

Report No: FCS202203012W02

Issued for

	CBN Media Pty Ltd	
Address:	Level 1/460 Lower Heidelberg Rd PO Box 320, Heidelberg, VIC, Australia 3084	
Product Name:	Android smart player	
Brand Name:	G-mee	
Model Name:	Play 2	
Series Model:	Play 1, Play 3	
FCC ID:	2A5GB-PLAY	
Test Standard:	FCC Part 15.247	
Issued By: Flux Compliance Service Laboratory Add: Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.FCS-lab.com		

TEST RESULT CERTIFICATION

Applicant's Name:	CBN Media Pty Ltd
Address:	Level 1/460 Lower Heidelberg Rd PO Box 320, Heidelberg, VIC Australia 3084
Manufacture's Name:	Futurestar Electronics Factory Co.,LTD
Address:	9F,Banli Building,Qinghu Town, Longhua district, Shenzhen,China
Product Description	
Product Name:	Android smart player
Brand Name:	G-mee
Model Name:	Play 2
Series Model:	Play 1, Play 3
Test Standards:	FCC Part15.247
Test Procedure:	ANSI C63.10-2013
results show that the equipment u	been tested by Flux Compliance Service Laboratory, the test inder test (EUT) is in compliance with the FCC requirements. And

d it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Flux Compliance Service Laboratory, this document may be altered or revised by Flux Compliance Service Laboratory, personal only, and shall be noted in the revision of the document..

Date of Test:	
Date (s) of performance of tests.:	27 Feb. 2022 ~ 05 Mar. 2022
Date of Issue:	05 Mar. 2022
Test Result:	Pass

Tested by	:	Chills when
		(Chris Chen)
Reviewed by	:	Jack chen
		(Jack Chen)
Approved by	:	Adre
		(Andy yue)

Table of Contents	Page
1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	11
2.4 EQUIPMENTS LIST	12
3. EMC EMISSION TEST	13
3.1 CONDUCTED EMISSION MEASUREMENT	13
3.2 RADIATED EMISSION MEASUREMENT	17
4. CONDUCTED SPURIOUS & BAND EDGE EMISSION	31
4.1 LIMIT	31
4.2 TEST PROCEDURE	31
4.3 DEVIATION FROM STANDARD	31
4.4 TEST SETUP	31
4.5 EUT OPERATION CONDITIONS	31
4.6 TEST RESULTS	32
5. POWER SPECTRAL DENSITY TEST	44
5.1 LIMIT	44
5.2 TEST PROCEDURE	44
5.3 DEVIATION FROM STANDARD	44
5.4 TEST SETUP	44
5.5 EUT OPERATION CONDITIONS	44
5.6 TEST RESULTS	45
6. BANDWIDTH TEST	51
6.1 LIMIT	51
6.2 TEST PROCEDURE	51
6.3 DEVIATION FROM STANDARD	51
6.4 TEST SETUP	51
6.5 EUT OPERATION CONDITIONS	51
6.6 TEST RESULTS	52

Table of Contents	Page
7. PEAK OUTPUT POWER TEST	58
7.1 LIMIT	58
7.2 TEST PROCEDURE	58
7.3 DEVIATION FROM STANDARD	58
7.4 TEST SETUP	58
7.5 EUT OPERATION CONDITIONS	58
7.6 TEST RESULTS	59
8. ANTENNA REQUIREMENT	60
8.1 STANDARD REQUIREMENT	60
8.2 EUT ANTENNA	60

Report No.: FCS202203012W02

Revision History

Rev.	Issue Date	Effect Page	Contents
00	00 05 Mar. 2022		Initial Issue

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02

FCC Part 15.247,Subpart C			
Standard Section	Judgment	Remark	
FCC 15.247 (a) (2)	6dB Bandwidth	PASS	
FCC 15.247 (b) (3)	Conducted Output Power	PASS	
FCC 15.247 (e)	Power Spectral Density	PASS	
FCC 15.247 (d)	Band-edge and Spurious Emissions (Conducted)	PASS	
FCC 15.247 (d)	Padiated Spurious Emissions		
FCC 15.209	Radiated Spurious Emissions	PASS	
FCC 15.205			
FCC 15.247 (d)	Dedicted Dand Edge Compliance		
FCC 15.209	Radiated Band Edge Compliance	PASS	
FCC 15.205			
FCC 15.207	Power Line Conducted Emission	PASS	
FCC 15.203	Antenna requirement	PASS	
15.205	Restricted Band Edge Emission	PASS	

NOTE:

- (1)" N/A" denotes test is not applicable in this Test Report
- (2) All tests are according to ANSI C63.10-2013

1.1 TEST FACTORY

Company Name: Flux Compliance Service Laboratory	
Address:	Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan
Telephone:	+86-769-27280901
Fax:	+86-769-27280901

FCC Test Firm Registration Number: 514908

Designation number: CN0127

A2LA accreditation number: 5545.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.71dB
2	Unwanted Emissions, conducted	±2.988 dB
3	Conducted Emission (9KHz-150KHz)	±4.13 dB
4	Conducted Emission (150KHz-30MHz)	±4.74 dB
5	All emissions,radiated(<1G) 30MHz-1000MHz	±5.2 dB
6	All emissions,radiated 1GHz -18GHz	±3.66 dB
7	All emissions,radiated 18GHz -40GHz	±4.31 dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Android smart player
Trade Name	G-mee
Model Name	Play 2
Series Model	Play 1, Play 3
Model Difference	only ram/rom different,Play1 (1G+8G),Play2 (2G+16G),Play3 (3G+32G)
Channel List	Please refer to the Note 2.2.
	IEEE 802.11b: 2412MHz-2462MHz
Operation frequency	IEEE 802.11g: 2412MHz-2462MHz
	IEEE 802.11n HT20: 2412MHz-2462MHz
	IEEE 802.11b: DSSS
Modulation:	IEEE 802.11g: OFDM
	IEEE 802.11n HT20: OFDM
	IEEE 802.11b: 1, 2, 5.5, 11 Mbps
Transmitter rate:	IEEE 802.11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps
	IEEE 802.11n HT20: up to 65 Mbps
Power Supply	This device is DC 3.7V by battery
Hardware version number	V6.0D
Software version number	N/A
Connecting I/O Port(s)	Please refer to the User's Manual

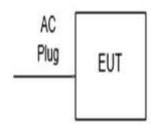
Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

Channel List					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		

3. Table for Filed Antenna


Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	N/A	G-mee	PIFA antenna	N/A	0dBi	Antenna

2.2 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Block diagram of EUT configuration for test

Test software: the FCC tool

The test softeware was used to control EUT work in continuous TX mode, and select test channel, Wireless mode as below table

RF Function	Туре	Mode Or Modulation type	Ant Gain(dBi)	Power Class	Software For Testing	
		802.11b		30		
WIFI(2.4G)	2.4G WIFI	802.11g	0	30	engineering mode	
		802.11n(HT20)		30		

Note:

- (1) According exploratory test, EUT will have maximum output power in those data rate, so those data rate were used for all test,
- (2) During the test, the dutycycle>98%, the test voltage was tuned from 85% to 115% of the Nominal rate supply votage, and found that the worst case was the nominal rated supply condition, So the report just shows that condition's data

Report No.: FCS202203012W02

2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in Length column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.4 EQUIPMENTS LIST

Radiation Test equipment

radiation lest equipm	CIIL				
Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESRP 3	FCS-E001	2021.10.11	2022.10.10
Signal Analyzer	R&S	FSV40-N	FCS-E012	2021.10.11	2022.10.10
Active loop Antenna	ZHINAN	ZN30900C	FCS-E013	2021.10.11	2022.10.10
Bilog Antenna	SCHWARZBECK	VULB 9168	FCS-E002	2021.10.11	2022.10.10
Horn Antenna	SCHWARZBECK	BBHA 9120D	FCS-E003	2021.10.11	2022.10.10
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	FCS-E018	2021.10.11	2022.10.10
Pre-Amplifier(0.1M-3G Hz)	EMCI	EM330N	FCS-E004	2021.10.11	2022.10.10
Pre-Amplifier (1G-18GHz)	N/A	TSAMP-0518SE	FCS-E014	2021.10.11	2022.10.10
Pre-Amplifier (18G-40GHz)	TERA-MW	TRLA-0400	FCS-E019	2021.10.11	2022.10.10
Temperature & Humidity	HTC-1	victor	FCS-E005	2021.10.11	2022.10.10

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESPI	FCS-E020	2021.10.11	2022.10.10
LISN	R&S	ENV216	FCS-E007	2021.10.11	2022.10.10
LISN	ETS	3810/2NM	FCS-E009	2021.10.11	2022.10.10
Temperature & Humidity	HTC-1	victor	FCS-E008	2021.10.11	2022.10.10

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
	Kovojaht	N9020A	FCS-E015	2021.10.11	2022 10 10
Spectrum Analyzer	Keysight	N9020A	FC3-E015	2021.10.11	2022.10.10
Spectrum Analyzer	Agilent	E4447A	MY50180039	2021.10.11	2022.10.10
Spectrum Analyzer	R&S	FSV-40	101499	2021.10.11	2022.10.10

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

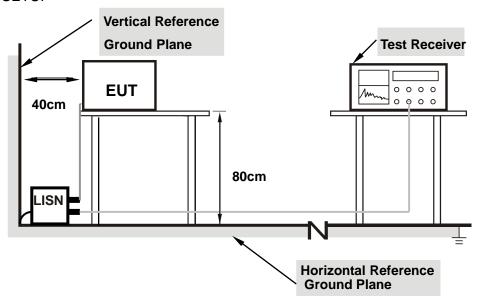
Operating frequency band. In case the emission fall within the restricted band specified on Part 15. 207(a) limit in the table below has to be followed.

EDECLIENCY (MH-)	Conducted Emissionlimit (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


Receiver Parameters	Setting	
Attenuation	10 dB	
Start Frequency	0.15 MHz	
Stop Frequency	30 MHz	
IF Bandwidth	9 kHz	

3.1.2 TEST PROCEDURE

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.3 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.1.4EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.5 TEST RESULT

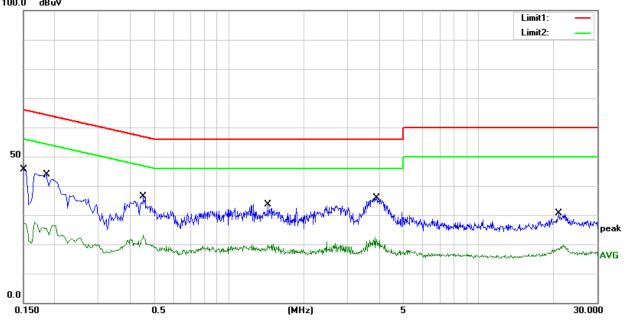
Temperature:	27.2(C)	Relative Humidity:	66%RH
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode:	Mode 10		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1540	27.09	20.20	47.29	65.78	-18.49	QP
2	0.1540	11.00	20.20	31.20	55.78	-24.58	AVG
3	0.1980	22.85	20.32	43.17	63.69	-20.52	QP
4	0.1980	5.65	20.32	25.97	53.69	-27.72	AVG
5	0.4540	16.83	20.48	37.31	56.80	-19.49	QP
6	0.4540	2.22	20.48	22.70	46.80	-24.10	AVG
7	1.2220	14.03	20.16	34.19	56.00	-21.81	QP
8	1.2220	-0.03	20.16	20.13	46.00	-25.87	AVG
9	2.6740	13.70	20.10	33.80	56.00	-22.20	QP
10	2.6740	-0.26	20.10	19.84	46.00	-26.16	AVG
11	3.8700	17.16	20.07	37.23	56.00	-18.77	QP
12	3.8700	1.93	20.07	22.00	46.00	-24.00	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values
- 2. Margin = Result (Result = Reading + Factor)—Limit

3. Factor=LISN factor+Cable loss+Limiter (10dB)



Temperature:	27.2(C)	Relative Humidity:	66%RH
Test Voltage:	AC 120V/60Hz	Phase:	N
Test Mode:	Mode 10		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1500	25.48	20.19	45.67	66.00	-20.33	QP
2	0.1500	7.20	20.19	27.39	56.00	-28.61	AVG
3	0.1860	23.69	20.29	43.98	64.21	-20.23	QP
4	0.1860	6.21	20.29	26.50	54.21	-27.71	AVG
5	0.4540	16.01	20.48	36.49	56.80	-20.31	QP
6	0.4540	2.59	20.48	23.07	46.80	-23.73	AVG
7	1.4380	13.59	20.15	33.74	56.00	-22.26	QP
8	1.4380	-0.19	20.15	19.96	46.00	-26.04	AVG
9	3.9180	15.78	20.06	35.84	56.00	-20.16	QP
10	3.9180	2.24	20.06	22.30	46.00	-23.70	AVG
11	21.0540	9.91	20.64	30.55	60.00	-29.45	QP
12	21.0540	-0.84	20.64	19.80	50.00	-30.20	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values
- 2. Margin = Result (Result = Reading + Factor)-Limit
- 3. Factor=LISN factor+Cable loss+Limiter (10dB)

3.2 RADIATED EMISSION MEASUREMENT

3.2.1RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

ENVITO OF TOTAL PROPERTY METAGORETY (0.000) 112 TOOM 12					
Frequencies	Field Strength	Measurement Distance			
(MHz)	(micorvolts/meter)	(meters)			
0.009~0.490	2400/F(KHz)	300			
0.490~1.705	24000/F(KHz)	30			
1.705~30.0	30	30			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960	500	3			

LIMITS OF RADIATED EMISSION MEASUREMENT (1000MHz-25GHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)		
FREQUENCT (MIDZ)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

For Radiated Emission

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/QP/AV		
Start Frequency	9 KHz/150KHz(Peak/QP/AV)		
Stop Frequency	150KHz/30MHz(Peak/QP/AV)		
	200Hz (From 9kHz to 0.15MHz)/		
RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);		
band)	200Hz (From 9kHz to 0.15MHz)/		
	9KHz (From 0.15MHz to 30MHz)		

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/QP	
Start Frequency	30 MHz(Peak/QP)	
Stop Frequency	1000 MHz (Peak/QP)	
RB / VB (emission in restricted	120 KHz / 200 KHz	
band)	120 KHz / 300 KHz	

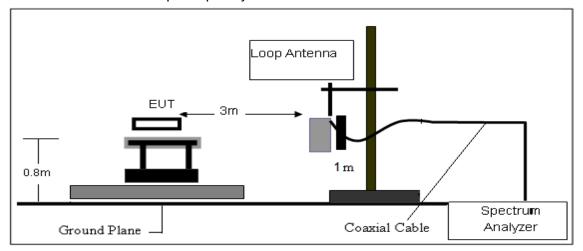
Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/AV	
Start Frequency	1000 MHz(Peak/AV)	
Stop Frequency	10th carrier hamonic(Peak/AV)	
RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)	
band)	1 MHz/1/T MHz(AVG)	

For Restricted band

Spectrum Parameter	Setting		
Detector	Peak/AV		
Otant/Otan Francisco	Lower Band Edge: 2310 to 2430 MHz		
Start/Stop Frequency	Upper Band Edge: 2445 to 2500 MHz		
DD / V/D	1 MHz / 3 MHz(Peak)		
RB / VB	1 MHz/1/T MHz(AVG)		

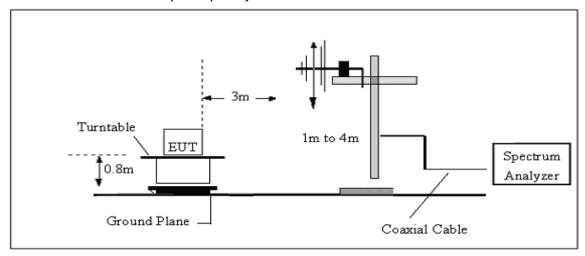
Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

Page 19 of 60

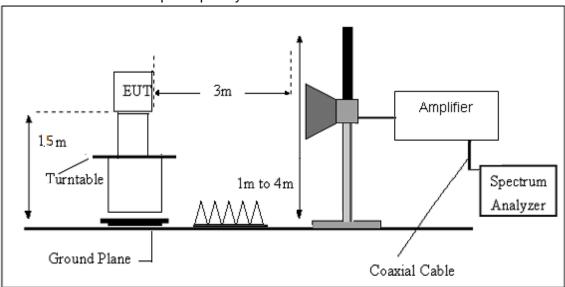

3.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters(above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were testedand performed test to three orthogonal axis. The worst case emissions were reported.


3.2.3 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

3.2.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

 $\dot{FS} = RA + AF + CL - AG$

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

3.2.6 TEST RESULT

9KHz-30MHz

Temperature:	23.2(C)	Relative Humidtity:	59%RH
Test Voltage:	DC 3.7V	Polarization:	
Test Mode:	TX Mode		

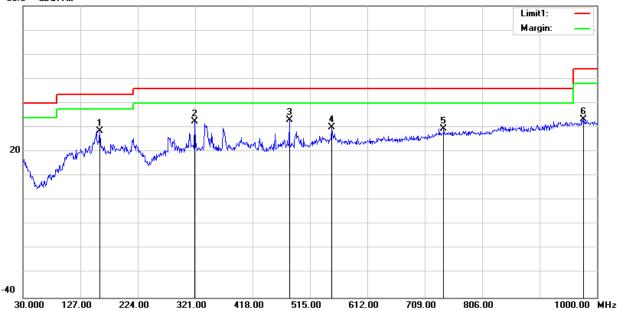
Freq.	Reading	Limit	Margin	State	Test	
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	Result	
					PASS	
					PASS	

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

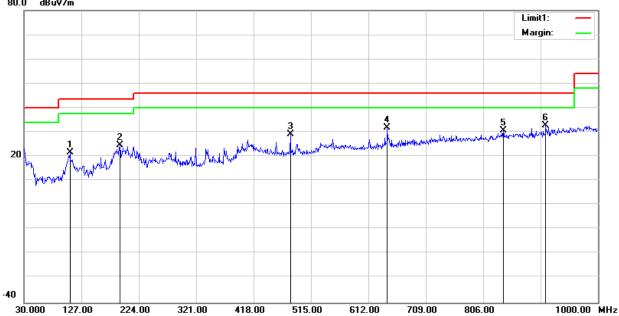

(30MHz - 1000MHz)

Temperature:	23.2(C)	Relative Humidtity:	59%RH	
Test Voltage:	DC 3.7V	Phase:	Horizontal	
Test Mode:	Mode 1/2/3/4/5/6/7/8/9 (Mode 7 worst mode)			

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	159.9800	47.27	-18.81	28.46	43.50	-15.04	QP
2	320.0300	46.42	-14.00	32.42	46.00	-13.58	QP
3	480.0800	41.83	-8.65	33.18	46.00	-12.82	QP
4	551.8600	35.75	-5.72	30.03	46.00	-15.97	QP
5	741.0100	31.61	-2.11	29.50	46.00	-16.50	QP
6	977.6900	30.73	2.52	33.25	54.00	-20.75	QP

Remark:

- 1. Margin = Result (Result = Reading + Factor)-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain 80.0 dBuV/m



Temperature:	23.2(C)	Relative Humidtity:	59%RH	
Test Voltage:	DC 3.7V	Phase:	Vertical	
Test Mode:	Mode 1/2/3/4/5/6/7/8/9 (Mode 7 worst mode)			

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	107.6000	40.96	-19.32	21.64	43.50	-21.86	QP
2	191.9900	45.60	-21.04	24.56	43.50	-18.94	QP
3	480.0800	37.76	-8.65	29.11	46.00	-16.89	QP
4	644.0100	36.68	-4.87	31.81	46.00	-14.19	QP
5	839.9500	30.89	-0.34	30.55	46.00	-15.45	QP
6	911.7300	32.84	-0.16	32.68	46.00	-13.32	QP

Remark:.

- 1. Margin = Result (Result = Reading + Factor)-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain 80.0 dBuV/m

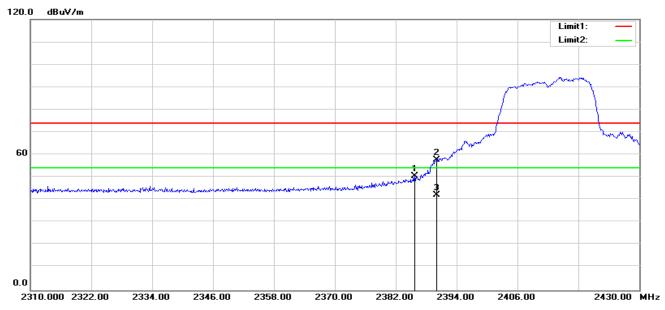
(1000MHz-25GHz) Restricted band and Spurious emission Requirements

802.11 n(HT20)

Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Orrected Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	
				Low Channe	el (802.11n20	/2412 MHz)				
3264.82	61.04	44.70	6.70	28.20	-9.80	51.24	74.00	-22.76	PK	Vertical
3264.82	49.93	44.70	6.70	28.20	-9.80	40.13	54.00	-13.87	AV	Vertical
3264.78	62.18	44.70	6.70	28.20	-9.80	52.38	74.00	-21.62	PK	Horizontal
3264.78	51.16	44.70	6.70	28.20	-9.80	41.36	54.00	-12.64	AV	Horizontal
4824.44	59.47	44.20	9.04	31.60	-3.56	55.91	74.00	-18.09	PK	Vertical
4824.44	49.20	44.20	9.04	31.60	-3.56	45.64	54.00	-8.36	AV	Vertical
4824.31	58.36	44.20	9.04	31.60	-3.56	54.80	74.00	-19.20	PK	Horizontal
4824.31	50.10	44.20	9.04	31.60	-3.56	46.54	54.00	-7.46	AV	Horizontal
5359.73	48.22	44.20	9.86	32.00	-2.34	45.88	74.00	-28.12	PK	Vertical
5359.73	39.51	44.20	9.86	32.00	-2.34	37.17	54.00	-16.83	AV	Vertical
5359.83	47.45	44.20	9.86	32.00	-2.34	45.11	74.00	-28.89	PK	Horizontal
5359.83	39.21	44.20	9.86	32.00	-2.34	36.87	54.00	-17.13	AV	Horizontal
7235.86	54.58	43.50	11.40	35.50	3.40	57.98	74.00	-16.02	PK	Vertical
7235.86	43.90	43.50	11.40	35.50	3.40	47.30	54.00	-6.70	AV	Vertical
7235.87	54.66	43.50	11.40	35.50	3.40	58.06	74.00	-15.94	PK	Horizontal
7235.93	44.57	43.50	11.40	35.50	3.40	47.97	54.00	-6.03	AV	Horizontal
				Middle Chan	nel (802.11n2	0/2437 MHz)				
3264.64	60.85	44.70	6.70	28.20	-9.80	51.05	74.00	-22.95	PK	Vertical
3264.64	50.52	44.70	6.70	28.20	-9.80	40.72	54.00	-13.28	AV	Vertical
3264.80	62.05	44.70	6.70	28.20	-9.80	52.25	74.00	-21.75	PK	Horizontal
3264.80	50.48	44.70	6.70	28.20	-9.80	40.68	54.00	-13.32	AV	Horizontal
4874.32	58.21	44.20	9.04	31.60	-3.56	54.65	74.00	-19.35	PK	Vertical
4874.32	50.30	44.20	9.04	31.60	-3.56	46.74	54.00	-7.26	AV	Vertical
4874.35	59.39	44.20	9.04	31.60	-3.56	55.83	74.00	-18.17	PK	Horizontal
4874.35	49.18	44.20	9.04	31.60	-3.56	45.62	54.00	-8.38	AV	Horizontal
5359.78	48.68	44.20	9.86	32.00	-2.34	46.34	74.00	-27.66	PK	Vertical
5359.78	39.62	44.20	9.86	32.00	-2.34	37.28	54.00	-16.72	AV	Vertical
5359.69	47.76	44.20	9.86	32.00	-2.34	45.42	74.00	-28.58	PK	Horizontal
5359.69	38.70	44.20	9.86	32.00	-2.34	36.36	54.00	-17.64	AV	Horizontal
7310.72	53.87	43.50	11.40	35.50	3.40	57.27	74.00	-16.73	PK	Vertical
7310.72	44.75	43.50	11.40	35.50	3.40	48.15	54.00	-5.85	AV	Vertical
7310.76	54.07	43.50	11.40	35.50	3.40	57.47	74.00	-16.53	PK	Horizontal
7310.76	44.83	43.50	11.40	35.50	3.40	48.23	54.00	-5.77	AV	Horizontal

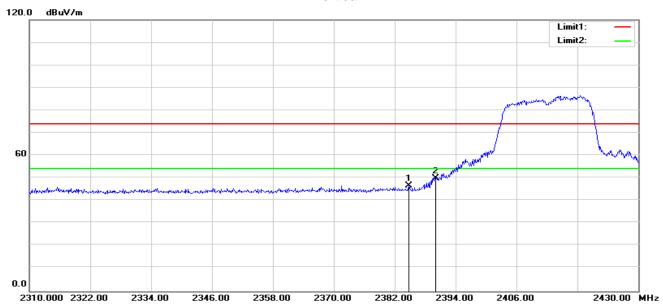
				High Channe	el (802.11n2	0/2462 MHz)				
3264.85	61.94	44.70	6.70	28.20	-9.80	52.14	74.00	-21.86	PK	Vertical
3264.85	50.52	44.70	6.70	28.20	-9.80	40.72	54.00	-13.28	AV	Vertical
3264.67	61.73	44.70	6.70	28.20	-9.80	51.93	74.00	-22.07	PK	Horizontal
3264.67	49.94	44.70	6.70	28.20	-9.80	40.14	54.00	-13.86	AV	Horizontal
4924.44	59.22	44.20	9.04	31.60	-3.56	55.66	74.00	-18.34	PK	Vertical
4924.44	49.51	44.20	9.04	31.60	-3.56	45.95	54.00	-8.05	AV	Vertical
4924.60	58.52	44.20	9.04	31.60	-3.56	54.96	74.00	-19.04	PK	Horizontal
4924.60	49.71	44.20	9.04	31.60	-3.56	46.15	54.00	-7.85	AV	Horizontal
5359.63	48.77	44.20	9.86	32.00	-2.34	46.43	74.00	-27.57	PK	Vertical
5359.63	38.99	44.20	9.86	32.00	-2.34	36.65	54.00	-17.35	AV	Vertical
5359.69	47.30	44.20	9.86	32.00	-2.34	44.96	74.00	-29.04	PK	Horizontal
5359.69	39.41	44.20	9.86	32.00	-2.34	37.07	54.00	-16.93	AV	Horizontal
7385.75	53.56	43.50	11.40	35.50	3.40	56.96	74.00	-17.04	PK	Vertical
7385.75	44.47	43.50	11.40	35.50	3.40	47.87	54.00	-6.13	AV	Vertical
7385.84	53.65	43.50	11.40	35.50	3.40	57.05	74.00	-16.95	PK	Horizontal
7385.84	43.87	43.50	11.40	35.50	3.40	47.27	54.00	-6.73	AV	Horizontal

Remark:


- 1. Factor = Antenna Factor + Cable Loss Pre-amplifier.
- 2. Scan with 802.11b, 802.11g, 802.11n (HT-20), the worst case is 802.11 n(HT20). Emission Level = Reading + Factor Margin = Limit Emission Level
- 3. The frequency emission of peak pointsthat did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.

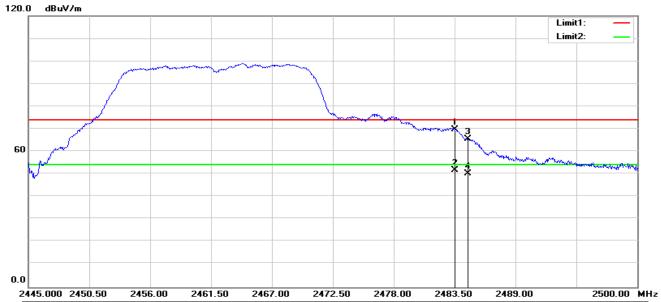
3.2.6 TEST RESULTS(Band edge Requirements)

802.11 n(HT20)-Low


Horizontal

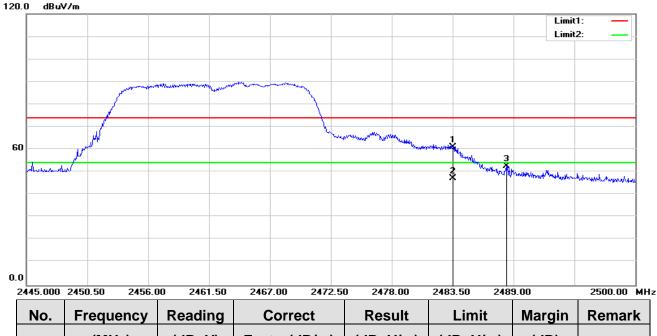
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2385.720	46.31	4.27	50.58	74.00	-23.42	peak
2	2390.000	53.33	4.34	57.67	74.00	-16.33	peak
3	2390.000	37.84	4.34	42.18	54.00	-11.82	AVG

Vertical



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2384.760	42.25	4.26	46.51	74.00	-27.49	peak
2	2390.000	45.49	4.34	49.83	74.00	-24.17	peak

802.11 n(HT20)-High


Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	65.03	4.60	69.63	74.00	-4.37	peak
2	2483.500	47.27	4.60	51.87	54.00	-2.13	AVG
3	2484.710	60.97	4.61	65.58	74.00	-8.42	peak
4	2484.710	45.71	4.61	50.32	54.00	-3.68	AVG

Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	56.53	4.60	61.13	74.00	-12.87	peak
2	2483.500	42.66	4.60	47.26	54.00	-6.74	AVG
3	2488.340	48.12	4.62	52.74	74.00	-21.26	peak

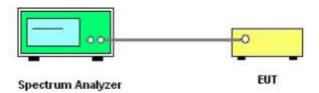
Note: 802.11b, 802.11g, 802.11n (HT-20) mode all have been tested, the worst case is 802.11 n(HT20), only show the worst case.

4. CONDUCTED SPURIOUS & BAND EDGE EMISSION

4.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

4.2 TEST PROCEDURE


Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Band edge

Spectrum Parameter	Setting
Detector	Peak
Ctart/Ctan Fraguency	Lower Band Edge: 2300 to 2432 MHz
Start/Stop Frequency	Upper Band Edge: 2442 to 2500 MHz
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

4.3 DEVIATION FROM STANDARD No deviation.

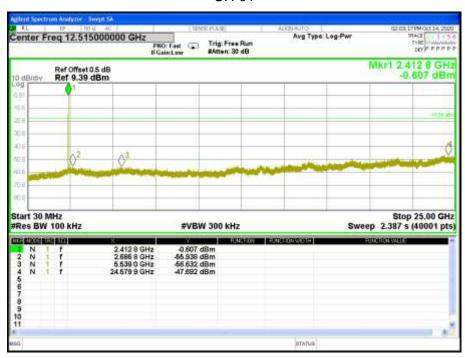
4.4 TEST SETUP

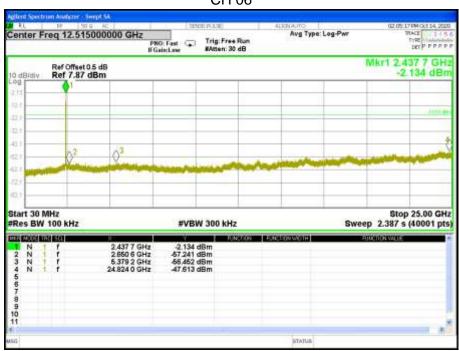
The EUT which is powered by the Battery, is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

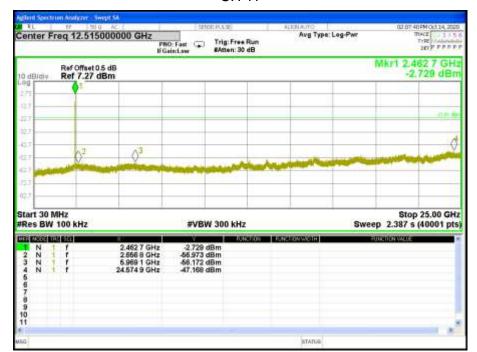
4.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.





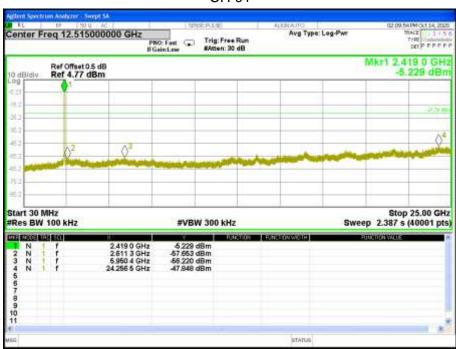
4.6 TEST RESULTS

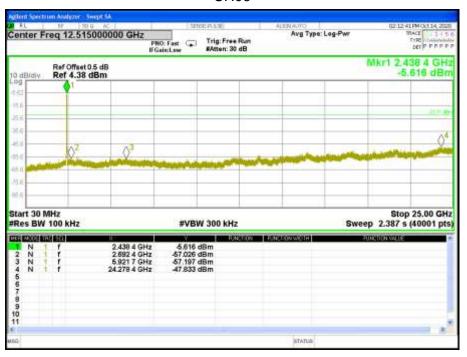

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.7V	Test Mode:	TX b Mode /CH01, CH06, CH11

CH 01

Band edge(it's also the reference level for conducted spurious emission)

CH 01



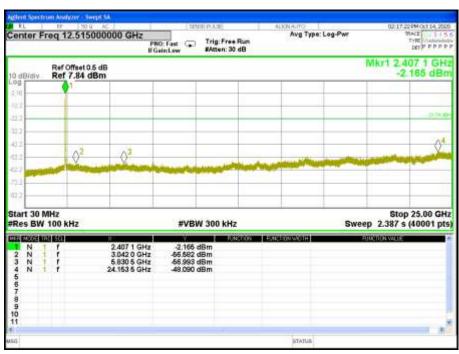


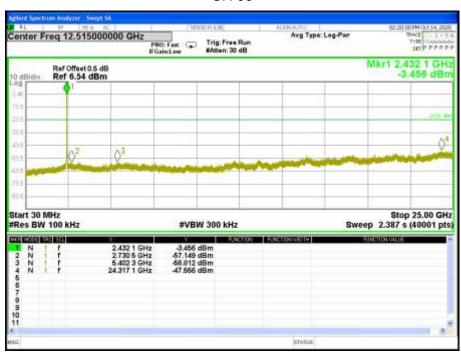
Temperature:	25℃	Relative Humidity:	60%
Test Voltage:	DC 3.7V	Test Mode:	TX g Mode /CH01, CH06, CH11

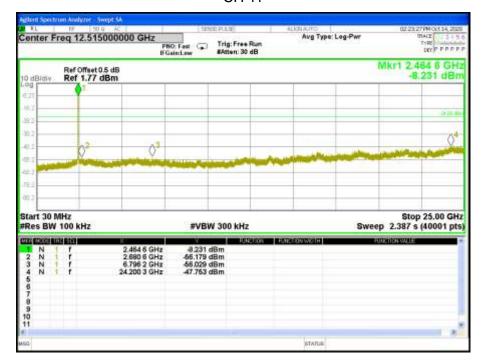
CH 01

Band edge(it's also the reference level for conducted spurious emission)

CH 01







Temperature:	25℃	Relative Humidity:	60%
Test Voltage:	AC 120V/60Hz	Test Mode:	TX n Mode(20M) /CH01, CH06, CH11

Band edge(it's also the reference level for conducted spurious emission)

CH 01

Report No.: FCS202203012W02

5. POWER SPECTRAL DENSITY TEST

5.1 LIMIT

FCC Part15.247 , Subpart C				
Section Test Item Limit Frequency Range (MHz)				Result
15.247(e)	Power Spectral Density	≤8 dBm (RBW ≥3KHz)	2400-2483.5	PASS

5.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the 100 kHz ≥ RBW ≥3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.3 DEVIATION FROM STANDARD No deviation.

5.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

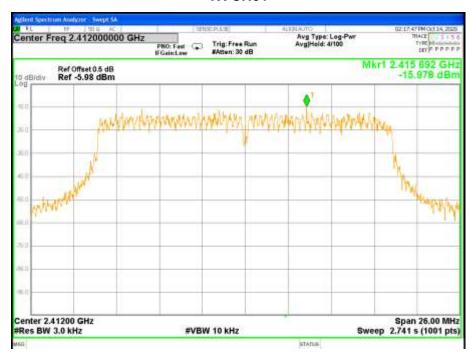
5.6 TEST RESULTS

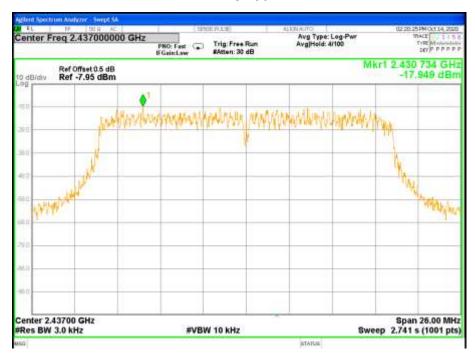
Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.7V	Test Mode:	TX b Mode /CH01, CH06, CH11

Fraguenov	Power Density	Limit (dBm/3KHz)	Popult	
Frequency	(dBm/3kHz)	LIIIII (UBIII/3KHZ)	Result	
2412 MHz	-13.664	≤8	PASS	
2437 MHz	-14.250	≤8	PASS	
2462 MHz	-16.600	≤8	PASS	


Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	AC 120V/60Hz	Test Mode:	TX g Mode /CH01, CH06, CH11

Fraguenov	Power Density	Limit (dBm/3KHz)	Result	
Frequency	(dBm/3kHz)	LIIIII (UBIII/3KHZ)		
2412 MHz	-15.7730	≤8	PASS	
2437 MHz	-17.6650	≤8	PASS	
2462 MHz	-18.4830	≤8	PASS	





Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	AC 120V/60Hz	Test Mode:	TX n Mode(20M) /CH01, CH06, CH11

Fraguenay	Power Density	Limit (dDm/2l/Ll=)	Result	
Frequency	(dBm/3kHz)	Limit (dBm/3KHz)		
2412 MHz	-15.9780	≤8	PASS	
2437 MHz	-17.9490	≤8	PASS	
2462 MHz	-18.7560	≤8	PASS	

6. BANDWIDTH TEST

6.1 LIMIT

FCC Part15.247,Subpart C				
Section	Frequency Range (MHz)	Result		
15.247(a)(2)	Bandwidth	≥500KHz (6dB bandwidth)	2400-2483.5	PASS

6.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW≥3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be≥6 dB.

6.3 DEVIATION FROM STANDARD No deviation.

6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: FCS202203012W02

6.6 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.7V	Test Mode:	TX b Mode /CH01, CH06, CH11

Remark: PEAK DETECTOR IS USED

Fraguency	6dB Bandwidth	Limit	Result
Frequency	(MHz)	(KHz)	Result
2412 MHz	2412 MHz 8.089		PASS
2437 MHz	8.075	≥500KHz	PASS
2462 MHz	8.086	≥500KHz	PASS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	AC 120V/60Hz	Test Mode:	TX g Mode /CH01, CH06, CH11

Fraguency	6dB Bandwidth	Limit	Result	
Frequency	(MHz)	(KHz)	Nesuit	
2412 MHz	16.31	≥500KHz	PASS	
2437 MHz	16.31	≥500KHz	PASS	
2462 MHz	16.32	≥500KHz	PASS	

Temperature:	25℃	Relative Humidity:	60%
Test Voltage:	AC 120V/60Hz	Test Mode:	TX n Mode(20M) /CH01, CH06, CH11

Fraguency	6dB Bandwidth	Limit	Result	
Frequency	(MHz)	(KHz)	Result	
2412 MHz	2412 MHz 16.60		PASS	
2437 MHz	16.63	≥500KHz	PASS	
2462 MHz	16.63	≥500KHz	PASS	

7. PEAK OUTPUT POWER TEST

7.1 LIMIT

FCC Part15.247,Subpart C				
Section Test Item Limit		Frequency Range (MHz)	Result	
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS

7.2 TEST PROCEDURE

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

RBW ≥ DTS bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

- a) Set the RBW ≥ DTS bandwidth.
- b) Set VBW ≥ [3 × RBW].
- c) Set span \geq [3 \times RBW].
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

Integrated band power method:

The following procedure can be used when the maximum available RBW of the instrument is less than the

DTS bandwidth:

- a) Set the RBW = 1 MHz.
- b) Set the VBW \geq [3 \times RBW].
- c) Set the span \geq [1.5 × DTS bandwidth].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector). If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS channel bandwidth.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: FCS202203012W02

7.6 TEST RESULTS

Temperature:	25℃	Relative Humidity:	60%
Test Voltage:	DC 3.7V		

Mode	Test Channe	Frequency	Peak Conducted Output Power	LIMIT
	Onamic	(MHz)	(dBm)	dBm
	CH01	2412	9.08	30
TX 802.11b	CH06	2437	7.93	30
	CH11	2462	8.13	30
TX 802.11g	CH01	2412	9.43	30
	CH06	2437	8.87	30
	CH11	2462	8.70	30
TX 802.11n20	CH01	2412	9.40	30
	CH06	2437	8.22	30
	CH11	2462	8.13	30

8. ANTENNA REQUIREMENT

8.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device.

8.2 EUT ANTENNA

The EUT antenna is PIFA Antenna. It comply with the standard requirement.

****END OF THE REPORT***