

FCC Test Report

EUT Description: Model No.:	TWS earbuds JLS-C36
FCC ID:	2A5JG-JLS-C36
Power Supply:	DC 3.7V From Battery
Charging Voltage:	DC 5V
Trade Mark:	
Standards:	47 CFR FCC Part 2, Subpart J 47 CFR Part 15, Subpart C ANSI C63.10: 2013
Date of Receipt:	2024/6/25
Date of Test:	2024/6/29 to 2024/7/8
Date of Issue:	2024/7/9
Test Result:	PASS

Prepared By: Reviewed By: Approved By:

Wayne . Jon (Testing Engineer) (Project Engineer) (Manager)

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com

 Tel:+86-769-88087383

 E-mail: service@dn-testing.com

Report No.: DNT241416R1823-4934 Date: July.9, 2024 Page: 2 / 58 Report Revise Record

Report Version	rsion Revise Time Issued Date		Valid Version	Notes
V1.0		Jul.9, 2024	Valid	Original Report

1

Report No.: DNT241416R1823-4934

Date: July.9, 2024

Page: 3 / 58

Test Summary

Test Item	Test Requirement	Test Method	Test Result	Result
Antenna Requirement	15.203/247(b)		Clause 3.1	PASS
20dB Emission Bandwidth	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.2	PASS
Conducted Peak Output Power	15.247 (b)(1)	ANSI C63.10 (2013)	Clause 3.3	PASS
Carrier Frequencies Separation	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.4	PASS
Dwell Time	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.5	PASS
Hopping Channel Number	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.6	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10 (2013)	Clause 3.7	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10 (2013)	Clause 3.8	PASS
Radiated Spurious emissions	15.247(d); 15.205/15.209	ANSI C63.10 (2013)	Clause 3.9	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d); 15.205/15.209	ANSI C63.10 (2013)	Clause 3.10	PASS
AC Power Line Conducted Emission	15.207	ANSI C63.10 (2013)	Clause 3.11	NA

Note:

1. "N/A" denotes test is not applicable in this test report.

Date: July.9, 2024

Page: 4 / 58

Contents

1 <	Test Su	immary	
2	Genera	I Information	5
	2.1	Test Location	5
	2.2	General Description of EUT	6
	2.3	Channel List	7
	2.4	Test Environment and Mode	
	2.5	Power Setting of Test Software	9
	2.6	Description of Support Units	9
	2.7	Test Facility	9
	2.8	Measurement Uncertainty (95% confidence levels, k=2)	10
	2.9	Equipment List	11
	2.10	Assistant equipment used for test	
3 <	Test res	sults and Measurement Data	13
	3.1	Antenna Requirement	13
	3.2	20dB Emission Bandwidth	14
	3.3	Conducted Output Power	
	3.4	Carrier Frequencies Separationy	
	3.5	Dwell Time	17
	3.6	Hopping Channel Number	18
	3.7	Band-edge for RF Conducted Emissions	19
	3.8	RF Conducted Spurious Emissions	20
	3.9	Radiated Spurious Emissions	
	3.10	Restricted bands around fundamental frequency	
	3.11	AC Power Line Conducted Emissions	33
4	Append	lix	
	Append	lix A: 20dB Emission Bandwidth	35
	Append	lix B: Maximum conducted output power	38
	Append	lix C: Carrier frequency separation	41
	Append	lix D: Dwell Time	43
	Append	lix F: Number of hopping channels	46
	Append	lix F: Band edge measurements	
	Append	lix F: Conducted Spurious Emission	52

2 General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd			
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ˈ an Town, Dongguan City, Guangdong P.R.China			
Test engineer:	Wayne Lin			

Date: July.9, 2024

Page: 6 / 58

2.2 General Description of EUT

Manufacturer:	Dongguan jialisi Electronic Technology Co., Ltd					
Address of Manufacturer:	Room 202, building 2, No.106, Shaxin Road, Tangxia Town, DongguanCity, Guangdong Province, China					
Test EUT Description:	TWS earbuds					
Model No.:	JLS-C36					
Additional Model(s):						
Chip Type:	AC7023D2C					
Serial number:	PR241416R1823					
Power Supply:	DC 3.7V From Battery					
Charging Voltage:	DC 5V					
Trade Mark:	1					
Hardware Version:	V1.0					
Software Version:	V1.0					
Operation Frequency:	2402 MHz to 2480 MHz					
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)					
Type of Modulation:	GFSK,π/4-DQPSK					
Sample Type:	Portable Device, Module, Mobile Device					
Antenna Type:	□ External, ⊠ Integrated					
Antenna Ports:	⊠ Ant 1, □ Ant 2, □ Ant 3					
Antenna Gain*:	⊠ Provided by applicant					
	3dBi					
	⊠ Provided by applicant					
RF Cable*:	0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4GHz); 1.8dB(4.4~6GHz);					

Remark:

*Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information, DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

Page: 7 / 58

2.3 Channel List

	Operation Frequency of each channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
/ 12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		\sim

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Date: July.9, 2024

Page: 8 / 58

2.4 5Test Environment and Mode

Operating Environment:				
Temperature:	20~25.0 °C			
Humidity:	45~56 % RH			
Atmospheric Pressure:	101.0~101.30 KPa			
Test mode:				
Transmitting mode:	ransmitting mode: Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.			

2.5 Power Setting of Test Software

Date: July.9, 2024 Page: 9 / 58

 		9-	• ·	~

Software Name	FCC_assist_1.0.2.2.exe		
Frequency(MHz)	2402	2441	2480
GFSK Setting	10	10	10
π /4-DQPSK Setting	10	10	10

2.6 Description of Support Units

The EUT has been tested independent unit.

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

• FCC, USA

Designation Number: CN1348

A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 7050.01.

Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory.

IC#: 31026.

Report No.: DNT241416R1823-4934 Date: July.9, 2024 Page: 10 / 58

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
1	20dB Emission Bandwidth	±0.0196%		
2	Carrier Frequency Separation	±1.9%		
3	Number of Hopping Channel	±1.9%		
4	Time of Occupancy	±0.028%		
5	Max Peak Conducted Output Power	±0.743 dB		
6	Band-edge Spurious Emission	±1.328 dB		
7	Conducted RF Spurious Emission	9KHz-1GHz:±0.746dB 1GHz-26GHz:±1.328dB		

No.	Item	Measurement Uncertainty
1	Conduction Emission	± 3.0dB (150kHz to 30MHz)
\mathbf{O}	O O O O O O	± 4.8dB (Below 1GHz)
0	De dista d Enviroien	± 4.8dB (1GHz to 6GHz)
2	Radiated Emission	± 4.5dB (6GHz to 18GHz)
		± 5.02dB (Above 18GHz)

Page: 11 / 58

2.9 Equipment List

For Connect EUT Antenna Terminal Test						
Description	Manufacturer	Model	Serial Number	Cal date	Due date	
Signal Generator	Keysight	N5181A-6G	MY48180415	2023-10-25	2024-10-24	
Signal Generator	Keysight	N5182B	MY57300617	2023-10-25	2024-10-24	
Power supply	Keysight	E3640A	ZB2022656	2023-10-25	2024-10-24	
Radio Communication Tester	R&S	CMW500	105082	2023-10-25	2024-10-24	
Spectrum Analyzer	Aglient	N9010A	MY52221458	2023-10-25	2024-10-24	
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA	NA	
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA	
Power Sensor	Anritsu	ML2495A	2129005	2023-10-25	2024-10-24	
Pulse Power Sensor	Anritsu	MA2411B	1911397	2023-10-25	2024-10-24	
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2023-10-25	2024-10-24	

	Test Equipment for Conducted Emission							
Description	Description Manufacturer Model Serial Number Cal Date Due Date							
Receiver	R&S	ESCI3	101152	2023-10-24	2024-10-23			
LISN	R&S	ENV216	102874	2023-10-24	2024-10-23			
ISN	R&S	ENY81-CA6	1309.8590.03	2023-10-24	2024-10-23			

Test Ec	quipment for F	Radiated Emis	sion(30MHz	-1000MH	z)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Receiver	R&S	ESR7	102497	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TILE-FULL	NA	NA	NA
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2023-10-24	2024-10-23
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2023-10-24	2024-10-23

Date: July.9, 2024

Page: 12 / 58

🔵 Test E	quipment for I	Radiated Emis	ssion(Above	1000MHz	<u>z)</u>
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Frequency analyser	Keysight	N9010A	MY52221458	2023-10-24	2024-10-23
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Horn Antenna	ETS-LINDGREN	3117	00252567	2023-10-24	2024-10-23
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TILE-FULL	NA	NA	NA
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2023-10-24	2024-10-23
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2023-10-24	2024-10-23

2.10 Assistant equipment used for test

Code	Equipment	Manufacturer	Model No.	Equipment No.
1	Computer	acer	N22C8	EMC notebook01
2	Adapter	HUAWEI	HW-100225C00	NA

3 Test results and Measurement Data

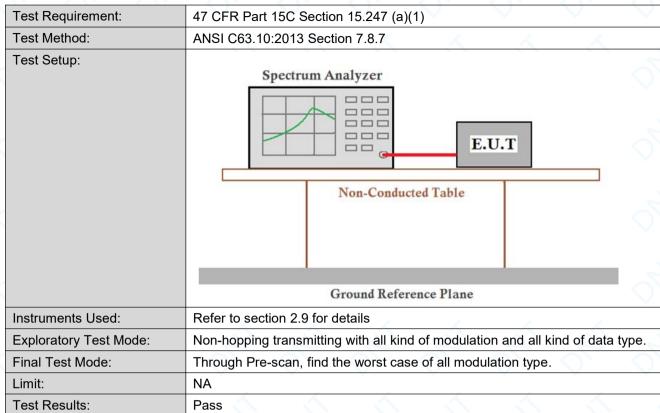
3.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:


The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3dBi.

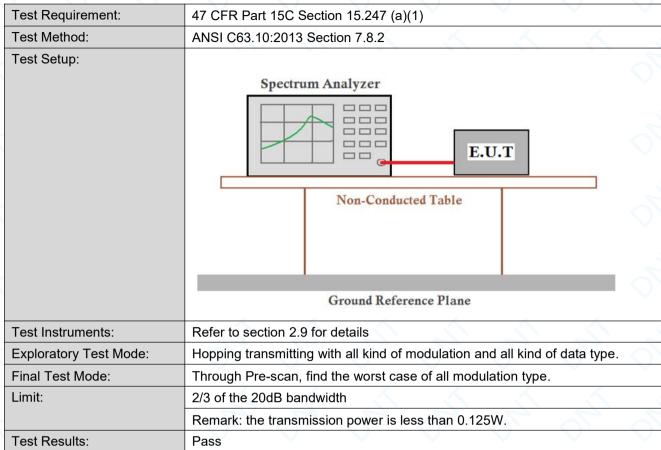
Page: 14 / 58

3.2 20dB Emission Bandwidth

The detailed test data see: Appendix A

Page: 15 / 58

3.3 Conducted Output Power


Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
Test Method:	ANSI C63.10:2013 Section 7.8.5
Test Setup:	Spectrum Analyzer
	E.U.T
	Non-Conducted Table
	Ground Reference Plane
Test Instruments:	Refer to section 2.9 for details
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	(20.97dBm) 125mW
Test Results:	Pass

The detailed test data see: Appendix B

Page: 16 / 58

3.4 Carrier Frequencies Separationy

The detailed test data see: Appendix C

Page: 17 / 58

3.5 Dwell Time

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013 Section 7.8.4	~
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table	N 0 0
	Ground Reference Plane	Ś.
Instruments Used:	Refer to section 2.9 for details	
Test Mode:	Hopping transmitting with all kind of modulation and all kind of dat	a type.
Limit:	0.4 Second	$\langle \langle \rangle$
Test Results:	Pass	

The detailed test data see: Appendix D

Page: 18 / 58

3.6 Hopping Channel Number

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 Section 7.8.3	,	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table	In the the	0, 0, 0,
	Ground Reference Plane	<u> </u>	
Instruments Used:	Refer to section 2.9 for details		~
Test Mode:	Hopping transmitting with all kind of modulation		
Limit:	At least 15 channels	~	
Test Results:	Pass	~	5

The detailed test data see: Appendix E

Report No.: DNT241416R1823-4934 Date: July.9, 2024

3.7 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 Section 7.8.6
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Results:	Pass

Page: 19 / 58

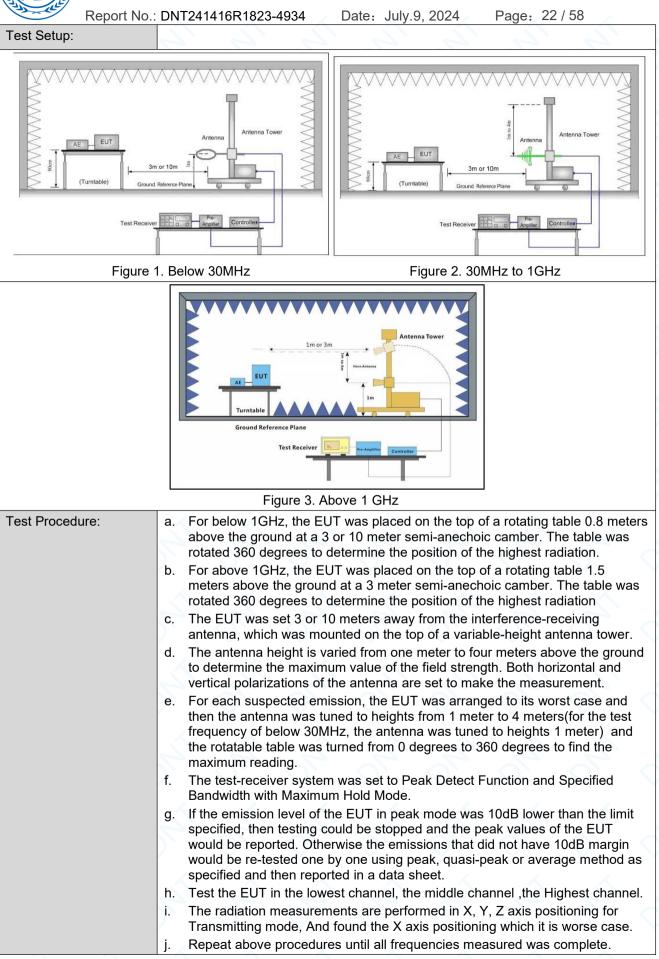
The detailed test data see: Appendix F

Page: 20 / 58

3.8 RF Conducted Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10: 2013 Section 11.11
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Results:	Pass

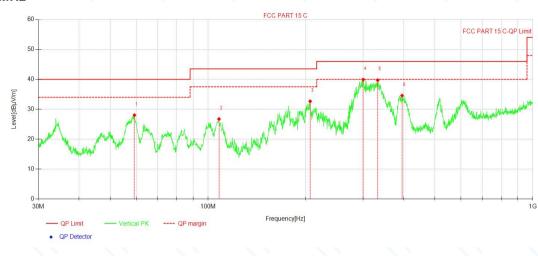
The detailed test data see: Appendix G

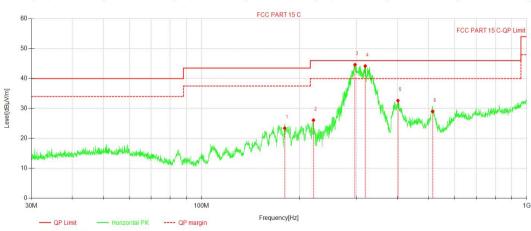

Date: July.9, 2024

Page: 21 / 58

3.9 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Sectio	n 15.209 and 15.20)5					
Test Method:	ANSI C63.10: 2013 Sect	ion 11.12	<u> </u>	<u> </u>	<u> </u>			
Test Site:	Measurement Distance:	Measurement Distance: 3m or 10m (Semi-Anechoic Chamber)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark			
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak			
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average			
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak			
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak			
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average			
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak			
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak			
		Peak	1MHz	3MHz	Peak			
	Above 1GHz	Peak	1MHz	10Hz (DC≥0.98) ≥1/T	Average			
	A 4	$\langle \langle \rangle$	$\langle \langle \rangle$	≥ 1/1 (DC<0.98)				
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m)			
	0.009MHz-0.490MHz	2400/F(kHz)	- 🔨	~	300			
	0.490MHz-1.705MHz	24000/F(kHz)	-	1	30			
	1.705MHz-30MHz	30	<u> </u>	\sim \sim	30			
	30MHz-88MHz	100	40.0	Quasi-peak	3			
	88MHz-216MHz	150	43.5	Quasi-peak	3			
	216MHz-960MHz	200	46.0	Quasi-peak	3			
	960MHz-1GHz	500	54.0	Quasi-peak	3			
	Above 1GHz	500	54.0	Average	3			
	Remark: 15.35(b),Unless emissions is 20dB above applicable to the equipm emission level radiated b	e the maximum per ent under test. This	mitted avera	ge emission lir	nit			




Report N	lo.: DNT241416R1823-4934 Date: July.9, 2024 Page: 23 / 58
Test Configuration:	Measurements Below 1000MHz • RBW = 120 kHz • VBW = 300 kHz • Detector = Peak • Trace mode = max hold Peak Measurements Above 1000 MHz • RBW = 1 MHz • VBW ≥ 3 MHz • Detector = Peak • Sweep time = auto • Trace mode = max hold Average Measurements Above 1000MHz • RBW = 1 MHz • VBW ≥ 10 Hz, when duty cycle is no less than 98 percent. • VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test Mode	e: Transmitting with all kind of modulations, data rates. Charge+Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode. Through Pre-scan, find the DH5 of data type is the worst case of All modulation type.
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass

Test data For 30-1000MHz

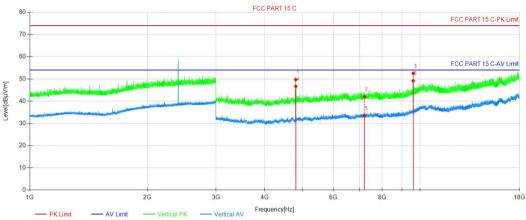
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/ m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	59.30	36.73	-8.69	28.04	40.00	11.96	100	221	QP	Vertical
2	108.01	38.20	-11.46	26.74	43.50	16.76	100	335	QP	Vertical
3	206.15	43.69	-11.02	32.67	43.50	10.83	100	243	QP	Vertical
4	300.36	46.92	-6.97	39.95	46.00	6.05	200	360	QP	Vertical
5	332.90	45.68	-5.95	39.73	46.00	6.27	200	55	QP	Vertical
6	395.77	38.97	-4.39	34.58	46.00	11.42	100	341	QP	Vertical

QP Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	180.22	32.76	-9.36	23.40	43.50	18.71	200	355	QP	Horizontal
2	220.87	37.17	-11.08	26.09	46.00	19.91	100	263	QP	Horizontal
3	296.53	51.74	-7.09	44.65	46.00	1.35	100	337	QP	Horizontal
4	318.81	50.55	-6.35	44.20	46.00	1.80	100	337	QP	Horizontal
5	401.83	36.94	-4.31	32.63	46.00	13.37	100	149	QP	Horizontal
6	513.63	30.43	-1.44	28.99	46.00	15.17	100	356	QP	Horizontal

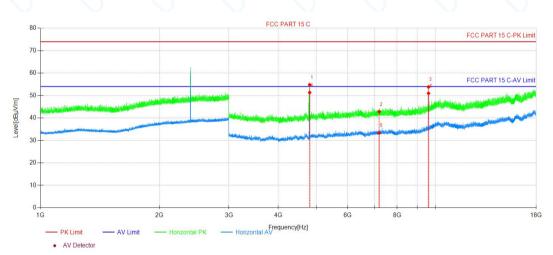
Dongguan DN Testing Co., Ltd.

Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China


Web: www.dn-testing.com

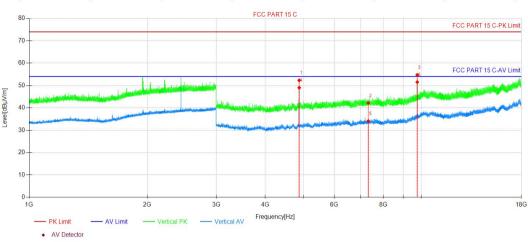
Tel:+86-769-88087383

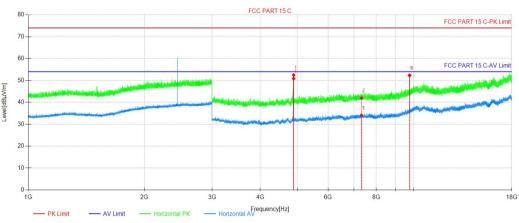
E-mail: service@dn-testing.com



For above 1GHz DH5 2402MHz

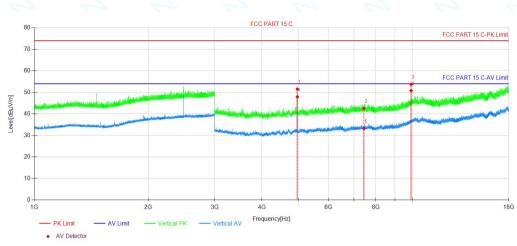
AV Detector


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Heigh t [cm]	Angle [°]	Remark	Polarity
1	4803.84	54.32	-4.61	49.71	74.00	24.29	150	270	Peak	Vertical
2	7206.21	43.79	-1.76	42.03	74.00	31.97	150	282	Peak	Vertical
3	9608.58	51.67	0.88	52.55	74.00	21.45	150	195	Peak	Vertical
4	4804.59	51.29	-4.61	46.68	54.00	7.32	150	270	AV	Vertical
5	7206.21	35.24	-1.76	33.48	54.00	20.52	150	97	AV	Vertical
6	9608.58	48.31	0.88	49.19	54.00	4.81	150	205	AV	Vertical

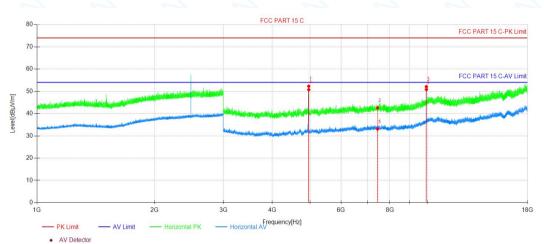

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4803.84	59.40	-4.61	54.79	74.00	19.21	150	171	Peak	Horizon
2	7206.21	44.54	-1.76	42.78	74.00	31.22	150	194	Peak	Horizon
3	9607.83	52.95	0.87	53.82	74.00	20.18	150	205	Peak	Horizon
4	4804.59	55.93	-4.61	51.32	54.00	2.68	150	182	AV	Horizon
5	7206.21	35.10	-1.76	33.34	54.00	20.66	150	182	AV	Horizon
6	9608.58	50.11	0.88	50.99	54.00	3.01	150	205	AV	Horizon

DH5 2441MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4881.84	57.01	-4.72	52.29	74.00	21.71	150	276	Peak	Vertical
2	7323.96	43.62	-1.49	42.13	74.00	31.87	150	132	Peak	Vertical
3	9763.83	53.07	1.64	54.71	74.00	19.29	150	209	Peak	Vertical
4	4882.59	53.73	-4.72	49.01	54.00	4.99	150	276	AV	Vertical
5	7323.96	35.53	-1.49	34.04	54.00	19.96	150	198	AV	Vertical
6	9764.58	49.88	1.64	51.52	54.00	2.48	150	209	AV	Vertical


F K LIIIIR	
AV Detector	

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4881.84	57.21	-4.72	52.49	74.00	21.51	150	185	Peak	Horizon
2	7323.21	43.48	-1.49	41.99	74.00	32.01	150	308	Peak	Horizon
3	9764.58	50.75	1.64	52.39	74.00	21.61	150	197	Peak	Horizon
4	4882.59	55.57	-4.72	50.85	54.00	3.15	150	185	AV	Horizon
5	7323.21	35.54	-1.49	34.05	54.00	19.95	150	185	AV	Horizon
6	9764.58	50.61	1.64	52.25	54.00	1.75	150	197	AV	Horizon



Page: 27 / 58

DH5 2480MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4959.84	56.37	-4.86	51.51	74.00	22.49	150	275	Peak	Vertical
2	7440.22	43.91	-1.34	42.57	74.00	31.43	150	200	Peak	Vertical
3	9919.84	51.45	2.26	53.71	74.00	20.29	150	200	Peak	Vertical
4	4960.59	52.80	-4.86	47.94	54.00	6.06	150	275	AV	Vertical
5	7440.22	34.52	-1.34	33.18	54.00	20.82	150	221	AV	Vertical
6	9920.59	48.55	2.27	50.82	54.00	3.18	150	200	AV	Vertical

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4959.84	57.15	-4.86	52.29	74.00	21.71	150	189	Peak	Horizon
2	7440.22	43.92	-1.34	42.58	74.00	31.42	150	331	Peak	Horizon
3	9919.09	49.83	2.26	52.09	74.00	21.91	150	200	Peak	Horizon
4	4960.59	55.61	-4.86	50.75	54.00	3.25	150	189	AV	Horizon
5	7440.22	34.41	-1.34	33.07	54.00	20.93	150	222	AV	Horizon
6	9920.59	48.57	2.27	50.84	54.00	3.16	150	200	AV	Horizon

Date: July.9, 2024

Page: 28 / 58

Note:

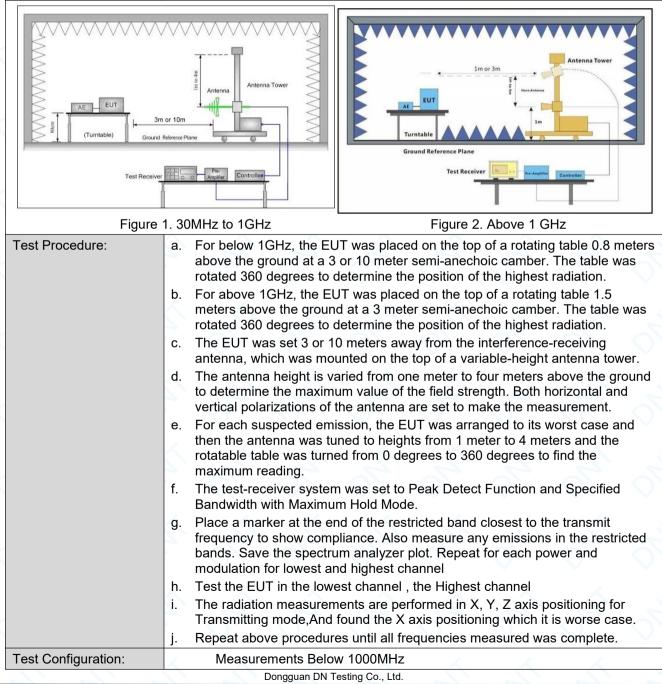
1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)

2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.

4. All channels had been pre-test,DH5 is the worst case, only the worst case was reported.



Report No.: DNT241416R1823-4934 Date: July.9, 2024 Page: 29 / 58

3.10 Restricted bands around fundamental frequency

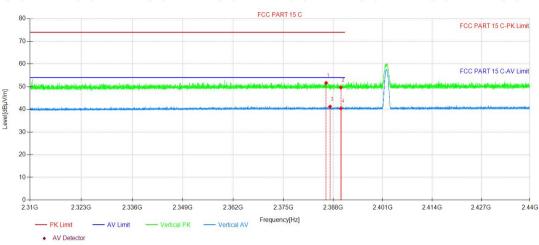
Test Requirement:	47 CFR Part 15C Section 1	5.209 and 15.205	\mathcal{O} , \mathcal{O} , \mathcal{O}							
Test Method:	ANSI C63.10: 2013 Section	n 11.12								
Test Site:	Measurement Distance: 3m	Aeasurement Distance: 3m or 10m (Semi-Anechoic Chamber)								
Limit:	Frequency	Limit (dBuV/m)	Remark							
	30MHz-88MHz	40.0	Quasi-peak							
	88MHz-216MHz	43.5	Quasi-peak							
	216MHz-960MHz	46.0	Quasi-peak							
	960MHz-1GHz	54.0	Quasi-peak							
		54.0	Average Value							
	Above 1GHz	74.0	Peak Value							

Test Setup:

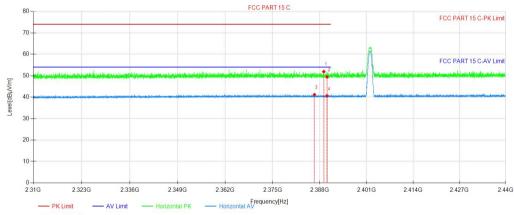
 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383

 E-mail: service@dn-testing.com



Rep	ort No.: DNT241416R1823-4934 Date: July.9, 2024 Page: 30 / 58
	• RBW = 120 kHz • VBW = 300 kHz
	 Detector = Peak Trace mode = max hold
	Peak Measurements Above 1000 MHz
	• RBW = 1 MHz
	• VBW ≥ 3 MHz
	Detector = Peak
	Sweep time = auto
	Trace mode = max hold
	Average Measurements Above 1000MHz
	• RBW = 1 MHz
	 VBW = 10 Hz, when duty cycle is no less than 98 percent.
	• VBW \ge 1/T, when duty cycle is less than 98 percent where T is the minimum
	transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Tes	st Mode: Transmitting with all kind of modulations, data rates. Transmitting mode.
Final Test Mod	e: Pretest the EUT Transmitting mode.
	Through Pre-scan, find the DH5 of data type is the worst case of all modulation type.
	Only the worst case is recorded in the report.
Instruments Us	ed: Refer to section 2.9 for details
Test Results:	Pass

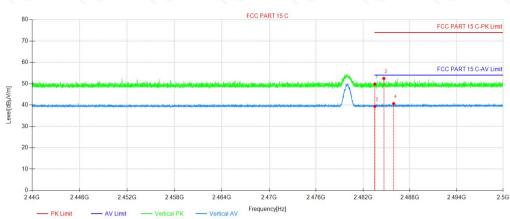


Page: 31 / 58

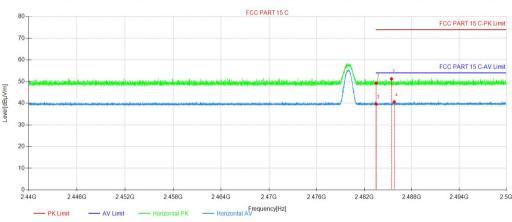
Test Date DH5 2402MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2386.16	52.46	-0.81	51.65	74.00	22.35	150	265	Peak	Vertical
2	2390.01	50.42	-0.80	49.62	74.00	24.38	150	179	Peak	Vertical
3	2387.18	42.03	-0.80	41.23	54.00	12.77	150	62	AV	Vertical
4	2390.01	41.20	-0.80	40.40	54.00	13.60	150	71	AV	Vertical

AV Detector


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2389.13	52.71	-0.80	51.91	74.00	22.09	150	21	Peak	Horizon
2	2390.01	50.22	-0.80	49.42	74.00	24.58	150	225	Peak	Horizon
3	2386.55	41.96	-0.81	41.15	54.00	12.85	150	359	AV	Horizon
4	2390.01	41.41	-0.80	40.61	54.00	13.39	150	142	AV	Horizon

DH5 2480MHz


Report No.: DNT241416R1823-4934

Page: 32 / 58

AV Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2483.51	50.13	-0.29	49.84	74.00	24.16	150	225	Peak	Vertical
2	2484.67	52.70	-0.27	52.43	74.00	21.57	150	157	Peak	Vertical
3	2483.51	39.64	-0.29	39.35	54.00	14.65	150	109	AV	Vertical
4	2485.92	40.89	-0.27	40.62	54.00	13.38	150	360	AV	Vertical

AV	Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2483.50	49.53	-0.29	49.24	74.00	24.76	150	20	Peak	Horizon
2	2485.44	51.49	-0.27	51.22	74.00	22.78	150	106	Peak	Horizon
3	2483.50	39.92	-0.29	39.63	54.00	14.37	150	197	AV	Horizon
4	2485.80	40.85	-0.27	40.58	54.00	13.42	150	275	AV	Horizon

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe

including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.

2.All channels had been pre-test, DH5 is the worst case, only the worst case was reported.

3.11 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section	15.207					
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150kHz to 30MHz						
Limit:		Limit (dBuV)					
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the loga	arithm of the frequency.					
Test Procedure:	room. 2) The EUT was connect Impedance Stabilization impedance. The power c a second LISN 2, which w plane in the same way as	sturbance voltage test was c ted to AC power source thro Network) which provides a 5 ables of all other units of the was bonded to the ground re s the LISN 1 for the unit being p was used to connect multip	ugh a LISN 1 (Line 0Ω/50μΗ + 5Ω linear EUT were connected t ference g measured. A				
	 multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground 						
	reference plane. The LIS unit under test and bonder mounted on top of the gr between the closest poin the EUT and associated In order to find the maxin	N 1 was placed 0.8 m from t ed to a ground reference plan ound reference plane. This d ts of the LISN 1 and the EUT equipment was at least 0.8 m num emission, the relative po- interface cables must be cha	he boundary of the ne for LISNs listance was T. All other units of n from the LISN 2. ositions of				
Test Setup:	Shielding Room		Test Receiver				
	EU	AE					
	AC Mains		Mains				

 Report No.: DNT241416R1823-4934
 Date: July.9, 2024
 Page: 34 / 58

 Exploratory Test Mode:
 Transmitting with all kind of modulations, data rates at lowest, middle and highest channel. Charge + Transmitting mode.

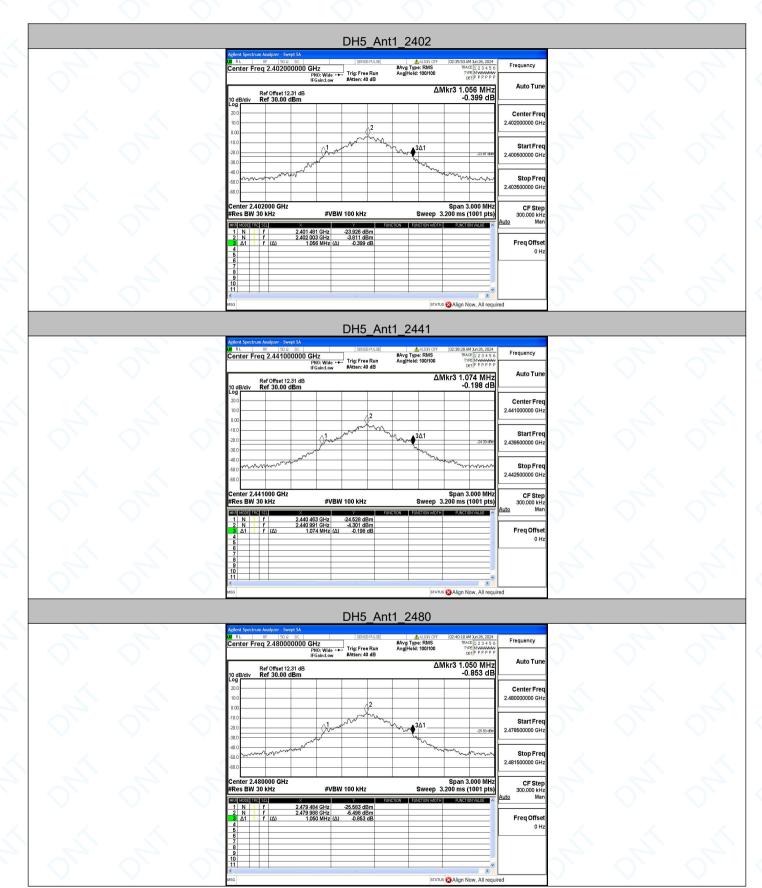
 Final Test Mode:
 Through Pre-scan, find the the worst case.

 Instruments Used:
 Refer to section 2.9 for details

 Test Results:
 NA

Note: The wireless function does not work while the prototype is charging.

4 Appendix


Appendix A: 20dB Emission Bandwidth

Test Result	\mathbf{O}	\bigcirc		\circ			\mathbf{O}
Test Mode	Antenna	Freq(MHz)	20dB EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	X	2402	1.056	2401.481	2402.537	🔨	<
DH5	Ant1	2441	1.074	2440.463	2441.537		
		2480	1.050	2479.484	2480.534		
	\sim	2402	1.344	2401.337	2402.681		
2DH5	Ant1	2441	1.350	2440.337	2441.687		
		2480	1.335	2479.337	2480.672	🔨	

Page: 36 / 58

Test Graphs

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

Report No.: DNT241416R1823-4934 Date: July.9, 2024 Page: 37 / 58

Frequency	02:42:58 AM Jun 26, 2024	ALIGN OFF		E:PULSE	SENS		2 DC		RF	L	a R
	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P P P P P P		#Avg Typ Avg Hold		Trig: Fre #Atten: 4	lZ IO: Wide ↔ Gain:Low		2.4020	Freq	ter	Cen
Auto Tu	lkr3 1.344 MHz -0.001 dB	ΔM						f Offset ' f 30.00		B/div	
											20.0
Center Fr 2,402000000 G											
2.402000000 G					_∧2						10.0
				n n	X						0.00
Start Fr		▲ 3∆1	m	P. Mary	w w	m	A				-10.0
2.400500000 G	-23.95 dBin	M.	,	-		ſ	<u>н</u> У				20.0
		pm					nort	,			30.0
Stop Fr	www.wwwwww							m ml	Mm	V	40.0
2.403500000 G											-50.0
				-							-60.0
CF Ste	Span 3.000 MHz						: :	000 GH			
300.000 k Auto M	.200 ms (1001 pts)	Sweep 3.		z	100 kHz	#VBV		Hz	N 30 k	s B	#Re
Auto M	FUNCTION VALUE	NOTION WIDTH	CTION FUI		-24.372 d		× 2.401 33		TRC SC	MODE N	MKE 1
				Bm	-3.954 d	1 GHz	2.401 84		1 f	N	2
Freq Offs				dB	-0.001	4 MHz (∆)	1.34	(Δ)	1 f	Δ1	3
										_	5
								-	_		7
0	0								_		
			_			-				_	8

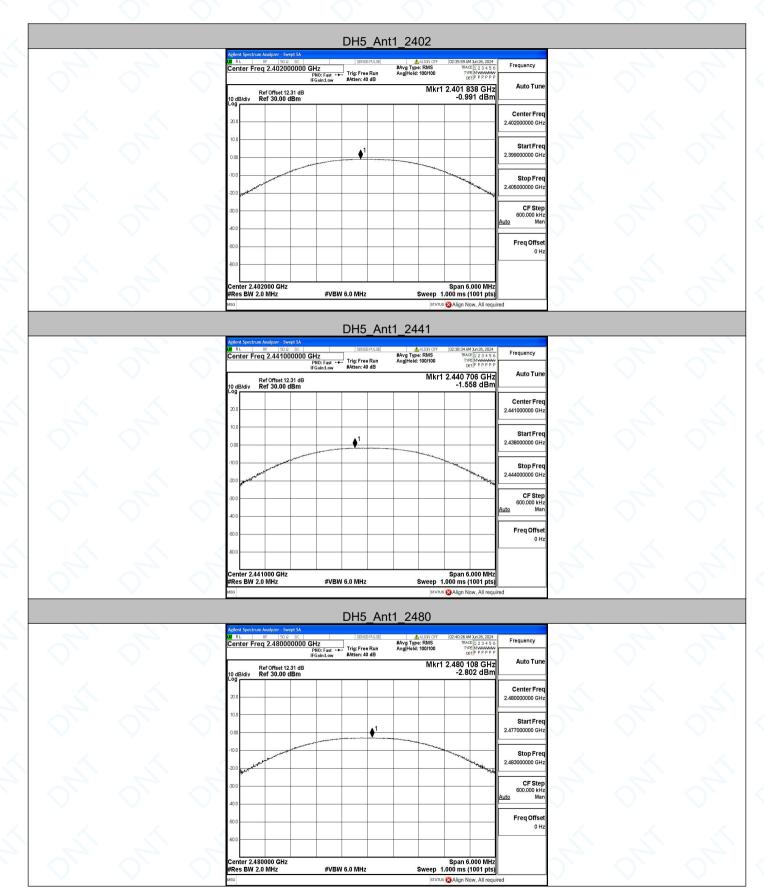
2DH5_Ant1_2441

		NSE:PULSE ALIGN OF		Frequency
Center Freq 2.441	000000 GHz PN0: Wide ↔ Trig: F IEGain:Low #Atten	#Avg Type: RMS ree Run Avg Hold: 100/100 : 40 dB	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P P P P P P	Frequency
Ref Offset I0 dB/div Ref 30.00	12.31 dB	L	∆Mkr3 1.350 MHz -0.961 dB	Auto Tune
0 g 20.0 10.0 0.00				Center Fre 2.441000000 GH
20.0	Jan Weiter	unturna untata	-26.09 dBm	Start Free 2.439500000 GH
40.0 50.0 60.0				Stop Fre 2.442500000 GH
Center 2.441000 GH Res BW 30 kHz	Iz #VBW 100 kH	Iz Sweep	Span 3.000 MHz 3.200 ms (1001 pts)	CF Step 300.000 kH uto Ma
1 N 1 f 2 N 1 f 3 Δ1 1 f (Δ) 4 5	2.440 337 GHz -26.236 2.440 859 GHz -6.087 1.350 MHz (Δ) -0.96			Freq Offse 0 H
6			+ [
7 8 9 10 11				

2DH5_Ant1_2480

	rum Analyzer - Sw									
Center F	RF 50 Q			1	PULSE	#Avg Ty		TRAJ	M Jun 26, 2024 28 1 2 3 4 5 6 PE MWWWWW	Frequency
	Ref Offset 12	IFGa	:Wide ↔ in:Low	#Atten: 40	dB	Avg Hol	d: 100/100 ΔN	D	35 MHz	Auto Tune
10 dB/div Log 20.0	Ref 30.00							0	.335 dB	Center Free
10.0 0.00				0	2					2.480000000 GH
-10.0		21			L. May	mm	3∆1_		-25.88 dBm	Start Fred 2.478500000 GH;
-40.0 -50.0	m							Sur Sur	www.w./	Stop Free 2.481500000 GH
#Res BW			#VBW	100 kHz			Sweep 3	.200 ms (CF Step 300.000 kH Auto Mai
1 Ν 2 Ν 3 Δ1	FE SEL 1 f 1 f 1 f (Δ)	× 2.479 337 2.479 976 1.335	GHz GHz MHz (Δ)	-26.275 dE -5.879 dE 0.335	8m 8m	NCTION	UNCTION WIDTH	FUNCTI	IN WALLIE	Freq Offse
4 5 6 7 8			+							он
8 9 10 11					-				×	
ISG							STATU	🛛 🕄 Align N	ow, All requi	red

Report No.: DNT241416R1823-4934 Date: July.9, 2024 Page: 38 / 58


Appendix B: Maximum conducted output power

Test Result					
Test Mode	Antenna	Freq(MHz)	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	Verdict
	5	2402	-0.99	≤20.97	PASS
DH5	Ant1	2441	-1.56	≤20.97	PASS
		2480	-2.80	≤20.97	PASS
		2402	-0.26	≤20.97	PASS
2DH5	Ant1	2441	-0.97	≤20.97	PASS
		2480	-2.13	≤20.97	PASS

Page: 39 / 58

Test Graphs

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

Report No.: DNT241416R1823-4934 Date: July.9, 2024 Page: 40 / 58

D: Fast 🛶 Trig: Free Run	ALIGN OFF #Avg Type: RMS Avg Hold: 100/100	02:43:05 AM Jun 26, 2024 TRACE 1 2 3 4 5 6 TYPE MWAAWAW DET P P P P P P	Frequency
inclow internet as	Mkr1	2.402 252 GHz -0.256 dBm	Auto Tu
			Center Fr 2.402000000 G
↓ ¹	and the state of t		Start Fr 2.399000000 G
		and the second states and the second second	Stop Fr 2.405000000 G
			CF St 600.000 k Auto M
			Freq Offs 0
		Span 6.000 MHz	1
ļ	Z Or Fait ain:tow #Atten: 40 dB	Z Taistie - Trig: Free Run Avg Type: RNS Avg	Z Trig:Free Run

2DH5_Ant1_2441

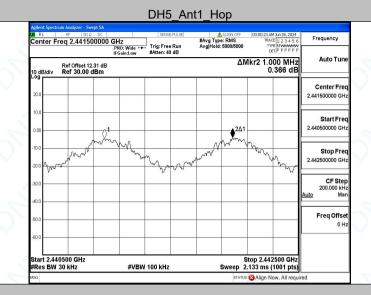
	rum Analyzer - Swept SA					
X RL	RF 50 Ω DC		SENSE:PULSE	ALIGN OFF #Avg Type: RMS	02:45:43 AM Jun 26, 2024 TRACE 1 2 3 4 5 6	Frequency
Center F	req 2.44100000	PNO: Fast +++ IFGain:Low	Trig: Free Run #Atten: 40 dB	Avg Hold: 100/100	DET P P P P P	
10 dB/div	Ref Offset 12.31 dB Ref 30.00 dBm			Mkr1	2.440 718 GHz -0.971 dBm	Auto Tune
20.0						Center Free 2.441000000 GH:
0.00			● ¹			Start Free 2.438000000 GH
-10.0	Mar and a second second				an and the second and	Stop Free 2.444000000 GH
-30.0						CF Step 600.000 kH: <u>Auto</u> Mar
-50.0						Freq Offse 0 H
-60.0						
Center 2. #Res BW	441000 GHz 2.0 MHz	#VBW	6.0 MHz	Sweep 1	Span 6.000 MHz 1.000 ms (1001 pts)	
MSG				STATU	s 🐼 Align Now, All requir	ed

2DH5_Ant1_2480

Agilent Spectr	rum Analyzer - Swe	pt SA								
Center F	RF 50 Ω req 2.48000	0000 GH	Z 0:Fast ↔	SENSE:	Run	#Avg Type Avg Hold:		TRAJ TY	M Jun 26, 2024 28 1 2 3 4 5 6 PE MWWWWW	Frequency
10 dB/div	Ref Offset 12. Ref 30.00 d	IFGi 31 dB	ain:Low	#Atten: 40	#B		Mkr1	2.480 0	124 GHz 32 dBm	Auto Tune
20.0										Center Freq 2.480000000 GHz
0.00				•	1					Start Freq 2.477000000 GHz
-10.0	and the second second						and the second	and and a second	and a star a star	Stop Freq 2.483000000 GHz
-30.0										CF Step 600.000 kHz <u>Auto</u> Man
-50.0										Freq Offset 0 Hz
-60.0										
Center 2.4 #Res BW	480000 GHz 2.0 MHz		#VBW	6.0 MHz			Sweep 1		.000 MHz 1001 pts)	
MSG							STATU	🕫 🔀 Align N	ow, All requi	red

Report No.: DNT241416R1823-4934 Date: July.9, 2024 Page: 41 / 58

Appendix C: Carrier frequency separation


Test Result

Test Mode	Antenna	Freq(MHz)	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор		≥0.716	PASS
2DH5	Ant1	Нор	0.992	≥0.900	PASS

Page: 42 / 58

Test Graphs

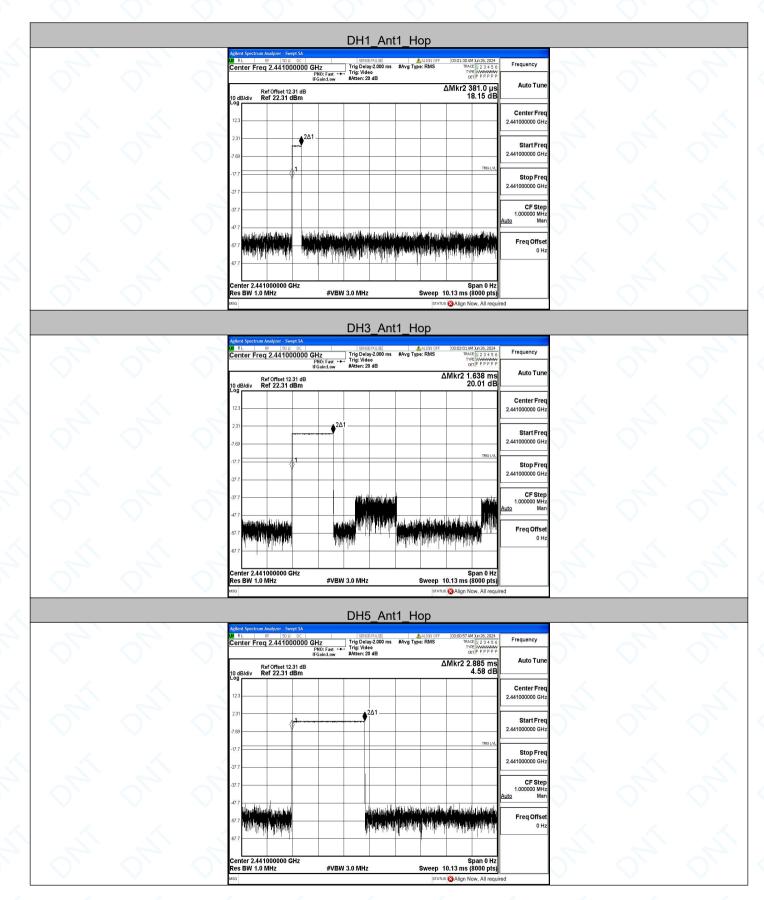
2DH5_Ant1_Hop

Center Freq 2.4		GHz PNO: Wide Trig: Fi	vse:PULSE	#Avg Type Avg Hold:	ALIGN OFF : RMS 5000/5000	TRA	M Jun 26, 2024 CE 1 2 3 4 5 6 PE M WWWWW ET P P P P P P	Frequency
0 dB/div Ref 3	set 12.31 dB).00 dBm	IFGain:Low #Atten:	40 dB			∆Mkr2	992 kHz .707 dB	Auto Tur
20.0								Center Fr 2.441500000 G
0.00	1			▲ ^{2/}	<u>1</u>			Start Fr 2.440500000 G
10.0 mm	Am	nothing	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~^	w	w Mon	and the second s	Stop Fr 2.442500000 G
30.0			_					CF St 200.000 F Auto M
50.0								Freq Off
60.0	Hz					Stop 2.44	2500 GHz	
Res BW 30 kHz		#VBW 100 kH	z		Sweep :	2.133 ms	(1001 pts) low, All requi	red

Date: July.9, 2024

Page: 43 / 58

Appendix D: Dwell Time


Test Result

Test Mode	Antenna	Freq(MHz)	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор 🗸	0.381	320	0.122	≤0.4	PASS
DH3	Ant1	Нор	1.638	160	0.262	≤0.4	PASS
DH5	Ant1	Нор	2.885	106.67	0.308	≤0.4	PASS
2DH1	Ant1	Нор	0.390	320	0.125	≤0.4	PASS
2DH3	Ant1	Нор	1.643	160	0.263	≤0.4	PASS
2DH5	Ant1	Hop	2.889	106.67	0.308	≤0.4	PASS

Page: 44 / 58

Test Graphs

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com