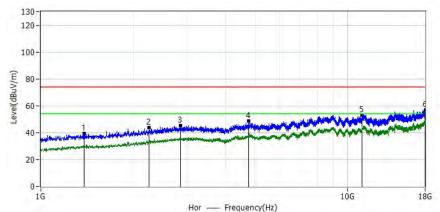
Limit line = specific limits (dBuV) + distance extrapolation factor.



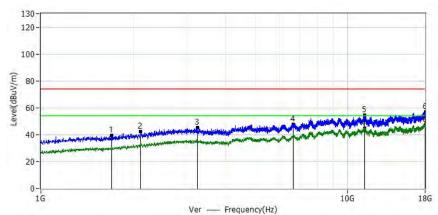
Results of Radiated Emissions (30MHz~1000MHz)

Project: LGT23G045	Test Engineer: Dylan.shi	
EUT: wireless headset	Temperature: 28.1°C	
M/N: G9	Humidity: 50%RH	
Test Voltage: Battery	Test Data: 2023-07-19	
Test Mode: BT TX		
Note:		

No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	53.038MHz	3.83	19.14	22.97	40.00	-17.00	PK	Hor
2*	66.011MHz	3.42	18.27	21.69	40.00	-18.30	PK	Hor
3*	158.404MHz	3.14	19.86	23.00	43.50	-20.50	PK	Hor
4*	424.548MHz	4.47	23.21	27.68	46.00	-18.30	PK	Hor
5*	746.345MHz	4.79	30.44	35.23	46.00	-10.80	PK	Hor
6*	940.103MHz	4.70	33.73	38.43	46.00	-7.60	PK	Hor

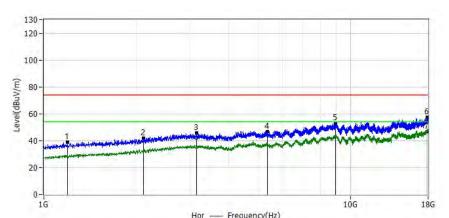


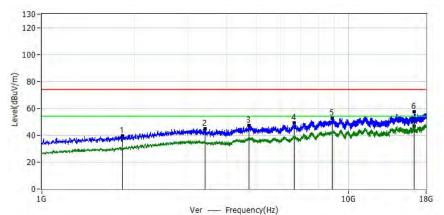
				i incquene	(112)			
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
NO.	Frequency	dBuV	dB/m	dBuV/m	dBuV/m	dB	Delector	Fulai
1*	39.336MHz	2.82	19.27	22.09	40.00	-17.91	PK	Ver
2*	64.193MHz	1.87	18.38	20.25	40.00	-19.75	PK	Ver
3*	165.800MHz	4.25	19.81	24.06	43.50	-19.44	PK	Ver
4*	477.170MHz	4.03	24.51	28.54	46.00	-17.46	PK	Ver
5*	728.036MHz	5.27	30.11	35.38	46.00	-10.62	PK	Ver
6*	967.384MHz	4.14	34.30	38.44	54.00	-15.56	PK	Ver
		÷						



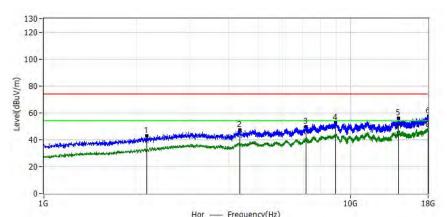
Results of Radiated Emissions (Above 1000MHz)

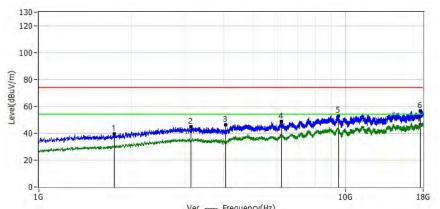
Project: LGT23G045	Test Engineer: Xiangdong Ma
EUT: wireless headset	Temperature: 29.5℃
M/N: G9	Humidity: 49%RH
Test Voltage: Battery	Test Data: 2023-07-27
Test Mode: DH5 2402	
Note:	


					11			
No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	1.3867GHz	61.07	-21.49	39.58	74.00	-34.42	PK	Hor
2*	2.2580GHz	57.19	-13.52	43.67	74.00	-30.33	PK	Hor
3*	2.8509GHz	54.24	-9.13	45.11	74.00	-28.89	PK	Hor
4*	4.7697GHz	54.88	-5.96	48.92	74.00	-25.08	PK	Hor
5*	11.1681GHz	51.38	1.73	53.11	74.00	-20.89	PK	Hor
6*	17.9617GHz	48.65	8.49	57.14	74.00	-16.86	PK	Hor
7*	17.9617GHz	39.01	8.49	47.50	54.00	-6.50	AV	Hor


				ver Frequenc	y(112)			
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
	1 5	dBuV	dB/m	dBuV/m	dBuV/m	dB		
1*	1.7012GHz	58.45	-19.20	39.25	74.00	-34.75	PK	Ver
2*	2.1177GHz	57.34	-14.99	42.35	74.00	-31.65	PK	Ver
3*	3.2419GHz	53.46	-8.42	45.04	74.00	-28.96	PK	Ver
4*	6.6567GHz	54.11	-6.29	47.82	74.00	-26.18	PK	Ver
5*	11.4061GHz	52.54	1.87	54.41	74.00	-19.59	PK	Ver
6*	17.9575GHz	48.39	8.49	56.88	74.00	-17.12	PK	Ver
7*	11.4061GHz	42.73	1.87	44.60	54.00	-9.40	AV	Ver
8*	17.9575GHz	38.51	8.49	47.00	54.00	-7.00	AV	Ver

Project: LGT23G045	Test Engineer: Xiangdong Ma
EUT: wireless headset	Temperature: 29.5℃
M/N: G9	Humidity: 49%RH
Test Voltage: Battery	Test Data: 2023-07-27
Test Mode: DH5 2440	
Note:	

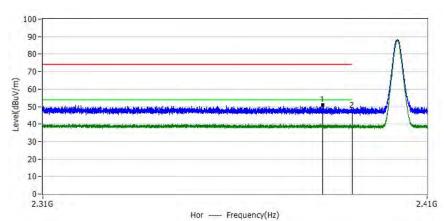

				Hor Frequenc	Y(HZ)			
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
INO.		dBuV	dB/m	dBuV/m	dBuV/m	dB	Delector	Fulai
1*	1.1934GHz	62.11	-23.03	39.08	74.00	-34.92	PK	Hor
2*	2.1135GHz	56.81	-15.04	41.77	74.00	-32.23	PK	Hor
3*	3.1441GHz	54.26	-8.39	45.87	74.00	-28.13	PK	Hor
4*	5.3499GHz	54.24	-7.26	46.98	74.00	-27.02	PK	Hor
5*	8.9432GHz	54.55	-1.33	53.22	74.00	-20.78	PK	Hor
6*	17.7811GHz	49.18	8.37	57.55	74.00	-16.45	PK	Hor
7*	17.7811GHz	38.53	8.37	46.90	54.00	-7.10	AV	Hor


				incqueile	1(112)			
No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	1.8309GHz	57.42	-17.94	39.48	74.00	-34.52	PK	Ver
2*	3.4161GHz	53.33	-8.48	44.85	74.00	-29.15	PK	Ver
3*	4.7485GHz	53.32	-5.95	47.37	74.00	-26.63	PK	Ver
4*	6.6546GHz	55.26	-6.29	48.97	74.00	-25.03	PK	Ver
5*	8.8582GHz	54.25	-1.57	52.68	74.00	-21.32	PK	Ver
6*	16.3765GHz	50.81	6.85	57.66	74.00	-16.34	PK	Ver
7*	16.3765GHz	39.95	6.85	46.80	54.00	-7.20	AV	Ver

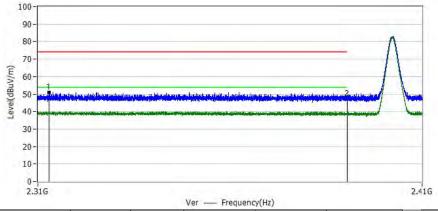
Project: LGT23G045	Test Engineer: Xiangdong Ma
EUT: wireless headset	Temperature: 29.5°C
M/N: G9	Humidity: 49%RH
Test Voltage: Battery	Test Data: 2023-07-27
Test Mode: DH5 2480	
Note:	

				Hor Frequence	Y(HZ)			
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
		dBuV	dB/m	dBuV/m	dBuV/m	dB		
1*	2.1687GHz	57.34	-14.46	42.88	74.00	-31.12	PK	Hor
2*	4.3490GHz	53.56	-6.39	47.17	74.00	-26.83	PK	Hor
3*	7.1837GHz	54.70	-5.18	49.52	74.00	-24.48	PK	Hor
4*	8.9326GHz	54.08	-1.36	52.72	74.00	-21.28	PK	Hor
5*	14.3556GHz	49.91	5.90	55.81	74.00	-18.19	PK	Hor
6*	17.9639GHz	49.02	8.49	57.51	74.00	-16.49	PK	Hor
7*	14.3556GHz	39.20	5.90	45.10	54.00	-8.90	AV	Hor
8*	17.9639GHz	38.91	8.49	47.40	54.00	-6.60	AV	Hor

				Ver Frequence	y(HZ)			
No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	1.7607GHz	57.86	-18.63	39.23	74.00	-34.77	PK	Ver
2*	3.1335GHz	53.30	-8.38	44.92	74.00	-29.08	PK	Ver
3*	4.0642GHz	53.90	-7.60	46.30	74.00	-27.70	PK	Ver
4*	6.1892GHz	56.03	-7.17	48.86	74.00	-25.14	PK	Ver
5*	9.4681GHz	54.32	-1.17	53.15	74.00	-20.85	PK	Ver
6*	17.5516GHz	48.22	8.21	56.43	74.00	-17.57	PK	Ver
7*	17.5516GHz	38.09	8.21	46.30	54.00	-7.70	AV	Ver

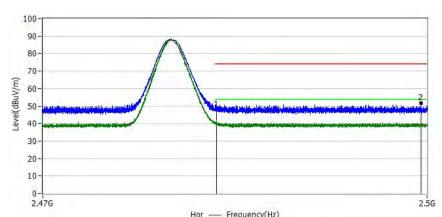

Remark:

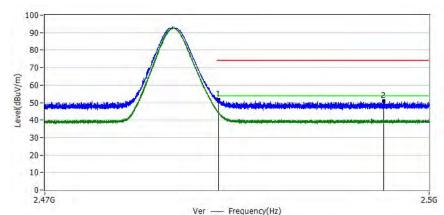
In frequency ranges 18~25GHz no any other harmonic emissions detected which are tested to compliance with the limit. No recording in the test report. No any other emissions level which are attenuated less than 20dB below the limit. No recording in the test report.



3.2.8 TEST RESULTS (BAND EDGE REQUIREMENTS)

Project: LGT23G045	Test Engineer: Xiangdong Ma
EUT: wireless headset	Temperature: 29.5℃
M/N: G9	Humidity: 49%RH
Test Voltage: Battery	Test Data: 2023-07-27
Test Mode: DH5 2402	
Note:	


				the second se				
No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	2.3824GHz	16.89	33.97	50.86	74.00	-23.14	PK	Hor
2*	2.3900GHz	13.65	33.95	47.60	74.00	-26.40	PK	Hor


No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	2.3128GHz	16.98	34.13	51.11	74.00	-22.89	PK	Ver
2*	2.3900GHz	13.35	33.95	47.30	74.00	-26.70	PK	Ver

Project: LGT23G045	Test Engineer: Xiangdong Ma
EUT: wireless headset	Temperature: 29.5°C
M/N: G9	Humidity: 49%RH
Test Voltage: Battery	Test Data: 2023-07-27
Test Mode: DH5 2480	
Note:	

				nor mequence	1(112)			
No. Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar	
NO.	riequency	dBuV	dB/m	dBuV/m	dBuV/m	dB	Delector	i Ulai
1*	2.4835GHz	13.77	34.13	47.90	74.00	-26.10	PK	Hor
2*	2.4995GHz	17.52	34.16	51.68	74.00	-22.32	PK	Hor

				ra. maquane	1()			
No. Frequency	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
INO.	Frequency	dBuV	dB/m	dBuV/m	dBuV/m	dB	Delector	Fuldi
1*	2.4835GHz	17.57	34.13	51.70	74.00	-22.30	PK	Ver
2*	2.4964GHz	16.96	34.16	51.12	74.00	-22.88	PK	Ver

4. CONDUCTED SPURIOUS & BAND EDGE EMISSION

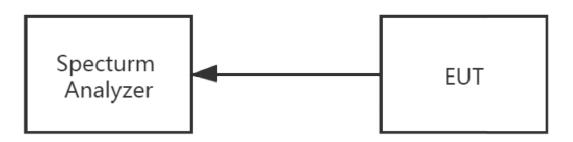
4.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

4.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Band edge


Spectrum Parameter	Setting		
Detector	Peak		
Start/Stan Fraguenov	Lower Band Edge: 2300 – 2407 MHz		
Start/Stop Frequency	Upper Band Edge: 2475 – 2500 MHz		
RB / VB (emission in restricted band)	100 KHz/300 KHz		
Trace-Mode:	Max hold		

For Hopping Band edge

Spectrum Parameter	Setting		
Detector	Peak		
Start/Stap Eraguanav	Lower Band Edge: 2300– 2403 MHz		
Start/Stop Frequency	Upper Band Edge: 2479 – 2500 MHz		
RB / VB (emission in restricted band)	100 KHz/300 KHz		
Trace-Mode:	Max hold		

4.3 TEST SETUP

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. Tune the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, the span is set to be greater than RBW.

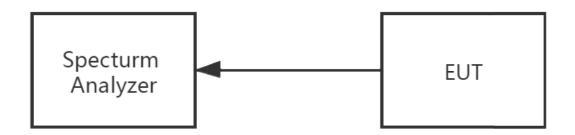
4.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

4.5 TEST RESULTS

5. NUMBER OF HOPPING CHANNEL

5.1 LIMIT


FCC Part 15.247, Subpart C					
Section	Test Item	Limit	FrequencyRange (MHz)	Result	
15.247 (a)(1)(iii)	Number of Hopping Channel	≥15	2400-2483.5	PASS	

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating FrequencyRange
RB	300KHz
VB	300KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 300KHz, VBW=300KHz, Sweep time = Auto.

5.3 TEST SETUP

5.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

5.5 TEST RESULTS

For the measurement records [,] refer to the appendix I.

6. AVERAGE TIME OF OCCUPANCY

6.1 LIMIT

FCC Part 15.247, Subpart C					
Section	Test Item	Limit	FrequencyRange (MHz)	Result	
15.247 (a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS	

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer.
- b. Set RBW =1MHz/VBW =3MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- Set the center frequency on any frequency would be measure and set the frequency span to e. zero span.
- $\ensuremath{\text{f}}$. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- \tilde{h} . Measure the maximum time duration of one single pulse.
- i. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is 3.37 x 31.6 = 106.6.
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is 5.06 x 31.6 = 160.
- k. DH1 Packet permit maximum 1600 / 79 / 2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is 10.12 x 31.6 = 320.

6.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report.

6.5 TEST RESULTS

7. HOPPING CHANNEL SEPARATION MEASUREMEN

7.1 LIMIT

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> 20 dB Bandwidth or Channel Separation
RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)
VB	100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation)
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

7.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for 20 dB bandwidth measurement.
- c. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for channel separation measurement.

7.3 TEST SETUP

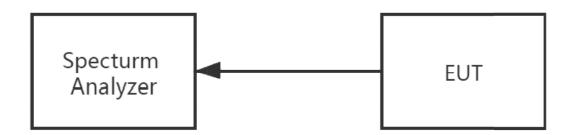
7.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.5 TEST RESULTS

8. BANDWIDTH TEST

8.1 LIMIT


FCC Part15 15.247, Subpart C						
Section	Test Item	Limit	FrequencyRange (MHz)	Result		
15.247 (a)(1)	Bandwidth	N/A	2400-2483.5	PASS		

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	> Measurement Bandwidth or Channel Separation	
RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)	
VB	100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation)	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep time = Auto.

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

8.5 TEST RESULTS

9. OUTPUT POWER TEST

9.1 LIMIT

FCC Part 15.247, Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247 (a)(1)&(b)(1)	Output Power	1 W or 0.125W	2400-2483.5	PASS			
		if channel separation > 2/3 bandwidthprovided thesystems operatewith an output power no greater than125 mW(20.97dBm)					

9.2 TEST PROCEDURE

This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:

a) Use the following spectrum analyzer settings:

1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.

2) RBW > 20 dB bandwidth of the emission being measured.

3) VBW \geq RBW.

4) Sweep: Auto.

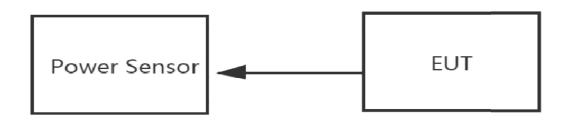
5) Detector function: Peak.

6) Trace: Max hold.

b) Allow trace to stabilize.

c) Use the marker-to-peak function to set the marker to the peak of the emission.

d) The indicated level is the peak output power, after any corrections for external attenuators and cables.


e) A plot of the test results and setup description shall be included in the test report.

NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DSS bandwidth and shall use a fast-responding diode detector.

9.3 TEST SETUP

9.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

9.5 TEST RESULTS

10. ANTENNA REQUIREMENT

10.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

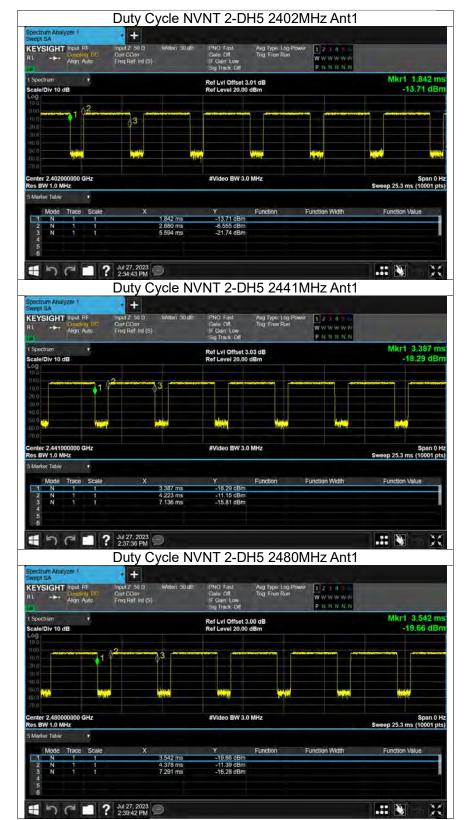
10.2 EUT ANTENNA

The EUT antenna is Chip antenna. It comply with the standard requirement.

APPENDIX I: TEST RESULTS

Dwell Time

Condition	Mode	Frequency (MHz)	Antenna	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	Ant1	0.4	127.2	318	31600	400	Pass
NVNT	1-DH3	2441	Ant1	1.657	266.777	161	31600	400	Pass
NVNT	1-DH5	2441	Ant1	2.902	330.828	114	31600	400	Pass
NVNT	2-DH1	2441	Ant1	0.405	129.195	319	31600	400	Pass
NVNT	2-DH3	2441	Ant1	1.657	270.091	163	31600	400	Pass
NVNT	2-DH5	2441	Ant1	2.911	328.943	113	31600	400	Pass
NVNT	3-DH1	2441	Ant1	0.407	129.426	318	31600	400	Pass
NVNT	3-DH3	2441	Ant1	1.66	272.24	164	31600	400	Pass
NVNT	3-DH5	2441	Ant1	2.912	331.968	114	31600	400	Pass

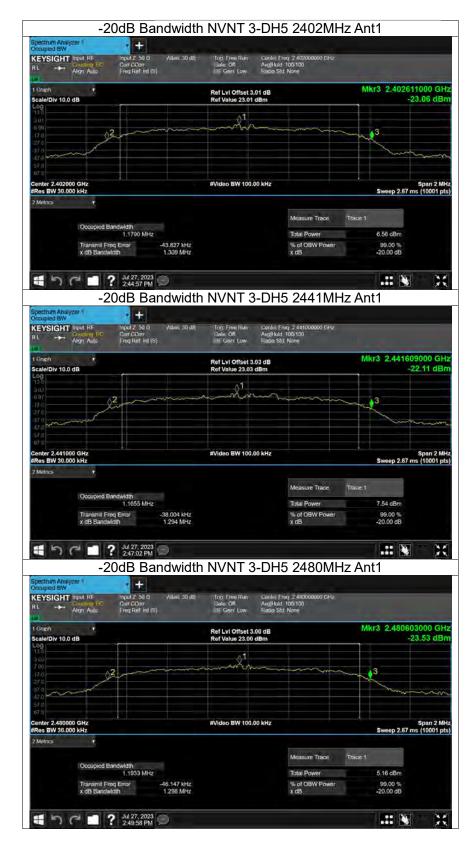

Duty Cycle

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	1-DH5	2402	Ant1	77.57	1.1	0.34
NVNT	1-DH5	2441	Ant1	77.57	1.1	0.34
NVNT	1-DH5	2480	Ant1	77.57	1.1	0.34
NVNT	2-DH5	2402	Ant1	77.65	1.1	0.34
NVNT	2-DH5	2441	Ant1	77.7	1.1	0.34
NVNT	2-DH5	2480	Ant1	77.7	1.1	0.34
NVNT	3-DH5	2402	Ant1	77.7	1.1	0.34
NVNT	3-DH5	2441	Ant1	77.7	1.1	0.34
NVNT	3-DH5	2480	Ant1	77.7	1.1	0.34

Maximum F	Peak Cond	ducted Output Pov	wer			
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant1	-3.2	21	Pass
NVNT	1-DH5	2441	Ant1	-1.82	21	Pass
NVNT	1-DH5	2480	Ant1	-2.73	21	Pass
NVNT	2-DH5	2402	Ant1	-1.42	21	Pass
NVNT	2-DH5	2441	Ant1	-1.42	21	Pass
NVNT	2-DH5	2480	Ant1	-2.09	21	Pass
NVNT	3-DH5	2402	Ant1	2.22	21	Pass
NVNT	3-DH5	2441	Ant1	2.81	21	Pass
NVNT	3-DH5	2480	Ant1	0.41	21	Pass

-20dB Bandwidth

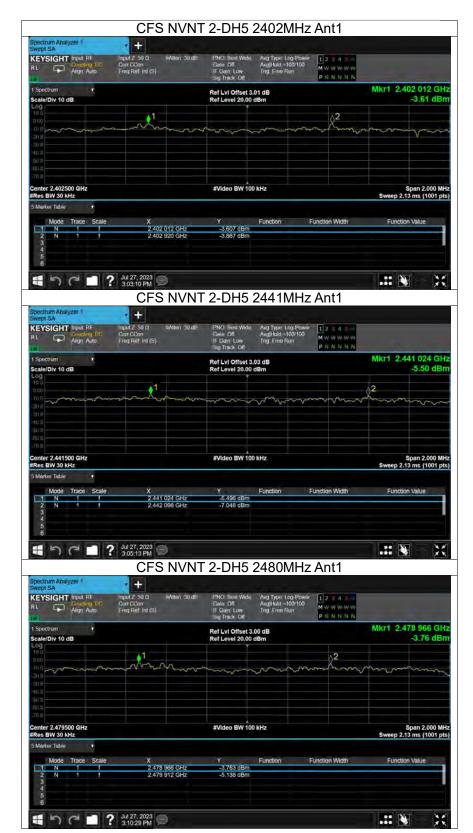
Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant1	0.942	Pass
NVNT	1-DH5	2441	Ant1	0.952	Pass
NVNT	1-DH5	2480	Ant1	0.946	Pass
NVNT	2-DH5	2402	Ant1	1.32	Pass
NVNT	2-DH5	2441	Ant1	1.32	Pass
NVNT	2-DH5	2480	Ant1	1.316	Pass
NVNT	3-DH5	2402	Ant1	1.309	Pass
NVNT	3-DH5	2441	Ant1	1.294	Pass
NVNT	3-DH5	2480	Ant1	1.298	Pass



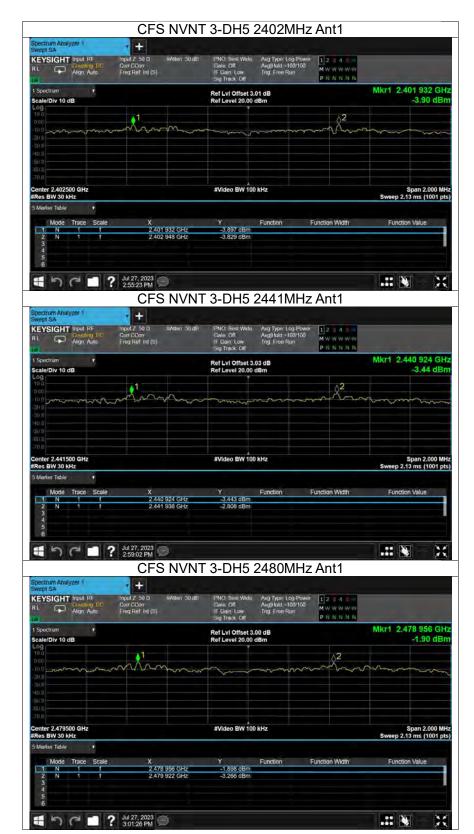
-20dB Bandwidth NVNT 2-DH5 2402MHz Ant1 sectrum Analyzer ocupied BW + KEYSIGHT Input RF RL ---- Coupling Align: Auto Tria Free Run Centel Freq 2.402000000 GHz Gale Off Avgl/kold 100/100 IIIE Gain Low Radio Stit None Input Z 50 0 Com CCom Freq Ref. Int (5) 1 Graph Mkr3 2.402618000 GHz Ref Lvi Offset 3.01 dB Ref Value 23.01 dBm -27.30 dBn le/Div 10,0 dB §1 **U**3 02 Center 2.402000 GHz Res BW 30.000 kHz Span 2 MH Sweep 2.67 ms (10001 pts #Video BW 100.00 kHz Métrics . Measure Trace Trace 1 Occupied Bandwidth 1,1671 MHz Total Power 3.51 dBm % of OBW Power x dB Transmit Freq Error x dB Bandwidth -42.123 kHz 1.320 MHz 99.00 % -20.00 dB モッペニ ? Jul 27, 2023 X -20dB Bandwidth NVNT 2-DH5 2441MHz Ant1 im Analyzer 1 ed BW + KEYSIGHT Input RF RL +++ Align Auto Input Z 50 0 Corr CCarr Freq Ref. Int (5) Trio: Free Run Centel Freq 2.441000000 GHz Bale Off Avg(Not 100/100 InF Gen Low Radio Sht None 1 20 18 Mkr3 2.441618000 GHz -26.91 dBm Ref Lvi Offset 3.03 dB Ref Value 23.03 dBm cale/Div 10.0 dB 127 13 12 Span 2 MHz Sweep 2.67 ms (10001 pts) #Video BW 100.00 kHz Center 2.441000 GHz Res BW 30.000 kHz 2 Metrics Measure Trace Occupied Bandwidth 1.1820 MHz 3.13 dBm Total Power Transmit Freq Error x dB Bandwidth -41.586 kHz 1.320 MHz % of OBW Power x dB 99.00 % -20.00 dB 1 5 C 1 ? Jul 27, 2023 X -20dB Bandwidth NVNT 2-DH5 2480MHz Ant1 schum Analyzer 1 cupled BW • + KEYSIGHT Input RF RL ---- Devolution F Input Z 50 0 Corr CCarr Freq Ref. Int (5) Trio Free Run Center Freq 2.410000000 GHz Bale Off AvgtNold 100/100 IIIF Gen Low Rade Stt None Align: Auto Mkr3 2.480615000 GHz Ref Lvi Offset 3.00 dB Ref Value 23.00 dBm ale/Div 10,0 dB -23.81 dBm **∂**2 03 Span 2 MH Sweep 2.67 ms (10001 pts Center 2.480000 GHz Res EW 30.000 kHz #Video BW 100.00 kHz Measure Trace Trace 1 Occupied Bandwidth 1.1810 MHz Total Power 5.88 dBm -42.551 kHz 1.316 MHz % of OBW Power x dB 99.00 % -20.00 dB Transmit Freq Error x dB Bandwidth 1 つ C 二 ? Jul 27, 2023 () X

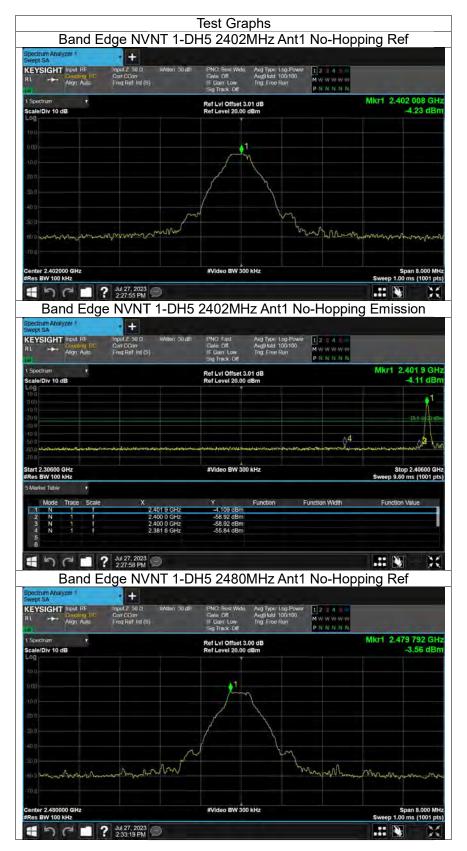
Occupied Channel Bandwidth

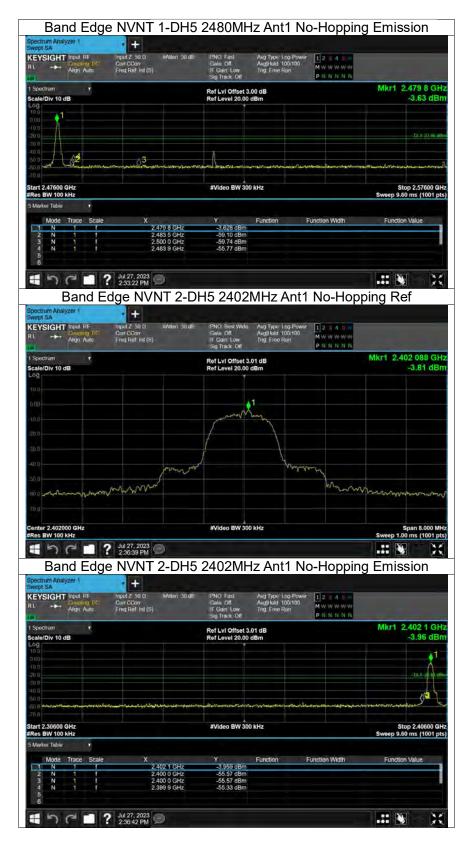
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	1-DH5	2402	Ant1	0.846
NVNT	1-DH5	2441	Ant1	0.837
NVNT	1-DH5	2480	Ant1	0.847
NVNT	2-DH5	2402	Ant1	1.177
NVNT	2-DH5	2441	Ant1	1.194
NVNT	2-DH5	2480	Ant1	1.192
NVNT	3-DH5	2402	Ant1	1.172
NVNT	3-DH5	2441	Ant1	1.176
NVNT	3-DH5	2480	Ant1	1.185


Carrier Frequencies Separation

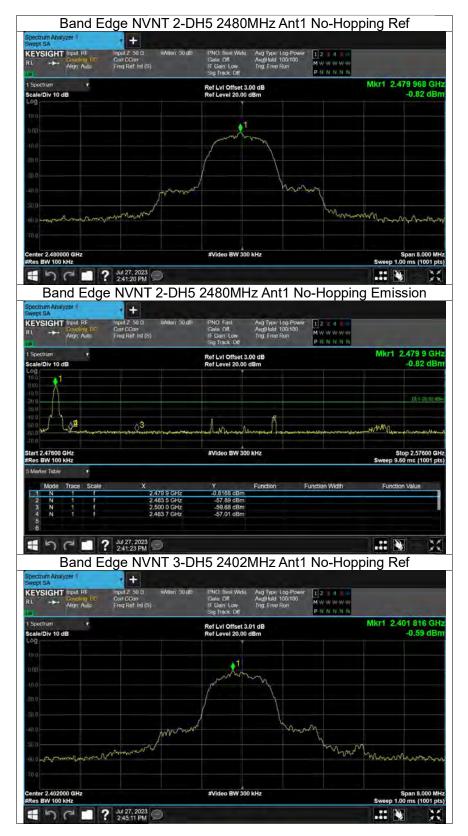
Condition	Mode	Antenna	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH5	Ant1	2401.972	2403.018	1.046	0.628	Pass
NVNT	1-DH5	Ant1	2440.924	2441.934	1.01	0.635	Pass
NVNT	1-DH5	Ant1	2479.016	2480.016	1	0.631	Pass
NVNT	2-DH5	Ant1	2402.012	2402.92	0.908	0.88	Pass
NVNT	2-DH5	Ant1	2441.024	2442.098	1.074	0.88	Pass
NVNT	2-DH5	Ant1	2478.966	2479.912	0.946	0.877	Pass
NVNT	3-DH5	Ant1	2401.932	2402.948	1.016	0.873	Pass
NVNT	3-DH5	Ant1	2440.924	2441.938	1.014	0.863	Pass
NVNT	3-DH5	Ant1	2478.956	2479.922	0.966	0.865	Pass



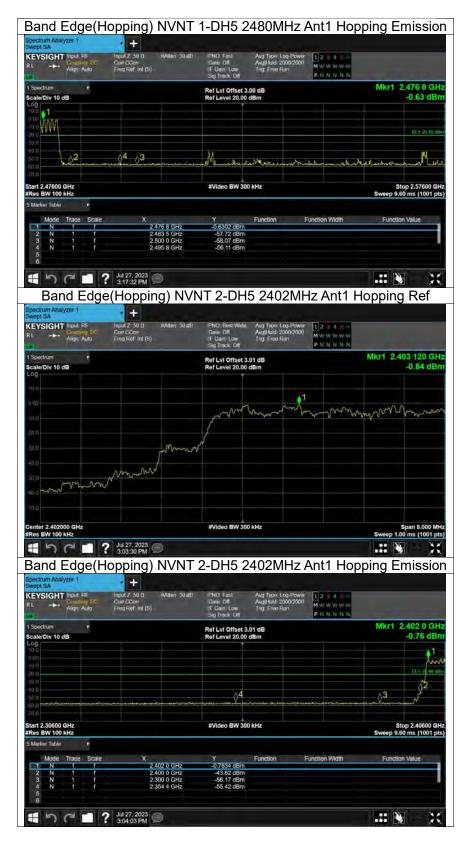



Band Edge

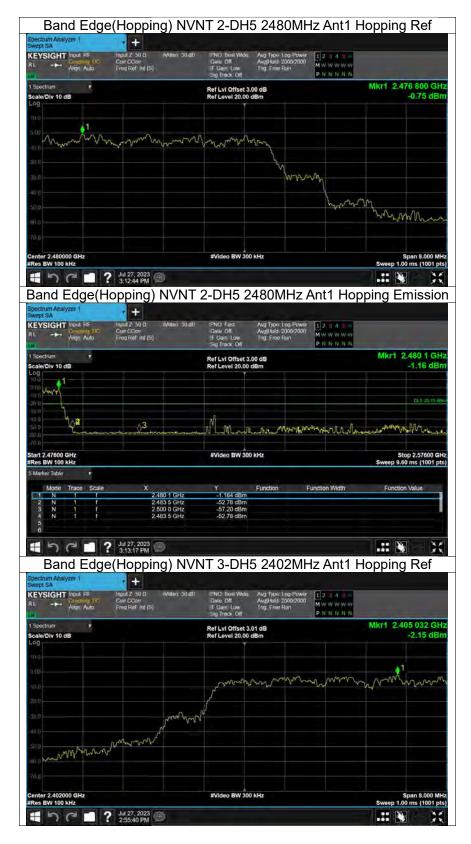
Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	No-Hopping	-51.6	-20	Pass
NVNT	1-DH5	2480	Ant1	No-Hopping	-52.21	-20	Pass
NVNT	2-DH5	2402	Ant1	No-Hopping	-51.52	-20	Pass
NVNT	2-DH5	2480	Ant1	No-Hopping	-56.18	-20	Pass
NVNT	3-DH5	2402	Ant1	No-Hopping	-53.59	-20	Pass
NVNT	3-DH5	2480	Ant1	No-Hopping	-54.52	-20	Pass

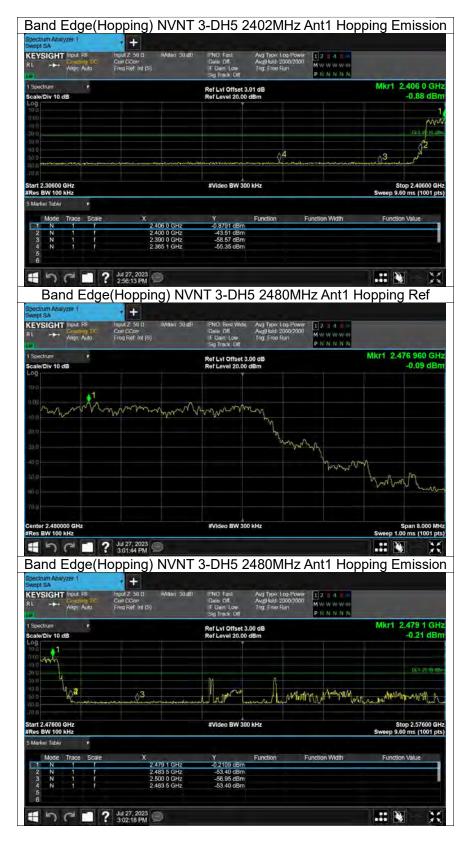


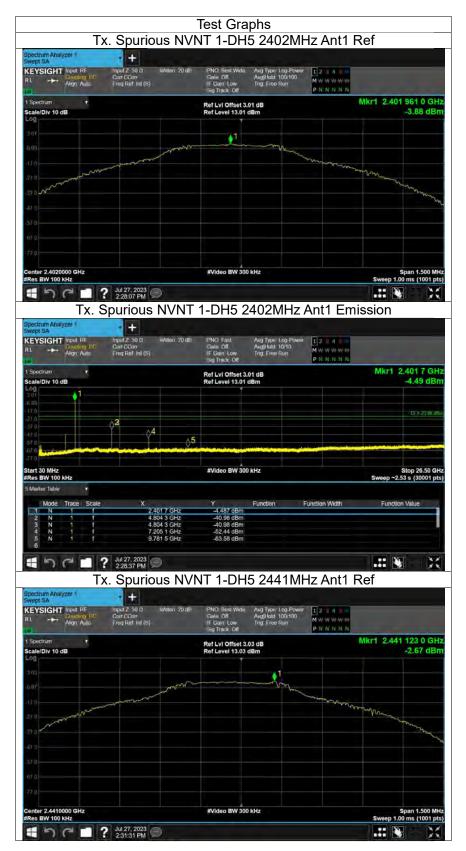
Coupling DC	nput Z 50 Ω #Atten: 30 dB Corr CCorr Teg Ref. Int (5)	PNC Fast Avg Typi Log Gale Off Avg Hold 100 IF Gain Low Trig: Free Rim	100	
spectrum r	red ries without	Sig Track Off Ref Lvi Offset 3.01 dB	PNNNNN	Mkr1 2.402 0 0
ale/Div 10 dB		Ref Level 20.00 dBm		0.01 d
00				10.10
30 30				1/2
10 10 Auroration Auroration Aurorations 10	aginaling filletightsplantanding inflation	all more than the state of the	in marchale Rowlandson and Mary	and the monorpoint of
art 2.30600 GHz es BW 100 kHz		#Video BW 300 kHz		Stop 2.40600 Sweep 9.60 ms (1001
Marker Table • Mode Trace Scale	x	Y Function	Function Width	Function Value
1 N 1 F 2 N 1 F 3 N 1 F 4 N 1 F 5	2.402 0 GHz 2.400 0 GHz 2.400 0 GHz 2.399 7 GHz	0.009257 dBm -54.62 dBm -54.62 dBm -54.19 dBm		
うで ?	Jul 27, 2023 2:45:14 PM			
	and the second s	0H5 2480MHz A	nt1 No-Hopp	oing Ref
Counting DC	nput Z 50 0 #Alten: 30 dB	PNO: Best Wide Avg Type: Log Date: CM Avg Medid: 100	464	
	Cerr CCorr Trea Ref Int (S)	Galie Off Avg(Hold 100 IF Gain Low Trig: Free Run Sig Track Off		
Spectrum r ale/Div 10 dB		Ref Lvi Offset 3.00 dB Ref Level 20.00 dBm		Mkr1 2.479 960 0 -1.83 d
ы ()				
		mann		
	ponthis	\sim	my	
	N		8	
15 martin and and and and and and and and and an	- Marine -		Joseph Contraction of the second s	Mummany
nter 2.480000 GHz		#Video BW 300 kHz		Span 8.000
es BW 100 kHz	Jul 27, 2023			Sweep 1.00 ms (1001
		5 2480MHz Ant1	No-Hopping	
ectrum Analyzer 1 ept SA	· ±	and the second sec		
Coupling DC	nput Z 50 Q #Atten: 30 dB Con O'Con Treg Ref Int (5)	PNO: Fast Avg Typi' Log Gale Off Avg Hold 100 IF Gain Low Trig: Free Run Sig Track Off	100	
Spectrum r ale/Div 10 dB		Ref Lvi Offset 3.00 dB Ref Level 20.00 dBm		Mkr1 2.479 9 0
				DL1 21 8
1 10214	0,3			Marco La Mar
	andre and a transform Line and a state of the state of the		chin	All he should be a set of the set
es BW 100 kHz Aarker Table T		#Video BW 300 kHz		Stop 2.57600 Sweep 9.60 ms (1001
Mode Trace Scale	X 2.479 9 GHz	Y Function -2,289 dBm	Function Width	Function Value
2 N 1 ! 3 N 1 !	2.483 5 GHz 2.500 0 GHz	-59.31 dBm -57.47 dBm -56.35 dBm		


Band Edge(Hopping)

Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	Hopping	-55.29	-20	Pass
NVNT	1-DH5	2480	Ant1	Hopping	-55.66	-20	Pass
NVNT	2-DH5	2402	Ant1	Hopping	-54.57	-20	Pass
NVNT	2-DH5	2480	Ant1	Hopping	-52.02	-20	Pass
NVNT	3-DH5	2402	Ant1	Hopping	-53.19	-20	Pass
NVNT	3-DH5	2480	Ant1	Hopping	-53.3	-20	Pass

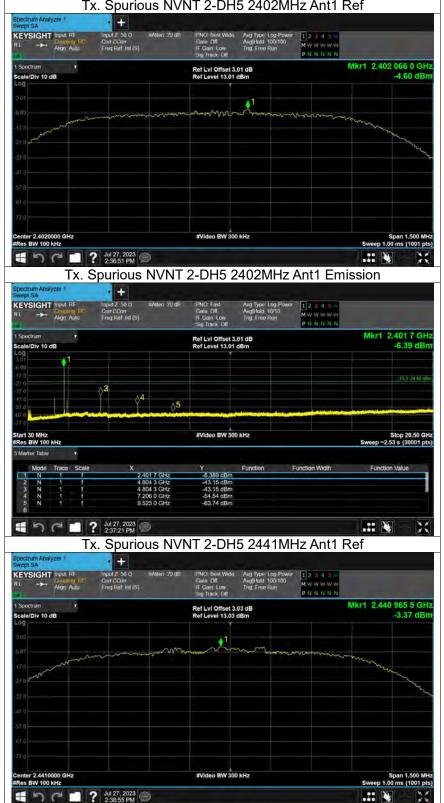


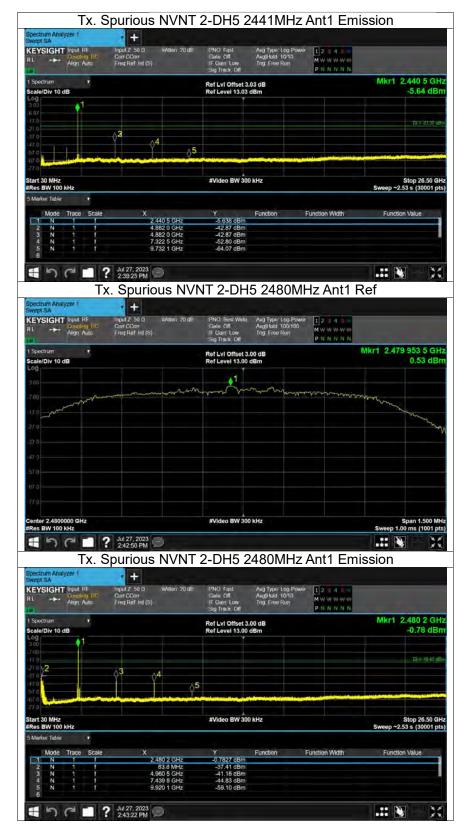


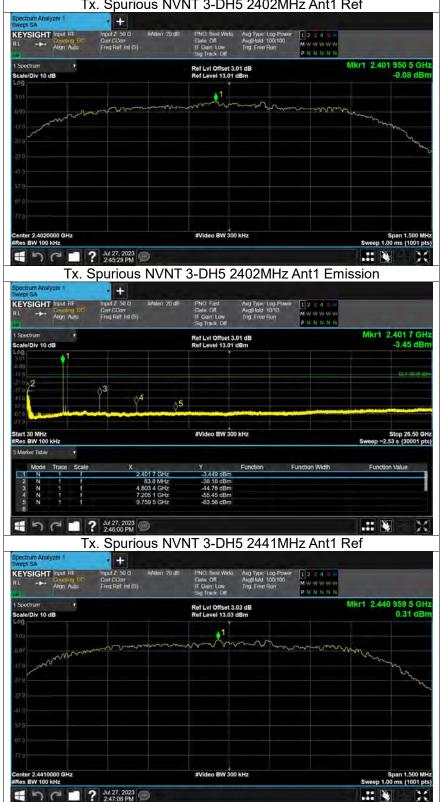


Conducted RF Spurious Emission

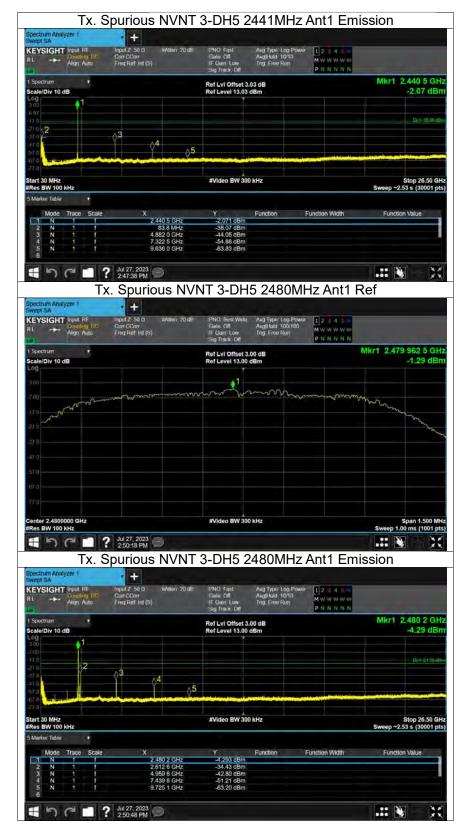
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	-37.1	-20	Pass
NVNT	1-DH5	2441	Ant1	-36.41	-20	Pass
NVNT	1-DH5	2480	Ant1	-36.01	-20	Pass
NVNT	2-DH5	2402	Ant1	-38.55	-20	Pass
NVNT	2-DH5	2441	Ant1	-39.49	-20	Pass
NVNT	2-DH5	2480	Ant1	-37.94	-20	Pass
NVNT	3-DH5	2402	Ant1	-38.1	-20	Pass
NVNT	3-DH5	2441	Ant1	-38.37	-20	Pass
NVNT	3-DH5	2480	Ant1	-33.14	-20	Pass



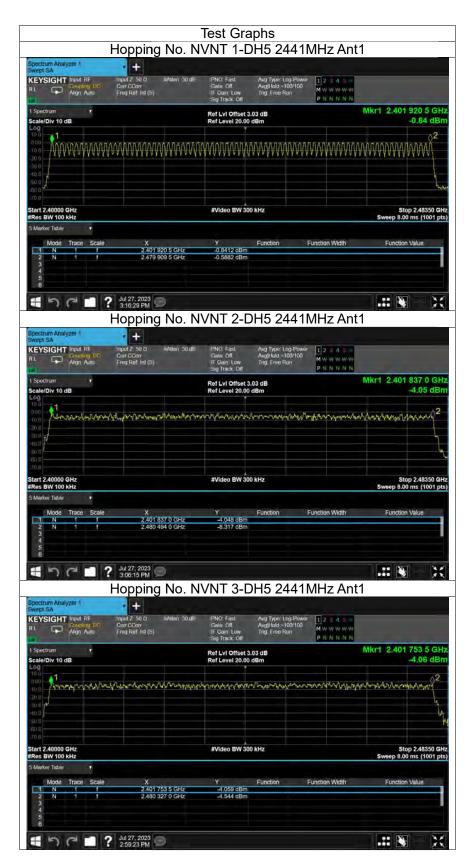




Tx. Spurious NVNT 2-DH5 2402MHz Ant1 Ref



Tx. Spurious NVNT 3-DH5 2402MHz Ant1 Ref



Number of Hopping Channel

Condition	Mode	Antenna	Hopping Number	Limit	Verdict
NVNT	1-DH5	Ant1	79	15	Pass
NVNT	2-DH5	Ant1	79	15	Pass
NVNT	3-DH5	Ant1	79	15	Pass

