

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202203001F01

TEST Report

Applicant: Sunfly Electronics Co.,Ltd

Address of Applicant: 5/F, building E, Jinxiongda Science and Technology Park,

Rd Huangguang south, Longhua District, Shen Zhen, China

Manufacturer: Sunfly Electronics Co.,Ltd

Address of 5/F,building E, Jinxiongda Science and Technology Park,
Manufacturer: Rd Huangguang south,Longhua District,ShenZhen,China

Equipment Under Test (EUT)

Product Name: Gaming business air conduction headphone

Model No.: G2

Series model: H10, H20, C30

Trade Mark: N/A

FCC ID: 2A5M3-G2

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Feb.28,2022

Date of Test: Feb.28,2022~Mar.11,2022

Date of report issued: Mar.11,2022

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Mar.11,2022	Original

Tested/ Prepared By	Ervin Xu	Date:	Mar.11,2022
	Project Engineer		
Check By:	Bruce Zhu	Date:	Mar.11,2022
	Reviewer		
Approved By :	Kein Yang	Date:	Mar.11,2022
	Authorized Signature		

2. Contents

			Page
1.	. VEF	RSION	2
2.		NTENTS	
3.		ST SUMMARY	
4.	. GEI	NERAL INFORMATION	5
	4.1.	GENERAL DESCRIPTION OF EUT	5
	4.2.	TEST MODE	
	4.3.	DESCRIPTION OF SUPPORT UNITS	7
	4.4.	DEVIATION FROM STANDARDS	7
	4.5.	ABNORMALITIES FROM STANDARD CONDITIONS	7
	4.6.	TEST FACILITY	7
	4.7.	TEST LOCATION	
	4.8.	ADDITIONAL INSTRUCTIONS	7
5.	. TES	ST INSTRUMENTS LIST	8
6.	. TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1.	CONDUCTED EMISSIONS	9
	6.2.	CONDUCTED PEAK OUTPUT POWER	
	6.3.	20DB EMISSION BANDWIDTH	
	6.4.	FREQUENCIES SEPARATION	17
	6.5.	HOPPING CHANNEL NUMBER	19
	6.6.	DWELL TIME	21
	6.7.	BAND EDGE	26
	6.7.	1. Conducted Emission Method	26
	6.7.	2. Radiated Emission Method	
	6.8.	Spurious Emission	
		1. Conducted Emission Method	
	6.8.	2. Radiated Emission Method	37
7.	. TES	ST SETUP PHOTO	45
8.	. EUT	CONSTRUCTIONAL DETAILS	45

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range Measurement Uncertainty		Notes			
Radiated Emission	30~1000MHz	3.45 dB	(1)			
Radiated Emission	1~6GHz	3.54 dB	(1)			
Radiated Emission	6~40GHz	5.38 dB	(1)			
Conducted Disturbance	0.15~30MHz	2.66 dB	(1)			
Note (1): The measurement unce	Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

4. General Information

4.1. General Description of EUT

Product Name:	Gaming business air conduction headphone
Model No.:	G2
Series model:	H10, H20, C30
Test sample(s) ID:	HTT202203001-1(Engineer sample)
	HTT202203001-2(Normal sample)
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	Chip Antenna
Antenna gain:	1.75 dBi
Power Supply:	DC 3.7V/165mAh Form Battery and DC 5V From External Circuit
Adapter Information	Mode: CD122
(Auxiliary test provided by the lab):	Input: AC100-240V, 50/60Hz, 500mA
	Output: DC 5V, 2A

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

Shenzhen HTT Technology Co.,Ltd.

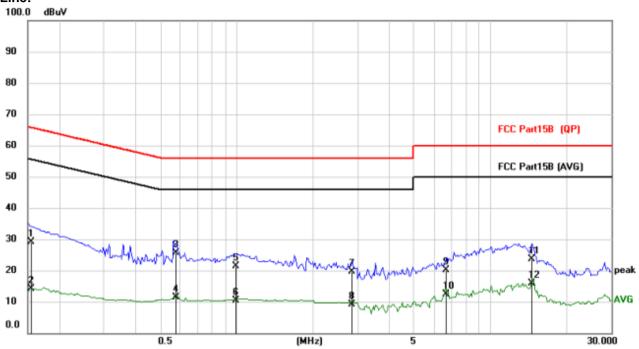
5. Test Instruments list

<u>J.</u>	rest mstrume			ı		1
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2020	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2020	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	May 21 2021	May 20 2022
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	May 21 2021	May 20 2022
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	May 21 2021	May 20 2022
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	May 21 2021	May 20 2022
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	May 21 2021	May 20 2022
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	May 21 2021	May 20 2022
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	Aug. 22 2021	Aug. 21 2022
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	Aug. 22 2021	Aug. 21 2022
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Aug. 22 2021	Aug. 21 2022
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Aug. 22 2021	Aug. 21 2022
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	May 21 2021	May 20 2022
14	high-frequency Amplifier	HP	8449B	HTT-E014	May 21 2021	May 20 2022
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	May 21 2021	May 20 2022
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	May 21 2021	May 20 2022
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May 21 2021	May 20 2022
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May 21 2021	May 20 2022
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	May 21 2021	May 20 2022
20	Attenuator	Robinson	6810.17A	HTT-E007	May 21 2021	May 20 2022
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	May 21 2021	May 20 2022
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	May 21 2021	May 20 2022
23	DC power supply	Agilent	E3632A	HTT-E023	May 21 2021	May 20 2022
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	May 21 2021	May 20 2022
25	Analog signal generator	Agilent	N5181A	HTT-E025	May 21 2021	May 20 2022
26	Vector signal generator	Agilent	N5182A	HTT-E026	May 21 2021	May 20 2022
27	Power sensor	Keysight	U2021XA	HTT-E027	May 21 2021	May 20 2022
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	May 21 2021	May 20 2022
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

Shenzhen HTT Technology Co.,Ltd.

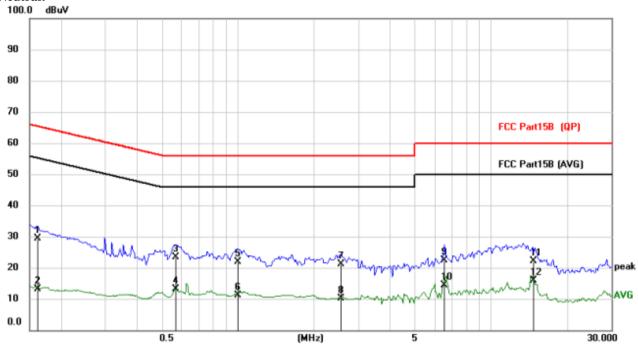
6. Test results and Measurement Data

6.1. Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, St	weep time=auto				
Limit:	Fraguency range (MILIT)	Limit	(dBuV)			
	Frequency range (MHz)	Avera				
	0.15-0.5	66 to 56*	56 to			
	0.5-5	56	46			
	5-30 * Decreases with the logarithn	60	50)		
Test setup:	Reference Plane					
Test procedure:	Remark: E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a					
	termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.					
Test Instruments:	Refer to section 6.0 for details	i				
Test mode:	Refer to section 5.2 for details	i				
Test environment:	Temp.: 25 °C Hun	nid.: 52%	Press.:	1012mbar		
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:



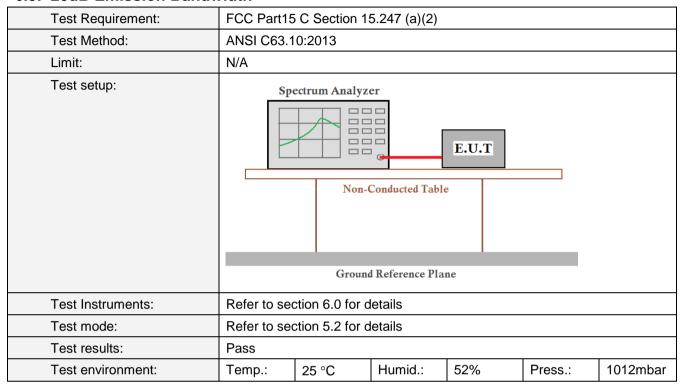
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1547	18.74	10.37	29.11	65.74	-36.63	QP
2	0.1547	3.64	10.37	14.01	55.74	-41.73	AVG
3 *	0.5786	15.15	10.57	25.72	56.00	-30.28	QP
4	0.5786	0.86	10.57	11.43	46.00	-34.57	AVG
5	0.9943	10.37	10.90	21.27	56.00	-34.73	QP
6	0.9943	-0.61	10.90	10.29	46.00	-35.71	AVG
7	2.8389	8.79	10.84	19.63	56.00	-36.37	QP
8	2.8389	-1.60	10.84	9.24	46.00	-36.76	AVG
9	6.6348	8.82	11.37	20.19	60.00	-39.81	QP
10	6.6348	0.96	11.37	12.33	50.00	-37.67	AVG
11	14.5243	11.58	12.04	23.62	60.00	-36.38	QP
12	14.5243	3.81	12.04	15.85	50.00	-34.15	AVG

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1615	18.89	10.38	29.27	65.39	-36.12	QP
2	0.1615	2.73	10.38	13.11	55.39	-42.28	AVG
3 *	0.5670	12.71	10.55	23.26	56.00	-32.74	QP
4	0.5670	2.51	10.55	13.06	46.00	-32.94	AVG
5	0.9997	11.05	10.90	21.95	56.00	-34.05	QP
6	0.9997	0.15	10.90	11.05	46.00	-34.95	AVG
7	2.5407	10.25	10.83	21.08	56.00	-34.92	QP
8	2.5407	-0.73	10.83	10.10	46.00	-35.90	AVG
9	6.5605	11.01	11.35	22.36	60.00	-37.64	QP
10	6.5605	3.15	11.35	14.50	50.00	-35.50	AVG
11	14.7497	10.17	12.07	22.24	60.00	-37.76	QP
12	14.7497	3.71	12.07	15.78	50.00	-34.22	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

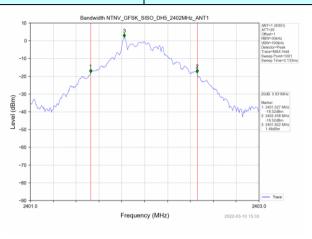
6.2. Conducted Peak Output Power


Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.1	10:2013					
Limit:	30dBm(for	GFSK),20.97	dBm(for EDI	₹)			
Test setup:	Power sensor and Spectrum analyzer E.U.T Non-Conducted Table						
		Ground Reference Pla	ane				
Test Instruments:	Refer to se	ction 6.0 for c	letails				
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	

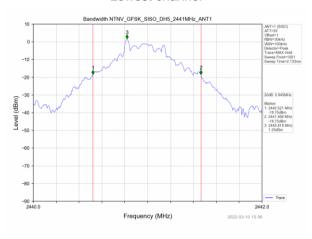
Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	1.69		
GFSK	Middle	1.36	30.00	Pass
	Highest	0.96		
	Lowest	3.16		Pass
π/4-DQPSK	Middle	2.80	20.97	
	Highest	2.40		
	Lowest	3.16		
8-DPSK	Middle	2.82	20.97	Pass
	Highest	2.41		

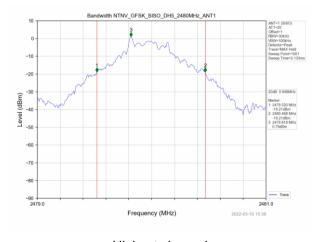
6.3. 20dB Emission Bandwidth


Measurement Data

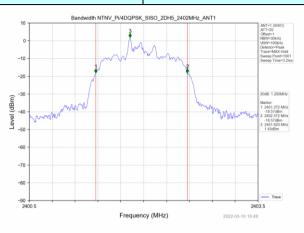
Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
	Lowest	0.931	
GFSK	Middle	0.945	Pass
	Highest	0.948	
	Lowest	1.200	
π/4-DQPSK	Middle	1.198	Pass
	Highest	1.199	
	Lowest	1.233	
8-DPSK	Middle	1.232	Pass
	Highest	1.244	

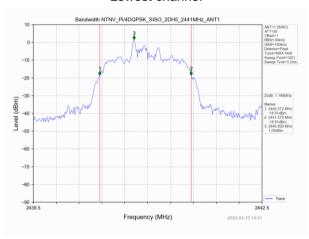


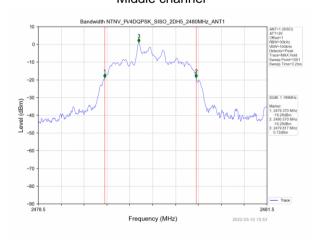
Test plot as follows:


Test mode: GFSK mode

Lowest channel

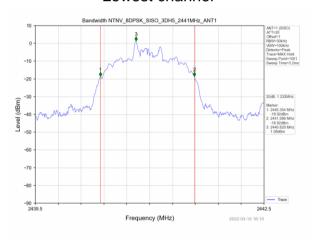

Middle channel


Highest channel


Test mode: $\pi/4$ -DQPSK mode

Lowest channel


Middle channel


Highest channel

Test mode: 8-DPSK mode

Lowest channel

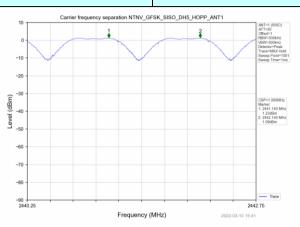
Middle channel

Highest channel

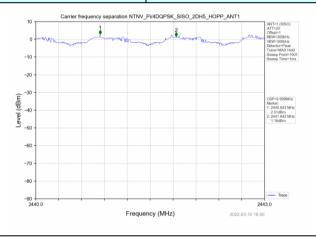
6.4. Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)						
Test Method:	ANSI C63.10:2013						
Receiver setup:	RBW=100K	Hz, VBW=30	00KHz, detec	tor=Peak			
Limit:		GFSK: 20dB bandwidth π/4-DQPSK : 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)					
Test setup:	Spe						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	

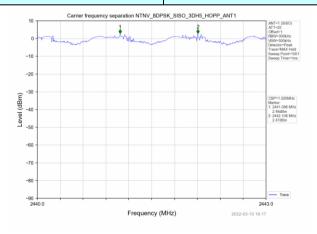
Measurement Data


Mode	Test channel	Frequencies Separation (MHz)	Limit (kHz)	Result
		, , ,	25KHz or	
GFSK	Middle	1.000	2/3*20dB	Pass
			bandwidth	
			25KHz or	
π/4-DQPSK	Middle	0.999	2/3*20dB	Pass
			bandwidth	
			25KHz or	
8-DPSK	Middle	1.020	2/3*20dB	Pass
			bandwidth	

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle



Test plot as follows:


Modulation mode: GFSK

Test mode: $\pi/4$ -DQPSK

Modulation mode: 8-DPSK

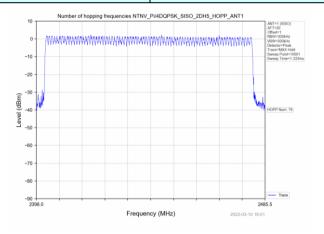
Shenzhen HTT Technology Co.,Ltd.

6.5. Hopping Channel Number

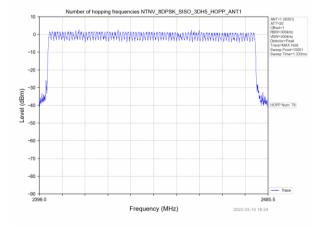
Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (a)(1)(iii)					
Test Method:	ANSI C63.1	10:2013					
Receiver setup:	RBW=100k Detector=P	Hz, VBW=30 eak	0kHz, Frequ	ency range=2	2400MHz-248	3.5MHz,	
Limit:	15 channels	S					
Test setup:	Spe			E.U.T	_		
Test Instruments:	Refer to see	ction 6.0 for d	letails				
Test mode:	Refer to section 5.2 for details						
Test results:	Pass	Pass					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79		Pass
π/4-DQPSK	79	≥15	Pass
8-DPSK	79		Pass



Test plot as follows:


Test mode: GFSK

Test mode: $\pi/4$ -DQPSK

Test mode: 8-DPSK

Shenzhen HTT Technology Co.,Ltd.

6.6. Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)					
Test Method:	ANSI C63.10:2013					
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=)Hz, Detector=F	Peak			
Limit:	0.4 Second					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					
Test environment:	Temp.: 25 °C Humid.:	52%	Press.:	1012mbar		

Measurement Data

GFSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	DH1	0.454	145.280	400	Pass
Hopping	DH3	1.709	293.948	400	Pass
Hopping	DH5	2.956	328.116	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) x (1600 \div 6 \div 79) x31.6 Second for DH5, 2-DH5, 3-DH5

$\pi/4$ -DOPSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	2DH1	0.457	146.240	400	Pass
Hopping	2DH3	1.710	251.370	400	Pass
Hopping	2DH5	2.958	307.632	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 \div 2 \div 79) x31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

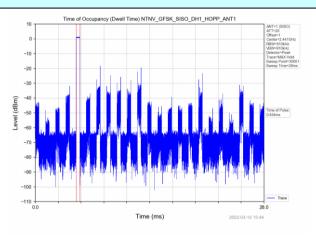
Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

8-DPSK mode:

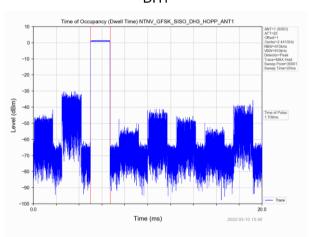
Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	3DH1	0.458	146.102	400	Pass
Hopping	3DH3	1.707	254.343	400	Pass
Hopping	3DH5	2.964	314.184	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

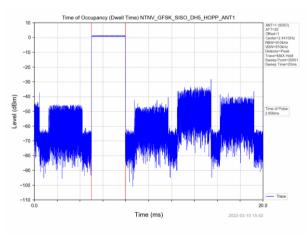
Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second for DH1, 2-DH1, 3-DH1


Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

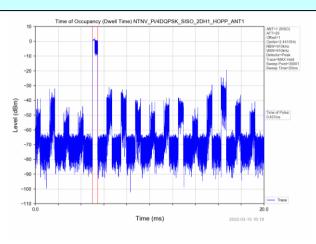
Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5



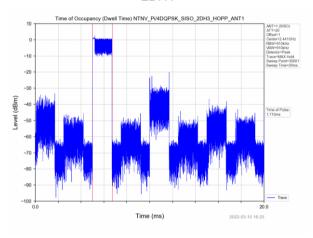
Test plot as follows:

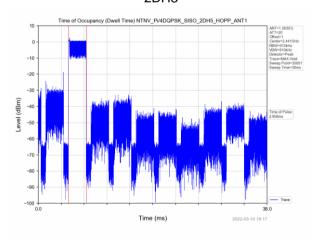

GFSK mode

DH1

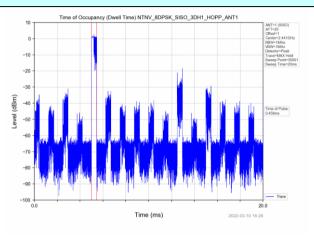


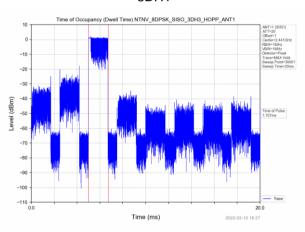
DH3

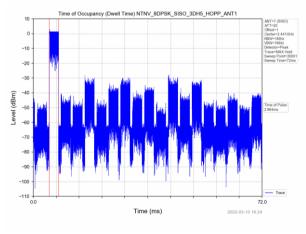



π/4-DQPSK mode

2DH1



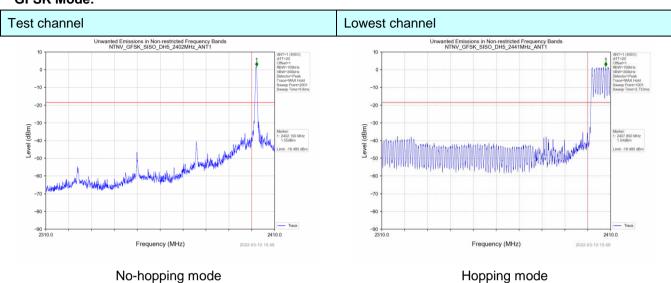



8-DPSK mode

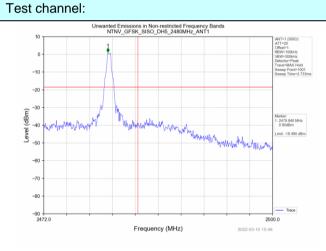
3DH1

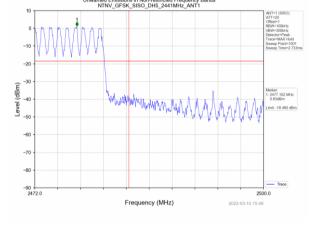
3DH3

3DH5


6.7. Band Edge

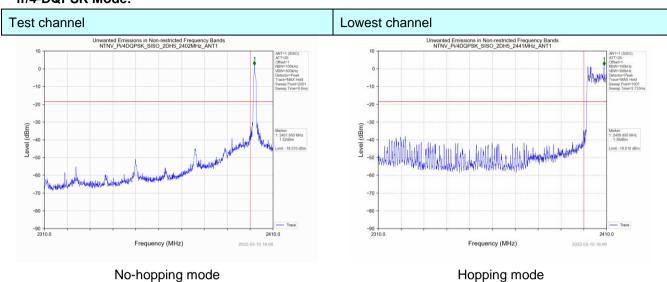
6.7.1. Conducted Emission Method


Test Requirement:	FCC Part15	C Section 1	5.247 (d)						
Test Method:	ANSI C63.1	NSI C63.10:2013							
Receiver setup:	RBW=100k	BW=100kHz, VBW=300kHz, Detector=Peak							
Limit:	spectrum ir produced b 100 kHz ba	itentional rac y the intentio ndwidth with ver, based o	liator is opera nal radiator s in the band tl	e frequency b ating, the radio shall be at lea hat contains the F conducted o	o frequency st 20 dB belo he highest le	oower that is ow that in the			
Test setup:	Spec		ducted Table	J.T					
Test Instruments:	Refer to se	ction 6.0 for	details						
Test mode:	Refer to se	ction 5.2 for	details						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			



Test plot as follows: GFSK Mode:

Highest channel



No-hopping mode

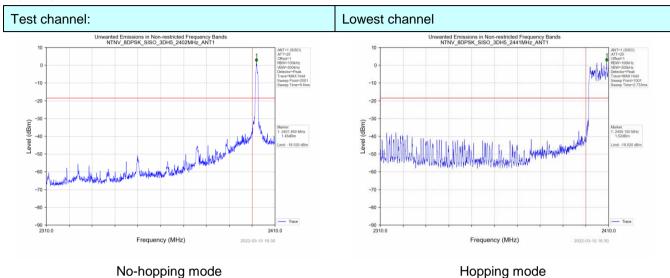
Hopping mode

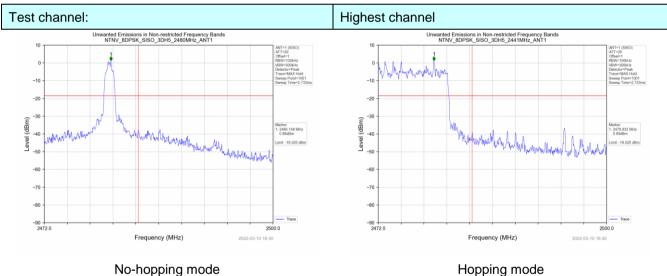
π/4-DQPSK Mode:

Test channel:

Unwanted Emissions in Non-restricted Frequency Bands NTNV_PI4BOCPSK_SISO_2DH5_2460MHz_ANT1 ANT-1 8850) CRiter! Filtre-State Filtre-State Filtre-State Filtre-State Filtre-273me Market 1 ANT-1 8850 CRiter! Filtre-State Filtre-273me Market 1 ANT-1 8850 CRiter! Filtre-273me Market 200-200 Frequency (MHz) 2002-03-10 10.006

Highest channel




No-hopping mode

Hopping mode

8-DPSK Mode:

Hopping mode

6.7.2. Radiated Emission Method

.7.2. Radiated Emission Wethod										
Test Requirement:	FCC Part15	C Section 1	5.209 a	nd 15.205						
Test Method:	ANSI C63.10	ANSI C63.10:2013 All of the restrict bands were tested, only the worst band's (2310MHz to								
Test Frequency Range:	All of the re- 2500MHz) da			tested, only	the wo	rst band's (2310MHz to			
Test site:	Measuremer	nt Distance:	3m							
Receiver setup:	Frequency			RBW	VBW		emark			
	Above 1GF	Iz Pea		1MHz 1MHz	3MHz 10Hz		ak Value age Value			
Limit:	Fre	quency	L	_imit (dBuV			emark			
	Abov	Above 1GHz 54.00 Average Va 74.00 Peak Valu								
Test setup:	Turn Tables <150cm >	EUT	< 3m :	Test Antenna	?					
Test Procedure:	1. The EUT	was placed				le 1.5 mete	rs above the			
	ground at determine 2. The EUT antenna, tower. 3. The anter ground to horizontal measurer 4. For each and then and the romaximum 5. The test-r Bandwidth 6. If the emislimit specific EUT would margin wo average next tower specific sections and the sections and the sections and the sections and the sections are sections.	a 3 meter of the position was set 3 meter was set 3 meter was remained to the antenna set at table was reading. The with Maximus on level of the intention of the pould be reported to the could be retented as set the as set the antenna table was reading.	amber. In of the neters a nounted waried the max turned term was turned to the Electing of the Electing coed. Other pecified	The table of highest race way from the don the top from one not imum value tations of the from 0 dependent of the from 0 depen	was rotated diation. The interfer to favor meter to favor mode was arrangrees to favor	erence-rece iable-height four meters field strength na are set to anged to its 1 meter to 360 degree to Tunction and the peak was that did not k, quasi-pe	above the n. Both o make the worst case 4 meters s to find the nd Specified wer than the values of the ot have 10dB ak or			
Test Instruments:	Refer to sect									
Test mode:	Refer to sect	tion 5.2 for o	details							
Test results:	Pass			<u> </u>			T			
Test environment:	Temp.:	25 °C	Humi	d.: 52%	6	Press.:	1012mbar			

Measurement Data

Remark: GFSK, Pi/4 DQPSK,8-DPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	59.34	26.20	5.72	33.30	57.96	74.00	-16.04	peak
2390	45.32	26.20	5.72	33.30	43.94	54.00	-10.06	AVG

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2390	57.99	26.20	5.72	33.30	56.61	74.00	-17.39	peak
2390	43.51	26.20	5.72	33.30	42.13	54.00	-11.87	AVG

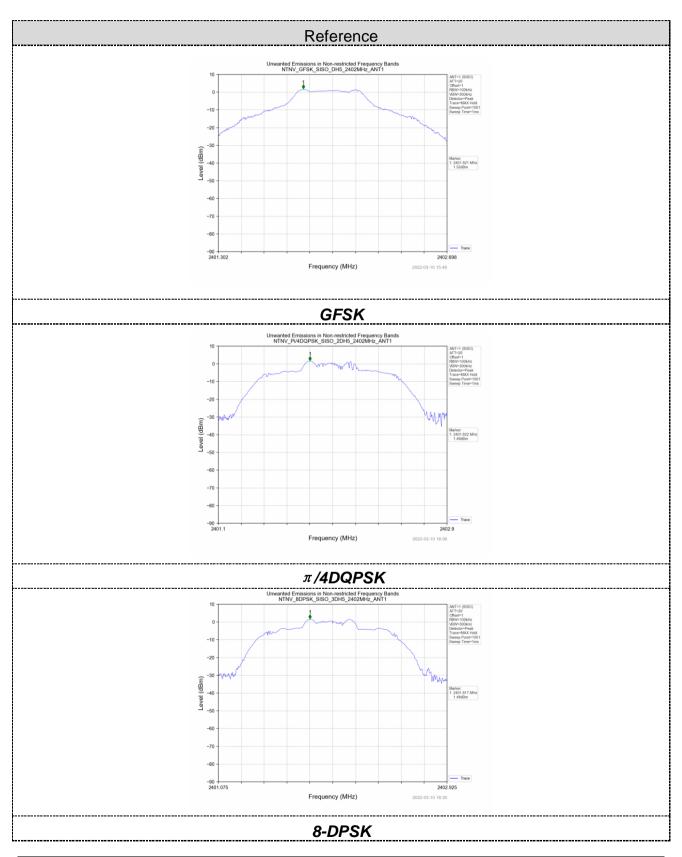
Operation Mode: GFSK TX High channel (2480MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	56.57	28.60	6.97	32.70	59.44	74.00	-14.56	peak
2483.5	41.35	28.60	6.97	32.70	44.22	54.00	-9.78	AVG

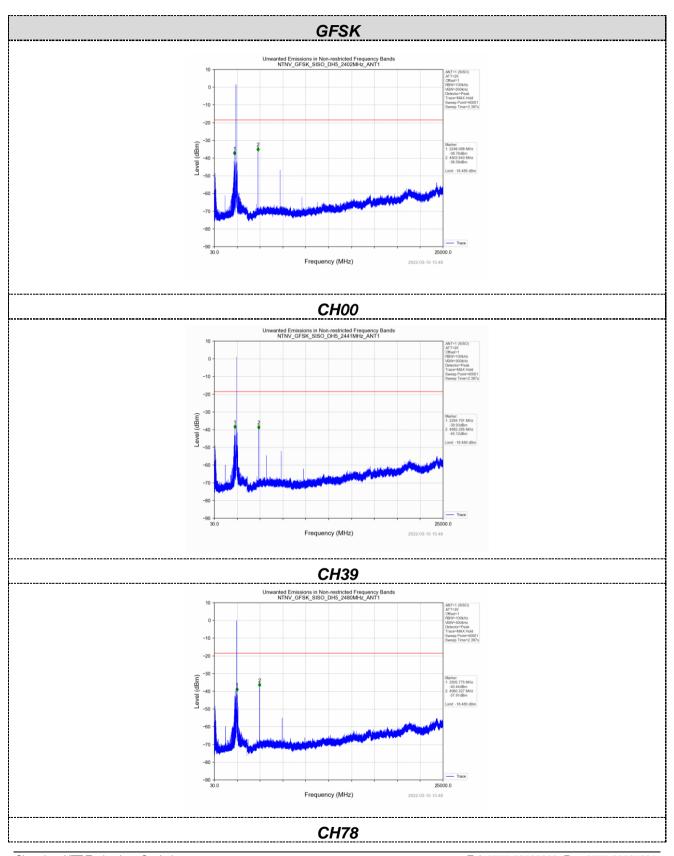
Vertical:

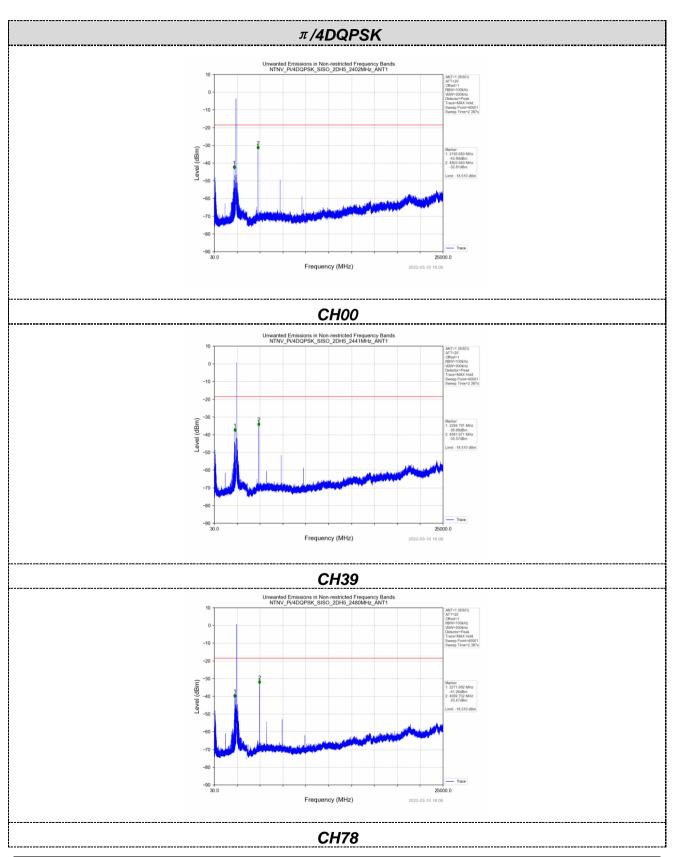
Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	55.45	28.60	6.97	32.70	58.32	74.00	-15.68	peak
2483.5	42.09	28.60	6.97	32.70	44.96	54.00	-9.04	AVG

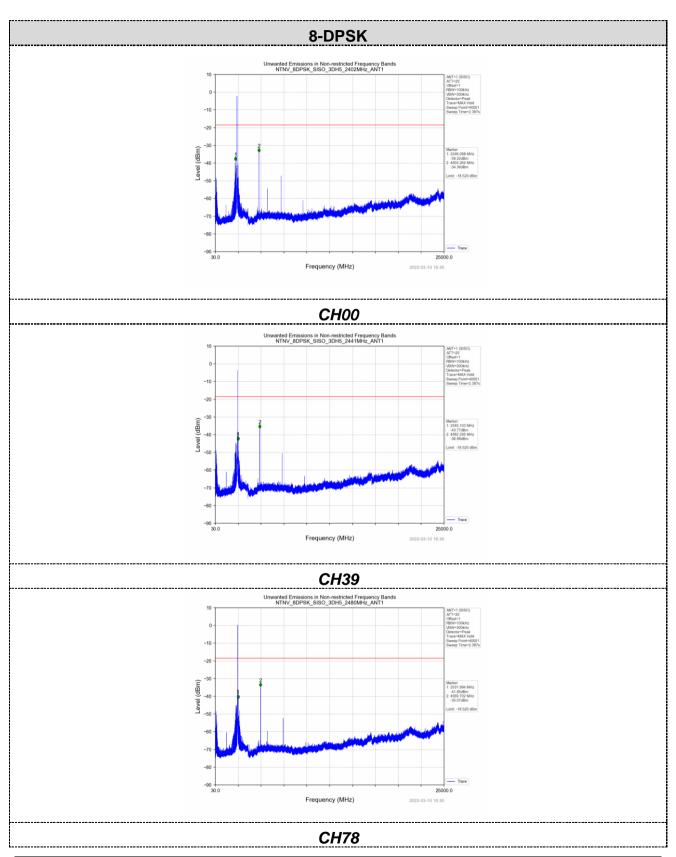


6.8. Spurious Emission

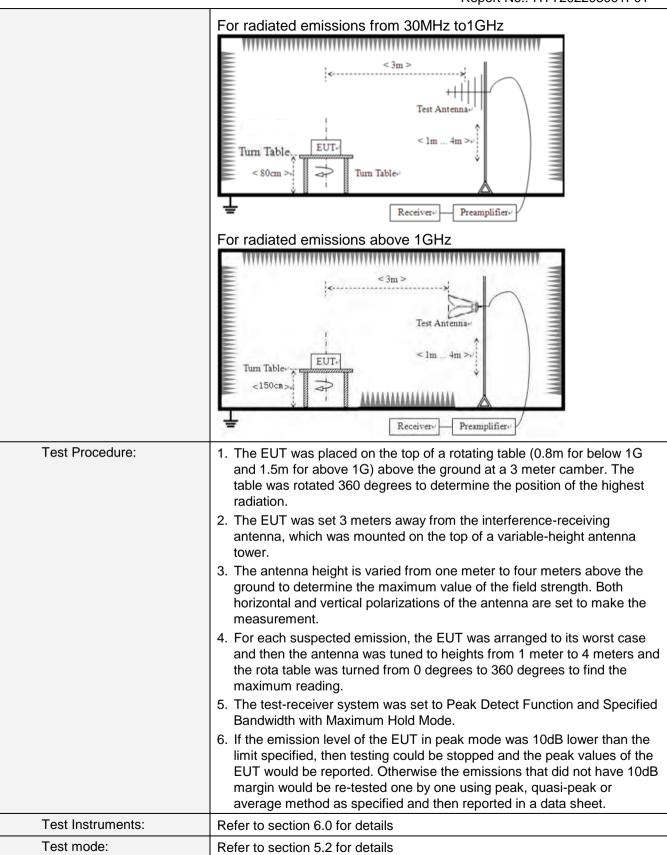
6.8.1. Conducted Emission Method


Test Requirement:	FCC Part15	5 C Section 1	5.247 (d)			
Test Method:	ANSI C63.1	10:2013				
Limit:	spectrum ir produced b 100 kHz ba	ntentional rad y the intentio ndwidth with ver, based or	liator is opera nal radiator s in the band th	e frequency bating, the radio hall be at least nat contains the conducted o	o frequency p st 20 dB belo ne highest lev	ower that is w that in the
Test setup:	Sp					
Test Instruments:	Refer to se	ction 6.0 for o	details			
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar


Shenzhen HTT Technology Co.,Ltd.


Shenzhen HTT Technology Co.,Ltd.

Shenzhen HTT Technology Co.,Ltd.


Shenzhen HTT Technology Co.,Ltd.

6.8.2. Radiated Emission Method

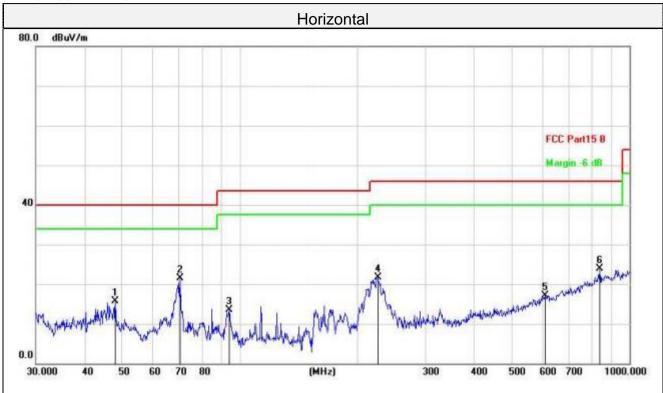
Test Requirement:	FCC Part15 C Section	on 15	5.209					
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distar	nce: 3	3m					
Receiver setup:	Frequency		Detector	RBV	٧	VBW	'	Value
	9KHz-150KHz	Qι	ıasi-peak	200Hz		600Hz	Z	Quasi-peak
	150KHz-30MHz	Quasi-peak		9KH	lz	30KH:	Z	Quasi-peak
	30MHz-1GHz	Qι	Quasi-peak 120		Hz	300KH	lz	Quasi-peak
	Above 1GHz		Peak	1M⊢	lz	3MHz	<u> </u>	Peak
	Above IGHZ		Peak	1M⊢	lz	10Hz		Average
Limit:	Frequency		Limit (u\	//m)	V	alue	N	Measurement Distance
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)	(QP		300m
	0.490MHz-1.705M	24000/F(KHz)	(QP	30m		
	1.705MHz-30MH	lz	30		QP		30m	
	30MHz-88MHz		100		(QP		
	88MHz-216MHz	<u>z</u>	150		(QP		
	216MHz-960MH	Z	200		(QP		3m
	960MHz-1GHz		500		QP			Sili
	Above 1GHz		500		Average			
	Above Toriz		5000)	Р	eak		
Test setup:	For radiated emiss	sions	from 9kH	z to 30	MHz	Z		_
	Turn Table Turn Table Socm >= Turn Table Turn Tabl							

Shenzhen HTT Technology Co.,Ltd.

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 6	0Hz				
Test results:	Pass					

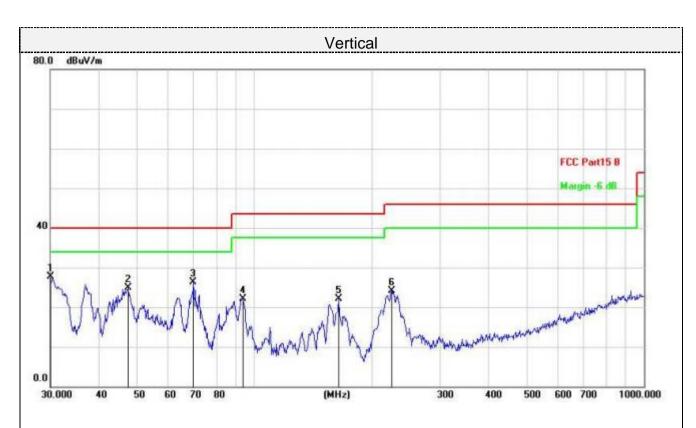
Measurement data:

Remarks:


- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


For 30MHz-1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		47.9939	32.99	-17.20	15.79	40.00	-24.21	QP
2	*	70.3365	41.48	-20.04	21.44	40.00	-18.56	QP
3		94.0978	34.91	-21.50	13.41	43.50	-30.09	QP
4		226.0994	41.20	-19.53	21.67	46.00	-24.33	QP
5		607.7866	27.25	-10.15	17.10	46.00	-28.90	QP
6		839.1817	30.03	-6.16	23.87	46.00	-22.13	QP

Final Level =Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	30.0000	46.24	-18.59	27.65	40.00	-12.35	QP
2		47.4918	42.18	-17.30	24.88	40.00	-15.12	QP
3		69.8450	46.25	-19.94	26.31	40.00	-13.69	QP
4		93.4402	43.75	-21.57	22.18	43.50	-21.32	QP
5		164.9075	40.60	-18.55	22.05	43.50	-21.45	QP
6		225.3080	43.71	-19.57	24.14	46.00	-21.86	QP

Final Level =Receiver Read level + Correct Factor

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK,Pi/4 DQPSK and 8-DPSK $\,$ were test at Low, Middle, and

High

channel; only the worst result of GFSK was reported as below:

CH Low (2402MHz)

Horizontal:

				_				
		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4804	51.36	31.40	8.18	31.50	59.44	74.00	-14.56	peak
4804	37.51	31.40	8.18	31.50	45.59	54.00	-8.41	AVG
7206	43.78	35.80	10.83	31.40	59.01	74.00	-14.99	peak
7206	28.88	35.80	10.83	31.40	44.11	54.00	-9.89	AVG
7200	20.00	33.60	10.03	31.40	44.11	54.00	-9.09	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
	(15.10)	(15()	(15)	(15)	(15.)(()	(15.14.)	(15)	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4804	51.75	31.40	8.18	31.50	59.83	74.00	-14.17	peak
4804	37.15	31.40	8.18	31.50	45.23	54.00	-8.77	AVG
7206	44.71	35.80	10.83	31.40	59.94	74.00	-14.06	peak
7206	28.45	35.80	10.83	31.40	43.68	54.00	-10.32	AVG
Remark: Facto	or = Antenna Fac	tor + Cable Los	s – Pre-amplifie	r.				

CH Middle (2441MHz)

Horizontal:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4882	50.88	31.40	9.17	32.10	59.35	74.00	-14.65	peak
4882	37.50	31.40	9.17	32.10	45.97	54.00	-8.03	AVG
7321	42.89	35.80	10.83	31.40	58.12	74.00	-15.88	peak
7321	27.85	35.80	10.83	31.40	43.08	54.00	-10.92	AVG

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin			
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type		
4882	51.22	31.40	9.17	32.10	59.69	74.00	-14.31	peak		
4882	37.15	31.40	9.17	32.10	45.62	54.00	-8.38	AVG		
7321	42.85	35.80	10.83	31.40	58.08	74.00	-15.92	peak		
7321	28.06	35.80	10.83	31.40	43.29	54.00	-10.71	AVG		
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.									

CH High (2480MHz)

Horizontal:

1 1011	zoniai.			_						
		Antenna		Preamp						
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin			
								Detector		
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type		
4960	51.28	31.40	9.17	32.10	59.75	74.00	-14.25	peak		
4960	37.15	31.40	9.17	32.10	45.62	54.00	-8.38	AVG		
7440	42.97	35.80	10.83	31.40	58.20	74.00	-15.80	peak		
7440	42.97	33.60	10.03	31.40	36.20	74.00	-15.60	peak		
7440	27.11	35.80	10.83	31.40	42.34	54.00	-11.66	AVG		
D										
Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.										

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4960	51.27	31.40	9.17	32.10	59.74	74.00	-14.26	peak
4900	31.21	31.40	9.17	32.10	39.74	74.00	-14.20	peak
4960	37.15	31.40	9.17	32.10	45.62	54.00	-8.38	AVG
7440	43.08	35.80	10.83	31.40	58.31	74.00	-15.69	peak
7440	28.44	35.80	10.83	31.40	43.67	54.00	-10.33	AVG

Remark

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

-----End-----