

TEST REPORT

Report No.:	BCTC2306685996E					
Applicant:	Guangdong Xizhongxi Technology Co., Ltd.					
Product Name:	Open Bluetooth earloop					
Model/Type reference:	OP02					
Tested Date:	2023-06-26 to 2023-07-04					
Issued Date:	2023-07-04					
She	nzhen BCTC Testing Co., Ltd.					
No.: BCTC/RF-EMC-007	Page: 1 of 79					

FCC ID:2A5LA-OP02

Product Name:	Open Bluetooth earloop
Trademark:	N/A
Model/Type Reference:	OP02
Prepared For:	Guangdong Xizhongxi Technology Co., Ltd.
Address:	Building 7, No. 1, Jizhou Middle Road, Daojiao Town, Dongguan City, Guangdong Province, China
Manufacturer:	Guangdong Xizhongxi Technology Co., Ltd.
Address:	Building 7, No. 1, Jizhou Middle Road, Daojiao Town, Dongguan City, Guangdong Province, China
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2023-06-26
Sample tested Date:	2023-06-26 to 2023-07-04
Issue Date:	2023-07-04
Report No.:	BCTC2306685996E
Test Standards	FCC Part15.247 ANSI C63.10-2013
Test Results	PASS
Remark:	This is Bluetooth Classic radio test report.

Tested by:

kelsey Ton

Kelsey Tan/ Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Page: 2 of 7

Table Of Content

Test	Report Declaration	Page
1.	Version	5
2.	Test Summary	6
3.	Measurement Uncertainty	7
4.	Product Information And Test Setup	
4.1	Product Information	
4.2	Test Setup Configuration	8
4.3	Support Equipment	9
4.4	Channel List	9
4.5	Test Mode	10
4.6	Table Of Parameters Of Text Software Setting	10
5.	Test Facility And Test Instrument Used	11
5.1	Test Facility	11
5.2	Test Instrument Used	11
6.	Conducted Emissions	13
6.1	Block Diagram Of Test Setup	13
6.2	Limit	13
6.3	Test procedure	
6.4	EUT operating Conditions	
6.5	Test Result	
7.	Radiated emissions	
7.1	Block Diagram Of Test Setup	
7.2	Limit	
7.3	Test procedure	
7.4	EUT operating Conditions	
7.5	Test Result	
8.	Radiated Band Emission Measurement And Restricted Bands Of Opera	
8.1	Block Diagram Of Test Setup	
8.2	Limit	
8.3	Test procedure	
8.4	EUT operating Conditions	
8.5	Test Result	
9.	Spurious RF Conducted Emissions	
9.1	Block Diagram Of Test Setup	
9.2	Limit Test procedure Test Result	
9.3	Test procedure	
9.4		
10.	20 dB Bandwidth	
10.1	Block Diagram Of Test Setup	
10.2	Limit	
10.3		
10.4		
11.	Maximum Peak Output Power	
11.1	Block Diagram Of Test Setup	
11.2	Limit	94

,TC 3C

⊃PR

》测

11.3 Test procedure	54
11.4 Test Result	
12. Hopping Channel Separation	60
12.1 Block Diagram Of Test Setup	60
12.2 Limit	60
12.3 Test procedure	60
12.4 Test Result	60
13. Number Of Hopping Frequency	66
13.1 Block Diagram Of Test Setup	66
13.2 Limit	66
13.3 Test procedure	66
13.4 Test Result	66
14. Dwell Time	69
14.1 Block Diagram Of Test Setup	69
14.2 Limit	69
14.3 Test procedure	69
14.4 Test Result	69
15. Antenna Requirement	75
15.1 Limit	
15.2 Test Result	75
16. EUT Photographs	
17. EUT Test Setup Photographs	

(Note: N/A Means Not Applicable)

检

Page: 4 of 79

1. Version

Report No.	Issue Date	Description	Approved
BCTC2306685996E	2023-07-04	Original	Valid

No.: BCTC/RF-EMC-007

Page: 5 of 79

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No	Results
1	Conducted emission AC power port	§15.207	PASS
2	Conducted peak output power for FHSS	§15.247(b)(1)	PASS
3	20dB Occupied bandwidth	§15.247(a)(1)	PASS
4	Hopping channel separation	§15.247(a)(1)	PASS
5	Number of hopping frequencies	§15.247(a)(1)(iii)	PASS
6	Dwell Time	§15.247(a)(1)(iii)	PASS
7	Spurious RF conducted emissions	§15.247(d)	PASS
8	Band edge	§15.247(d)	PASS
9	Spurious radiated emissions for transmitter	§15.247(d) & §15.209 & §15.205	PASS
10	Antenna Requirement	15.203	PASS

No.: BCTC/RF-EMC-007

Page: 6 of 79

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(9KHz-30MHz)	U=3.7dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission (150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U=0.59 ℃

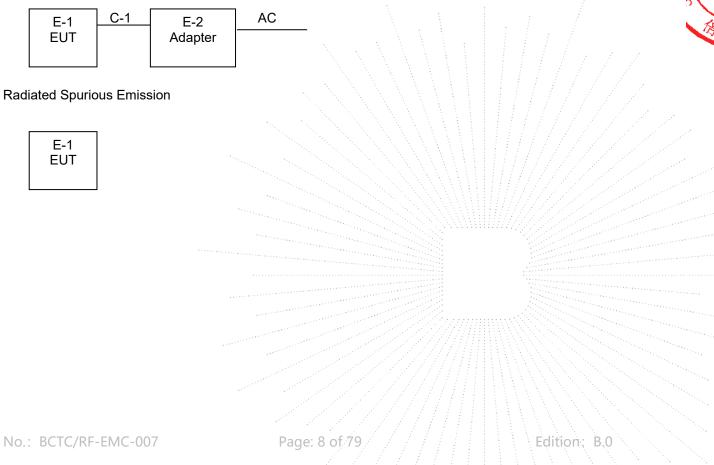
CHENZHE.

No.: BCTC/RF-EMC-007

Page: 7 of 79

E

Product Information And Test Setup 4.


Product Information 4.1

Model/Type reference:	OP02
Model differences:	N/A
Bluetooth Version:	5.3
Operation Frequency:	2402-2480MHz
Type of Modulation:	GFSK, π/ 4 DQPSK, 8DPSK
Number Of Channel	79CH
Antenna installation:	Internal antenna
Antenna Gain:	1.72 dBi
Ratings:	DC 5V from Adapter DC 3.7V from battery

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission:

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	Open Bluetooth earloop	N/A	OP02	N/A	EUT
E-2	Adapter	N/A	CD266	N/A	Auxiliary

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	N/A	N/A	1M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	79	

,TC 3C PR

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Test mode	Low channel	Middle channel	High channel		
1	Transmitting(GFSK)	2402MHz	2441MHz	2480MHz		
2	Transmitting(π/ 4 DQPSK)	2402MHz	2441MHz	2480MHz		
3	Transmitting(8DPSK)	2402MHz	2441MHz	2480MHz		
4	Charging (Conducted emission)					
5	Trai	nsmitting (Radiate	d emission)			

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) Fully-charged battery is used during the test

4.6 Table Of Parameters Of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	SecureCRT				
Frequency	2402 MHz	2441 MHz	2480 MHz		
Parameters	DEF	DEF	DEF		

TE,

5. **Test Facility And Test Instrument Used**

5.1 **Test Facility**

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards. FCC Test Firm Registration Number: 712850

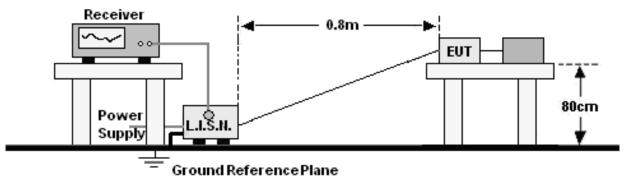
A2LA certificate registration number is: CN1212

ISED Registered No.: 23583 ISED CAB identifier: CN0017

5.2 Test Instrument Used

Conducted Emissions Test								
Equipment	ment Manufacturer Model# Serial# Last Cal. Next Ca							
Receiver	R&S	ESR3	102075	May 15, 2023	May 14, 2024			
LISN	R&S	ENV216	101375	May 15, 2023	May 14, 2024			
Software	Frad	EZ-EMC	EMC-CON 3A1	١	/			
Attenuator	١	10dB DC-6GHz	1650	May 15, 2023	May 14, 2024			

RF Conducted Test								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
Power Metter	Keysight	E4419	I I	May 15, 2023	May 14, 2024			
Power Sensor (AV)	Keysight	E9300A		May 15, 2023	May 14, 2024			
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 15, 2023	May 14, 2024			
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 15, 2023	May 14, 2024			
Radio frequency control box	MAIWEI	MW100-RFC B	$\mathcal{F}_{\mathcal{F}}$	N				
Software	MAIWEI	MTS 8310		/	I			


	Radiated Emissions Test (966 Chamber01)								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.				
966 chamber	ChengYu	966 Room	966	May 15, 2023	May 14, 2026				
Receiver	R&S	ESR3	102075	May 15, 2023	May 14, 2024				
Receiver	R&S	ESRP	101154	May 15, 2023	May 14, 2024				
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 15, 2023	May 14, 2024				
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 29, 2023	May 28, 2024				
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 31, 2023	May 30, 2024				
Amplifier	SKET	LAPA_01G18 G-45dB	١	May 15, 2023	May 14, 2024				
Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 31, 2023	May 30, 2024				
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 15, 2023	May 14, 2024				
Horn Antenna(18G Hz-40GHz)	Schwarzbeck	BBHA9170	00822	May 31, 2023	May 30, 2024				
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 15, 2023	May 14, 2024				
Software	Frad	EZ-EMC	FA-03A2 RE	١	١				

No.: BCTC/RF-EMC-007

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

	Limit (dBuV)		
Frequency (MHz)	Quas-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Notes:

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

6.3 Test procedure

	그는 그는 말에 가지 않는 것이 같은 것이 많이 많이 많이 많이 많이 있다.
Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

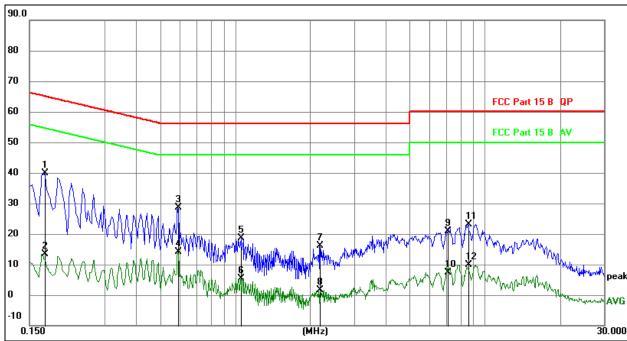

6.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	L
Test Mode:	Mode 4	Test Voltage :	AC120V/60Hz

Remark:


- All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 Measurement = Reading Level + Correct Factor
 Over = Measurement Limit

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1 *	0.1722	32.15	9.55	41.70	64.85	-23.15	QP
2	0.1722	7.53	9.55	17.08	54.85	-37.77	AVG
3	0.5611	19.00	9.62	28.62	56.00	-27.38	QP
4	0.5611	5.20	9.62	14.82	46.00	-31.18	AVG
5	0.9039	13.25	9.69	22.94	56.00	-33.06	QP
6	0.9039	-0.72	9.69	8.97	46.00	-37.03	AVG
7	1.4409	9.03	9.73	18.76	56.00	-37.24	QP
8	1.4409	-4.64	9.73	5.09	46.00	-40.91	AVG
9	7.2135	15.35	9.73	25.08	60.00	-34.92	QP
10	7.2135	2.56	9.73	12.29	50.00	-37.71	AVG
11	14.8281	10.57	9.66	20.23	60.00	-39.77	QP
12	14.8281	-1.94	9.66	7.72	50.00	-42.28	AVG

Edition: •B (

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Ν
Test Mode:	Mode 4	Test Voltage :	AC120V/60Hz

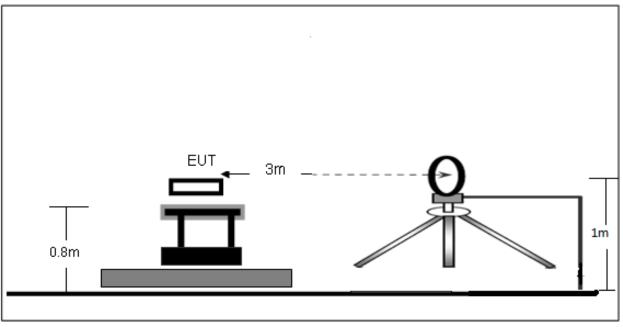
Remark:

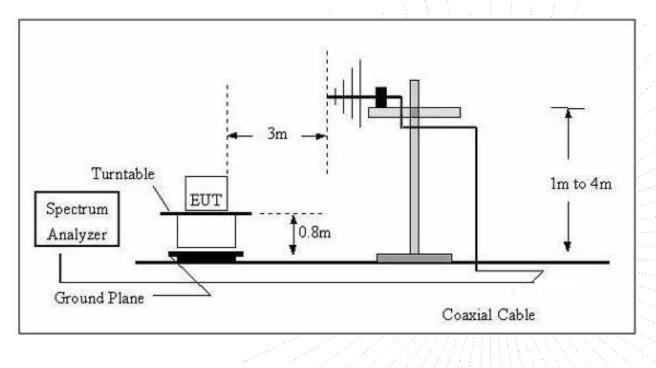
All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 Measurement = Reading Level + Correct Factor

4. Over = Measurement - L	imit
---------------------------	------

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1 *	0.1725	30.33	9.56	39.89	64.84	-24.95	QP
2	0.1725	3.93	9.56	13.49	54.84	-41.35	AVG
3	0.5910	19.13	9.62	28.75	56.00	-27.25	QP
4	0.5910	4.39	9.62	14.01	46.00	-31.99	AVG
5	1.0545	8.78	9.73	18.51	56.00	-37.49	QP
6	1.0545	-4.41	9.73	5.32	46.00	-40.68	AVG
7	2.1795	6.31	9.74	16.05	56.00	-39.95	QP
8	2.1795	-8.07	9.74	1.67	46.00	-44.33	AVG
9	7.1205	11.24	9.74	20.98	60.00	-39.02	QP
10	7.1205	-2.48	9.74	7.26	50.00	-42.74	AVG
11	8.5875	13.40	9.70	23.10	60.00	-36.90	QP
12	8.5875	0.26	9.70	9.96	50.00	-40.04	AVG

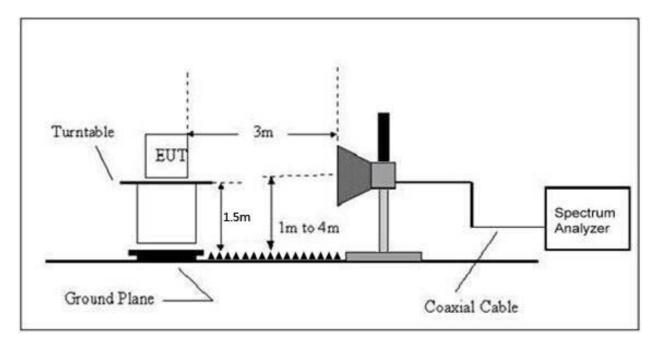
JC JC


PR


7. Radiated emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz



TE,

检

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance		
(MHz)	uV/m	(m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	····. 3 ····.	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

Limits Of Radiated Emission Measurement (Above 1000MHz)

	Limit (dBuV/m) (at 3M)	
Frequency (MHz)	Peak	Average
Above 1000	74	54

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Frequency Range Of Radiated Measurement

(a) For an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:

(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(4) If the intentional radiator operates at or above 95 GHz: To the third harmonic of the highest fundamental frequency or to 750 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(5) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a) (1)through (4) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation.

7.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

1 MHz /VBW 1 MHz for Peak, 1 MHz / VBW 10Hz for Average

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

a.The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

7.5 Test Result

Below 30MHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage :	DC 3.7V
Test Mode:	Mode 5	Polarization :	$\exists / / / / / / / / / / / / / / / / $

(MHz) (dBuV/m) (dB) P/F PASS	Freq.	Freq. Reading	Limit Margin	State
PASS	(MHz)	(MHz) (dBuV/m)	(dBuV/m) (dB)	P/F
				PASS
PASS				PASS

Note:

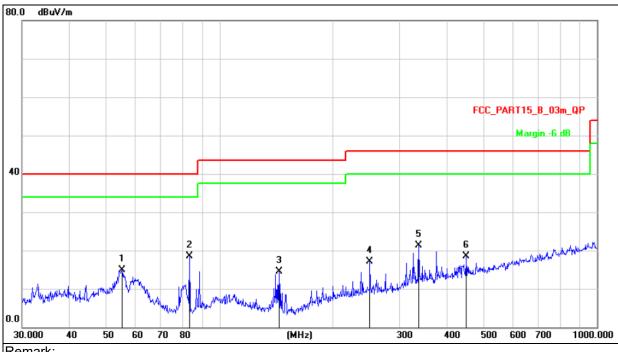
The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.

Between 30MHz – 1GHz					
Temperature:26 °CRelative Humidity:54%					
Pressure:	101KPa	Phase :	Horizontal		
Test Mode:	Mode 5	Test Voltage :	DC 3.7V		

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.


Measurement = Reading Level + Correct Factor
 Over = Measurement - Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detecto
1		48.3318	25.84	-15.78	10.06	40.00	-29.94	QP
2		110.1816	27.35	-18.43	8.92	43.50	-34.58	QP
3	*	199.9856	34.34	-17.37	16.97	43.50	-26.53	QP
4		250.3012	33.15	-15.82	17.33	46.00	-28.67	QP
5		423.5403	27.84	-11.87	15.97	46.00	-30.03	QP
6		625.0780	26.98	-8.05	18.93	46.00	-27.07	QP

E

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Vertical
Test Mode:	Mode 5	Test Voltage :	DC 3.7V

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Measurement = Reading Level + Correct Factor
 Over = Measurement - Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		55.2207	31.19	-16.37	14.82	40.00	-25.18	QP
2	*	83.2298	39.23	-20.81	18.42	40.00	-21.58	QP
3		143.8295	35.07	-20.64	14.43	43.50	-29.07	QP
4		250.3012	33.00	-15.82	17.18	46.00	-28.82	QP
5		337.2155	34.64	-13.25	21.39	46.00	-24.61	QP
6		451.1350	29.96	-11.46	18.50	46.00	-27.50	QP

JC JC JC

测

Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
	•		GFSK Low ch	annel			
V	4804.00	53.49	-0.43	53.06	74.00	-20.94	PK
V	4804.00	42.72	-0.43	42.29	54.00	-11.71	AV
V	7206.00	44.53	8.31	52.84	74.00	-21.16	PK
V	7206.00	33.86	8.31	42.17	54.00	-11.83	AV
Н	4804.00	51.49	-0.43	51.06	74.00	-22.94	PK
Н	4804.00	41.94	-0.43	41.51	54.00	-12.49	AV
Н	7206.00	43.08	8.31	51.39	74.00	-22.61	PK
Н	7206.00	35.29	8.31	43.60	54.00	-10.40	AV
GFSK Middle channel							
V	4882.00	51.65	-0.38	51.27	74.00	-22.73	PK
V	4882.00	44.53	-0.38	44.15	54.00	-9.85	AV
V	7323.00	40.93	8.83	49.76	74.00	-24.24	PK
V	7323.00	32.90	8.83	41.73	54.00	-12.27	AV
Н	4882.00	49.65	-0.38	49.27	74.00	-24.73	PK
Н	4882.00	40.50	-0.38	40.12	54.00	-13.88	AV
Н	7323.00	38.16	8.83	46.99	74.00	-27.01	PK
Н	7323.00	29.45	8.83	38.28	54.00	-15.72	AV
		-	GFSK High ch	annel			
V	4960.00	53.82	-0.32	53.50	74.00	-20.50	PK
V	4960.00	45.61	-0.32	45.29	54.00	-8.71	AV
V	7440.00	47.52	9.35	56.87	74.00	-17.13	PK
V	7440.00	37.38	9.35	46.73	54.00	-7.27	AV
Н	4960.00	51.59	-0.32	51.27	74.00	-22.73	PK
Н	4960.00	42.49	-0.32	42.17	54.00	-11.83	AV
Н	7440.00	44.67	9.35	54.02	74.00	-19.98	PK
Н	7440.00	36.76	9.35	46.11	54.00	-7.89	AV

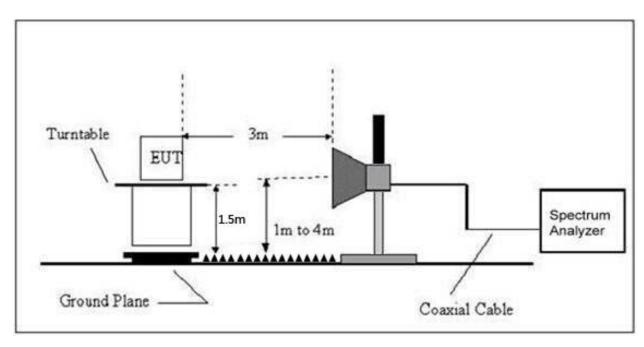
Between 1GHz – 25GHz

Remark:

1.Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Emission Level - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


5.All the Modulation are test, the worst mode is GFSK, the data recording in the report.

8. Radiated Band Emission Measurement And Restricted Bands Of Operation

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Limits Of Radiated Emission Measurement (Above 1000MHz)

Frequency (MHz)	Limit (dBuV/m) (at 3M) Peak Average			
Frequency (MHz)				
Above 1000	74	54		

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (Emission In Restricted Band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

8.5 Test Result

Test mode	Polar (H/V)	Frequency (MHz)	Reading Level	Correct Factor	Measure- ment (dBuV/m)	Limits (dBuV/m)		Result
	(111 •)	(1411 12)	(dBuV/m)	(dB)	РК	PK	AV	
			Low	Channel 24	402MHz			
	Н	2390.00	53.90	-6.70	47.20	74.00	54.00	PASS
	Н	2400.00	57.55	-6.71	50.84	74.00	54.00	PASS
	V	2390.00	53.64	-6.70	46.94	74.00	54.00	PASS
OFOK	V	2400.00	57.14	-6.71	50.43	74.00	54.00	PASS
GFSK			High	Channel 24	480MHz			
	Н	2483.50	57.54	-6.79	50.75	74.00	54.00	PASS
	Н	2500.00	53.37	-6.81	46.56	74.00	54.00	PASS
	V	2483.50	55.82	-6.79	49.03	74.00	54.00	PASS
	V	2500.00	51.33	-6.81	44.52	74.00	54.00	PASS
			Low	Channel 24	402MHz			
	Н	2390.00	54.33	-6.70	47.63	74.00	54.00	PASS
	Н	2400.00	57.63	-6.71	50.92	74.00	54.00	PASS
	V	2390.00	54.20	-6.70	47.50	74.00	54.00	PASS
π/4DQPSK	V	2400.00	59.20	-6.71	52.49	74.00	54.00	PASS
II/4DQF3K			High	Channel 24	480MHz			
	Н	2483.50	57.71	-6.79	50.92	74.00	54.00	PASS
	Н	2500.00	52.13	-6.81	45.32	74.00	54.00	PASS
	V	2483.50	56.60	-6.79	49.81	74.00	54.00	PASS
	V	2500.00	54.03	-6.81	47.22	74.00	54.00	PASS
			Low	Channel 24	402MHz			
	Н	2390.00	53.37	-6.70	46.67	74.00	54.00	PASS
	Н	2400.00	57.59	-6.71	50.88	74.00	54.00	PASS
	V	2390.00	54.32	-6.70	47.62	74.00	54.00	PASS
8DPSK	V	2400.00	58.52	-6.71	51.81	74.00	54.00	PASS
ODLOV		•••	High	Channel 24	480MHz			
	Н	2483.50	57.72	-6.79	50.93	74.00	54.00	PASS
	Н	2500.00	50.38	-6.81	43.57	74.00	54.00	PASS
	V	2483.50	57.20	-6.79	50.41	74.00	54.00	PASS
	V	2500.00	53.07	-6.81	46.26	74.00	54.00	PASS

1. Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Emission Level – Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

9. Spurious RF Conducted Emissions

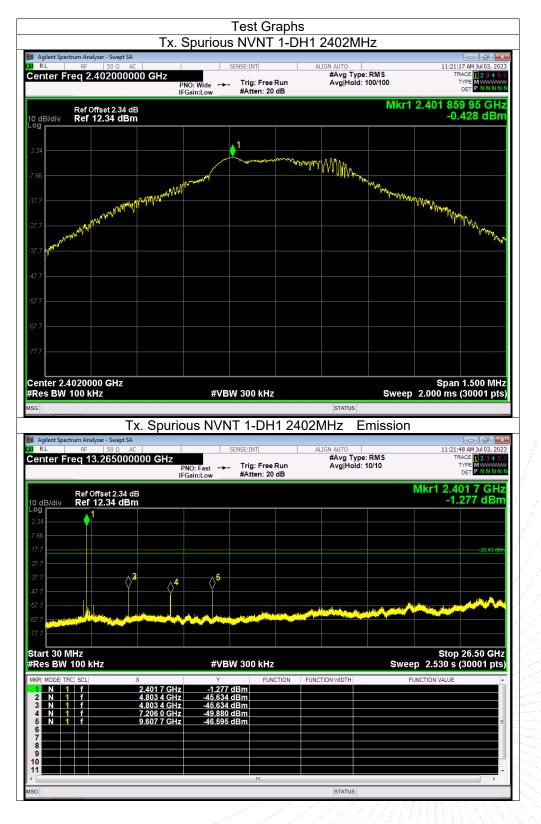
9.1 Block Diagram Of Test Setup

9.2 Limit

Regulation 15.247 (d),In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c))

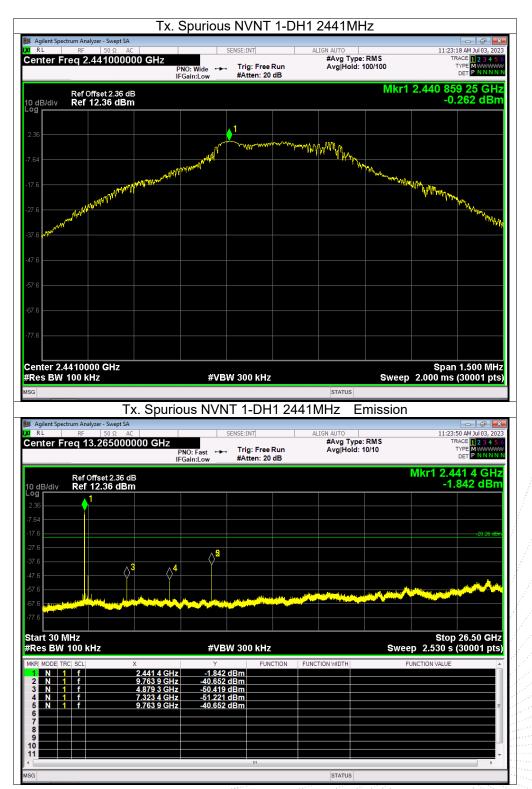
9.3 Test procedure

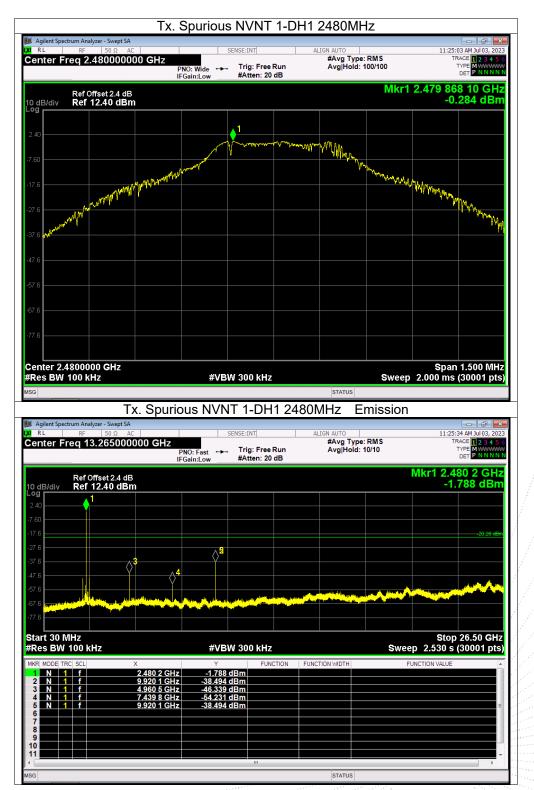
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;


2. Set the spectrum analyzer: Below 30MHz: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold Above 30MHz: RBW = 100KHz, VBW = 300KHz, Sweep = auto Detector function = peak, Trace = max hold

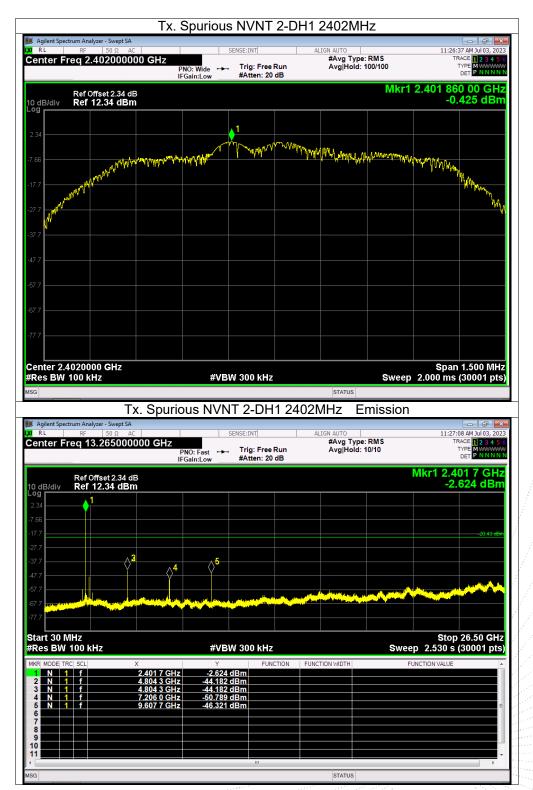
No.: BCTC/RF-EMC-007

Page: 26 of 7


9.4 Test Result

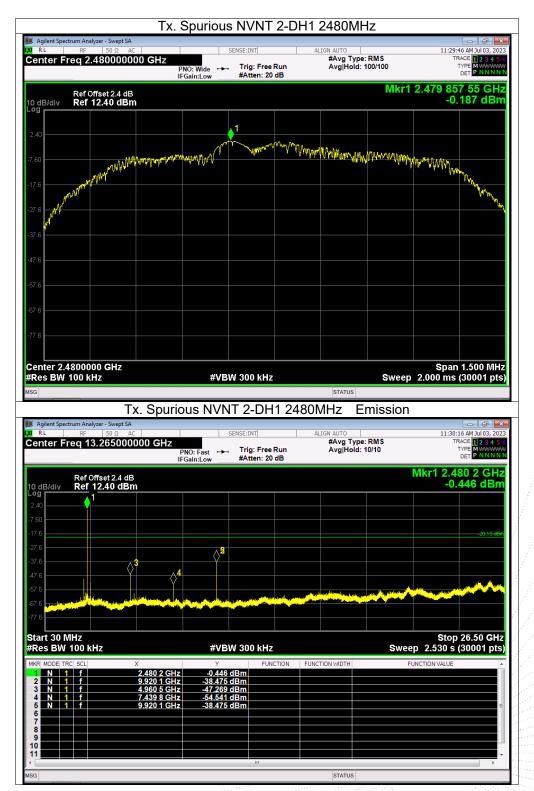


TE TC OVE




Edition: B.0

No.: BCTC/RF-EMC-007

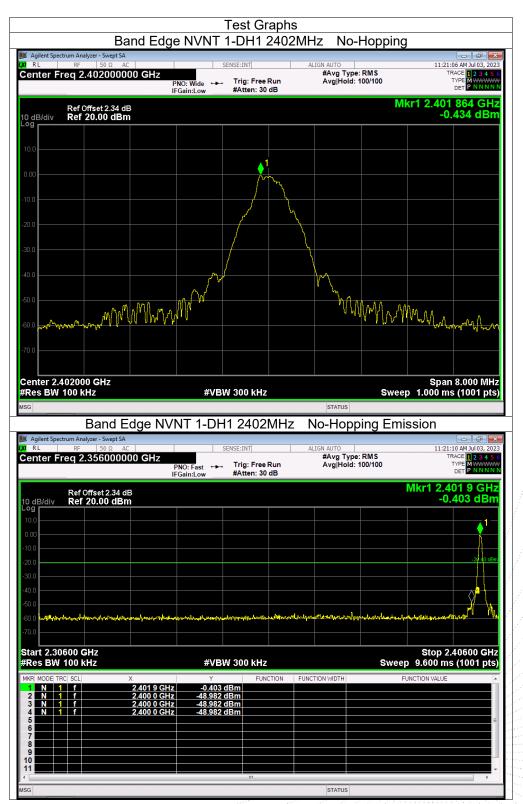


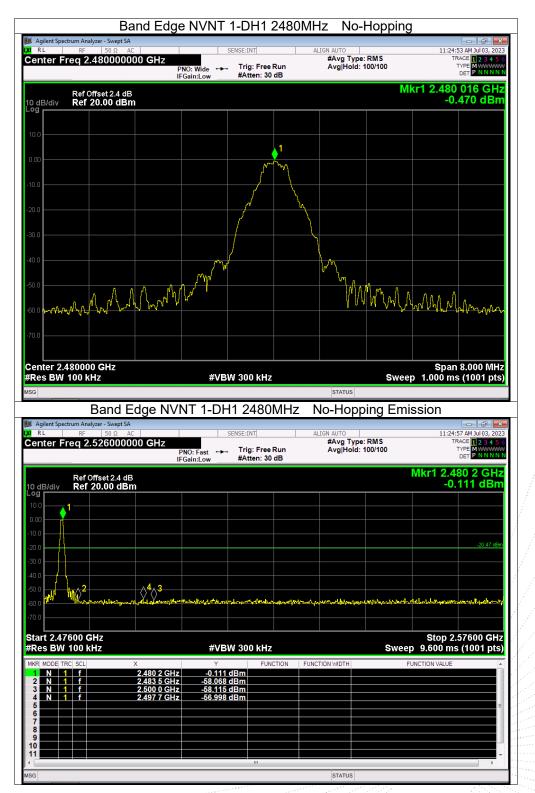
CHENZHER

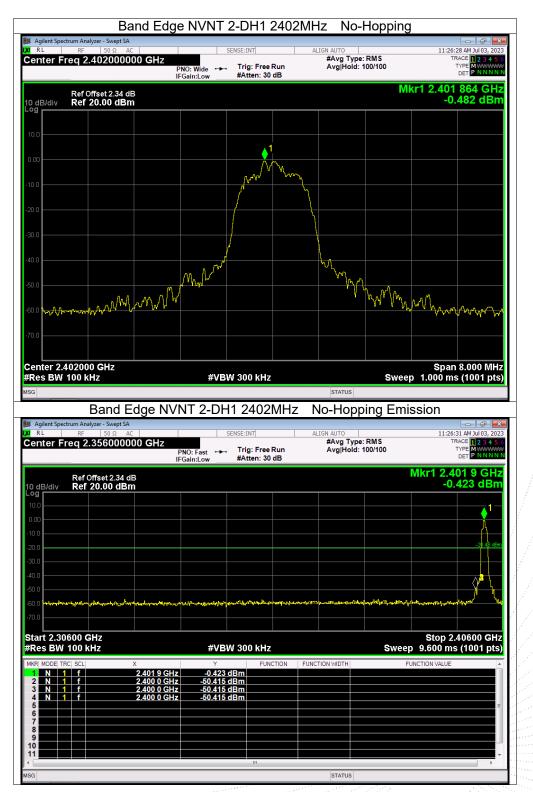
No.: BCTC/RF-EMC-007

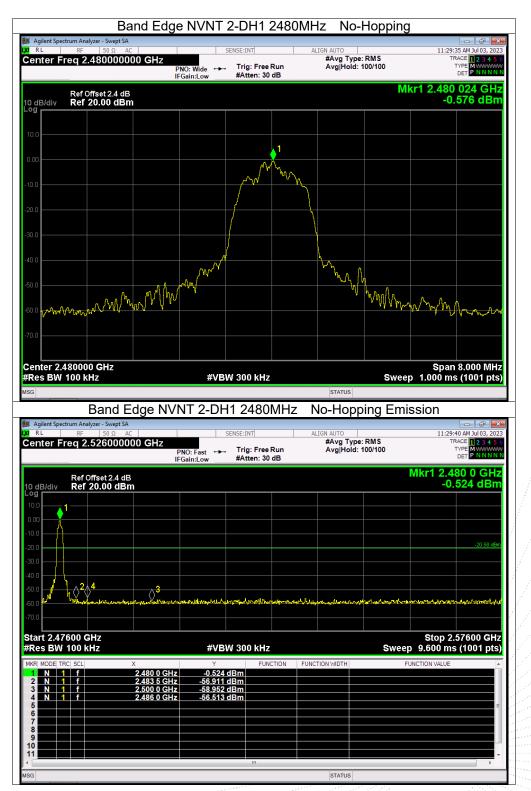
Agilent Spectrum Ana RL RF enter Freq 2.	50 Ω AC 402000000 GHz	PNO: Wide	E:INT	ALIGN AUTO #Avg Type Avg Hold:	e: RMS 100/100	11:31:23 AM Jul 03, 202 TRACE 1 2 3 4 5 TYPE M WWWW DET P N N N N
			Atten: 20 dB			
) dB/div Ref	offset 2.34 dB 12.34 dBm				MKr1 2.4	102 178 55 GH -0.466 dBn
°g						
				1		
.66		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Marrie Marrie	mon Marina	ware the form	un M. K.A.
	Jacoby of VINI Million and the second	, in Keater			, and a first second	Marth Martin
7.7						Why where
7.7						
7.7						
7.7						
7.7						
7.7						
7.7						
7.7						
enter 2.40200						Span 1.500 MH
Res BW 100 k	Hz	#VBW 3	00 kHz		Sweep 2.0	000 ms (30001 pts
G	× o `			STATUS		
		ous NVNT			mission	
Agilent Spectrum Ana	lyzer - Swept SA 50 Ω AC		3-DH1 24		mission	11:31:54 AM Jul 03, 202
Agilent Spectrum Ana	lyzer - Swept SA 50 Ω AC 3.265000000 GHz	PNO: Fast	3-DH1 24	02MHz E	mission	11:31:54 AM Jul 03, 202
Agilent Spectrum Ana RL RF enter Freq 1: Ref C	lyzer - Swept SA 50 Ω AC 3.265000000 GHz	PNO: Fast	3-DH1 24	02MHz E	mission RMS 10/10	11:31:54 AM Jul 03, 20: TRACE 2 3 4 5 TYPE MWWWW DET P NNNN r1 2.401 7 GH:
Agilent Spectrum Ana RL RF enter Freq 13 Ref C 0 dB/div Ref	Iyzer - Swept SA 50 Ω AC 3.265000000 GHz	PNO: Fast	3-DH1 24	02MHz E	mission RMS 10/10	11:31:54 AM Jul 03, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET PNNNN r1 2.401 7 GH2
Agilent Spectrum Ana RL RF enter Freq 13 Ref C 0 dB/div Ref 9 2 34	lyzer - Swept SA 50 Ω AC 3.265000000 GHz	PNO: Fast	3-DH1 24	02MHz E	mission RMS 10/10	11:31:54 AM Jul 03, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET PNNNN r1 2.401 7 GH2
Agilent Spectrum Ana RL RF enter Freq 13 Ref C 0 dB/div Ref 2 34	lyzer - Swept SA 50 Ω AC 3.265000000 GHz	PNO: Fast	3-DH1 24	02MHz E	mission RMS 10/10	11:31:54 AM Jul 03, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET PNNNN r1 2.401 7 GH2
Agilent Spectrum Ana RL RF enter Freq 13 0 dB/div Ref 9 2 34 7.66 7.7	lyzer - Swept SA 50 Ω AC 3.2650000000 GHz Dffset 2.34 dB 12.34 dBm	PNO: Fast T IFGain:Low #	3-DH1 24	02MHz E	mission RMS 10/10	11:31:54 AM Jul 03, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET PNNNN r1 2.401 7 GH2
enter Freq 13 Ref C 0 dB/div Ref 2 34 7 66 17.7 7.7 7.7 7.7 7.7 7.7	lyzer - Swept SA 50 Ω AC 3.265000000 GHz Offset 2.34 dB 12.34 dBm	PNO: Fast T IFGain:Low #	3-DH1 24	02MHz E	mission RMS 10/10	11:31:54 AH Jul (3, 20) TRACE 12 34 5 TYPE MYWWY DET MNNN r1 2.401 7 GH: -1.418 dBn -20.47 @
Agilent Spectrum Ana RL RF enter Freq 13 0 dB/div Ref 2 34 7 66 17.7	lyzer - Swept SA 50 Ω AC 3.2650000000 GHz Dffset 2.34 dB 12.34 dBm	PNO: Fast T IFGain:Low #	3-DH1 24	02MHz E	mission RMS 10/10	11:31:54 AM Jul 03, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET PNNNN r1 2.401 7 GH2
Agilent Spectrum Ana RL RF enter Freq 13 0 dB/div Ref C 0 dB/div 7 7 77 7 77 7 77 7 77 7 77 7 77 7 77 7 77 7 77 7	lyzer - Swept SA 50 Ω AC 3.265000000 GHz Offset 2.34 dB 12.34 dBm	PNO: Fast T IFGain:Low #	3-DH1 24	02MHz E	mission RMS 10/10	11:31:54 AM Jul 03, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET PNNNN r1 2.401 7 GH2
Agilent Spectrum Ana RL RF enter Freq 13 Ref C 0 dB/div Ref 2.34 7.66 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	lyzer - Swept SA 50 Ω AC 3.265000000 GHz Offset 2.34 dB 12.34 dBm	PNO: Fast T IFGain:Low #	3-DH1 24	02MHz E	mission RMS 10/10	11:31:54 AM Juli03, 202 TRACE 1 23 4 5 TYPE MUSE DET P NNNN r1 2.401 7 GH: -1.418 dBn -20 47 @
Agilent Spectrum Ana RL RF enter Freq 13 0 B/div 23 66 23 77 77.7 77.7 77.7 100 77.7 100 77.7 100 77.7 100	lyzer - Swept SA 50 Ω AC 3.2650000000 GHz Dffset 2.34 dB 12.34 dBm	PNO: Fast T IFGain:Low #	3-DH1 24	02MHz E	mission RMS 10/10 Mk	11:31:54 AM JUIO3, 202 TRACE II 23 4 5 TYPE M WWW PT P NNNN r1 2.401 7 GH: -1.418 dBn -20 47 dP
Agilent Spectrum Ana RL RF enter Freq 13 0 dB/div Ref C 0 dB/div 23 4 65 77 77 77 77 77 77 4 77 4 77 4 77 4 77 4 70 4 7 4 7 4 7 4 7 4 4 5 6 6 7 7 7 7 7 7 6 7 7 7 7 7 7	Iver - Swept SA 50 Ω AC 3.265000000 GHz Offset 2.34 dB 12.34 dBm 4 4 4 4 4 4 4 4 4 4 4 4 4	PNO: Fast + T IFGain:Low T	3-DH1 24	02MHz E	mission RMS 10/10 Mk Sweep 2	11:31:54 AM Jul 03, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET PNNNN r1 2.401 7 GH2
Agilent Spectrum Ana Ref C enter Freq 13 Ref C O dB/div Ref C O div O div Ref C O div O div <t< td=""><td>lyzer - Swept SA 50 Ω AC 3.265000000 GHz Diffset 2.34 dB 12.34 dBm 4 4 4 4 4 4 4 4 4 4 4 4 4</td><td>PNO: Fast →→ T IFGain:Low → #</td><td>3-DH1 24</td><td>O2MHz E</td><td>mission RMS 10/10 Mk Sweep 2</td><td>11:31:54 AM JUI03, 202 TRACE I 2 3 4 5 TYPE M WWW PET P NNNN r1 2.401 7 GH: -1.418 dBn -20 47 49 -20 47 -20 47 49 -20 47 49 -2</td></t<>	lyzer - Swept SA 50 Ω AC 3.265000000 GHz Diffset 2.34 dB 12.34 dBm 4 4 4 4 4 4 4 4 4 4 4 4 4	PNO: Fast →→ T IFGain:Low → #	3-DH1 24	O2MHz E	mission RMS 10/10 Mk Sweep 2	11:31:54 AM JUI03, 202 TRACE I 2 3 4 5 TYPE M WWW PET P NNNN r1 2.401 7 GH: -1.418 dBn -20 47 49 -20 47 -20 47 49 -20 47 49 -2
Agilent Spectrum Ana RL RF enter Freq 13 0 dB/div Ref 0 2 34 Ref 0 2 34 Ref 0 2 37 Ref 0 3 7 Ref 0 7 7 Ref 0 7 7 Ref 0 8 8 Ref 0 9 9 R	Iver - Swept SA 50 Ω AC 3.265000000 GHz Dffset 2.34 dB 12.34 dBm 4 2.401 7 GH 4.804 3 GH 4.804 3 GH 7.206 0 GH	PNO: Fast +→→ T IFGain:Low → T # 5	3-DH1 24	O2MHz E	mission RMS 10/10 Mk Sweep 2	11:31:54 AM JUI03, 202 TRACE I 2 3 4 5 TYPE M WWW PET P NNNN r1 2.401 7 GH: -1.418 dBn -20 47 49 -20 47 -20 47 49 -20 47 49 -2
Agilent Spectrum Ana RL RF enter Freq 13 0 dB/div Ref 9 3 2.34 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.	Ivzer - Swept SA 50 Ω AC 3.265000000 GHz Dffset 2.34 dB 12.34 dBm 1 4 4 4 4 4 4 4 4 4 4 4 4 4	PNO: Fast +→→ T IFGain:Low → T # 5	3-DH1 24	O2MHz E	mission RMS 10/10 Mk Sweep 2	11:31:54 AM Julio3, 207 TRACE 2 3 4 5 TYPE 2 3 4 5 TYPE ANN N CT 2.401 7 GH: -1.418 dBn -2047 as -2047 as -2047 as -2047 as -2047 as
Agilent Spectrum Ana RL RF enter Freq 13 Ref C 0 dB/div Ref 9 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Iver - Swept SA 50 Ω AC 3.265000000 GHz Dffset 2.34 dB 12.34 dBm 4 2.401 7 GH 4.804 3 GH 4.804 3 GH 7.206 0 GH	PNO: Fast +→→ T IFGain:Low → T # 5	3-DH1 24	O2MHz E	mission RMS 10/10 Mk Sweep 2	11:31:54 AM Julio3, 207 TRACE 2 3 4 5 TYPE 2 3 4 5 TYPE ANN N CT 2.401 7 GH: -1.418 dBn -2047 as -2047 as -2047 as -2047 as -2047 as

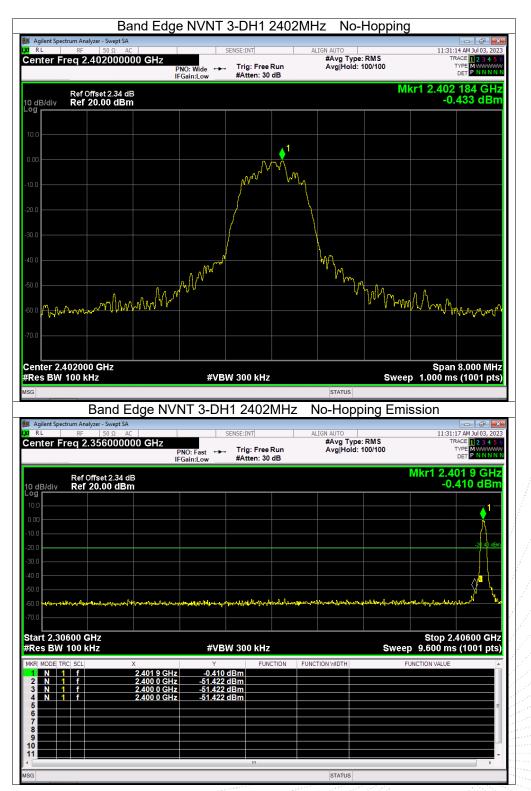



Agilent Spectrum Analyzer - Swept	SA	purious NVN			
RL RF 50 Ω enter Freq 2.441000	0000 GHz	SENSE:INT		Type: RMS	11:33:46 AM Jul 03, 20 TRACE 1 2 3 4 5
		D:Wide ⊶⊶ Trig:F ain:Low #Atten		old: 100/100	TYPE MWWW DET PNNN
Ref Offset 2.36 dB/div Ref 12.36 dl	6 dB			Mkr1 :	2.440 859 75 GH -0.242 dBi
2.36		<mark>1</mark>			
		MAR AND	www.www.www.wMM		
.64	All And Market and All All All All All All All All All Al	ΥΫ́́Υ,		ېل الاخلي يې دې يې	Mary Mary Halling
7.6	NYANYIWWW MANINAWA				· Martin
7.6					
~ ^{(**}					
7.6					
7.6					
7.6					
7.0					
7.6					
7.6					
enter 2.4410000 GHz Res BW 100 kHz		#VBW 300 k	Hz	Sweep	Span 1.500 MH 2.000 ms (30001 pt
G					· · ·
			STATU	IS	
	Tx. Spuriou	us NVNT 3-E		Emission	
Agilent Spectrum Analyzer - Swept	SA)H1 2441MHz		
Agilent Spectrum Analyzer - Swept R L RF 50 Ω	AC 00000 GHz	SENSE:INT	DH1 2441MHz		11:34:17 AM Jul 03, 20
Agilent Spectrum Analyzer - Swept R L RF 50 Ω	SA AC 000000 GHz PN	SENSE:INT 0: Fast ↔ Trig: F	DH1 2441MHz	Emission Type: RMS old: 10/10	11:34:17 AM Jul 03, 20 TRACE 1 2 3 4 9 TYPE M WWW DET P N N N
Agilent Spectrum Analyzer - Swept RL RF 50 Ω enter Freq 13.26500 Ref Offset 2.30 D dB/div Ref 12.36 d	AC AC DOOOOO GHZ PN IFG 3 dB	SENSE:INT 0: Fast ↔ Trig: F	DH1 2441MHz ALIGN AUTO #Avg free Run Avg	Emission Type: RMS old: 10/10	11:34:17 AM Jul 03, 20 TRACE 1 2 3 4 9 TYPE MWWW DET P NNNT
Agilent Spectrum Analyzer - Swept RL RF 50 Ω enter Freq 13.26500 Ref Offset 2.36 0 dB/div Ref 12.36 d 9 1	AC AC DOOOOO GHZ PN IFG 3 dB	SENSE:INT 0: Fast ↔ Trig: F	DH1 2441MHz ALIGN AUTO #Avg free Run Avg	Emission Type: RMS old: 10/10	11:34:17 AM Jul 03, 20 TRACE 1 2 3 4 9 TYPE MWWW DET P NNNT
Agilent Spectrum Analyzer - Swept RL RF 50 Ω enter Freq 13.26500 Ref Offset 2.36 0 dB/div Ref 12.36 d	AC AC DOOOOO GHZ PN IFG 3 dB	SENSE:INT 0: Fast ↔ Trig: F	DH1 2441MHz ALIGN AUTO #Avg free Run Avg	Emission Type: RMS old: 10/10	11:34:17 AM Jul 03, 20 TRACE 1 2 3 4 9 TYPE MWWW DET P NNNT
Agilent Spectrum Analyzer - Swept RL RF 50 Ω enter Freq 13.26500 0 dB/div Ref 0ffset 2.36 d 0 dB/div Ref 12.36 d 0 dB/div	AC AC DOOOOO GHZ PN IFG 3 dB	SENSE:INT 0: Fast ↔ Trig: F	DH1 2441MHz ALIGN AUTO #Avg free Run Avg	Emission Type: RMS old: 10/10	11:34:17 AM Jul 03, 20 TRACE 1 2 3 4 9 TYPE MWWW DET P NNNT
Agilent Spectrum Analyzer - Swept RL RF 50 Ω enter Freq 13.26500 Ref Offset 2.36 0 dB/div Ref 12.36 d 9 0 dB/div 7.6	SA AC DOUDOU GHZ PN IFG S dB Bm	SENSE:INT 0: Fast ↔ Trig: F	DH1 2441MHz ALIGN AUTO #Avg free Run Avg	Emission Type: RMS old: 10/10	11:34:17 AM JU 3, 20 TRACE 2 3 4: TYPE MWWW DET P NNNI MKr1 2.441 4 GH -1.882 dBr -2024 dB
Agilent Spectrum Analyzer - Swept RL RF 50.0. enter Freq 13.26500 Ref Offset 2.36 Ref Offset 2.36 Ref 2.36 d	AC AC DOOOOO GHZ PN IFG 3 dB	O: Fast ↔ Trig: F ain:Low #Atten	DH1 2441MHz ALIGN AUTO #Avg free Run Avg	Emission Type: RMS old: 10/10	11:34:17 AM Jul 03, 20 TRACE 1 2 3 4 9 TYPE MWWW DET P NNNT
Agilent Spectrum Analyzer - Swept RL RF 50 Q enter Freq 13.26500 Ref Offset 2.33 0 dB/div Ref 12.36 d 0 g 1 7.6 1 7.6 1 7.6 1	SA AC DOUDOU GHZ PN IFG S dB Bm	O: Fast ↔ Trig: F ain:Low #Atten	DH1 2441MHz ALIGN AUTO #Avg free Run Avg	Emission Type: RMS old: 10/10	11:34:17 AM Jul 03, 20 TRACE 1 2 3 4 9 TYPE MWWW DET P NNNT
Agilent Spectrum Analyzer - Swept RL RF 50 Q enter Freq 13.26500 Ref Offset 2.36 G 0 dB/div Ref 12.36 d G G 2 36 1 7.64 1 7.64 1 7.64 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SA AC DOUDOU GHZ PN IFG S dB Bm	O: Fast ↔ Trig: F ain:Low #Atten	DH1 2441MHz ALIGN AUTO #Avg free Run Avg	Emission Type: RMS old: 10/10	11:34:17 AM Jul 03, 20 TRACE 1 2 3 4 9 TYPE MWWW DET P NNNT
Agilent Spectrum Analyzer - Swept RL RF 50 Ω enter Freq 13.26500 Ref Offset 2.36 0 dB/div Ref 12.36 d 0 dB/div 7.6	SA AC DOUDOU GHZ PN IFG S dB Bm	O: Fast ↔ Trig: F ain:Low #Atten	DH1 2441MHz ALIGN AUTO #Avg free Run Avg	Emission Type: RMS old: 10/10	11:34:17 AM Jul 03, 20 TRACE 12, 23 4 TYPE MWWW DET P NNNI Mkr1 2.441 4 GH -1.882 dBr -20,24 af
Agilent Spectrum Analyzer - Swept RL RF 50 Ω enter Freq 13.26500 0 dB/div Ref 0ffset 2.36 Ref 0ffset 2.36 Ref 0ffset 2.36 1 64 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	SA AC DOUDOU GHZ PN IFG S dB Bm	O: Fast ↔ Trig: F ain:Low #Atten	DH1 2441MHz	Emission Type: RMS old: 10/10	11:34:17 AM Jul 03, 20 TRACE 1 2 3 4 9 TYPE MWWW DET P NNNT
Agilent Spectrum Analyzer - Swept RL RF 50 Ω enter Freq 13.26500 0 dB/div Ref Offset 2.36 0 dB/div Ref 12.36 d 9 d 1 64 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	SA AC DOUDOO GHZ PN IFG S dB Bm A A A A A A A A A A A A A	SENSE:INT O: Fast in:Low A A A A A A A A A A A A A	DH1 2441MHz	Emission Type: RMS old: 10/10	11:34:17 AM JUG3, 2C TRACE 12:34 - TYPE MWW DET P NNNI Mkr1 2:441 4 GH -1.882 dBr -00:24 dB
Agilent Spectrum Analyzer - Swept RL RF 50 Ω enter Freq 13.26500 C dB/div Ref 0ffset 2.36 C dB/div Ref 12.36 d 0 dB/div 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	SA AC D00000 GHz PN IFG S dB Bm ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	SENSE:INT O: Fast → Trig: F ain:Low → #Atten \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	DH1 2441MHz	Emission Type: RMS old: 10/10	11:34:17 AM JUG3, 20 TRACE 12:34 TYPE M WINT Mkr1 2:441 4 GH -1.882 dBr -20:24 dB -20:24 dB
Agilent Spectrum Analyzer - Swept RL RF 50 Ω enter Freq 13.26500 Ref Offset 2.36 0 dB/div Ref 12.36 d 0 dB/div Ref 12.36 d 0 dB/div Ref 12.36 d 0 dF/div Ref 12.36 d 0 d	SA AC D00000 GHz PN IFG S dB Bm 3 4 4 4 4 4 4 4 4 4 4 4 4 4	SENSE:INT O: Fast →→ Trig: F ain:Low → #Atten	DH1 2441MHz	Emission Type: RMS old: 10/10	11:34:17 AM JUG3, 20 TRACE 12:34 TYPE M WINT Mkr1 2:441 4 GH -1.882 dBr -20:24 dB -20:24 dB
Agilent Spectrum Analyzer - Swept RL RF 50 Ω enter Freq 13.26500 Ref Offset 2.36 0 dB/div Ref 12.36 d 0 dB/div Ref 12.36 d 0 dF/div Ref 12.36 d 0 d	SA AC D00000 GHz PN IFG S dB Bm 3 4 4 4 4 4 4 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 5 6 8 7 7 7 7 7 7 7 7 7 7 7 7 7	SENSE:INT O: Fast → Trig: F ain:Low → #Atten #Atten #VBW 300 k Y -1.882 dBm -40.626 dBm -43.968 dBm -43.968 dBm	DH1 2441MHz	Emission Type: RMS old: 10/10	11:34:17 AM JUG3, 20 TRACE 12:34 TYPE M WINT Mkr1 2:441 4 GH -1.882 dBr -20:24 dB -20:24 dB
Agilent Spectrum Analyzer - Swept RL RF 50 Ω enter Freq 13.26500 Ref Offset 2.36 O dB/div Ref 12.36 d 2:36 1 7:64 1 7:76 1 7:76 1 7:76 1 7:76 1 7:76 1 7:76 1 7:76 1 7:76 1 7:76 1 7:76 1 7:76 1 7:77 1 7:76 1 7:76 1 7:77 1 7:76 1 7:77 1 7:76 1	SA AC D00000 GHz PN IFG S dB Bm 3 4 4 4 4 4 4 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 5 6 8 7 7 7 7 7 7 7 7 7 7 7 7 7	SENSE:INT O: Fast → Trig: F ain:Low → #Atten #Atten #VBW 300 k Y -1.882 dBm -40.626 dBm -43.968 dBm -43.968 dBm	DH1 2441MHz	Emission Type: RMS old: 10/10	11:34:17 AM JUG3, 20 TRACE 12:34 TYPE M WINT Mkr1 2:441 4 GH -1.882 dBr -20:24 dB -20:24 dB




C 00.,LT





Edition: B.0

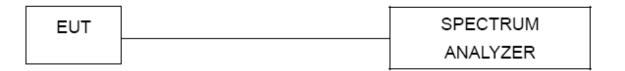
Page: 40 of 79

Agilent Spectr	um Analyzer - Swept SA	Edge(H	opping) i	NVINI		2402MH	z Hopp	лц	
RL	RF 50 Ω A0		S	ENSE:INT	4	LIGN AUTO #Avg Typ	e: RMS	11:3	9:19 AM Jul 03, 20
		Р	NO: Wide ↔ Gain:Low	Trig: Free #Atten: 30	Run dB	Avg Hold:	2000/2000		
	Ref Offset 2.34 di						М	kr1 2.40	1 864 GH 0.436 dBr
dB/div ^g	Ref 20.00 dBn	n						-(J.436 UBI
).0									
				▲1					
00				Ň	w	.M~L	M	N	\
						$\int A$	+	M	M A
					L.N	' IN	pr'	h.	1/4/11
				}			4		¥
).0				1					
			M						
			p 4						
<u></u>	mann	mm	m						
.0									
enter 2.40 tes BW 1	02000 GHz 00 kHz		#VBV	V 300 kHz			Swee	spa p 1.000 n	in 8.000 MH ns (1001 pt:
						STATUS			
	Band Edg		ng) NVN⊺	T 1-DH	1 2402	MHz H	lopping E	Emissic	
Agilent Spectr	um Analyzer - Swept SA RF 50 Ω A0	c		T 1-DH		LIGN AUTO	•••	11:3	😑 🗇 📕
Agilent Spectr	um Analyzer - Swept SA	c 00 GHz	NO: Fast ↔	ENSE:INT	Run	LIGN AUTO #Avg Typ	•••	11:3	9:51 AM Jul 03, 20
Agilent Spectr	um Analyzer - Swept SA RF 50 Ω A0 eq 2.3560000	c 00 GHz P IF	S	ENSE:INT	Run	LIGN AUTO #Avg Typ	e: RMS 2000/2000	11:3	😑 🗇 📕
Agilent Spectri RL	um Analyzer - Swept SA RF 50 Ω A0	C GHz F	NO: Fast ↔	ENSE:INT	Run	LIGN AUTO #Avg Typ	e: RMS 2000/2000	11:3 Mkr1 2.4	9:51 AM Jul 03, 20 TRACE 1 2 3 4 5 TYPE MWWWW DET P NNNN
Agilent Spectri RL enter Fre dB/div	um Analyzer - Swept SA RF 50 Ω AG C 2.3560000 Ref Offset 2.34 d	C GHz F	NO: Fast ↔	ENSE:INT	Run	LIGN AUTO #Avg Typ	e: RMS 2000/2000	11:3 Mkr1 2.4	19:51 AM Jul 03, 20 TRACE 1 2 3 4 5 TYPE M DET P N N N 405 0 GH
Agilent Spectri RL enter Fre dB/div 9	um Analyzer - Swept SA RF 50 Ω AG C 2.3560000 Ref Offset 2.34 d	C GHz F	NO: Fast ↔	ENSE:INT	Run	LIGN AUTO #Avg Typ	e: RMS 2000/2000	11:3 Mkr1 2.4	19:51 AM Jul 03, 20 TRACE 1 2 3 4 5 TYPE M DET P N N N 405 0 GH
Agilent Spectri RL enter Fre dB/div g 0.0	um Analyzer - Swept SA RF 50 Ω AG C 2.3560000 Ref Offset 2.34 d	C GHz F	NO: Fast ↔	ENSE:INT	Run	LIGN AUTO #Avg Typ	e: RMS 2000/2000	11:3 Mkr1 2.4	19:51 AM Jul 03, 20 TRACE 1 2 3 4 5 TYPE M DET P N N N 405 0 GH
Agilent Spectri RL enter Fre 9 0.0 0.0	um Analyzer - Swept SA RF 50 Ω AG C 2.3560000 Ref Offset 2.34 d	C GHz F	NO: Fast ↔	ENSE:INT	Run	LIGN AUTO #Avg Typ	e: RMS 2000/2000	11:3 Mkr1 2.4	19:51 AM Jul 03, 20 TRACE 1 2 3 4 5 TYPE M DET P N N N 405 0 GH
Agilent Spectra RL enter Free gg gg gg gg gg gg gg gg gg	um Analyzer - Swept SA RF 50 Ω AG C 2.3560000 Ref Offset 2.34 d	C GHz F	NO: Fast ↔	ENSE:INT	Run	LIGN AUTO #Avg Typ	e: RMS 2000/2000	11:3 Mkr1 2.4	19:51 AM Jul 03, 20 TRACE 1 2 3 4 5 TYPE M DET P N N N 405 0 GH
Agilent Spectra RL enter Free g g g g g g g g g g g g g g g	um Analyzer - Swept SA RF 50 Ω At eq 2.355600000 Ref Offset 2.34 d Ref 20.00 dBr	C GHz F	NO: Fast ↔	ENSE:INT	Run	LIGN AUTO #Avg Typ	e: RMS 2000/2000	11:3 Mkr1 2.4	405 0 GH
Agilent Spectra RL enter Free dB/div g g g g g g g g g g g g g	um Analyzer - Swept SA RF 50 Ω At eq 2.355600000 Ref Offset 2.34 d Ref 20.00 dBr	B m	NO: Fast ↔	ENSE:INT	Run	Avg Typ Avg Hold:	e: RMS 2000/2000	11:3 Mkr1 2.4	405 0 GH
Agilent Spectra RL enter Fre 9 9 0 0 0 0 0 0 0 0	um Analyzer - Swept SA RF 50 Ω At eq 2.355600000 Ref Offset 2.34 d Ref 20.00 dBr	B m	NO: Fast ↔	ENSE:INT	Run	Avg Typ Avg Hold:	e: RMS 2000/2000	11:3 Mkr1 2 -(405 0 GH 0.627 dBn
Agilent Spectra RL enter Free dB/div db/di db/div	um Analyzer - Swept SA RF 50 Ω Ad eq 2.35560000 Ref Offset 2.34 d Ref 20.00 dBr	B m	SPNO: Fast ↔	ENSE:INT	Run dB	Avg Typ Avg Hold:	e: RMS 2000/2000	11:3 Mkr1 2./ -(-) 	405 0 GH
Agilent Spectra RL enter Free dB/div db/div	Im Analyzer - Swept SA RF 50 Ω At eq 2.35560000 Ref Offset 2.34 d Ref 20.00 dBr 	с	S PNO: Fast ↔ Gain:Low #VBV	ENSE:INT Trig: Free #Atten: 30 Understand	Run dB	Avg Typ Avg Hold:	e: RM S 2000/2000	11:3 Mkr1 2./ -(-) 	405 0 GH 0.627 dBn 405 0 GH 2.40600 GH 2.40600 GH
Agilent Spectr RL enter Fre dB/div dB/di	um Analyzer - Swept SA RF 50 Ω At eq 2.35560000 Ref Offset 2.34 d Ref 20.00 dBr 	C 00 GHz 00 GHz B m 2.405 0 GHz	S PNO: Fast ↔ Gain:Low #VBV Y -0.627 c -57.284 c	ENSE:INT Trig: Free #Atten: 30 V 300 kHz IBm FUN	Run dB	LIGN AUTO #Avg Hold:	e: RM S 2000/2000	11:3 Mkr1 2 -C	405 0 GH 0.627 dBn 405 0 GH 2.40600 GH 2.40600 GH
Agilent Spectr RL enter Fre 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0	um Analyzer - Swept SA RF 50 Ω Ad eq 2.355600000 Ref Offset 2.34 d Ref 20.00 dBr 00 GHz 00 GHz 00 KHZ SCL f f	C 00 GHz P FF		ENSE:INT Trig: Free #Atten: 30 V 300 kHz IBm IBm	Run dB	LIGN AUTO #Avg Hold:	e: RM S 2000/2000	11:3 Mkr1 2 -C	405 0 GH 0.627 dBn 405 0 GH 2.40600 GH 2.40600 GH
Agilent Spectr RL Penter Fre 9 9 9 9 9 9 9 9 9 9 9 9 9	um Analyzer - Swept SA RF 50 Ω Ad eq 2.355600000 Ref Offset 2.34 d Ref 20.00 dBr 00 GHz 00 GHz 00 KHZ SCL f f	C 00 GHz 00 GHz P FF B n 2.405 0 GHz 2.400 0 GHz 2.400 0 GHz 2.400 0 GHz		ENSE:INT Trig: Free #Atten: 30 V 300 kHz IBm IBm	Run dB	LIGN AUTO #Avg Hold:	e: RM S 2000/2000	11:3 Mkr1 2 -C	405 0 GH 0.627 dBn 405 0 GH 2.40600 GH 2.40600 GH
Agilent Spectri RL enter Fre g g g g g g g g g g g g g	um Analyzer - Swept SA RF 50 Ω Ad eq 2.355600000 Ref Offset 2.34 d Ref 20.00 dBr 00 GHz 00 GHz 00 KHZ SCL f f	C 00 GHz 00 GHz P FF B n 2.405 0 GHz 2.400 0 GHz 2.400 0 GHz 2.400 0 GHz		ENSE:INT Trig: Free #Atten: 30 V 300 kHz IBm IBm	Run dB	LIGN AUTO #Avg Hold:	e: RM S 2000/2000	11:3 Mkr1 2 -C	405 0 GH 0.627 dBn 405 0 GH 2.40600 GH 2.40600 GH

No.: BCTC/RF-EMC-007

Edition: B.0

Page: 46 of 79



10. 20 dB Bandwidth

10.1 Block Diagram Of Test Setup

10.2 Limit

N/A

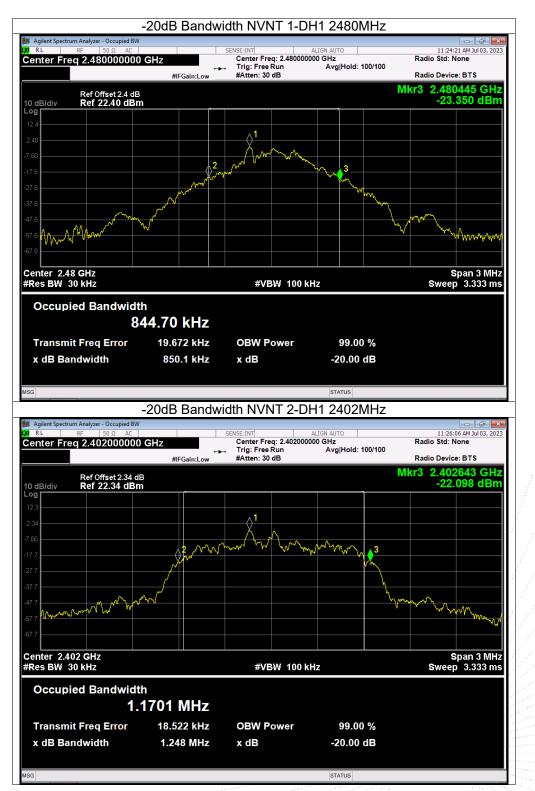
10.3 Test procedure

- 1. Set RBW = 30kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

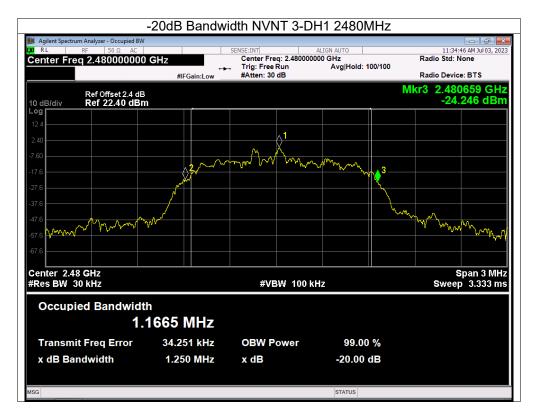
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

10.4 Test Result

Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH1	2402	0.928	Pass
NVNT	1-DH1	2441	0.868	Pass
NVNT	1-DH1	2480	0.85	Pass
NVNT	2-DH1	2402	1.248	Pass
NVNT	2-DH1	2441	1.243	Pass
NVNT	2-DH1	2480	1.207	Pass
NVNT	3-DH1	2402	1.222	Pass
NVNT	3-DH1	2441	1.249	Pass
NVNT	3-DH1	2480	1.25	Pass


No.: BCTC/RF-EMC-007

LENZHC



则为

No.: BCTC/RF-EMC-007

No.: BCTC/RF-EMC-007

Page: 53 of 79

11. Maximum Peak Output Power

11.1 Block Diagram Of Test Setup

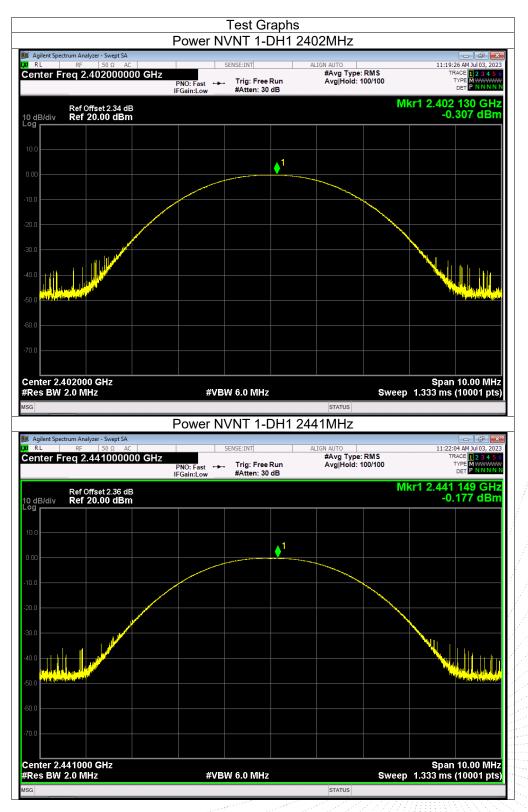
EUT	SPECTRUM
	ANALYZER

11.2 Limit

FCC Part15 (15.247) , Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(b)(1)	Peak Output Power	0.125 watt or 21dBm	2400-2483.5	PASS	

11.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.


2. Set the spectrum analyzer: RBW = 2MHz. VBW = 6MHz. Sweep = auto; Detector Function = Peak.

3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

11.4 Test Result

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	-0.31	21	Pass
NVNT	1-DH1	2441	-0.18	21	Pass
NVNT	1-DH1	2480	-0.12	21	Pass
NVNT	2-DH1	2402	0.39	21	Pass
NVNT	2-DH1	2441	0.59	21	Pass
NVNT	2-DH1	2480	0.65	21	Pass
NVNT	3-DH1	2402	1.02	21	Pass
NVNT	3-DH1	2441	1.15	21	Pass
NVNT	3-DH1		1.22	21	Pass

