

FCC Radio Test Report

FCC ID: 2A5LO-TOZEDZLTX100

This report concerns: Original Grant

Project No. Equipment Brand Name Test Model Series Model Applicant Address	 2312C154 5G Wireless Router Tozed Kangwei ZLT X100 PRO N/A Tozed Kangwei Tech Co., Ltd Room 1301, NO. 37 Jinlong , Nansha Street, Xiangjiang Financial
Manufacturer Address Factory Address	 Business Center, Nansha District, Guangzhou Tozed Kangwei Tech Co., Ltd Room 1301, NO. 37 Jinlong , Nansha Street, Xiangjiang Financial Business Center, Nansha District, Guangzhou Tozed Kangwei Tech Co., Ltd Room 1301, NO. 37 Jinlong , Nansha Street, Xiangjiang Financial
Date of Receipt Date of Test	 Business Center, Nansha District, Guangzhou Dec. 25, 2023 Dec. 26, 2023 ~ Jan. 31, 2024
Issued Date Report Version	: Jan. 31, 2024 : R00
Test Sample Standard(s)	 Engineering Sample No.: DG2023122560 for conducted, DG2023122563 and DG2023122561 for radiated. FCC CFR Title 47, Part 15, Subpart C

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Prepared by

Grant Zhou Grani Zhou Seeren Lu

Approved by

Steven Lu

Room 108, Building 2, No. 1, Yile Road, Songshan Lake Zone, Dongguan City, Guangdong 523000 China

Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025: 2017 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	6
1. APPLICABLE STANDARDS	7
2. SUMMARY OF TEST RESULTS	7
2.1 TEST FACILITY	8
2.2 MEASUREMENT UNCERTAINTY	8
2.3 TEST ENVIRONMENT CONDITIONS	9
3. GENERAL INFORMATION	10
3.1 GENERAL DESCRIPTION OF EUT	10
3.2 DESCRIPTION OF TEST MODES	12
3.3 PARAMETERS OF TEST SOFTWARE	13
3.4 DUTY CYCLE	14
3.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	16
3.6 SUPPORT UNITS	16
4 . AC POWER LINE CONDUCTED EMISSIONS	17
4.1 LIMIT	17
4.2 TEST PROCEDURE	17
4.3 DEVIATION FROM TEST STANDARD	17
4.4 TEST SETUP	18
4.5 EUT OPERATION CONDITIONS	18
4.6 TEST RESULTS	18
5. RADIATED EMISSIONS	19
5.1 LIMIT	19
5.2 TEST PROCEDURE	20
5.3 DEVIATION FROM TEST STANDARD	21
5.4 TEST SETUP	21
5.5 EUT OPERATION CONDITIONS	23
5.6 TEST RESULTS - 9 KHZ TO 30 MHZ	23
5.7 TEST RESULTS - 30 MHZ TO 1000 MHZ	23
5.8 TEST RESULTS - ABOVE 1000 MHZ	23
6 . BANDWIDTH	24
6.1 LIMIT	24
6.2 TEST PROCEDURE	24
6.3 DEVIATION FROM STANDARD	24

Table of Contents	Page
6.4 TEST SETUP	24
6.5 EUT OPERATION CONDITIONS	24
6.6 TEST RESULTS	24
7 . MAXIMUM OUTPUT POWER	25
7.1 LIMIT	25
7.2 TEST PROCEDURE	25
7.3 DEVIATION FROM STANDARD	25
7.4 TEST SETUP	25
7.5 EUT OPERATION CONDITIONS	25
7.6 TEST RESULTS	25
8 . CONDUCTED SPURIOUS EMISSIONS	26
8.1 LIMIT	26
8.2 TEST PROCEDURE	26
8.3 DEVIATION FROM STANDARD	26
8.4 TEST SETUP	26
8.5 EUT OPERATION CONDITIONS	26
8.6 TEST RESULTS	26
9 . POWER SPECTRAL DENSITY	27
9.1 LIMIT	27
9.2 TEST PROCEDURE	27
9.3 DEVIATION FROM STANDARD	27
9.4 TEST SETUP	27
9.5 EUT OPERATION CONDITIONS	27
9.6 TEST RESULTS	27
10 . MEASUREMENT INSTRUMENTS LIST	28
11 . EUT TEST PHOTO	30
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS	35
APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ	38
APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	43
APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ	46
APPENDIX E - BANDWIDTH	85
APPENDIX F - MAXIMUM OUTPUT POWER	92

Table of Contents	Page
APPENDIX G - CONDUCTED SPURIOUS EMISSIONS APPENDIX H - POWER SPECTRAL DENSITY	98 110
AFFENDIA N - FOWER SPECTRAL DENSITY	110

	R	EPORT ISSUED HISTORY		
Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2312C154	R00	Original Report.	Jan. 31, 2024	Valid

1. APPLICABLE STANDARDS

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

ANSI C63.10-2013 The following reference test guidance is not within the scope of accreditation of NVLAP: KDB 558074 D01 15.247 Meas Guidance v05r02

KDB 662911 D01 Multiple Transmitter Output v02r01

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC CFR Title 47, Part 15, Subpart C					
Standard(s) Section	Standard(s) Section Test Item Test Resul			Remark	
15.207	AC Power Line Conducted Emissions	APPENDIX A	PASS		
15.247(d) 15.205(a) 15.209(a)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	PASS		
15.247(a)(2)	Bandwidth	APPENDIX E	PASS		
15.247(b)(3)	Maximum Output Power	APPENDIX F	PASS		
15.247(d)	Conducted Spurious Emissions	APPENDIX G	PASS		
15.247(e)	Power Spectral Density	APPENDIX H	PASS		
15.203	Antenna Requirement		PASS	Note(2)	

Note:

- (1) "N/A" denotes test is not applicable in this test report.
- (2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report: For Radiated Emissions and Conducted Items: Room 108, Building 2, No. 1, Yile Road, Songshan Lake Zone, Dongguan City, Guangdong 523000. BTL's Registration Number for FCC: 568794 BTL's Designation Number for FCC: CN5041

For AC power line conducted emissions and Power Items: No. 3 Jinshagang 1st Rd. Shixia, Dalang Town, Dongguan City, Guangdong 523792. BTL's Registration Number for FCC: 162128 BTL's Designation Number for FCC: CN5042

2.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table:

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	<i>U</i> ,(dB)
DG-C02	CISPR	150kHz ~ 30MHz	2.60

B. Radiated emissions test:

Test Site	Method	Measurement Frequency Range	<i>U</i> ,(dB)
SSL-CB01	CISPR	9kHz ~ 30MHz	2.74

Test Site	Method	Measurement Frequency Range	Ant. H / V	<i>U</i> ,(dB)
SSL-CB01 CICRD	30MHz ~ 200MHz	V	4.70	
		30MHz ~ 200MHz	Н	3.56
(3m)		200MHz ~ 1,000MHz	V	4.92
		200MHz ~ 1,000MHz	Н	4.54

Test Site	Method	Measurement Frequency Range	U,(dB)
SSL-CB01		1GHz ~ 6GHz	4.56
(3m)	CISPR	6GHz ~ 18GHz	5.14

Test Site	Method	Measurement Frequency Range	<i>U</i> ,(dB)
SSL-CB01		18 ~ 26.5 GHz	3.30
(1m)	CISPR	26.5 ~ 40 GHz	3.82

C. Other Measurement:

Test Item	Uncertainty
Bandwidth	±3.8 %
Maximum Output Power	±0.95 dB
Conducted Spurious Emission	±2.71 dB
Power Spectral Density	±0.86 dB
Temperature	±0.08 °C
Humidity	±1.5%

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

2.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
AC Power Line Conducted Emissions	23°C	51%	AC 120V/60Hz	Parker Mai
Radiated Emissions-9kHz to 30 MHz	25°C	60%	AC 120V/60Hz	Max Wang
Radiated Emissions-30MHz to 1000MHz	24°C	43%	AC 120V/60Hz	Geoffrey Zou
Radiated Emissions-Above 1000MHz	23°C	45%	AC 120V/60Hz	Max Wang
Bandwidth	24°C	55%	DC 12V	Tember Zhuang
Maximum Output Power	22°C	57%	DC 12V	Complex Qin
Conducted Spurious Emissions	24°C	55%	DC 12V	Tember Zhuang
Power Spectral Density	24°C	55%	DC 12V	Tember Zhuang

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	5G Wireless Router		
Brand Name	Tozed Kangwei		
Test Model	ZLT X100 PRO		
Series Model	N/A		
Model Difference(s)	N/A		
Software Version	V1.0		
Hardware Version	TZ7.823.806A		
Power Source	DC voltage supplied from AC adapter. 1# Manufacturer / Model: KELI / KL-WA120YYY-G1 2# Manufacturer / Model: JiYin / JYSY018-1201500UD		
Power Rating	1# I/P: 100-240V~ 50/60Hz 0.7A O/P: 12V === 1.5A 2# I/P: 100-240V~ 50/60Hz 0.5A O/P: 12V === 1.5A		
Operation Frequency	2412 MHz ~ 2462 MHz		
Modulation Type	IEEE 802.11b: DSSS IEEE 802.11g: OFDM IEEE 802.11n: OFDM IEEE 802.11ax: OFDMA		
Bit Rate of Transmitter	IEEE 802.11b: 11/5.5/2/1 Mbps IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps IEEE 802.11n: up to 300 Mbps IEEE 802.11ax: up to 573.6 Mbps		
Maximum Output Power	IEEE 802.11n(HT40): 14.94 dBm (0.0312 W)		
Note:			

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

CH01 -	CH01 - CH11 for IEEE 802.11b, IEEE 802.11g, IEEE 802.11n(HT20), IEEE 802.11ax(HE20) CH03 - CH09 for IEEE 802.11n(HT40), IEEE 802.11ax(HE40)							
Channel	ChannelFrequency (MHz)ChannelFrequency (MHz)Frequency (MHz)Frequency 							
01	2412	04	2427	07	2442	10	2457	
02	2417	05	2432	08	2447	11	2462	
03	2422	06	2437	09	2452			

3. Antenna Specification:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	ZTX	X100 PRO WIFI-1	PCB	N/A	4.62
2	ZTX	X100 PRO WIFI-2	PCB	N/A	6.56

Note:

This EUT supports CDD(IEEE 802.11g mode) and MIMO(Except IEEE 802.11b mode), any transmit signals are correlated with each other, so Directional gain=10log[(10^{G1/20}+10^{G2/20}+...10^{GN/20})²/N]dBi, that is Directional gain=10log[(10^{4.62/20}+10^{6.56/20})²/2]dBi =8.65. So, the output power limit is 30-(8.65-6)=27.35, the power spectral density limit is 8-(8.65-6)=5.35.

2) The antenna gain is provided by the manufacturer.

4. Table for Antenna Configuration:

Operating Mode TX Mode	1TX	2ТХ
IEEE 802.11b	V (Ant. 1)	-
IEEE 802.11g	-	V(Ant. 1 + Ant. 2)
IEEE 802.11n(HT20)	-	V(Ant. 1 + Ant. 2)
IEEE 802.11n(HT40)	-	V(Ant. 1 + Ant. 2)
IEEE 802.11ax(HE20)	-	V(Ant. 1 + Ant. 2)
IEEE 802.11ax(HE40)	-	V(Ant. 1 + Ant. 2)

3.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description	
Mode 1	TX B Mode Channel 01/06/11	
Mode 2	TX G Mode Channel 01/06/11	
Mode 3	TX N(HT20) Mode Channel 01/06/11	
Mode 4	TX N(HT40) Mode Channel 03/06/09	
Mode 5	TX AX(HE20) Mode Channel 01/06/11	
Mode 6	TX AX(HE40) Mode Channel 03/06/09	
Mode 7	TX N(HT40) Mode Channel 03	

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

AC power line conducted emissions test			
Final Test Mode Description			
Mode 7 TX N(HT40) Mode Channel 03			

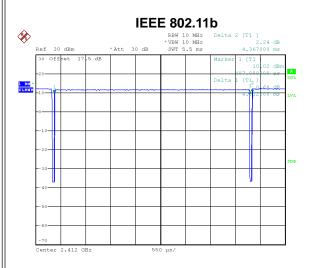
Radiated emissions test - Below 1GHz			
Final Test Mode Description			
Mode 7	TX N(HT40) Mode Channel 03		

Radiated emissions test- Above 1GHz			
Final Test Mode Description			
Mode 1	TX B Mode Channel 01/06/11		
Mode 2	TX G Mode Channel 01/06/11		
Mode 3	TX N(HT20) Mode Channel 01/06/11		
Mode 4	TX N(HT40) Mode Channel 03/06/09		
Mode 5	TX AX(HE20) Mode Channel 01/06/11		
Mode 6	TX AX(HE40) Mode Channel 03/06/09		

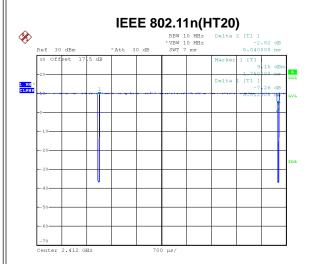
	Conducted test			
Final Test Mode Description				
Mode 1	TX B Mode Channel 01/06/11			
Mode 2	TX G Mode Channel 01/06/11			
Mode 3	TX N(HT20) Mode Channel 01/06/11			
Mode 4	TX N(HT40) Mode Channel 03/06/09			
Mode 5	TX AX(HE20) Mode Channel 01/06/11			
Mode 6	TX AX(HE40) Mode Channel 03/06/09			

NOTE:

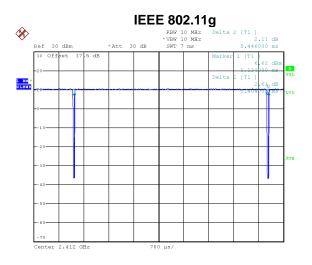
- (1) All the bit rate of transmitter have been tested and found the lowest rate is found to be the worst case and recorded.
- (2) For AC power line conducted emissions and radiated emission below 1 GHz test, the TX N(HT40) Mode Channel 03 is found to be the worst case and recorded.
- (3) For radiated emission above 1 GHz test, the spurious points of 1GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.
- (4) IEEE 802.11ax mode only supports full RU, so only the full RU is evaluated and measured inside report.
- (5) For AC power line conducted emissions and radiated emissions below 1 GHz test, all adapters had been pre-tested and in this report only recorded the worst adapter(Manufacturer / Model: JiYi /JYSY018-1201500UD).
- (6) For radiated emission above 1 GHz test, the polarization of Vertical and Horizontal are evaluated, the worst case is Horizontal and recorded.


3.3 PARAMETERS OF TEST SOFTWARE

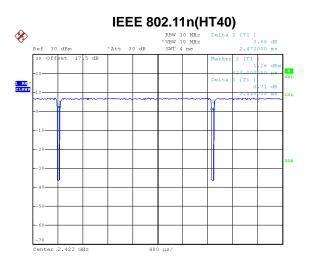
Test Software Version	Inter DUT			
Frequency (MHz)	2412	2437	2462	
IEEE 802.11b	10	10.5	10.5	
IEEE 802.11g	10.5	10.5	11	
IEEE 802.11n(HT20)	10.5	10.5	11	
IEEE 802.11ax(HE20)	10	10	10.5	
Frequency (MHz)	2422	2437	2452	
IEEE 802.11n(HT40)	10.5	10.5	10.5	
IEEE 802.11ax(HE40)	10	10	10	


3.4 DUTY CYCLE

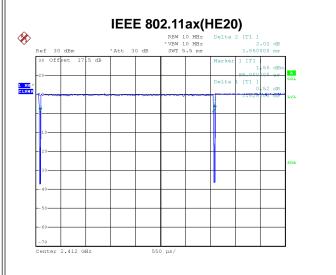
If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered. The output power = measured power + duty factor.

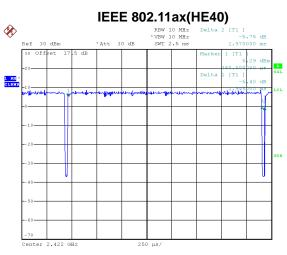

Date: 6.JAN.2024 14:28:11

Duty cycle = 4.312 ms / 4.367 ms = 98.74%Duty Factor = $10 \log(1/\text{Duty cycle}) = 0.00$


Date: 6.JAN.2024 14:29:18

Duty cycle = 5.012 ms / 5.040 ms = 99.44%Duty Factor = $10 \log(1/\text{Duty cycle}) = 0.00$


Date: 6.JAN.2024 14:28:42


Duty cycle = 5.404 ms / 5.446 ms = 99.23%Duty Factor = $10 \log(1/\text{Duty cycle}) = 0.00$

Date: 6.JAN.2024 14:29:51

Duty cycle = 2.440 ms / 2.472 ms = 98.71%Duty Factor = $10 \log(1/\text{Duty cycle}) = 0.00$

Duty cycle = 1.945 ms / 1.970 ms = 98.73%

Duty Factor = $10 \log(1/\text{Duty cycle}) = 0.00$

Date: 6.JAN.2024 14:30:38

Duty cycle = 3.828 ms / 3.850 ms = 99.43% Duty Factor = 10 log(1/Duty cycle) = 0.00

NOTE:

For IEEE 802.11b:

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1 kHz.

Date: 6.JAN.2024 14:31:09

For IEEE 802.11g:

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1 kHz.

For IEEE 802.11n(HT20):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1 kHz.

For IEEE 802.11n(HT40):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 2 kHz.

For IEEE 802.11ax(HE20):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1 kHz.

For IEEE 802.11ax(HE40):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 2 kHz.

3.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.6 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.
А	Notebook	Lenovo	Think Book 14 G6 ABP	N/A

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	DC Cable	NO	NO	1.5m
2	RJ45 Cable	NO	NO	10m

4. AC POWER LINE CONDUCTED EMISSIONS

4.1 LIMIT

Frequency of Emission (MHz)	Limit (dBµV)		
Frequency of Emission (MHZ)	Quasi-peak	Average	
0.15 - 0.5	66 to 56*	56 to 46*	
0.5 - 5.0	56	46	
5.0 - 30.0	60	50	

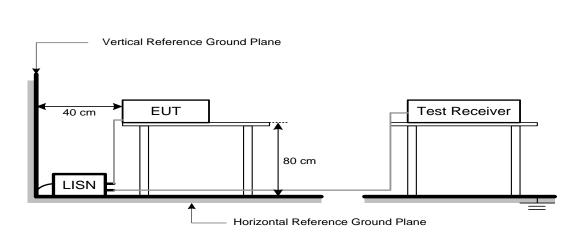
NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

4.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:


Receiver Parameters	Setting
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP

4.5 EUT OPERATION CONDITIONS

EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULTS

Please refer to the APPENDIX A.

5. RADIATED EMISSIONS

5.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (30 MHz-1000 MHz)

Frequency (MHz)	Field Strength (µV/m at 3m)
30-88	100
88-216	150
216-960	200
Above 960	500

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Band edge/ Harmonic at 3m (dBµV/m)		Harmonic at 1.5m (dBµV/m)	
	Peak	Average	Peak	Average
Above 10 0	74	54	80 (Note 5)	60(Note 5)

NOTE:

(4)

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

$$FS_{\text{limit}} = FS_{\text{max}} - 20\log$$

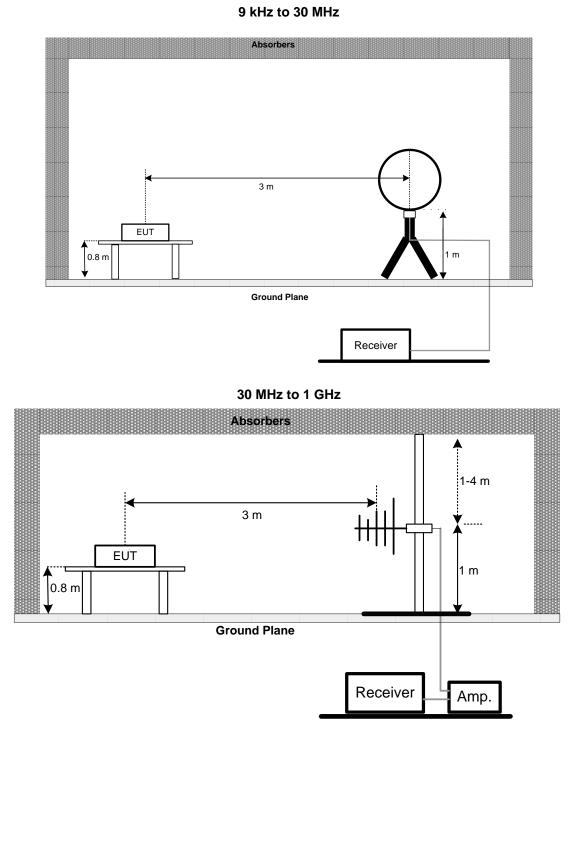
$$\frac{d_{\text{limit}}}{d_{\text{measure}}}$$

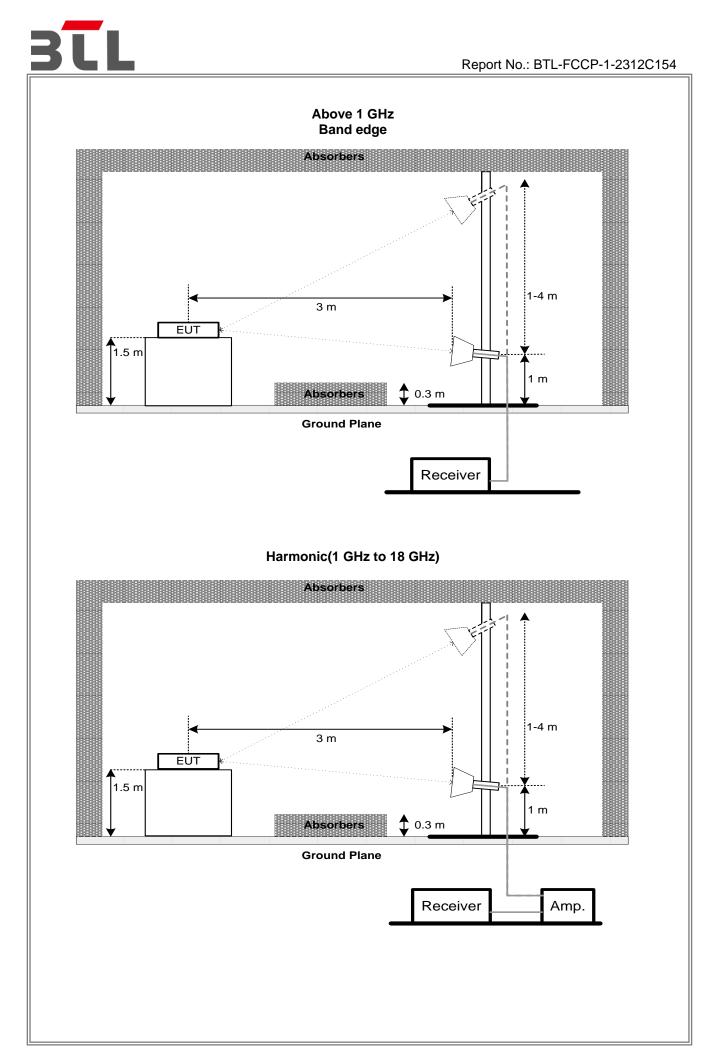
20log (d_{limit}/d_{measure})=20log (3/1.5)=6 dB.

5.2 TEST PROCEDURE

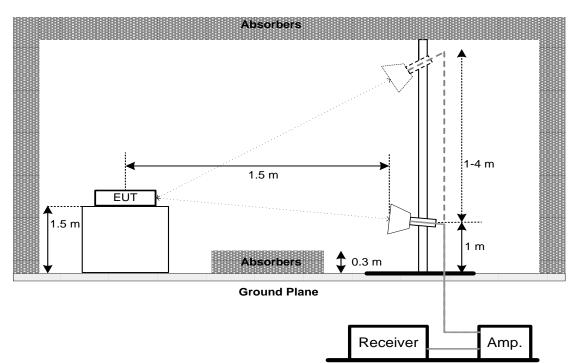
- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m or 1.5m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:


Spectrum Parameters	Setting
Start ~ Stop Frequency	9 kHz~150 kHz for RBW 200 Hz
Start ~ Stop Frequency	0.15 MHz~30 MHz for RBW 9 kHz
Start ~ Stop Frequency	30 MHz~1000 MHz for RBW 100 kHz
Spectrum Parameters	Setting
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1 MHz / 3 MHz for PK value
(Emission in restricted band)	1 MHz / 1/T Hz for AVG value
Receiver Parameters	Setting
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector
Start ~ Stop Frequency	30 MHz~1000 MHz for QP detector
Start ~ Stop Frequency	1 GHz~26.5 GHz for PK/AVG detector



5.3 DEVIATION FROM TEST STANDARD


No deviation.

5.4 TEST SETUP

Harmonic(18 GHz to 26.5 GHz)

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS - 9 KHZ TO 30 MHZ

Please refer to the APPENDIX B.

Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

5.7 TEST RESULTS - 30 MHZ TO 1000 MHZ

Please refer to the APPENDIX C.

5.8 TEST RESULTS - ABOVE 1000 MHZ

Please refer to the APPENDIX D.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

6. BANDWIDTH

6.1 LIMIT

Section	Test Item	Limit
FCC 15.247(a)(2)	6 dB Bandwidth	Minimum 500 kHz
	99% Emission Bandwidth	-

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

For 6 dB Bandwidth:

Setting
> Measurement Bandwidth
100 kHz
300 kHz
Peak
Max Hold
Auto

For 99% Emission Bandwidth:

Spectrum Parameters Setting		
Span Frequency	Between 1.5 times and 5.0 times the OBW	
RBW	300 kHz For 20MHz 1 MHz For 40MHz	
VBW	1 MHz For 20MHz 3 MHz For 40MHz	
Detector Peak		
Trace	Max Hold	
Sweep Time Auto		

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULTS

Please refer to the APPENDIX E.

7. MAXIMUM OUTPUT POWER

7.1 LIMIT

Section	Test Item	Limit
FCC 15.247(b)(3)	Maximum Output Power	1.0000 Watt or 30.00 dBm

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the peak power analyzer and antenna output port as show in the block diagram below.
- b. The maximum conducted output power was performed in accordance with method 11.9.2.3.1 of ANSI C63.10-2013 and FCC KDB 662911 D01 v02r01 Multiple Transmitter Output.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the APPENDIX F.

8. CONDUCTED SPURIOUS EMISSIONS

8.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Start Frequency	30 MHz
Stop Frequency	26.5 GHz
RBW	100 kHz
VBW	300 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULTS

Please refer to the APPENDIX G.

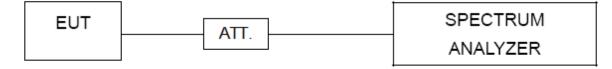
9. POWER SPECTRAL DENSITY

9.1 LIMIT

Section	Test Item	Limit
FCC 15.247(e)	Power Spectral Density	8 dBm (in any 3 kHz)

9.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.


b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting
Span Frequency	25 MHz (20 MHz) / 60 MHz (40 MHz)
RBW	3 kHz
VBW	10 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

9.6 TEST RESULTS

Please refer to the APPENDIX H.

10. MEASUREMENT INSTRUMENTS LIST

	AC Power Line Conducted Emissions								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until				
1	EMI Test Receiver	R&S	ESR3	103027	Jun. 16, 2024				
2	TWO-LINE V-NETWORK	R&S	ENV216	101447	Dec. 22, 2024				
3	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A				
4	Cable	N/A	SFT205-NMNM-9M -001	9M	Nov. 27, 2024				
5	643 Shield Room	ETS	6*4*3	N/A	N/A				

	Radiated Emissions - 9 kHz to 30 MHz							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	Active Loop Antenna	Schwarzbeck	FMZB 1513-60	1513-60-025	Apr. 01, 2024			
2	MXE EMI Receiver	Keysight	N9038A	MY59050118	Feb. 10, 2024			
3	Cable	EMC INSTRUMENT	EMCCFD400-NM-N M-3000	N/A	Jun. 08, 2024			
4	Cable	EMC INSTRUMENT	EMCCFD400-NM-N M-7000	N/A	Jun. 08, 2024			
5	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A			
6	966 Chamber room	Taihe Mao Rui	9*6*6 (NSA&VSWR)	N/A	Jun. 02, 2024			

	Radiated Emissions - 30 MHz to 1 GHz							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	Trilog-Broadband Antenna	Schwarzbeck	VULB9168	01269	May. 15, 2024			
2	Attenuator	EMC INSTRUMENT	EMCI-N-6-06	AN-N0697	May. 15, 2024			
3	Preamplifier	EMC INSTRUMENT	EMC001330	4585/5/27	Feb. 10, 2024			
4	Cable	EMC INSTRUMENT	EMCCFD400-NM-N M-2500	N/A	Jun. 08, 2024			
5	Cable	EMC INSTRUMENT	N/Δ		Jun. 08, 2024			
6	Cable	EMC INSTRUMENT	EMCCFD400-NM-N M-3000	N/A	Jun. 08, 2024			
7	MXE EMI Receiver	KEYSIGHT	N9038A	MY59050118	Feb. 10, 2024			
8	Positioning Controller	MF	MF-7802BS	N/A	N/A			
9	Max-Full Antenna Corp	MF	MFA-560BSN	N/A	N/A			
10	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A			
11	wideband radio communication tester	R&S	CMW500	164094	Jul. 07, 2024			
12	Attenuator	Talent Microwave	TA10A2-S-18	N/A	N/A			
13	966 Chamber room	Taihe Mao Rui	9*6*6 (NSA&VSWR)	N/A	Jun. 02, 2024			

Radiated Emissions - Above 1 GHz							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
1	MXE EMI Receiver	Keysight	N9038A	MY59050118	Feb. 10, 2024		
2	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A		
3	Preamplifier	EMC INSTRUMENT	EMC118A45SE	980739	Feb. 10, 2024		
4	Cable	EMC INSTRUMENT	EMC104-SM-SM-1 0000	N/A	Jun. 08, 2024		
5	Cable	EMC INSTRUMENT	EMC104-SM-SM-3 000	N/A	Jun. 08, 2024		
6	Cable	EMC INSTRUMENT	EMC104-SM-SM-8 00	N/A	Jun. 08, 2024		
7	wideband radio communication tester	R&S	CMW500	164094	Jul. 07, 2024		
8	Attenuator	Talent Microwave	TA10A2-S-18	N/A	N/A		
9	Broad-Band Horn Antenna	Schwarzbeck	BBHA9170	1046	Jul. 05, 2024		
10	966 Chamber room	6 Chamber room Taihe Mao Rui		N/A	Jun. 02, 2024		

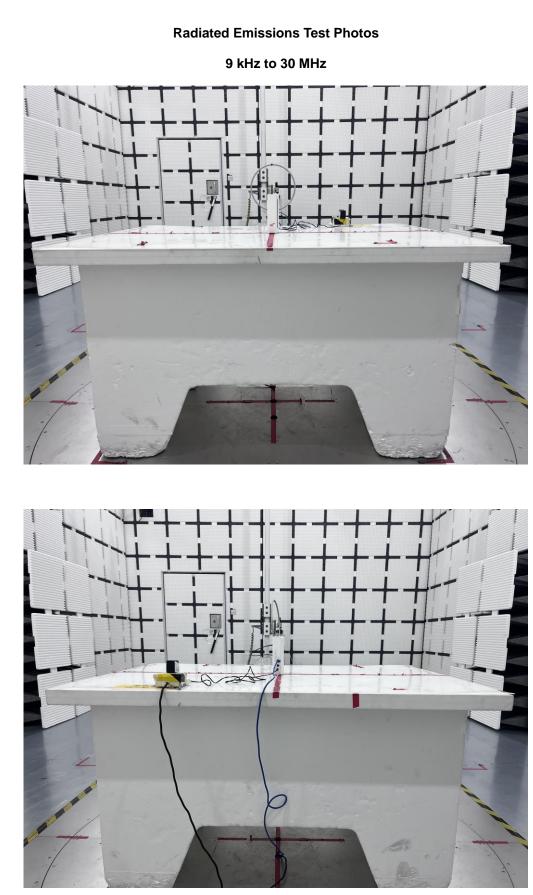
	Bandwidth & Conducted Spurious Emissions & Power Spectral Density									
Item										
1	Spectrum Analyzer	R&S	R&S FSP38 100852 Ju							
2	Attenuator	RegalWay	RWA-201-S-10	N/A	Sep. 26, 2024					
3	Digital Multimeter	FLUKE	15B PRO	59056240WS	Sep. 25, 2024					
4	Measurement Software	BTL	BTL Conducted Test	N/A	N/A					
5	Attenuator	RegalWay	RWA-201-S-6	N/A	Sep. 26, 2024					
6	Temperature Chamber	ESPEC CORP	SU-242	93018736	Jul. 07, 2024					

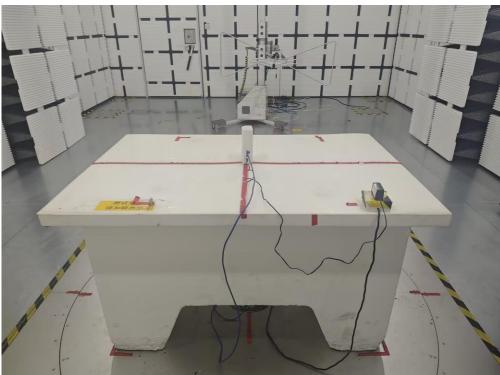
	Maximum Output Power								
	Item Kind of Equipment Manufacturer Type No. Serial No. Calibrated unti								
Ī	1	Peak Power Analyzer	Keysight	8990B	MY51000506	Jun. 17, 2024			
	2	Wideband power sensor	Keysight	N1923A	MY58310004	Jun. 17, 2024			
	3	Attenuator	Talent Microwave	TA10A2-S-18	N/A	N/A			

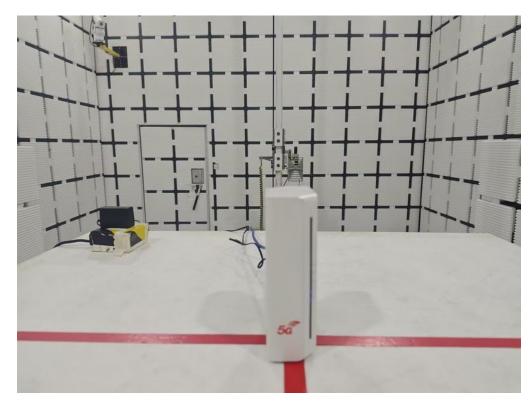
Remark: "N/A" denotes no model name, serial no. or calibration specified.

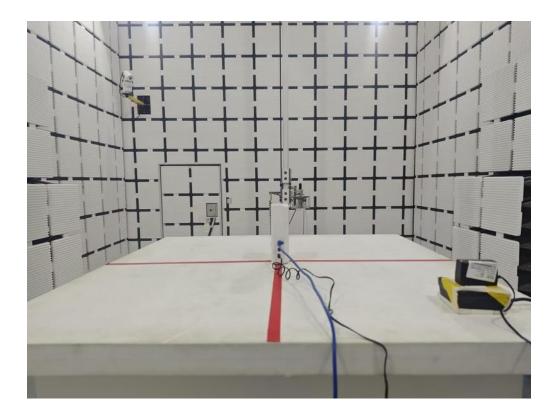
All calibration period of equipment list is one year.

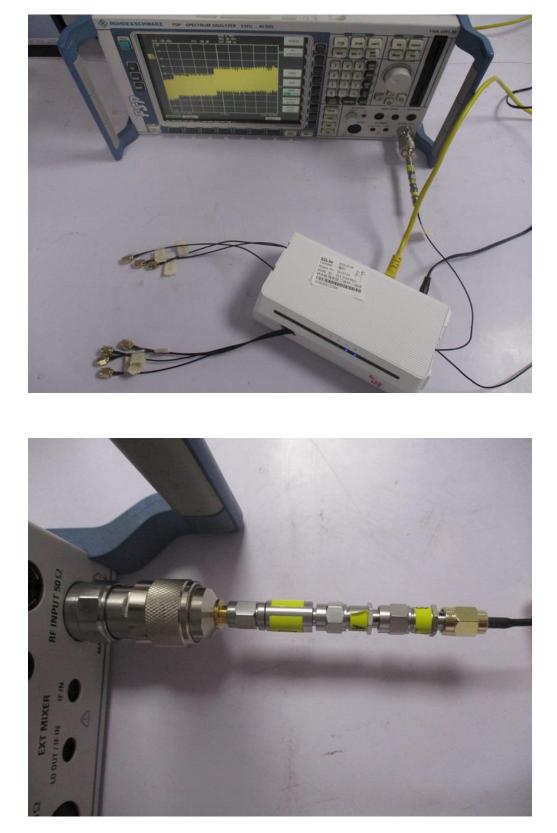
11. EUT TEST PHOTO

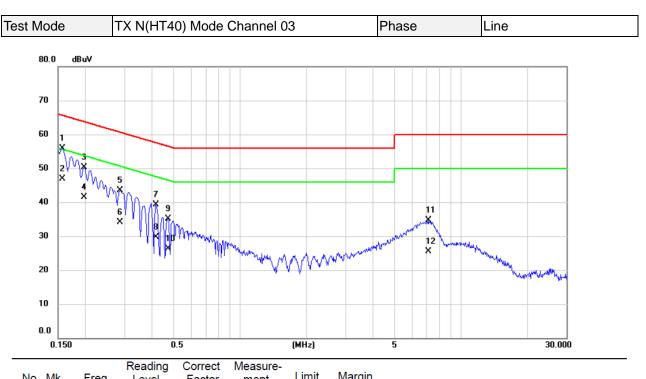

BTL



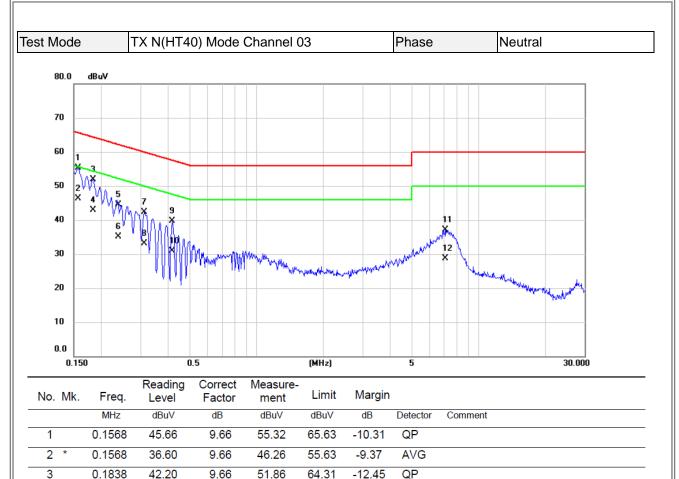

Radiated Emissions Test Photos 30 MHz to 1 GHz 1 1




Above 1 GHz



Conducted Test Photos


APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS

No.	Mk.	Freq.	Level	Factor	ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1568	46.25	9.69	55.94	65.63	-9.69	QP	
2	*	0.1568	37.20	9.69	46.89	55.63	-8.74	AVG	
3		0.1973	40.64	9.68	50.32	63.72	-13.40	QP	
4		0.1973	31.80	9.68	41.48	53.72	-12.24	AVG	
5		0.2872	33.78	9.68	43.46	60.60	-17.14	QP	
6		0.2872	24.50	9.68	34.18	50.60	-16.42	AVG	
7		0.4177	29.71	9.69	39.40	57.49	-18.09	QP	
8		0.4177	20.10	9.69	29.79	47.49	-17.70	AVG	
9		0.4740	25.37	9.70	35.07	56.44	-21.37	QP	
10		0.4740	16.70	9.70	26.40	46.44	-20.04	AVG	
11		7.1295	24.72	9.90	34.62	60.00	-25.38	QP	
12		7.1295	15.60	9.90	25.50	50.00	-24.50	AVG	

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

64.31

54.31

62.17

52.17

59.92

49.92

57.49

47.49

60.00

50.00

-11.45

-17.64

-17.12

-17.62

-16.76

-17.70

-16.64

-22.95

-21.21

AVG

QP

AVG

QP

AVG

QP

AVG

AVG

QP

REMARKS:

3

4

5

6 7

8

9

10 11

12

0.1838

0.1838

0.2378

0.2378

0.3120

0.3120

0.4177

0.4177

7.0913

7.0913

33.20

34.88

25.40

32.64

23.50

30.14

21.20

27.16

18.90

(1) Measurement Value = Reading Level + Correct Factor.

9.66

9.66

9.65

9.65

9.66

9.66

9.65

9.65

9.89

9.89

42.86

44.53

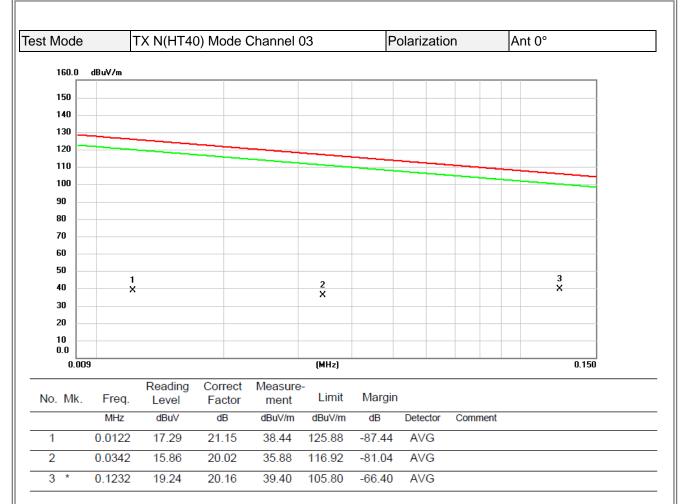
35.05

42.30

33.16

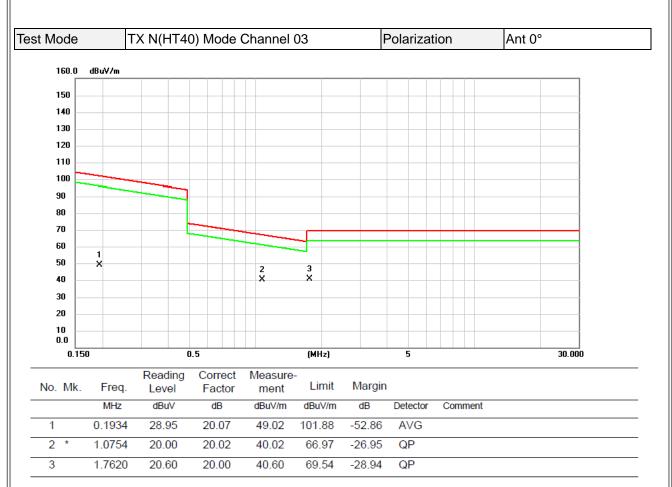
39.79

30.85

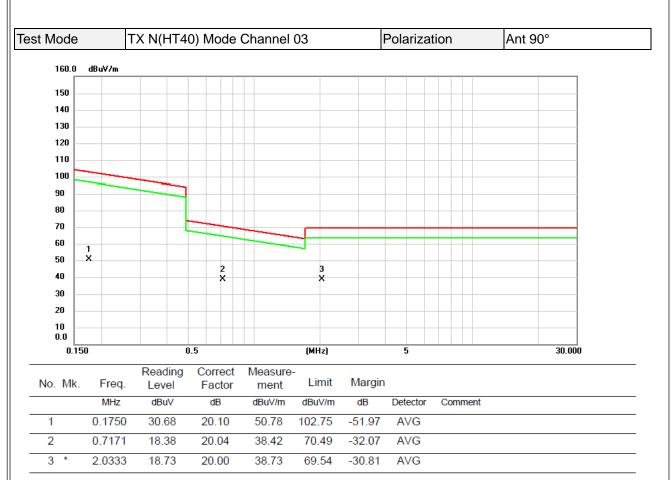

37.05

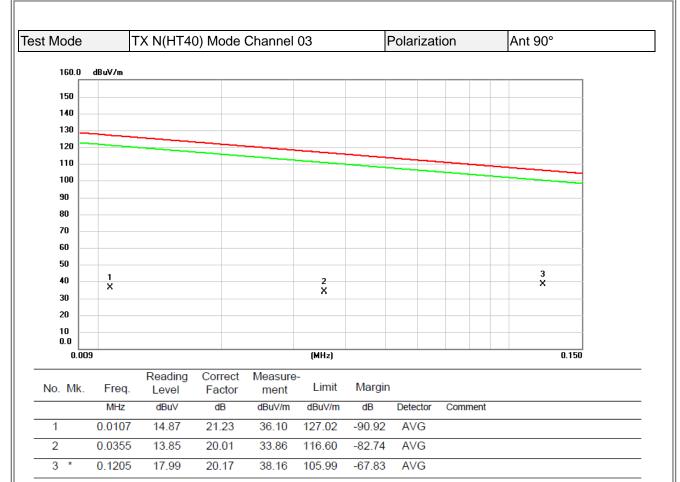
28.79

(2) Margin Level = Measurement Value - Limit Value.



APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

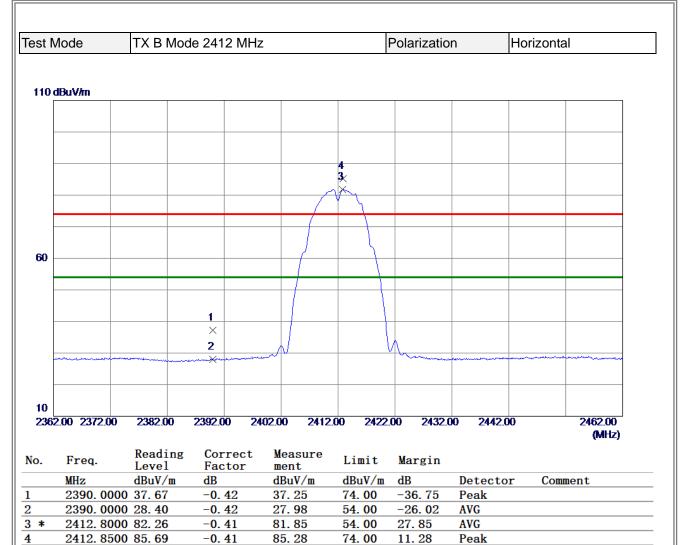
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ

<u>3īL</u>

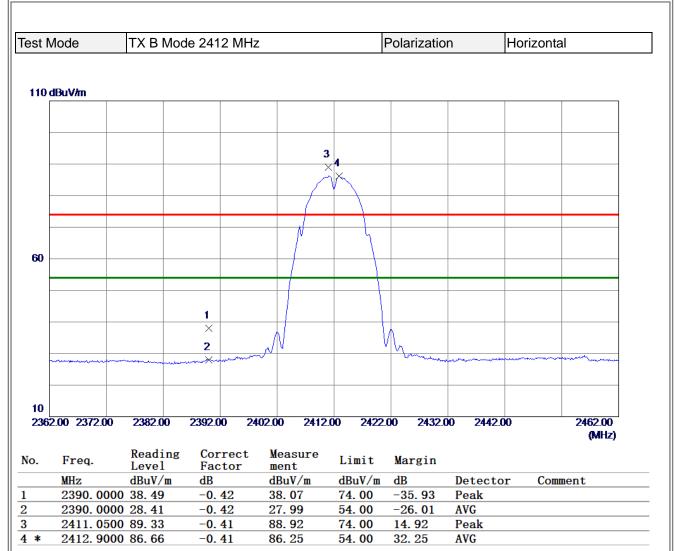
t Mo	de	TX N(HT4	10) Mode	Channel	03	F	Polariza	tion	Vert	ical	
80.0	dBuV/m										T
70											
60											
50											
40											
30	×. ×	4 3 × 5							6 X		
20		× 5									
10											
0.0 3	0.000 127.	00 224.00	321.00	418.00	515.00	612.00	709.0	0 806.00		1000.00	MHz
lo. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin					
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment			
1 *	55.7050	47.68	-12.20	35.48	40.00	-4.52	peak				
2	62.0100	44.56	-12.86	31.70	40.00	-8.30	peak				
3	138.6400	37.54	-12.52	25.02	43.50	-18.48	peak				
4	176.4700	41.58	-12.72	28.86	43.50	-14.64	peak				
5	219.6350	37.92	-15.19	22.73	46.00	-23.27	peak				
6	880.2050	30.88	-0.48	30.40	46.00	-15.60	peak				

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.


3TL

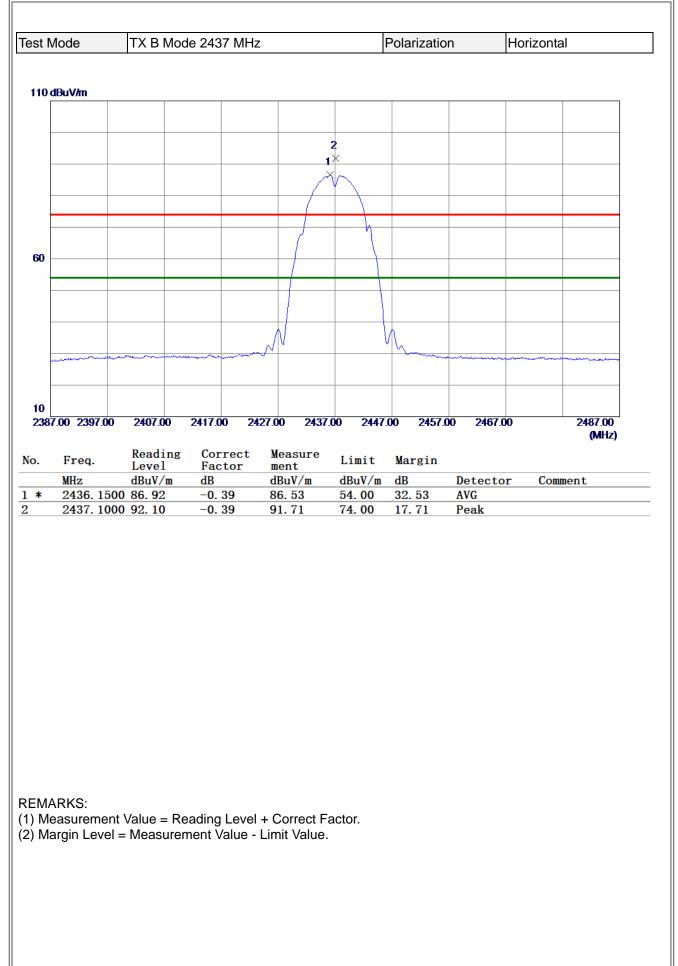
Mo	de	TX N(H1	T40) Mode	Channel	03	F	Polarizat	ion	Vertical
80.0	dBu∀/m								
70									
60									
50									
40									
30	4 2	3 ⁴⁵							6 X
20	X	x							
10									
0.0 30).000 127.0	0 224.00	0 321.00	418.00	515.00	612.00	709.0	0 806.00	1000.00 MHz
b. Mi	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1 *	30.0000	38.87	-13.35	25.52	40.00	-14.48	peak		
2	56.1900	35.60	-12.24	23.36	40.00	-16.64	peak		
3	139.1250	36.67	-12.48	24.19	43.50	-19.31	peak		
1	150.7650	38.17	-11.71	26.46	43.50	-17.04	peak		
5	158.0400	38.87	-11.69	27.18	43.50	-16.32	peak		
3	926.2800	30.72	0.06	30.78	46.00	-15.22	peak		

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

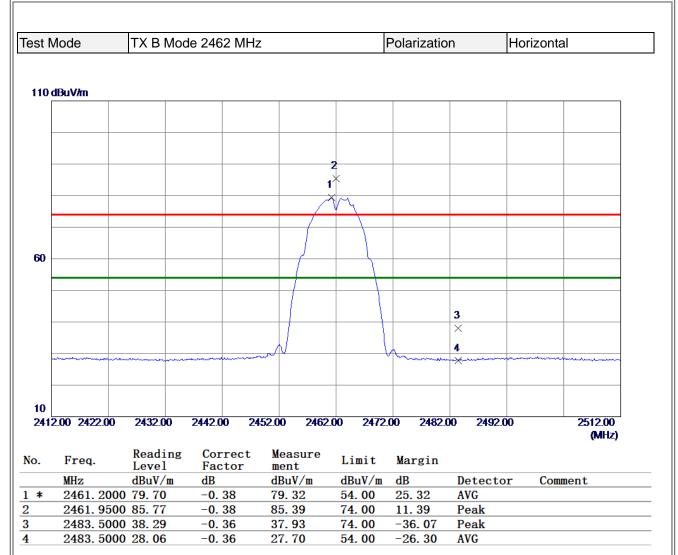

APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

BTL

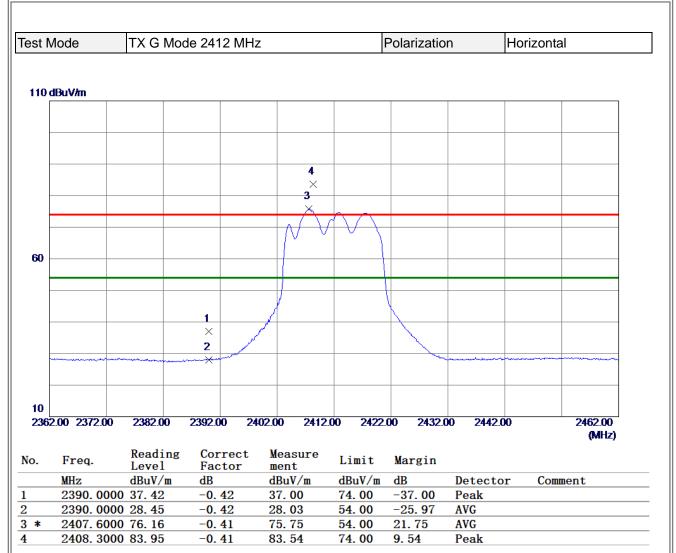

st Mode	TX B Mod	de 2412 I	MHz		F	Polarizat	ion		Horizo	ontal
) dBuV/m									1	
		2								
		×								
		1 ×								
		^								
00.00 3550.00	6100.00	8650.00	11200.00	13750.00	16300	0.00 188	50.00	21400	.00	26500.0
										(MHZ
Freq	Reading	Corre	ct Mea	sure I	imit	Margin				(MHz
	Level	Facto	ct Meas r men	sure L	imit BuV/m	Margin		atecto	r C	
MHz 7240.100	Level dBuV/m 0 26.74	Facto dB 6.21	ct Meason r men dBuy 32.9	sure L t d V/m d 95 5	BuV/m 4. 00	dB -21. 05	De AV		r C	(MHZ Comment
MHz	Level dBuV/m 0 26.74	Facto dB	ct Meas r men dBul	sure L t d V/m d 95 5	BuV/m	dB	De AV		r C	
MHz 7240.100	Level dBuV/m 0 26.74	Facto dB 6.21	ct Meason r men dBuy 32.9	sure L t d V/m d 95 5	BuV/m 4. 00	dB -21. 05	De AV	/G	r C	
MHz 7240.100	Level dBuV/m 0 26.74	Facto dB 6.21	ct Measor r men dBuy 32.9	sure L t d V/m d 95 5	BuV/m 4. 00	dB -21. 05	De AV	/G	r C	
MHz 7240.100	Level dBuV/m 0 26.74	Facto dB 6.21	ct Measor r men dBuy 32.9	sure L t d V/m d 95 5	BuV/m 4. 00	dB -21. 05	De AV	/G	r C	
MHz 7240.100	Level dBuV/m 0 26.74	Facto dB 6.21	ct Measor r men dBuy 32.9	sure L t d V/m d 95 5	BuV/m 4. 00	dB -21. 05	De AV	/G	r C	
MHz • 7240.100	Level dBuV/m 0 26.74	Facto dB 6.21	ct Measor r men dBuy 32.9	sure L t d V/m d 95 5	BuV/m 4. 00	dB -21. 05	De AV	/G	r C	
MHz 7240.100	Level dBuV/m 0 26.74	Facto dB 6.21	ct Measor r men dBuy 32.9	sure L t d V/m d 95 5	BuV/m 4. 00	dB -21. 05	De AV	/G	r C	
MHz 7240.100	Level dBuV/m 0 26.74	Facto dB 6.21	ct Measor r men dBuy 32.9	sure L t d V/m d 95 5	BuV/m 4. 00	dB -21. 05	De AV	/G	<u>r C</u>	
MHz 7240.100	Level dBuV/m 0 26.74	Facto dB 6.21	ct Measor r men dBuy 32.9	sure L t d V/m d 95 5	BuV/m 4. 00	dB -21. 05	De AV	/G	r C	
MHz 7240.100	Level dBuV/m 0 26.74	Facto dB 6.21	ct Measor r men dBuy 32.9	sure L t d V/m d 95 5	BuV/m 4. 00	dB -21. 05	De AV	/G	<u>r C</u>	
MHz 7240.100	Level dBuV/m 0 26.74	Facto dB 6.21	ct Measor r men dBuy 32.9	sure L t d V/m d 95 5	BuV/m 4. 00	dB -21. 05	De AV	/G	r C	
MHz 7240.100	Level dBuV/m 0 26.74	Facto dB 6.21	ct Measor r men dBuy 32.9	sure L t d V/m d 95 5	BuV/m 4. 00	dB -21. 05	De AV	/G	<u>r C</u>	
MHz 7240.100	Level dBuV/m 0 26.74	Facto dB 6.21	ct Measor r men dBuy 32.9	sure L t d V/m d 95 5	BuV/m 4. 00	dB -21. 05	De AV	/G	r C	
<u>MHz</u> 7240. 100 7256. 425	Level dBuV/m 0 26.74 0 37.62	Facto dB 6. 21 6. 24	oct Measor Measor Measor Measor 32.9 32.9 43.8	sure L t/m d 95 5 36 7	BuV/m 4.00 4.00	dB -21. 05	De AV	/G	<u>r C</u>	
MHz 7240.100 7256.425 MARKS: Measuremen	Level dBuV/m 0 26. 74 0 37. 62	Facto dB 6.21 6.24	evel + Cor	sure L <u>V/m d</u> <u>95 5</u> <u>36 7</u> rect Facto	BuV/m 4.00 4.00	dB -21. 05	De AV	/G	r C	
MHz 7240.100 7256.425 MARKS: Measuremen	Level dBuV/m 0 26. 74 0 37. 62	Facto dB 6.21 6.24	evel + Cor	sure L <u>V/m d</u> <u>95 5</u> <u>36 7</u> rect Facto	BuV/m 4.00 4.00	dB -21. 05	De AV	/G	<u>r C</u>	
MHz ⊧ 7240.100	Level dBuV/m 0 26. 74 0 37. 62	Facto dB 6.21 6.24	evel + Cor	sure L <u>V/m d</u> <u>95 5</u> <u>36 7</u> rect Facto	BuV/m 4.00 4.00	dB -21. 05	De AV	/G	<u>r C</u>	
MHz 7240.100 7256.425 MARKS: Measuremen	Level dBuV/m 0 26. 74 0 37. 62	Facto dB 6.21 6.24	evel + Cor	sure L <u>V/m d</u> <u>95 5</u> <u>36 7</u> rect Facto	BuV/m 4.00 4.00	dB -21. 05	De AV	/G	r C	
MHz 7240. 100 7256. 425 MARKS: Measuremen	Level dBuV/m 0 26. 74 0 37. 62	Facto dB 6.21 6.24	evel + Cor	sure L <u>V/m d</u> <u>95 5</u> <u>36 7</u> rect Facto	BuV/m 4.00 4.00	dB -21. 05	De AV	/G	<u>r C</u>	
MHz 7240. 100 7256. 425 MARKS: Measuremen	Level dBuV/m 0 26. 74 0 37. 62	Facto dB 6.21 6.24	evel + Cor	sure L <u>V/m d</u> <u>95 5</u> <u>36 7</u> rect Facto	BuV/m 4.00 4.00	dB -21. 05	De AV	/G	r C	
MHz 7240. 100 7256. 425 MARKS: Measuremen	Level dBuV/m 0 26. 74 0 37. 62	Facto dB 6.21 6.24	evel + Cor	sure L <u>V/m d</u> <u>95 5</u> <u>36 7</u> rect Facto	BuV/m 4.00 4.00	dB -21. 05	De AV	/G	r C	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


est N	Mode	TX B Mo	ode 2412 MH	Z		Polarizatio	n	Horizontal
100	dBuV/m							
50								
		1	4 ×					
		-X	3					
		2 ×	×					
0								
_	0.00 3550.00	6100.00	8650.00 1	1200.00 1375	0.00 1630	0.00 18850	0.00 21400.	
		D 1:	6	м				(MHz)
No.	Freq.	Reading Level	g Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	r Comment
1	4809.650		1.74	39.96	74.00	-34.04	Peak	
2	4823. 9250		1.78	30.01	54.00	-23.99	AVG	
3 * 4	7249.6250		6.23 6.23	33. 08 43. 45	54.00 74.00	-20. 92 -30. 55	AVG Peak	

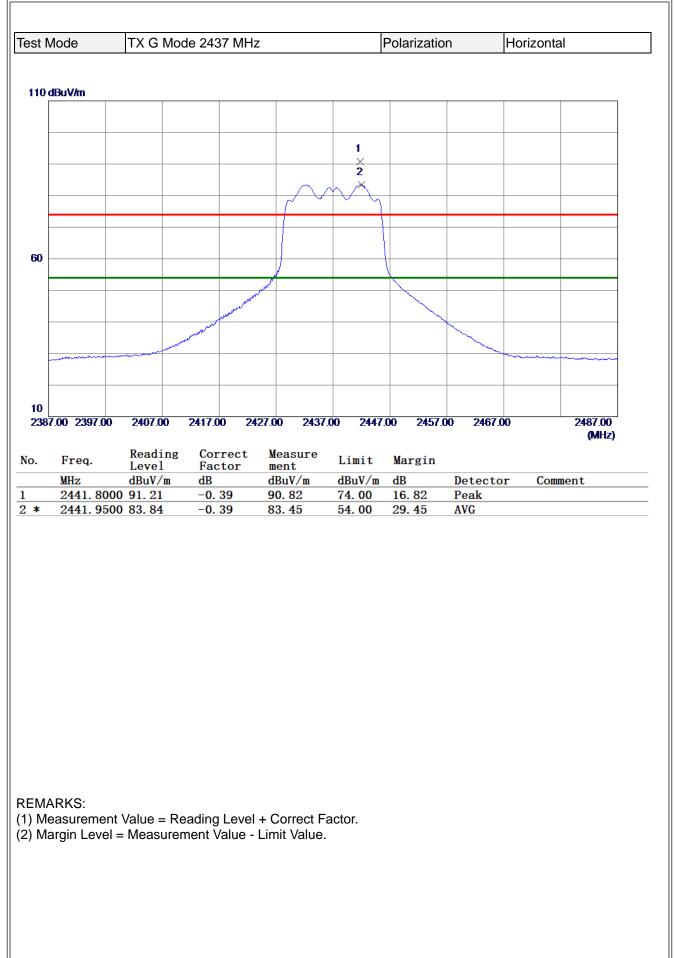
- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

BL

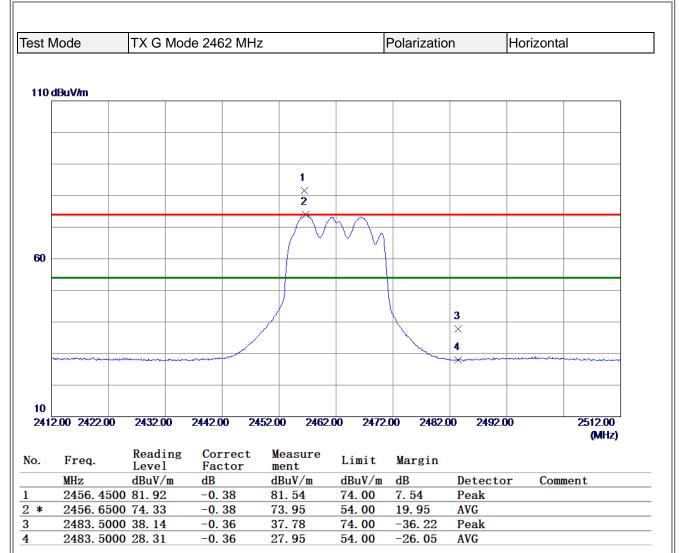

	(T	K B Moo	de 243	7 MHz				F	Polariz	ation		H	orizon	ital
0 dBuV/m														
0			2											
			×											
			1											
			×									_		
1														
00.00 355	0.00 61	00.00	8650.0	0 112	200.00	13750	00.00	16300	.00 1	8850.0	0 214	00.00		26500. (MH
P	Re	ading	Cor	rect										(
. Freq.	Le	evel -		1000	Meas	sure			14					
			Fac	tor	Meas ment	,	Lim		Marg		D ()		-	
MHz 7286.	dE	BuV/m	dB	tor	ment dBuV	; /m	dBu	V/m	dB		Detect AVG	tor	Со	mment
∗ 7286.		8uV/m 5. 40		tor 0	ment	; /m 0		V/m 00		30	Detect AVG Peak	tor	Со	mment
* 7286.	dE 8250 26	8uV/m 5. 40	dB 6.3	tor 0	ment dBuV 32.7	; /m 0	dBu 54.	V/m 00	dB -21. 3	30	AVG	tor	Со	mment

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

BL

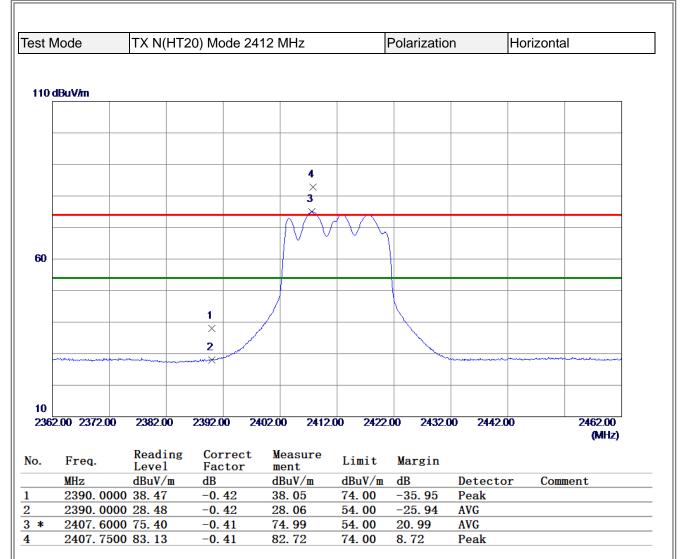

	le	TX B Mo	de 2462	MHz			Polarizatic	n	Horizont	al
0 dBu\	V <i>h</i> m							1	1	
-										
, 🗖										
			2 ×							
			1							
			×							
00.00	3550.00	6100.00	8650.00	11200	.00 1375	0.00 1630	0.00 18850	0.00 21400	00.00	26500.00 (MHz)
F	req.	Reading	Corr	ect M	easure	Limit	Margin			
	Hz	Level dBuV/m	Fact dB		ent BuV/m	dBuV/m	dB	Detecto	or Con	ment
• 73	385. 3000 405. 0500	26. 51	6. 50 6. 54	3	3. 01	54.00	-20. 99 -30. 54	AVG Peak		
					3. 46	74.00				
ΜΔΡΜ	(S.									
Meas	urement '	Value = R	eading L	_evel + (Correct F	actor.				
MARk Meası Margi	urement '	Value = R • Measure	eading L ment Va	_evel + C lue - Lim	Correct F nit Value.	actor.				
Meas	urement '	Value = R : Measure	eading L ment Va	-evel + C lue - Lim	Correct F nit Value.	actor.				
Meas	urement '	Value = R : Measure	eading L ment Va	-evel + C lue - Lim	Correct F hit Value.	actor.				
Neas	urement '	Value = R Measure	eading L ment Va	_evel + C lue - Lin	Correct F hit Value.	actor.				

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


BL

Fest N	Inde	TX G M	nde 2/1	12 MH-			Polarizatio	n	Horizont	al
GOL IV	NUCLE		Jue 241					Л	priorizont	ai
100 c	dBuV/m			1						
-										
50			1							
			×							
			2							
-			×							
-										
0										
	0.00 3550.00	6100.00	8650.0	0 11200	00 1375	0.00 1630	0.00 18850	0.00 21400	.00	26500.00
		Pooding	. Com							(MHz)
lo.	Freq.	Reading Level	Fac	rect l	Measure ment	Limit	Margin			(MHZ)
	MHz	Level dBuV/m	Fac dB	rrect l tor i	Measure ment 1BuV/m	dBuV/m	dB	Detecto	or Con	(MFLZ) mment
		Level dBuV/m 37.52	Fac	rrect l tor r 1 4	Measure ment			Detecto Peak AVG	or Con	
	MHz 7238.6500	Level dBuV/m 37.52	Fac dB 6. 2	rrect l tor r 1 4	Measure ment dBuV/m 43.73	dBuV/m 74. 00	dB -30. 27	Peak	or Con	
	MHz 7238.6500	Level dBuV/m 37.52	Fac dB 6. 2	rrect l tor r 1 4	Measure ment dBuV/m 43.73	dBuV/m 74. 00	dB -30. 27	Peak	or Con	
	MHz 7238.6500	Level dBuV/m 37.52	Fac dB 6. 2	rrect l tor r 1 4	Measure ment dBuV/m 43.73	dBuV/m 74. 00	dB -30. 27	Peak	or Con	
	MHz 7238.6500	Level dBuV/m 37.52	Fac dB 6. 2	rrect l tor r 1 4	Measure ment dBuV/m 43.73	dBuV/m 74. 00	dB -30. 27	Peak	or Con	
	MHz 7238.6500	Level dBuV/m 37.52	Fac dB 6. 2	rrect l tor r 1 4	Measure ment dBuV/m 43.73	dBuV/m 74. 00	dB -30. 27	Peak	or Com	
	MHz 7238.6500	Level dBuV/m 37.52	Fac dB 6. 2	rrect l ctor r c 1 4	Measure ment dBuV/m 43.73	dBuV/m 74. 00	dB -30. 27	Peak	or Con	
	MHz 7238.6500	Level dBuV/m 37.52	Fac dB 6. 2	rrect l ctor r c 1 4	Measure ment dBuV/m 43.73	dBuV/m 74. 00	dB -30. 27	Peak	or Com	
	MHz 7238.6500	Level dBuV/m 37.52	Fac dB 6. 2	rrect l ctor r c 1 4	Measure ment dBuV/m 43.73	dBuV/m 74. 00	dB -30. 27	Peak	or Con	
*	MHz 7238.6500 7257.2250	Level dBuV/m 37.52	Fac dB 6. 2	rrect l ctor r c 1 4	Measure ment dBuV/m 43.73	dBuV/m 74. 00	dB -30. 27	Peak	or Con	
* EMA	MHz 7238. 6500 7257. 2250	Leve1 dBuV/m) 37. 52) 26. 70 Value = R	Fac dB 6.2 6.2	rrect 1 tor 1 (1 4 (4 3)	Measure ment 1BuV/m 13. 73 32. 94 Correct Fa	dBuV/m 74.00 54.00	dB -30. 27	Peak	or Con	
2 * 2 *	MHz 7238. 6500 7257. 2250	Leve1 dBuV/m) 37. 52) 26. 70 Value = R	Fac dB 6.2 6.2	rrect 1 tor 1 (1 4 (4 3)	Measure ment 1BuV/m 13. 73 32. 94 Correct Fa	dBuV/m 74.00 54.00	dB -30. 27	Peak	or Con	
1) Me	MHz 7238. 6500 7257. 2250	Leve1 dBuV/m) 37. 52) 26. 70 Value = R	Fac dB 6.2 6.2	rrect 1 tor 1 (1 4 (4 3)	Measure ment 1BuV/m 13. 73 32. 94 Correct Fa	dBuV/m 74.00 54.00	dB -30. 27	Peak	or Con	
EMA	MHz 7238. 6500 7257. 2250	Leve1 dBuV/m) 37. 52) 26. 70 Value = R	Fac dB 6.2 6.2	rrect 1 tor 1 (1 4 (4 3)	Measure ment 1BuV/m 13. 73 32. 94 Correct Fa	dBuV/m 74.00 54.00	dB -30. 27	Peak	or Con	
EMA) Me	MHz 7238. 6500 7257. 2250	Leve1 dBuV/m) 37. 52) 26. 70 Value = R	Fac dB 6.2 6.2	rrect 1 tor 1 (1 4 (4 3)	Measure ment 1BuV/m 13. 73 32. 94 Correct Fa	dBuV/m 74.00 54.00	dB -30. 27	Peak	or Con	
* EMA	MHz 7238. 6500 7257. 2250	Leve1 dBuV/m) 37. 52) 26. 70 Value = R	Fac dB 6.2 6.2	rrect 1 tor 1 (1 4 (4 3)	Measure ment 1BuV/m 13. 73 32. 94 Correct Fa	dBuV/m 74.00 54.00	dB -30. 27	Peak	or Con	

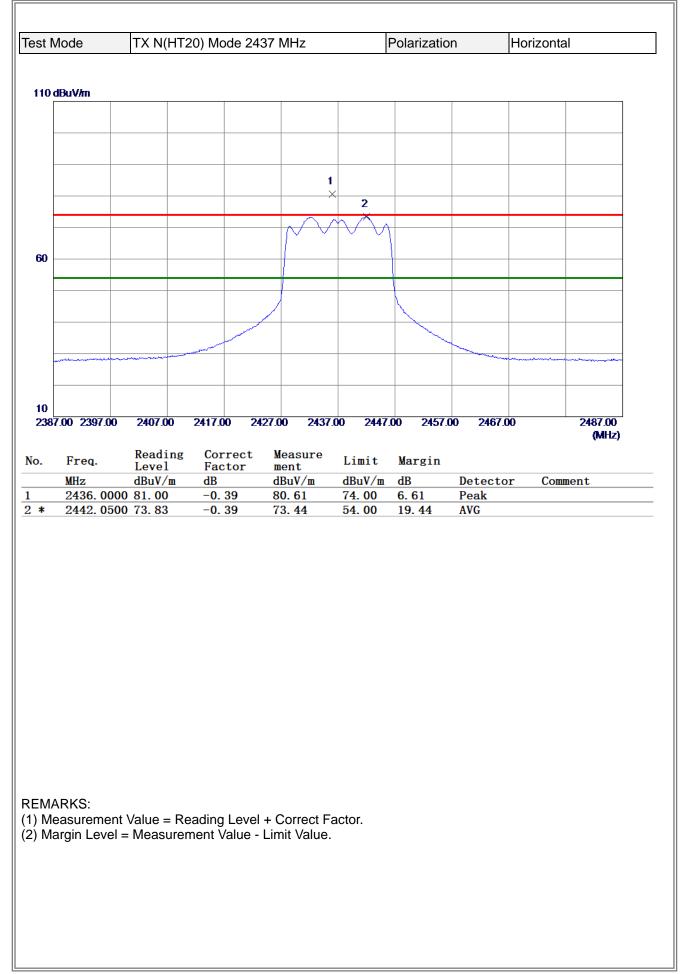
BTL


est Mod	е	TX G M	/lode 243	87 MHz			Pola	arizatio	n	H	orizont	al
00 dBuV	//m											
50			2									
			×									
			1 ×									
_												
)									00 04 /			26500.00
00.00	3550.00	6100.00	8650.0	0 1120	0.00 13	/50.00	6300.00	18850	.UU Z14	00.00		20000.00
	3550.00	6100.00					6300.00	18850	.00 214	100.00		20500.00 (MHz)
	3550.00 req.	Readin	ıg Cor	rect]	0.00 13 Measure ment			18850 rgin	.00 214	100.00		
. Fi	req. Iz	Readin Level dBuV/m	ng Cor Fac 1 dB	rrect i tor i	Measure ment dBuV/m	Lim: dBu\	it Ma //m dB	rgin	Detec			
o. Fı <u>MH</u> ∗ 72	req.	Readin Level dBuV/m 26.39	ng Cor Fac	rect l tor i 2 3	Measure ment	Lim	it Ma / <u>/m dB</u> 00 -2	rgin				(MHz)
Fı <u>M</u> H ⊧ 72	req. Iz 293. 7250	Readin Level dBuV/m 26.39	ng Cor Fac 1 dB 6.3	rect l tor i 2 3	Measure ment dBuV/m 32.71	Lim: dBu\ 54. (it Ma / <u>/m dB</u> 00 -2	rgin 1.29	Detec AVG			(MHz)
Fı <u>M</u> H ⊧ 72	req. Iz 293. 7250	Readin Level dBuV/m 26.39	ng Cor Fac 1 dB 6.3	rect l tor i 2 3	Measure ment dBuV/m 32.71	Lim: dBu\ 54. (it Ma / <u>/m dB</u> 00 -2	rgin 1.29	Detec AVG			(MHz)
. Fi <u>MH</u> * 72	req. Iz 293. 7250	Readin Level dBuV/m 26.39	ng Cor Fac 1 dB 6.3	rect l tor i 2 3	Measure ment dBuV/m 32.71	Lim: dBu\ 54. (it Ma / <u>/m dB</u> 00 -2	rgin 1.29	Detec AVG			(MHz)
. Fi <u>MH</u> * 72	req. Iz 293. 7250	Readin Level dBuV/m 26.39	ng Cor Fac 1 dB 6.3	rect l tor i 2 3	Measure ment dBuV/m 32.71	Lim: dBu\ 54. (it Ma / <u>/m dB</u> 00 -2	rgin 1.29	Detec AVG			(MHz)
. Fi MH * 72	req. Iz 293. 7250	Readin Level dBuV/m 26.39	ng Cor Fac 1 dB 6.3	rect l tor i 2 3	Measure ment dBuV/m 32.71	Lim: dBu\ 54. (it Ma / <u>/m dB</u> 00 -2	rgin 1.29	Detec AVG			(MHz)
. Fi MH * 72	req. Iz 293. 7250	Readin Level dBuV/m 26.39	ng Cor Fac 1 dB 6.3	rect l tor i 2 3	Measure ment dBuV/m 32.71	Lim: dBu\ 54. (it Ma / <u>/m dB</u> 00 -2	rgin 1.29	Detec AVG			(MHz)
. Fi <u>MH</u> * 72	req. Iz 293. 7250	Readin Level dBuV/m 26.39	ng Cor Fac 1 dB 6.3	rect l tor i 2 3	Measure ment dBuV/m 32.71	Lim: dBu\ 54. (it Ma / <u>/m dB</u> 00 -2	rgin 1.29	Detec AVG			(MHz)
o. Fi <u>MH</u> * 72	req. Iz 293. 7250	Readin Level dBuV/m 26.39	ng Cor Fac 1 dB 6.3	rect l tor i 2 3	Measure ment dBuV/m 32.71	Lim: dBu\ 54. (it Ma / <u>/m dB</u> 00 -2	rgin 1.29	Detec AVG			(MHz)
o. Fi <u>MH</u> * 72	req. Iz 293. 7250	Readin Level dBuV/m 26.39	ng Cor Fac 1 dB 6.3	rect l tor i 2 3	Measure ment dBuV/m 32.71	Lim: dBu\ 54. (it Ma / <u>/m dB</u> 00 -2	rgin 1.29	Detec AVG			(MHz)
. Fi <u>MH</u> * 72	req. Iz 293. 7250	Readin Level dBuV/m 26.39	ng Cor Fac 1 dB 6.3	rect l tor i 2 3	Measure ment dBuV/m 32.71	Lim: dBu\ 54. (it Ma / <u>/m dB</u> 00 -2	rgin 1.29	Detec AVG			(MHz)
. Fi <u>MH</u> * 72	req. Iz 293. 7250	Readin Level dBuV/m 26.39	ng Cor Fac 1 dB 6.3	rect l tor i 2 3	Measure ment dBuV/m 32.71	Lim: dBu\ 54. (it Ma / <u>/m dB</u> 00 -2	rgin 1.29	Detec AVG			(MHz)
. Fı <u>MH</u> ≭ 72 72	req. 1 z 293. 7250 296. 3500	Readin Level dBuV/m 26.39	ng Cor Fac 1 dB 6.3	rect l tor i 2 3	Measure ment dBuV/m 32.71	Lim: dBu\ 54. (it Ma / <u>/m dB</u> 00 -2	rgin 1.29	Detec AVG			(MHz)
MARK MARK Measu	req. 1z 293. 7250 296. 3500	Readin Level dBuV/m 26. 39 36. 39 Value =	ng Cor Fac 6.3 6.3 6.3	Level +	Measure ment dBuV/m 32.71 42.71 Correct	Lim dBu 54. (74. (it Ma / <u>/m dB</u> 00 -2	rgin 1.29	Detec AVG			(MHz)
EMARK	req. 1z 293. 7250 296. 3500	Readin Level dBuV/m 26. 39 36. 39 Value =	ng Cor Fac 6.3 6.3 6.3	Level +	Measure ment dBuV/m 32.71 42.71 Correct	Lim dBu 54. (74. (it Ma / <u>/m dB</u> 00 -2	rgin 1.29	Detec AVG			(MHz)
. F₁ MH * 72 72 72	req. 1z 293. 7250 296. 3500	Readin Level dBuV/m 26. 39 36. 39 Value =	ng Cor Fac 6.3 6.3 6.3	Level +	Measure ment dBuV/m 32.71 42.71 Correct	Lim dBu 54. (74. (it Ma / <u>/m dB</u> 00 -2	rgin 1.29	Detec AVG			(MHz)
Fı M⊞ ₹ 72 72 72	req. 1z 293. 7250 296. 3500	Readin Level dBuV/m 26. 39 36. 39 Value =	ng Cor Fac 6.3 6.3 6.3	Level +	Measure ment dBuV/m 32.71 42.71 Correct	Lim dBu 54. (74. (it Ma / <u>/m dB</u> 00 -2	rgin 1.29	Detec AVG			(MHz)
. F₁ MH ⊧ 72 72 MARK Measu	req. 1z 293. 7250 296. 3500	Readin Level dBuV/m 26. 39 36. 39 Value =	ng Cor Fac 6.3 6.3 6.3	Level +	Measure ment dBuV/m 32.71 42.71 Correct	Lim dBu 54. (74. (it Ma / <u>/m dB</u> 00 -2	rgin 1.29	Detec AVG			(MHz)
. F1 MH * 72 72 72	req. 1z 293. 7250 296. 3500	Readin Level dBuV/m 26. 39 36. 39 Value =	ng Cor Fac 6.3 6.3 6.3	Level +	Measure ment dBuV/m 32.71 42.71 Correct	Lim dBu 54. (74. (it Ma / <u>/m dB</u> 00 -2	rgin 1.29	Detec AVG			(MHz)

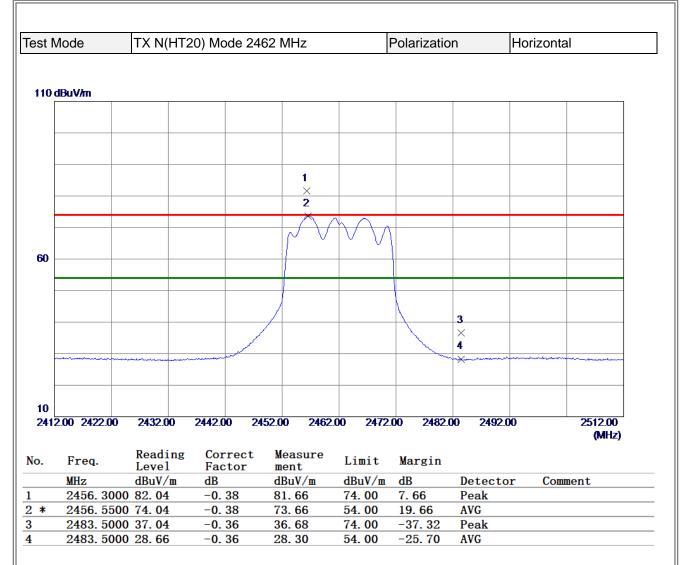
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

BL

MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment	est M	lode	TX G Mo	de 246	2 MHz			Polarizatio	n	Horizo	ntal
Image: Contract Measure Limit Margin Margin Measure Limit Margin Detector Comment Comment MHz dBuV/m dB dBuV/m dB Detector Comment 7385.8000 36.60 6.50 43.10 74.00 -30.90 Peak											
Image: Non-state Image: Non-state<	00 dE	BuV/m									
Image: Non-state Image: Non-state<											
Image: Non-state Image: Non-state<											
Image: Non-State Image: Non-State<											
Image: Non-one of the second system Image: Noe of the second system Image: Noe of											
Image: NARKS: Image: Name Image: Nam Image: Name											
Image: Note of the second system Image: Note of the seco											
Image: Non-one of the second system Image: Noe of the second system Image: Noe of											
Image: Non-State Image: Non-State<	, E										
Image: Non-State Name Non-State Non-State Non-State Non-State N											
X Image: Contract of the second system Contract of the second											
Dob 00 3550.00 6100.00 8650.00 11200.00 13750.00 16850.00 21400.00 26500.00				×							
OOD:000 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											
OOD:000 3550:00 6100:00 8650:00 11200:00 13750:00 16300:00 18850:00 21400:00 26500:00 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											
OOD:000 3550:00 6100:00 8650:00 11200:00 13750:00 16300:00 18850:00 21400:00 26500:00 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											
OOD:000 3550:00 6100:00 8650:00 11200:00 13750:00 16300:00 18850:00 21400:00 26500:00 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											
Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment 7372.7750 26.51 6.48 32.99 54.00 -21.01 AVG 7385.8000 36.60 6.50 43.10 74.00 -30.90 Peak		.00 3550.00	6100.00	8650.00	0 11200	00 127	50.00 1630	0.00 18850	.00 21400	0.00	
MHz Level Factor ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment 7372.7750 26.51 6.48 32.99 54.00 -21.01 AVG 7385.8000 36.60 6.50 43.10 74.00 -30.90 Peak						100 156					AUL->
7372. 7750 26. 51 6. 48 32. 99 54. 00 -21. 01 AVG 7385. 8000 36. 60 6. 50 43. 10 74. 00 -30. 90 Peak			Deading	Com							(MILLZ)
7385. 8000 36. 60 6. 50 43. 10 74. 00 -30. 90 Peak MARKS: Measurement Value = Reading Level + Correct Factor.			Level	Fac	rect l tor i	deasure ment	Limit				
MARKS: Measurement Value = Reading Level + Correct Factor.		MHz	Level dBuV/m	Fac dB	rect l tor i	Measure nent 1BuV/m	Limit dBuV/m	dB		or C	
Measurement Value = Reading Level + Correct Factor.		MHz 7372.7750	Level dBuV/m 26.51	Fac dB 6. 48	rect l tor r 3 3	Measure nent 1BuV/m 32.99	Limit dBuV/m 54.00	dB -21. 01	AVG	or C	
Measurement Value = Reading Level + Correct Factor.		MHz 7372.7750	Level dBuV/m 26.51	Fac dB 6. 48	rect l tor r 3 3	Measure nent 1BuV/m 32.99	Limit dBuV/m 54.00	dB -21. 01	AVG	or C	
Measurement Value = Reading Level + Correct Factor.		MHz 7372.7750	Level dBuV/m 26.51	Fac dB 6. 48	rect l tor r 3 3	Measure nent 1BuV/m 32.99	Limit dBuV/m 54.00	dB -21. 01	AVG	or C	
Measurement Value = Reading Level + Correct Factor.		MHz 7372.7750	Level dBuV/m 26.51	Fac dB 6. 48	rect l tor r 3 3	Measure nent 1BuV/m 32.99	Limit dBuV/m 54.00	dB -21. 01	AVG	or C	
Measurement Value = Reading Level + Correct Factor.		MHz 7372.7750	Level dBuV/m 26.51	Fac dB 6. 48	rect l tor r 3 3	Measure nent 1BuV/m 32.99	Limit dBuV/m 54.00	dB -21. 01	AVG	or C	
Measurement Value = Reading Level + Correct Factor.		MHz 7372.7750	Level dBuV/m 26.51	Fac dB 6. 48	rect l tor r 3 3	Measure nent 1BuV/m 32.99	Limit dBuV/m 54.00	dB -21. 01	AVG	or C	
Measurement Value = Reading Level + Correct Factor.		MHz 7372.7750	Level dBuV/m 26.51	Fac dB 6. 48	rect l tor r 3 3	Measure nent 1BuV/m 32.99	Limit dBuV/m 54.00	dB -21. 01	AVG	or C	
Measurement Value = Reading Level + Correct Factor.		MHz 7372.7750	Level dBuV/m 26.51	Fac dB 6. 48	rect l tor r 3 3	Measure nent 1BuV/m 32.99	Limit dBuV/m 54.00	dB -21. 01	AVG	or C	
Measurement Value = Reading Level + Correct Factor.		MHz 7372.7750	Level dBuV/m 26.51	Fac dB 6. 48	rect l tor r 3 3	Measure nent 1BuV/m 32.99	Limit dBuV/m 54.00	dB -21. 01	AVG	or C	
Measurement Value = Reading Level + Correct Factor.		MHz 7372.7750	Level dBuV/m 26.51	Fac dB 6. 48	rect l tor r 3 3	Measure nent 1BuV/m 32.99	Limit dBuV/m 54.00	dB -21. 01	AVG	or C	
Measurement Value = Reading Level + Correct Factor.		MHz 7372.7750	Level dBuV/m 26.51	Fac dB 6. 48	rect l tor r 3 3	Measure nent 1BuV/m 32.99	Limit dBuV/m 54.00	dB -21. 01	AVG	or C	
Measurement Value = Reading Level + Correct Factor.		MHz 7372.7750	Level dBuV/m 26.51	Fac dB 6. 48	rect l tor r 3 3	Measure nent 1BuV/m 32.99	Limit dBuV/m 54.00	dB -21. 01	AVG	or C	
Margin Level = Measurement Value - Limit Value.		MHz 7372. 7750 7385. 8000	Level dBuV/m 26.51	Fac dB 6. 48	rect l tor r 3 3	Measure nent 1BuV/m 32.99	Limit dBuV/m 54.00	dB -21. 01	AVG	or C	
	ЛАI Меа	MHz 7372. 7750 7385. 8000	Leve1 dBuV/m) 26. 51) 36. 60 Value = Re	Fac dB 6. 48 6. 50	Level +	Measure nent 1BuV/m 32.99 13.10 Correct F	Limit dBuV/m 54.00 74.00	dB -21. 01	AVG	or C	
	⊧ MAI Mea	MHz 7372. 7750 7385. 8000	Leve1 dBuV/m) 26. 51) 36. 60 Value = Re	Fac dB 6. 48 6. 50	Level +	Measure nent 1BuV/m 32.99 13.10 Correct F	Limit dBuV/m 54.00 74.00	dB -21. 01	AVG	or C	
	Mea	MHz 7372. 7750 7385. 8000	Leve1 dBuV/m) 26. 51) 36. 60 Value = Re	Fac dB 6. 48 6. 50	Level +	Measure nent 1BuV/m 32.99 13.10 Correct F	Limit dBuV/m 54.00 74.00	dB -21. 01	AVG	or C	
	≰ MAI Mea	MHz 7372. 7750 7385. 8000	Leve1 dBuV/m) 26. 51) 36. 60 Value = Re	Fac dB 6. 48 6. 50	Level +	Measure nent 1BuV/m 32.99 13.10 Correct F	Limit dBuV/m 54.00 74.00	dB -21. 01	AVG	or C	
	⊧ MAI Mea	MHz 7372. 7750 7385. 8000	Leve1 dBuV/m) 26. 51) 36. 60 Value = Re	Fac dB 6. 48 6. 50	Level +	Measure nent 1BuV/m 32.99 13.10 Correct F	Limit dBuV/m 54.00 74.00	dB -21. 01	AVG	or C	
	ЛАI Меа	MHz 7372. 7750 7385. 8000	Leve1 dBuV/m) 26. 51) 36. 60 Value = Re	Fac dB 6. 48 6. 50	Level +	Measure nent 1BuV/m 32.99 13.10 Correct F	Limit dBuV/m 54.00 74.00	dB -21. 01	AVG	or C	



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


621 IV	/lode	TX N(HT	20) Mode 2	2412 MHz		Polarizatio	n	Horizontal
		-						
100 (dBuV/m							
[
ł								
50			1					
			×					
			2 ×					
-			~					
0								
100	0.00 3550.00	6100.00	8650.00	11200.00 1375	0.00 1630	0.00 18850	0.00 21400).00 26500.00 (MHz)
		Reading	Correct	t Measure				(MILZ)
).	Freq.	Level	Factor	ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detecto	or Comment
				12 02				
*	7239. 750 7242. 250	0 36.72	6. 21 6. 21	42. 93 32. 90	74. 00 54. 00	-31.07 -21.10	Peak AVG	
*	7239. 750	0 36.72	6.21		74.00	-31. 0 7	Peak	
*	7239. 750	0 36.72	6.21		74.00	-31. 0 7	Peak	
*	7239. 750	0 36.72	6.21		74.00	-31. 0 7	Peak	
*	7239. 750	0 36.72	6.21		74.00	-31. 0 7	Peak	
*	7239. 750	0 36.72	6.21		74.00	-31. 0 7	Peak	
*	7239. 750	0 36.72	6.21		74.00	-31. 0 7	Peak	
	7239. 750	0 36.72	6.21		74.00	-31. 0 7	Peak	
*	7239. 750	0 36.72	6.21		74.00	-31. 0 7	Peak	
EMA	7239. 750 7242. 250	0 36.72 0 26.69	6. 21 6. 21	32. 90	74.00 54.00	-31. 0 7	Peak	
ΞM <i>I</i>	7239. 750 7242. 250	0 36. 72 0 26. 69	6. 21 6. 21	32. 90 rel + Correct F	74. 00 54. 00	-31. 0 7	Peak	
* EM4	7239. 750 7242. 250	0 36. 72 0 26. 69	6. 21 6. 21	32. 90	74. 00 54. 00	-31. 0 7	Peak	
) Me	7239. 750 7242. 250	0 36. 72 0 26. 69	6. 21 6. 21	32. 90 rel + Correct F	74. 00 54. 00	-31. 0 7	Peak	
* EMA	7239. 750 7242. 250	0 36. 72 0 26. 69	6. 21 6. 21	32. 90 rel + Correct F	74. 00 54. 00	-31. 0 7	Peak	
* EMA	7239. 750 7242. 250	0 36. 72 0 26. 69	6. 21 6. 21	32. 90 rel + Correct F	74. 00 54. 00	-31. 0 7	Peak	
ΞM <i>Ι</i>	7239. 750 7242. 250	0 36. 72 0 26. 69	6. 21 6. 21	32. 90 rel + Correct F	74. 00 54. 00	-31. 0 7	Peak	

BL

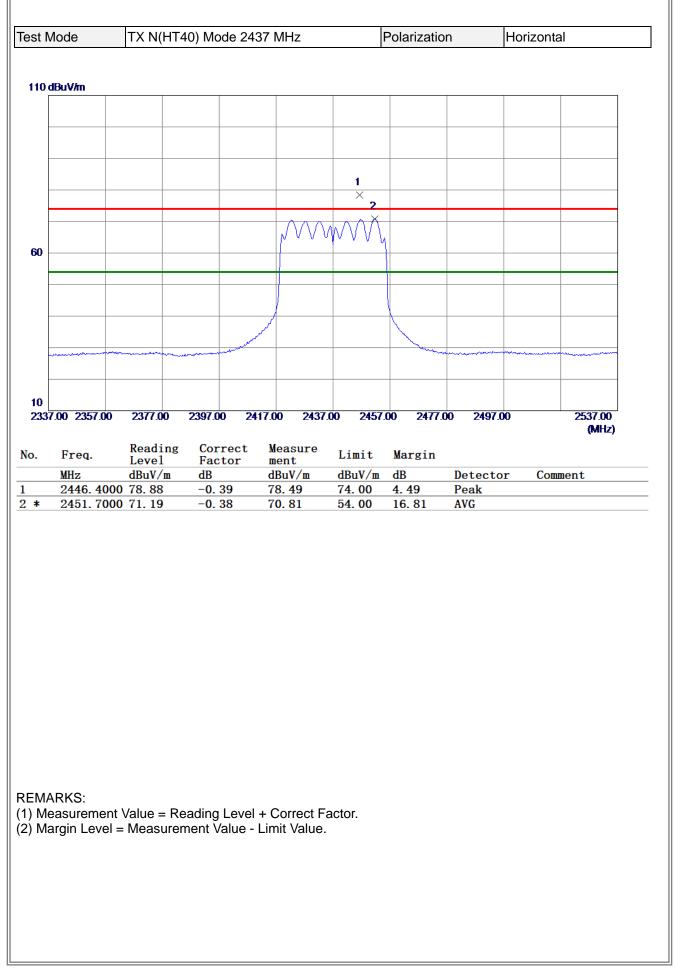
BTL

Test									
	Mode	TX N(HT	20) Mo	de 2437 N	ЛНz		Polarizatio	on	Horizontal
100	dBuV/m								
50									
			2 ×						
			^ 1						
			×						
~									
0 100	0.00 3550.00	6100.00	8650.0	0 11200.0	00 13750	00 1630	0.00 18850	0.00 21400	.00 26500.00
									(MHz)
No.	Freq.	Reading Level	Cor: Fac		easure ent	Limit	Margin		
	MHz	dBuV/m	dB	dE	BuV/m	dBuV/m	dB	Detecto	or Comment
1 * 2	7306. 2500		6. 34 6. 36		2. 66 2. 89	54.00 74.00	-21. 34 -31. 11	AVG Peak	
							51.11	Teak	
							51.11	Ieak	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

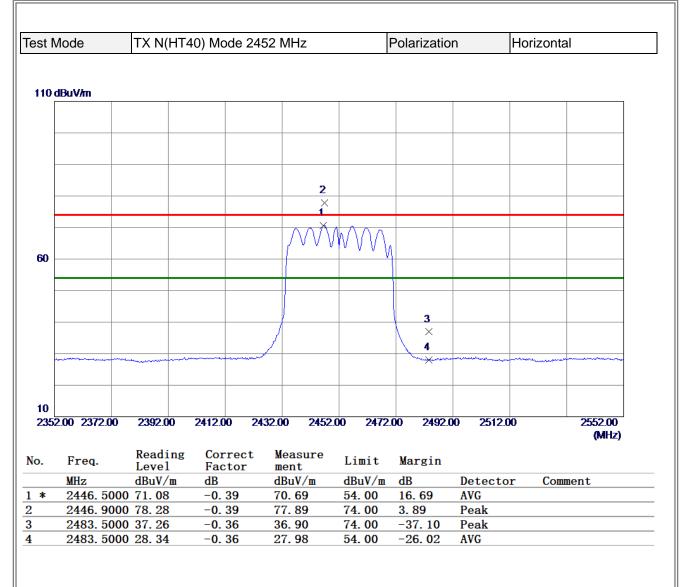
BTL

_						r			I	
Test	Mode	TX N(HT	20) Mo	de 2462 N	MHz		Polarizatio	n	Horizonta	al
100	dBuV/m									
50										
			2 ×							
			1							
			×							
					<u> </u>					
-										
0 100	0.00 3550.00	6100.00	8650.0	0 11200.	.00 13750	0.00 1630	0.00 18850).00 21400	0.00	26500.00
										(MHz)
No.	Freq.	Reading	Cor	rect M	easure					
		Level	Fac	tor m		Limit	Margin			
	MHz	Level dBuV/m	dB	tor m dl	ent BuV/m	dBuV/m	dB	Detecto	or Com	ment
<u>1</u> * 2		dBuV/m 26.28		tor m dl 8 32	ent			Detecto AVG Peak	or Com	ment
1 *	MHz 7372.6750	dBuV/m 26.28	dB 6.48	tor m dl 8 32	ent BuV/m 2.76	dBuV/m 54. 00	dB -21. 24	AVG	or Com	ment
1 *	MHz 7372.6750	dBuV/m 26.28	dB 6.48	tor m dl 8 32	ent BuV/m 2.76	dBuV/m 54. 00	dB -21. 24	AVG	or Com	ment
1 *	MHz 7372.6750	dBuV/m 26.28	dB 6.48	tor m dl 8 32	ent BuV/m 2.76	dBuV/m 54. 00	dB -21. 24	AVG	or Com	ment
1 *	MHz 7372.6750	dBuV/m 26.28	dB 6.48	tor m dl 8 32	ent BuV/m 2.76	dBuV/m 54. 00	dB -21. 24	AVG	or Com	ment
1 *	MHz 7372.6750	dBuV/m 26.28	dB 6.48	tor m dl 8 32	ent BuV/m 2.76	dBuV/m 54. 00	dB -21. 24	AVG	or Com	ment
1 *	MHz 7372.6750	dBuV/m 26.28	dB 6.48	tor m dl 8 32	ent BuV/m 2.76	dBuV/m 54. 00	dB -21. 24	AVG	or Com	ment
1 *	MHz 7372.6750	dBuV/m 26.28	dB 6.48	tor m dl 8 32	ent BuV/m 2.76	dBuV/m 54. 00	dB -21. 24	AVG	or Com	ment
1 *	MHz 7372.6750	dBuV/m 26.28	dB 6.48	tor m dl 8 32	ent BuV/m 2.76	dBuV/m 54. 00	dB -21. 24	AVG	o <u>r Com</u>	ment
1 *	MHz 7372.6750	dBuV/m 26.28	dB 6.48	tor m dl 8 32	ent BuV/m 2.76	dBuV/m 54. 00	dB -21. 24	AVG	o <u>r Com</u>	ment
1 *	MHz 7372.6750	dBuV/m 26.28	dB 6.48	tor m dl 8 32	ent BuV/m 2.76	dBuV/m 54. 00	dB -21. 24	AVG	o <u>r Com</u>	ment
1 *	MHz 7372.6750	dBuV/m 26.28	dB 6.48	tor m dl 8 32	ent BuV/m 2.76	dBuV/m 54. 00	dB -21. 24	AVG	o <u>r Com</u>	ment
1 * 2	MHz 7372.6750 7399.1500	dBuV/m 26.28	dB 6.48	tor m dl 8 32	ent BuV/m 2.76	dBuV/m 54. 00	dB -21. 24	AVG	o <u>r Com</u>	ment
1 * 2	MHz 7372.6750 7399.1500	dBuV/m 26.28 36.82	dB 6. 48 6. 5	tor m dl 8 32 3 43	ent BuV/m 2.76 3.35	dBuV/m 54.00 74.00	dB -21. 24	AVG	o <u>r Com</u>	ment
1 * 2 REM. (1) M	MHz 7372. 6750 7399. 1500	dBuV/m 26. 28 36. 82	dB 6. 48 6. 5	tor m dI 8 32 3 43	ent <u>BuV/m</u> 2. 76 3. 35 Correct Fa	dBuV/m 54.00 74.00	dB -21. 24	AVG	o <u>r Com</u>	ment
1 * 2 REM. (1) M	MHz 7372.6750 7399.1500	dBuV/m 26. 28 36. 82	dB 6. 48 6. 5	tor m dI 8 32 3 43	ent <u>BuV/m</u> 2. 76 3. 35 Correct Fa	dBuV/m 54.00 74.00	dB -21. 24	AVG	o <u>r Com</u>	ment
1 * 2 REM. (1) M	MHz 7372. 6750 7399. 1500	dBuV/m 26. 28 36. 82	dB 6. 48 6. 5	tor m dI 8 32 3 43	ent <u>BuV/m</u> 2. 76 3. 35 Correct Fa	dBuV/m 54.00 74.00	dB -21. 24	AVG	o <u>r Com</u>	
1 * 2 REM. (1) M	MHz 7372. 6750 7399. 1500	dBuV/m 26. 28 36. 82	dB 6. 48 6. 5	tor m dI 8 32 3 43	ent <u>BuV/m</u> 2. 76 3. 35 Correct Fa	dBuV/m 54.00 74.00	dB -21. 24	AVG	o <u>r Com</u>	ment
1 * 2 REM. (1) M	MHz 7372. 6750 7399. 1500	dBuV/m 26. 28 36. 82	dB 6. 48 6. 5	tor m dI 8 32 3 43	ent <u>BuV/m</u> 2. 76 3. 35 Correct Fa	dBuV/m 54.00 74.00	dB -21. 24	AVG	o <u>r Com</u>	
1 * 2 REM. (1) M	MHz 7372. 6750 7399. 1500	dBuV/m 26. 28 36. 82	dB 6. 48 6. 5	tor m dI 8 32 3 43	ent <u>BuV/m</u> 2. 76 3. 35 Correct Fa	dBuV/m 54.00 74.00	dB -21. 24	AVG	o <u>r Com</u>	



est M	lode	TX N(HT4	0) Mode 24	22 MHz		Polarizatio	on H	lorizontal
110 d	lBuV/m							
Γ								
				4				
				3				
-								
-					WVVV	\		
F								
60								
-								
			1					
			×	1				
			2	/				
ŕ		an an Aran Aran and a share and						
-								
10								
2322	2.00 2342.00	2362.00	2382.00 24	102.00 2422	2.00 2442	2.00 2462.	00 2482.00	2522.00 (MHz)
lo.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m		Detector	Comment
	2390.000	0 38.72	- 0 . 4 2	38.30	74.00	-35. 70	Peak	
2	2390.000		-0. 42	28. 52	54.00	-25.48	AVG	
*	2408.000	0 81.77 0 88.66	<u>-0. 41</u> -0. 41	81.36 88.25	54.00 74.00	27.36 14.25	AVG Peak	

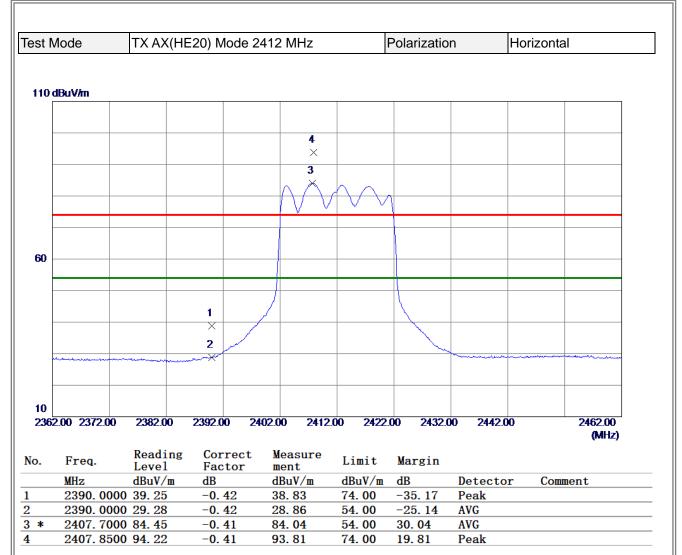
- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.


3โL

														1
Test I	Mode	TX N(HT	40) Moo	de 2422 M	1Hz		l	Polari	zatio	n	Ho	rizonta	al	
100	dBuV/m													
50			2											
			×											
			1											
			×											
0														
100	0.00 3550.00	6100.00	8650.00) 11200.0	0 137	50.00	1630	0.00	18850.	00 214	00.00		26500.00	
		Reading	Corr	oot Vo	asure								(MHz)	
No.	Freq.	Level	Fact	or me	ent		mit	Mar	gin					
1 *	MHz 7246. 6250	dBuV/m	dB 6. 22		uV/m . 05		1V/m 00	dB −20.	95	Detec AVG	tor	Сош	lent	
$\frac{1}{2}$	7281. 4750		6. 22		. 12		00	-29.		Peak				
(1) M	ARKS: leasurement \ largin Level =	Value = Re Measurei	eading I ment Va	Level + Calue - Limi	orrect F it Value	actor								

BTL

Test										1
	Mode	TX N(HT	40) Mod	e 2437 MH	Z	Pola	arizatio	n	Horizonta	l
100	dBuV/m									
.00										
50			1							
			×							
			2							
			×							
0										
	0.00 3550.00	6100.00	8650.00	11200.00	13750.00	16300.00	18850	.00 21400	.00	26500.00
										(MHz)
No.	Freq.	Reading Level	Corre Facto	ect Meas or ment		mit Ma	rgin			
	MHz	dBuV/m	dB	dBuV	/m dB	uV/m dB		Detecto	r Com	nent
1	7292. 5000		6.31	42.7			1.29	Peak		
2 *	7293.8750	26.38	6. 32	32.7	0 54	. 00 -2	1. 30	AVG		

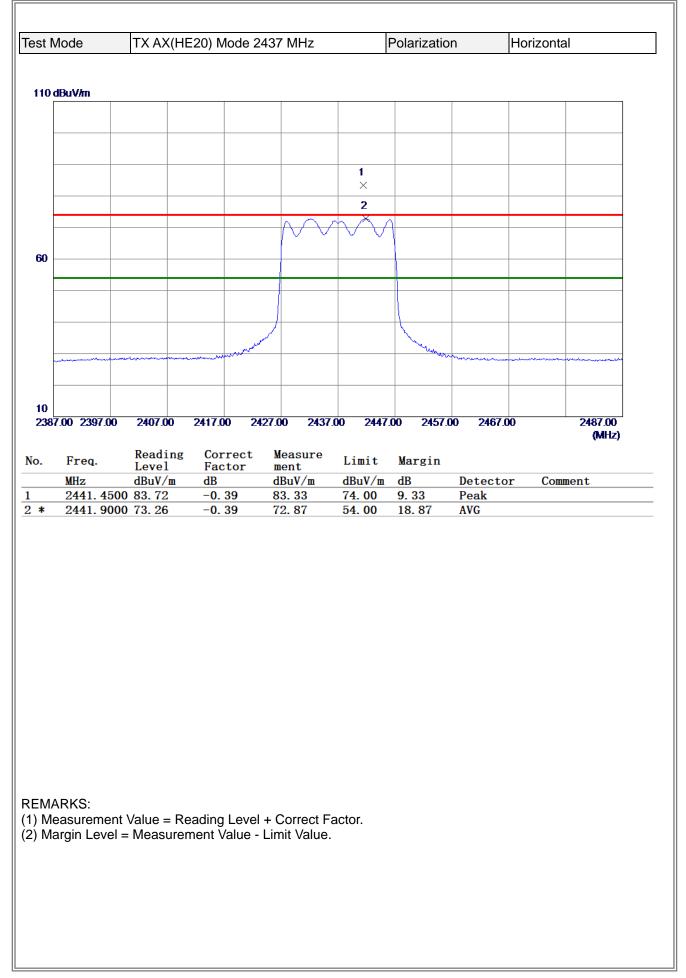


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

BTL

Fest N	/lode	TX N(HT	40) Moo	de 2452 N	ЛНz		Polariza	tion		Horizo	ntal
			,								
100 4	dBuV/m										
[
50			2								
			×								
			1 ×								
			^								
ŀ											
0	0.00 3550.00	6100.00	8650.00	11200.	00 1375	0.00 467	00.00 18	850.00	21400.	00	26500.00
1000	00.00020000	0100.00	0000.00	11200.	იი 191ე	0.00 103	00.00 18	00.00	21400.	.00	26500.00 (MHz)
											(111112)
о.	Freq.	Reading	Corr	ect Me	easure	Limit	Margi	n			(ivii iz)
	MHz	Level dBuV/m	Fact dB	or me dH	ent BuV/m	dBuV/1	ı dB	D	etecto	r C	omment
*		Level dBuV/m 26.56	Fact	or me dF 33	ent			D 3 A	etecto VG eak	r C	
	MHz 7367.5000	Level dBuV/m 26.56	Fact dB 6.46	or me dF 33	ent 3uV/m 3.02	dBuV/1 54.00	n dB -20.98	D 3 A	VG	r Co	
	MHz 7367.5000	Level dBuV/m 26.56	Fact dB 6.46	or me dF 33	ent 3uV/m 3.02	dBuV/1 54.00	n dB -20.98	D 3 A	VG	r C	
*	MHz 7367.5000	Level dBuV/m 26.56	Fact dB 6.46	or me dF 33	ent 3uV/m 3.02	dBuV/1 54.00	n dB -20.98	D 3 A	VG	r C	
*	MHz 7367.5000	Level dBuV/m 26.56	Fact dB 6.46	or me dF 33	ent 3uV/m 3.02	dBuV/1 54.00	n dB -20.98	D 3 A	VG	r C	
	MHz 7367.5000	Level dBuV/m 26.56	Fact dB 6.46	or me dF 33	ent 3uV/m 3.02	dBuV/1 54.00	n dB -20.98	D 3 A	VG	r Co	
*	MHz 7367.5000	Level dBuV/m 26.56	Fact dB 6.46	or me dF 33	ent 3uV/m 3.02	dBuV/1 54.00	n dB -20.98	D 3 A	VG	r Co	
*	MHz 7367.5000	Level dBuV/m 26.56	Fact dB 6.46	or me dF 33	ent 3uV/m 3.02	dBuV/1 54.00	n dB -20.98	D 3 A	VG	r C	
*	MHz 7367.5000	Level dBuV/m 26.56	Fact dB 6.46	or me dF 33	ent 3uV/m 3.02	dBuV/1 54.00	n dB -20.98	D 3 A	VG	<u>r C</u>	
*	MHz 7367.5000	Level dBuV/m 26.56	Fact dB 6.46	or me dF 33	ent 3uV/m 3.02	dBuV/1 54.00	n dB -20.98	D 3 A	VG	r C	
*	MHz 7367.5000	Level dBuV/m 26.56	Fact dB 6.46	or me dF 33	ent 3uV/m 3.02	dBuV/1 54.00	n dB -20.98	D 3 A	VG	r C	
*	MHz 7367.5000	Level dBuV/m 26.56	Fact dB 6.46	or me dF 33	ent 3uV/m 3.02	dBuV/1 54.00	n dB -20.98	D 3 A	VG	r C	
*	MHz 7367.5000 7368.3750	Level dBuV/m 26.56	Fact dB 6.46	or me dF 33	ent 3uV/m 3.02	dBuV/1 54.00	n dB -20.98	D 3 A	VG	r C	
* EMA	MHz 7367.5000 7368.3750	Level dBuV/m 0 26.56 0 36.32	Fact dB 6. 46 6. 47	or mo dI 33	ent 3uV/m 3.02 2.79	dBuV/1 54.00 74.00	n dB -20.98	D 3 A	VG	<u>r C</u>	
* EMA	MHz 7367.5000 7368.3750	Leve1 dBuV/m 0 26. 56 0 36. 32	Fact dB 6. 46 6. 47	Level + C	ent 3uV/m 3. 02 2. 79	dBuV/1 54.00 74.00	n dB -20.98	D 3 A	VG	r Ca	
EMA	MHz 7367. 5000 7368. 3750	Leve1 dBuV/m 0 26. 56 0 36. 32	Fact dB 6. 46 6. 47	Level + C	ent 3uV/m 3. 02 2. 79	dBuV/1 54.00 74.00	n dB -20.98	D 3 A	VG	<u>r C</u>	
I) Me	MHz 7367. 5000 7368. 3750	Leve1 dBuV/m 0 26. 56 0 36. 32	Fact dB 6. 46 6. 47	Level + C	ent 3uV/m 3. 02 2. 79	dBuV/1 54.00 74.00	n dB -20.98	D 3 A	VG	r C	
* EMA) Me	MHz 7367. 5000 7368. 3750	Leve1 dBuV/m 0 26. 56 0 36. 32	Fact dB 6. 46 6. 47	Level + C	ent 3uV/m 3. 02 2. 79	dBuV/1 54.00 74.00	n dB -20.98	D 3 A	VG	r C	
* EMA) Me	MHz 7367. 5000 7368. 3750	Leve1 dBuV/m 0 26. 56 0 36. 32	Fact dB 6. 46 6. 47	Level + C	ent 3uV/m 3. 02 2. 79	dBuV/1 54.00 74.00	n dB -20.98	D 3 A	VG	<u>r C</u>	
* EM <i>A</i>	MHz 7367. 5000 7368. 3750	Leve1 dBuV/m 0 26. 56 0 36. 32	Fact dB 6. 46 6. 47	Level + C	ent 3uV/m 3. 02 2. 79	dBuV/1 54.00 74.00	n dB -20.98	D 3 A	VG	<u>r C</u>	

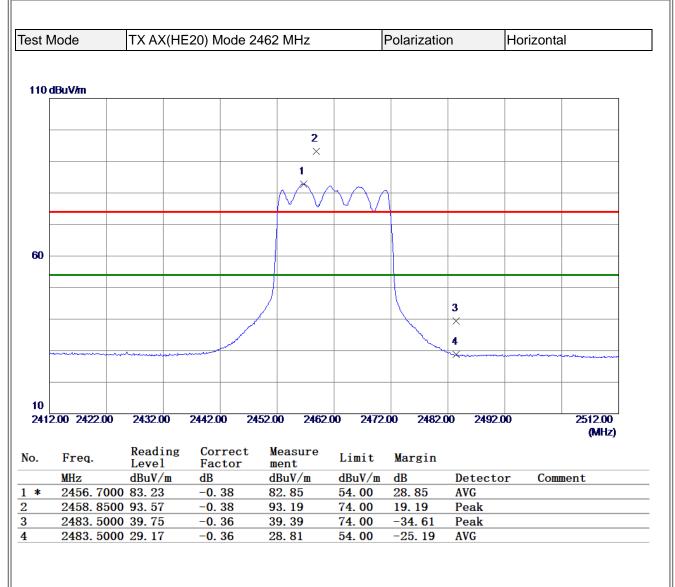
BIL


REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

BL

T•	4. 1.							•		1.1.4.2	
Test N	lode	TX AX(H	IE20) M	ode 2412	2 MHz		Polariza	tion		Horizon	ntal
100 c	dBuV/m				1						
-											
-											
50											
			2 ×								
ŀ			1								
			×								
+											
0		0400				0.00	00.00	F0.05			
1000	0.00 3550.00	6100.00	8650.00	0 11200	.00 1375	0.00 163	00.00 188	50.00	21400.	00	26500.00 (MHz)
											(141112)
lo.	Frea.	Reading	Cor	rect M	leasure	Limit	Margin	1			(MILZ)
lo.	Freq. MHz	Reading Level dBuV/m	Corr Fact dB	tor 🔳	leasure lent BuV/m	Limit dBuV/r	Margin dB		tector	r Co	(MILZ)
*		Level dBuV/m 26.64	Fac	tor m d 1 3	lent			De AV	G	r Co	
*	MHz 7241.6000	Level dBuV/m 26.64	Fac dB 6. 21	tor m d 1 3	ent BuV/m 2.85	dBuV/1 54.00	n dB −21.15	De AV	G	r Co	
*	MHz 7241.6000	Level dBuV/m 26.64	Fac dB 6. 21	tor m d 1 3	ent BuV/m 2.85	dBuV/1 54.00	n dB −21.15	De AV	G	r Co	
*	MHz 7241.6000	Level dBuV/m 26.64	Fac dB 6. 21	tor m d 1 3	ent BuV/m 2.85	dBuV/1 54.00	n dB −21.15	De AV	G	r Co	
*	MHz 7241.6000	Level dBuV/m 26.64	Fac dB 6. 21	tor m d 1 3	ent BuV/m 2.85	dBuV/1 54.00	n dB −21.15	De AV	G	r Co	
*	MHz 7241.6000	Level dBuV/m 26.64	Fac dB 6. 21	tor m d 1 3	ent BuV/m 2.85	dBuV/1 54.00	n dB −21.15	De AV	G	r Co	
*	MHz 7241.6000	Level dBuV/m 26.64	Fac dB 6. 21	tor m d 1 3	ent BuV/m 2.85	dBuV/1 54.00	n dB −21.15	De AV	G	r Co	
*	MHz 7241.6000	Level dBuV/m 26.64	Fac dB 6. 21	tor m d 1 3	ent BuV/m 2.85	dBuV/1 54.00	n dB −21.15	De AV	G	r Co	
*	MHz 7241.6000	Level dBuV/m 26.64	Fac dB 6. 21	tor m d 1 3	ent BuV/m 2.85	dBuV/1 54.00	n dB −21.15	De AV	G	r Co	
L *	MHz 7241.6000	Level dBuV/m 26.64	Fac dB 6. 21	tor m d 1 3	ent BuV/m 2.85	dBuV/1 54.00	n dB −21.15	De AV	G	r Co	
*	MHz 7241.6000	Level dBuV/m 26.64	Fac dB 6. 21	tor m d 1 3	ent BuV/m 2.85	dBuV/1 54.00	n dB −21.15	De AV	G	r Co	
L *	MHz 7241.6000	Level dBuV/m 26.64	Fac dB 6. 21	tor m d 1 3	ent BuV/m 2.85	dBuV/1 54.00	n dB −21.15	De AV	G	r Co	
*	MHz 7241.6000	Level dBuV/m 26.64	Fac dB 6. 21	tor m d 1 3	ent BuV/m 2.85	dBuV/1 54.00	n dB −21.15	De AV	G	r Co	
L * 2	MHz 7241. 6000 7249. 8500	Level dBuV/m 26. 64 37. 11	Fac: dB 6. 21 6. 23	tor m d 1 3 3 4	ent BuV/m 2.85 3.34	dBuV/r 54.00 74.00	n dB −21.15	De AV	G	r Co	
L * 2 2 8ΕΜΑ 1) Με	MHz 7241. 6000 7249. 8500	Level dBuV/m 26. 64 37. 11	Fact dB 6.21 6.23	tor m d 1 3 3 4	ent BuV/m 2. 85 3. 34 Correct F	dBuV/r 54.00 74.00	n dB −21.15	De AV	G	r Co	
1) Me	MHz 7241. 6000 7249. 8500	Level dBuV/m 26. 64 37. 11	Fact dB 6.21 6.23	tor m d 1 3 3 4	ent BuV/m 2. 85 3. 34 Correct F	dBuV/r 54.00 74.00	n dB −21.15	De AV	G	r Co	
1 * 2 2 8 8 8 1) Me	MHz 7241. 6000 7249. 8500	Level dBuV/m 26. 64 37. 11	Fact dB 6.21 6.23	tor m d 1 3 3 4	ent BuV/m 2. 85 3. 34 Correct F	dBuV/r 54.00 74.00	n dB −21.15	De AV	G	r Co	
L * 2 2 8ΕΜΑ 1) Με	MHz 7241. 6000 7249. 8500	Level dBuV/m 26. 64 37. 11	Fact dB 6.21 6.23	tor m d 1 3 3 4	ent BuV/m 2. 85 3. 34 Correct F	dBuV/r 54.00 74.00	n dB −21.15	De AV	G	r Co	
. * 2 1) Με	MHz 7241. 6000 7249. 8500	Level dBuV/m 26. 64 37. 11	Fact dB 6.21 6.23	tor m d 1 3 3 4	ent BuV/m 2. 85 3. 34 Correct F	dBuV/r 54.00 74.00	n dB −21.15	De AV	G	r Co	
L * 2 2 8ΕΜΑ 1) Με	MHz 7241. 6000 7249. 8500	Level dBuV/m 26. 64 37. 11	Fact dB 6.21 6.23	tor m d 1 3 3 4	ent BuV/m 2. 85 3. 34 Correct F	dBuV/r 54.00 74.00	n dB −21.15	De AV	G	r Co	


BIL

BTL

														1
Test I	Mode	TX AX(HI	E20) M	ode 2437	MHz		F	Polar	izatio	n		Horizon	tal	
100	dBuV/m													
														_
														_
														_
50														_
50			2											
			×											_
			1 ×											
														_
														_
0	0.00 3550.00	6100.00	8650.00) <u>11200</u> .	00 1375	100	16300	00	18850	00 2	1400.0	0	26500.0	0
100		0100.00	0000.00	112.005	00 1010		10.00		10000		1100.	Ň	(MHz	
No.	Freq.	Reading	Corr	rect M	easure	Liı	nit	Mar	gin					
	MHz	Level dBuV/m	Fact dB		ent BuV/m		ıV/m	dB		Dete	ector	Co	mment	
1 *	7293. 8750	26.36	6. 3 2	2 32	2. 68	54 .	00	-21		AVG				
2	7333. 8250	35.99	6.40) 42	2. 39	74.	00	-31	. 61	Peak	5			
(1) M	ARKS: easurement ' argin Level =	Value = Re ∷ Measurei	eading ment Va	Level + C alue - Lim	Correct Fa	actor								

REMARKS:

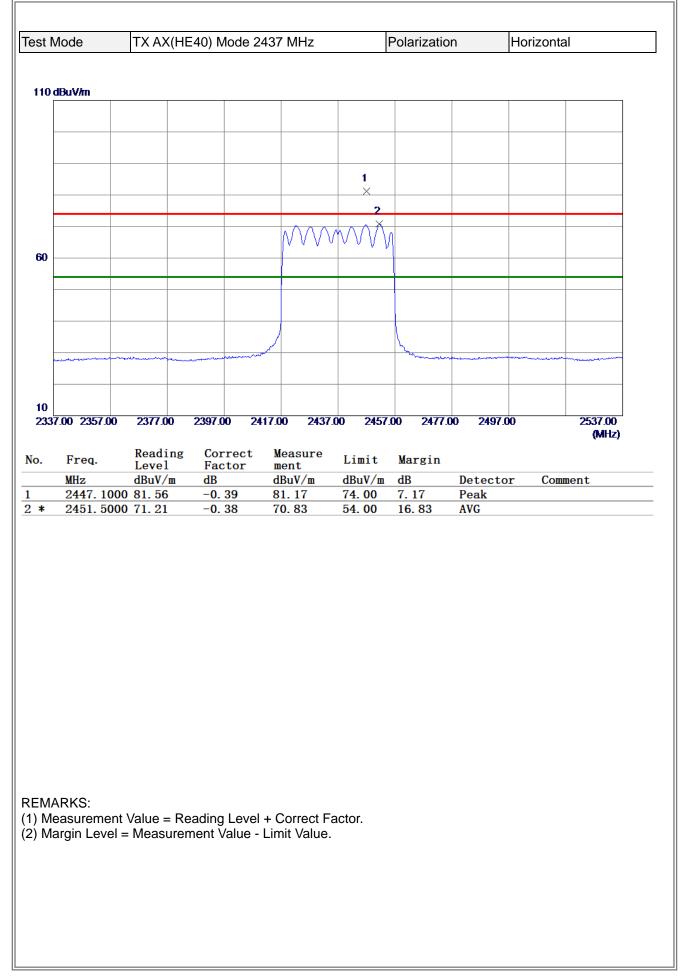
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

BL

		1							1	
Test	Mode	TX AX(HE	E20) Moo	de 2462 MI	Hz	Pol	arizatio	n	Horizonta	al
100	dBuV/m									
100										
50			1							
			×							
			2							
			×							
0										
	0.00 3550.00	6100.00	8650.00	11200.00	13750.00	16300.00	18850	0.00 21400	.00	26500.00
										(MHz)
No.	Freq.	Reading Level	Corre Facto	ect Meas or ment		mit M	argin			
	MHz	dBuV/m	dB	dBuV		uV/m dl	3	Detecto	r Com	ment
1	7372. 9750		6.48	43.3			30. 69	Peak		
2 *	7390. 4250	26.30	6. 51	32.8	/ 04	. 00 -2	21.13	AVG		
REM	ARKS:									
(1) M	leasurement '	Value = Re	eading Lo	evel + Corr	ect Facto	r.				
(2) M	largin Level =	Measurer	ment Val	ue - Limit V	/alue.					

BIL

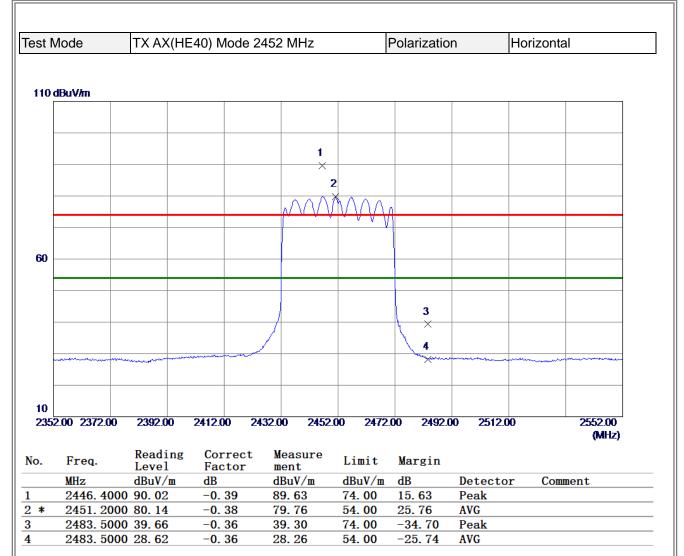
est N	Node	TX AX(H	E40) Mode 2	2422 N	1Hz		Polarizatio	on	Horizonta	l
110 c	dBuV <i>i</i> m									
ŀ										
-					4					
					X					
					$\frac{3}{4}$					
60				N	VVV		1			
ŀ										
-			1	_						
			× 2				La como			
ľ			the second s							minut
10										
	2.00 2342.00	2362.00	2382.00 2	402.00	2422.0	0 2442	.00 2462	.00 2482.0	0	2522.00 (MHz)
No.	Freq.	Reading Level	Correct Factor	Mea men	sure t	Limit	Margin			
	MHz	dBuV/m	dB	dBu		dBuV/m	dB	Detector	r Com	lent
1	2390.000		-0.42	36.		74.00	-37.50	Peak		
2	2390.000		-0.42	27.		54.00	-26.28	AVG		
3 * 4	2407.700	0 71.87	-0. 41 -0. 40	71. 80.		54.00 74.00	17.46 6.85	AVG Peak		


REMARKS:

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

BTL

Test N	Node	TX AX(H	E40) M	ode 2422	MHz		Polarizati	on	Horizon	tal
100	dBuV/m								1	
50			2							
			×							
			1							
			×							
										+
0 100	0.00 3550.00	6100.00	8650.00) 11200.	00 13750	0.00 1630	0.00 1885	0.00 2140	0.00	26500.00
										(MHz)
No.	Freq.	Reading Level	Cori Fact	rect M	easure	Limit	Margin			
				tor m	ent	LIMIL	Margin			
	MHz	dBuV/m	dB	dI	ent BuV/m	dBuV/m	dB	Detecto	or Co	mment
	MHz 7255.9750 7274.0750	dBuV/m 26.87		dI I 33				Detecto AVG Peak	or Co	nment
	7255. 9750	dBuV/m 26.87	dB 6. 24	dI I 33	BuV/m 3.11	dBuV/m 54. 00	dB -20. 89	AVG	or Co	mment
	7255. 9750	dBuV/m 26.87	dB 6. 24	dI I 33	BuV/m 3.11	dBuV/m 54. 00	dB -20. 89	AVG	or Co	nment
	7255. 9750	dBuV/m 26.87	dB 6. 24	dI I 33	BuV/m 3.11	dBuV/m 54. 00	dB -20. 89	AVG	or Co	mment
	7255. 9750	dBuV/m 26.87	dB 6. 24	dI I 33	BuV/m 3.11	dBuV/m 54. 00	dB -20. 89	AVG	or Cor	ment
	7255. 9750	dBuV/m 26.87	dB 6. 24	dI I 33	BuV/m 3.11	dBuV/m 54. 00	dB -20. 89	AVG	or Cor	ment
	7255. 9750	dBuV/m 26.87	dB 6. 24	dI I 33	BuV/m 3.11	dBuV/m 54. 00	dB -20. 89	AVG	or Cor	ment
	7255. 9750	dBuV/m 26.87	dB 6. 24	dI I 33	BuV/m 3.11	dBuV/m 54. 00	dB -20. 89	AVG	or Cor	ment
	7255. 9750	dBuV/m 26.87	dB 6. 24	dI I 33	BuV/m 3.11	dBuV/m 54. 00	dB -20. 89	AVG	or Cor	ment
2	7255. 9750 7274. 0750	dBuV/m 26.87	dB 6. 24	dI I 33	BuV/m 3.11	dBuV/m 54. 00	dB -20. 89	AVG	or Cor	ment
2 REM/	7255. 9750 7274. 0750	dBuV/m 26.87 37.58	dB 6. 24 6. 28	dl 4 3: 3 4:	BuV/m 3. 11 3. 86	dBuV/m 54.00 74.00	dB -20. 89	AVG	or Cor	ment
2 REM4 (1) M	7255. 9750 7274. 0750	dBuV/m 26. 87 37. 58	dB 6. 24 6. 28	dI 1 3: 3 4: Level + C	BuV/m 3. 11 3. 86 Correct Fa	dBuV/m 54.00 74.00	dB -20. 89	AVG	or Cor	ment
(1) Me	7255. 9750 7274. 0750 ARKS: easurement '	dBuV/m 26. 87 37. 58	dB 6. 24 6. 28	dI 1 3: 3 4: Level + C	BuV/m 3. 11 3. 86 Correct Fa	dBuV/m 54.00 74.00	dB -20. 89	AVG	or Cor	ment
2 REM4 (1) M	7255. 9750 7274. 0750 ARKS: easurement '	dBuV/m 26. 87 37. 58	dB 6. 24 6. 28	dI 1 3: 3 4: Level + C	BuV/m 3. 11 3. 86 Correct Fa	dBuV/m 54.00 74.00	dB -20. 89	AVG	or Cor	ment
2 REM4 (1) M	7255. 9750 7274. 0750 ARKS: easurement '	dBuV/m 26. 87 37. 58	dB 6. 24 6. 28	dI 1 3: 3 4: Level + C	BuV/m 3. 11 3. 86 Correct Fa	dBuV/m 54.00 74.00	dB -20. 89	AVG	or Co	ment
2 REM4 (1) M	7255. 9750 7274. 0750 ARKS: easurement '	dBuV/m 26. 87 37. 58	dB 6. 24 6. 28	dI 1 3: 3 4: Level + C	BuV/m 3. 11 3. 86 Correct Fa	dBuV/m 54.00 74.00	dB -20. 89	AVG	or Cor	ment
2 REM4 (1) M	7255. 9750 7274. 0750 ARKS: easurement '	dBuV/m 26. 87 37. 58	dB 6. 24 6. 28	dI 1 3: 3 4: Level + C	BuV/m 3. 11 3. 86 Correct Fa	dBuV/m 54.00 74.00	dB -20. 89	AVG	or Cor	ment


BIL

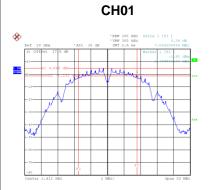
BL

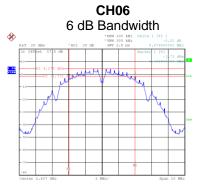
Test I				0 40 - 1 K		.			
	Vode		=40) Mode	e 2437 MHz	2	Polarizati	on	Horizontal	
100	dBuV/m	T		1					
50			2						
			×						
			1 ×						
			^						
0		- 0100.00		44000.00	10750.00 100	00.00 4005	0.00 01100		0500.00
100	0.00 3550.00	6100.00	8650.00	11200.00 1	13750.00 163	00.00 1885	0.00 21400	100 2	6500.00 (MHz)
No.	Freq.	Reading	Correc	t Measu	re Limit	Margin			
110.	MHz	Level dBuV/m	Factor dB	ment dBuV/r			Detecto	r Commen	t
1 *	7292. 0000	26.43	6.31	32.74	54.00	-21.26	AVG		
2	7314. 9000	36.45	6.36	42.81	74.00	-31. 19	Peak		
(1) M	ARKS: easurement argin Level =	Value = Re Measurer	eading Le [.] nent Valu	vel + Corre e - Limit Va	ct Factor. lue.				

BIL

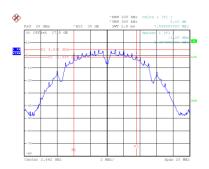
REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


BTL

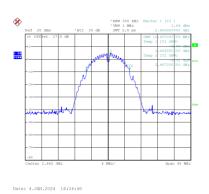

Test I						1				1
	Mode	TX AX(HE	E40) Mo	de 2452 N	lHz	F	Polarizatio	on	Horizontal	
100	dBuV <i>i</i> m									
50										
			1							
			× 2							
			×							
0 100	0.00 3550.00	6100.00	8650.00	11200.00	13750.0	0 16300).00 1885	0.00 21400	0.00	26500.00
										(MHz)
No.	Freq.	Reading Level	Corre Facto	ect Mea or men	sure t	Limit	Margin			
	MHz	dBuV/m	dB		•					
						dBuV/m	dB	Detecto	or Comme	ent
1 2 *	7352. 0250 7365. 7750	36.47	6. 43 6. 46		90	dBuV/m 74. 00 54. 00	dB -31.10 -21.21	Detecto Peak AVG	or Comme	ent
		36.47	6.43	42.	90	74. 00	-31. 10	Peak	or Comme	nt

APPENDIX E - BANDWIDTH



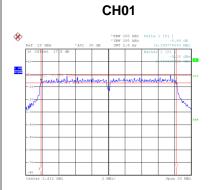
Test Mode TX B Mode										
	÷									
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result					
01	2412	7.069	10.320	0.5	Complies					
06	2437	8.080	10.400	0.5	Complies					
11	2462	7.599	10.400	0.5	Complies					

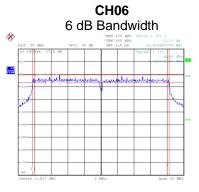
CH11



Date: 4.JAN.2024 16:32:39

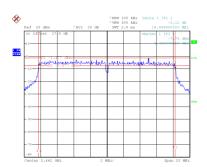
Date: 4.JAN.2024 16:34:39

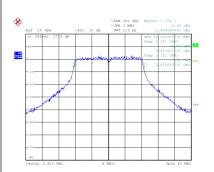



Date: 4.JAN.2024 16:30:17

Date: 4.JAN.2024 16:32:48

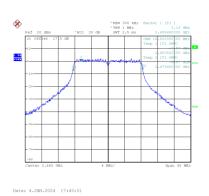
Test Mode TX G Mode											
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result						
01	2412	16.400	16.960	0.5	Complies						
06	2437	16.490	17.200	0.5	Complies						
11	2462	16.460	16.880	0.5	Complies						




Date: 4.JAN.2024 17:38:45

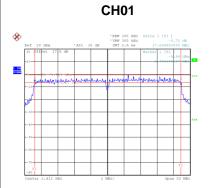
Date: 4.JAN.2024 17:38:54

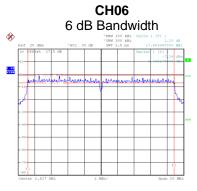
CH11



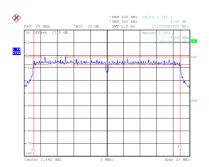
Date: 4.JAN.2024 17:36:53

99 % Occupied Bandwidth

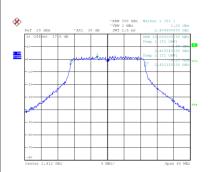

Date: 4.JAN.2024 17:40:22



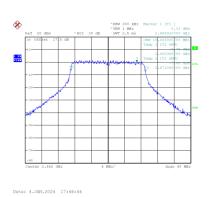
Date: 4.JAN.2024 17:37:02



Test Mode	Test Mode TX N(HT20) Mode										
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result						
01	2412	17.700	18.080	0.5	Complies						
06	2437	17.690	18.480	0.5	Complies						
11	2462	17.700	18.080	0.5	Complies						



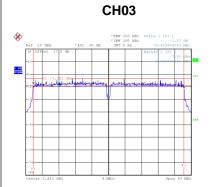
CH11

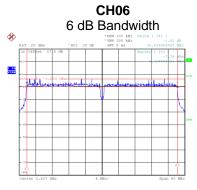


Date: 4.JAN.2024 17:42:46

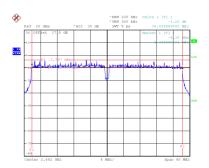
99 % Occupied Bandwidth

Date: 4.JAN.2024 17:46:35

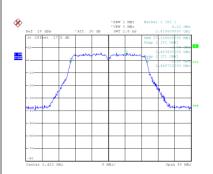

Date: 4.JAN.2024 17:42:55

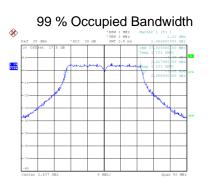

Date: 4.JAN.2024 17:44:42

Date: 4.JAN.2024 17:44:33

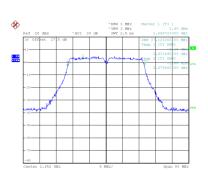


Test Mod	Test Mode TX N(HT40) Mode										
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result						
03	2422	36.440	37.120	0.5	Complies						
06	2437	36.440	37.920	0.5	Complies						
09	2452	36.440	37.120	0.5	Complies						



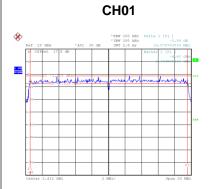


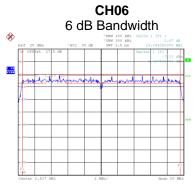
CH09



Date: 4.JAN.2024 17:48:48

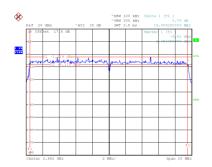
Date: 4.JAN.2024 17:48:57

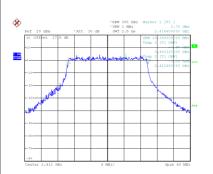

Date: 4.JAN.2024 17:52:28


Date: 4.JAN.2024 17:52:19

Date: 4.JAN.2024 17:54:08

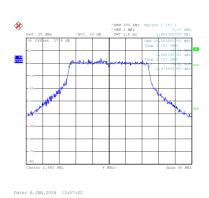
Test Mode	Test Mode TX AX(HE20) Mode										
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result						
01	2412	19.080	19.360	0.5	Complies						
06	2437	19.049	19.520	0.5	Complies						
11	2462	19.089	19.280	0.5	Complies						




Date: 6.JAN.2024 13:56:28

Date: 6.JAN.2024 13:56:36

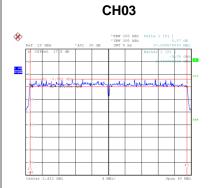
CH11

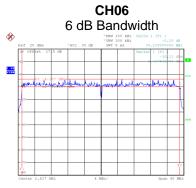


Date: 6.JAN.2024 13:55:43

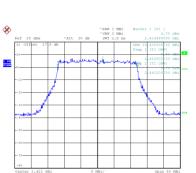
99 % Occupied Bandwicth

Date: 6.JAN.2024 13:57:13

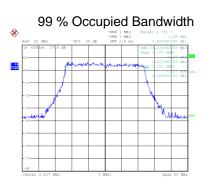



Date: 6.JAN.2024 13:55:52

Page 90 of 116


Test Mode TX AX(HE40) Mode										
Channel	Channel Frequency 6 dB Bandwidth (MHz) (MHz)		99 % Occupied Bandwidth (MHz)	6 dB Bandwidth Min. Limit (MHz)	Result					
03	2422	38.000	38.400	0.5	Complies					
06	2437	38.230	38.720	0.5	Complies					
09	2452	38.070	38.400	0.5	Complies					

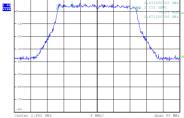
CH09


• RBW 100 kHz • VBW 300 kHz

Date: 6.JAN.2024 13:58:13

Date: 6.JAN.2024 13:58:04

Date: 6.JAN.2024 13:58:59


Date: 6.JAN.2024 14:00:09

Date: 6.JAN.2024 14:00:00

8

1 PR

Ŷ

Date: 6.JAN.2024 13:59:08

APPENDIX F - MAXIMUM OUTPUT POWER

Test Mode TX B Mode_Ant. 1										
Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result			
01	2412	11.97	0.00	11.97	27.35	0.5433	Complies			
06	2437	12.21	0.00	12.21	27.35	0.5433	Complies			
11	2462	12.05	0.00	12.05	27.35	0.5433	Complies			

Test Mode TX G Mode_Ant. 1

Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	11.18	0.00	11.18	27.35	0.5433	Complies
06	2437	11.13	0.00	11.13	27.35	0.5433	Complies
11	2462	11.17	0.00	11.17	27.35	0.5433	Complies

Test Mode TX G Mode_Ant. 2

Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	12.29	0.00	12.29	27.35	0.5433	Complies
06	2437	12.19	0.00	12.19	27.35	0.5433	Complies
11	2462	12.22	0.00	12.22	27.35	0.5433	Complies

Test Mode TX G Mode_Total

(Channel	Frequency (MHz)	Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
	01	2412	14.78	27.35	0.5433	Complies
	06	2437	14.70	27.35	0.5433	Complies
	11	2462	14.74	27.35	0.5433	Complies

Test Mode	Test Mode TX N(HT20) Mode_Ant. 1										
Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result				
01	2412	11.16	0.00	11.16	27.35	0.5433	Complies				
06	2437	11.09	0.00	11.09	27.35	0.5433	Complies				
11	2462	11.19	0.00	11.19	27.35	0.5433	Complies				

Test Mode TX N(HT20) Mode_Ant. 2

Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	12.33	0.00	12.33	27.35	0.5433	Complies
06	2437	12.31	0.00	12.31	27.35	0.5433	Complies
11	2462	12.24	0.00	12.24	27.35	0.5433	Complies

Test Mode TX N(HT20) Mode_Total

Channel	Frequency (MHz)	Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	14.79	27.35	0.5433	Complies
06	2437	14.75	27.35	0.5433	Complies
11	2462	14.76	27.35	0.5433	Complies

Test Mode TX N(HT40) Mode_Ant. 1										
Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result			
03	2422	11.38	0.00	11.38	27.35	0.5433	Complies			
06	2437	11.42	0.00	11.42	27.35	0.5433	Complies			
09	2452	11.11	0.00	11.11	27.35	0.5433	Complies			

Test Mode TX N(HT40) Mode_Ant. 2

Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
03	2422	12.42	0.00	12.42	27.35	0.5433	Complies
06	2437	12.37	0.00	12.37	27.35	0.5433	Complies
09	2452	12.18	0.00	12.18	27.35	0.5433	Complies

Test Mode TX N(HT40) Mode_Total

Channel	Frequency (MHz)	Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
03	2422	14.94	27.35	0.5433	Complies
06	2437	14.93	27.35	0.5433	Complies
09	2452	14.69	27.35	0.5433	Complies

Test Mode	Test Mode TX AX(HE20) Mode_Ant. 1										
Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result				
01	2412	11.05	0.00	11.05	27.35	0.5433	Complies				
06	2437	10.93	0.00	10.93	27.35	0.5433	Complies				
11	2462	11.09	0.00	11.09	27.35	0.5433	Complies				

Test Mode TX AX(HE20) Mode_Ant. 2

Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	12.29	0.00	12.29	27.35	0.5433	Complies
06	2437	12.24	0.00	12.24	27.35	0.5433	Complies
11	2462	12.26	0.00	12.26	27.35	0.5433	Complies

Test Mode TX AX(HE20) Mode_Total

Channel	Frequency (MHz)	Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
01	2412	14.72	27.35	0.5433	Complies
06	2437	14.64	27.35	0.5433	Complies
11	2462	14.72	27.35	0.5433	Complies

Test Mode TX AX(HE40) Mode_Ant. 1								
Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result	
03	2422	11.37	0.00	11.37	27.35	0.5433	Complies	
06	2437	11.17	0.00	11.17	27.35	0.5433	Complies	
09	2452	11.05	0.00	11.05	27.35	0.5433	Complies	

Test Mode TX AX(HE40) Mode_Ant. 2

Channel	Frequency (MHz)	Output Power (dBm)	Duty Factor	Output Power + Duty Factor (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
03	2422	12.35	0.00	12.35	27.35	0.5433	Complies
06	2437	12.17	0.00	12.17	27.35	0.5433	Complies
09	2452	12.08	0.00	12.08	27.35	0.5433	Complies

Test Mode TX AX(HE40) Mode_Total

Channel	Frequency (MHz)	Output Power (dBm)	Max. Limit (dBm)	Max. Limit (W)	Result
03	2422	14.90	27.35	0.5433	Complies
06	2437	14.71	27.35	0.5433	Complies
09	2452	14.61	27.35	0.5433	Complies

APPENDIX G - CONDUCTED SPURIOUS EMISSIONS