Page 1 of 42

FCC TEST REPORT FCC ID: 2A5FD-LLD-HAT

Report Number.....: ZKT-220302L1292

Date of Test...... Feb. 20, 2022 -- Mar. 03, 2022

Date of issue: Mar. 03, 2022

Total number of pages: 42

Test Result: PASS

Testing Laboratory.....: Shenzhen ZKT Technology Co., Ltd.

Applicant's name: SHENZHEN JINGZHI ELECTRONIC TECHNOLOGY CO..LTD

Manufacturer's name: SHENZHEN JINGZHI ELECTRONIC TECHNOLOGY CO.,LTD

Address Room 409 East of Bldg.2,Bagualing Industrial Zone, Bagua 2nd Rd, Futian District, Shenzhen,China.

Test specification:

Standard FCC CFR Title 47 Part 15 Subpart C Section 15.247 ANSI C63.10:2013

Test procedure.....: /

Non-standard test method: N/A

Test Report Form No.: TRF-EL-110_V0

Test Report Form(s) Originator: ZKT Testing

Master TRF Dated: 2020-01-06

This device described above has been tested by ZKT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of ZKT, this document may be altered or revised by ZKT, personal only, and shall be noted in the revision of the document.

Product name: LED LIGHT SIGN

Trademark: Leadleds

Model/Type reference: LLD-HAT1248, LLDT460-B1272, LLD180-B1248, LLD-DG1248,

LLD-HAT1632

Ratings.....: DC 5V1A from adapter or others

Project No.: ZKT-220302L1292 Page 2 of 42

Testing procedure and testing location:	•
Testing Laboratory::	Shenzhen ZKT Technology Co., Ltd.
Address:	1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China
Tested by (name + signature):	Alen He Aren. Ne
Reviewer (name + signature):	Joe Liu
Approved (name + signature):	Lake Xie

Table of Contents

		Page
1. VERSION	5	
2. SUMMARY OF TEST RESULTS	6	
2.1 TEST FACILITY	7	
2.2 MEASUREMENT UNCERTAINTY	7	
3. GENERAL INFORMATION	8	
3.1 GENERAL DESCRIPTION OF EUT	8	
3.2 DESCRIPTION OF TEST MODES	9	
3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9	
3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	9	
3.5EQUIPMENTS LIST FOR ALL TEST ITEMS	11	
4. EMC EMISSION TEST	12	
4.1 CONDUCTED EMISSION MEASUREMENT	12	
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS	12	
4.1.2 TEST PROCEDURE	12	
4.1.3 DEVIATION FROM TEST STANDARD	12	
4.1.4 TEST SETUP	13	
4.1.6 TEST RESULT	14	
4.2 RADIATED EMISSION MEASUREMENT	16	
4.2.1 RADIATED EMISSION LIMITS 4.2.2 TEST PROCEDURE	16 16	
4.2.3 DEVIATION FROM TEST STANDARD	17	
4.2.4 TEST SETUP	17	
4.2.5 EUT OPERATING CONDITIONS	18	
4.2.6 TEST RESULTS	19	
5.RADIATED BAND EMISSIONMEASUREMENT	24	
5.1 TEST REQUIREMENT:	24	
5.2 TEST PROCEDURE	24	
5.3 DEVIATION FROM TEST STANDARD	24	
5.4 TEST SETUP	25	
5.5 EUT OPERATING CONDITIONS	25	
5.6 TEST RESULT	26	
6.POWER SPECTRAL DENSITY TEST	27	
6.1 APPLIED PROCEDURES / LIMIT	27	
6.2 TEST PROCEDURE	27	
6.3 DEVIATION FROM STANDARD	27	
6.4 TEST SETUP	27	
6.5 EUT OPERATION CONDITIONS	27	

P	adi	<u>4</u>	of	42

6.6 TEST RESULT	28
7. CHANNEL BANDWIDTH& 99% OCCUPY BANDWIDTH	30
7.1 APPLIED PROCEDURES / LIMIT	30
7.2 TEST PROCEDURE	30
7.3 DEVIATION FROM STANDARD	30
7.4 TEST SETUP	30
7.5 EUT OPERATION CONDITIONS	30
7.6 TEST RESULT	31
8.MAXIMUM OUTPUT POWER MEASUREMENT	33
8.1 APPLIED PROCEDURES/LIMIT	33
8.2 TEST PROCEDURE	33
8.3 DEVIATION FROM STANDARD	33
8.4 TEST SETUP	33
8.5 EUT OPERATION CONDITIONS	33
8.6 TEST RESULT	33
9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION	34
9.1 APPLICABLE STANDARD	34
9.2 TEST PROCEDURE	34
9.3 DEVIATION FROM STANDARD	34
9.4 TEST SETUP	34
9.5 EUT OPERATION CONDITIONS	34
9.6 TEST RESULTS	34
10. ANTENNA REQUIREMENT	39
11. TEST SETUP PHOTO	40
12. EUT CONSTRUCTIONAL DETAILS	42

Project No.: ZKT-220302L1292 Page 5 of 42

1. VERSION

Report No.	Version	Description	Approved
ZKT-220302L1292	Rev.01	Initial issue of report	Mar. 03, 2022

Project No.: ZKT-220302L1292 Page 6 of 42

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247), Subpart C					
Standard Section	Test Item	Result	Remark		
FCC part 15.203/15.247 (c)	Antenna requirement	PASS			
FCC part 15.207	AC Power Line Conducted Emission	PASS			
FCC part 15.247 (b)	Conducted Peak Output Power	PASS			
FCC part 15.247 (a)(2)	6dB Bandwidth & 99% Bandwidth	PASS			
FCC part 15.247 (e)	Power Spectral Density	PASS			
FCC part 15.247(d)	Band Edge	PASS			
FCC Part 15.247(d)	Spurious Emission	PASS			

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

Page 7 of 42

2.1 TEST FACILITY

Shenzhen ZKT Technology Co., Ltd.

Add.: 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an

District, Shenzhen, China

FCC Test Firm Registration Number: 692225

Designation Number: CN1299 IC Registered No.: 27033

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y \pm U , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 , providing a level of confidence of approximately 95 , ,

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power conducted	±0.16dB
3	Spurious emissions conducted	±0.21dB
4	All emissions radiated(<1G)	±4.68dB
5	All emissions radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	+2%

Project No.: ZKT-220302L1292 Page 8 of 42

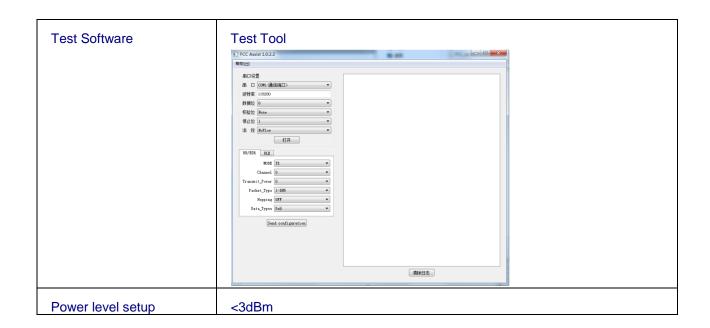
3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	LED LIGHT SIGN
Model No.:	LLD-HAT1248
Model Different.:	only the color may differ, so thel names may differ.
Serial No.:	LLDT460-B1272, LLD180-B1248, LLD-DG1248, LLD-HAT1632
Hardware Version:	V1.01A
Software Version:	FCC_assist_1.0.2.2
Sample(s) Status:	Engineer sample
Channel numbers:	40
Channel separation:	2402MHz~2480MHz
Modulation technology:	GFSK
Antenna Type:	PCB Antenna
Antenna gain:	0 dBi Max
Power supply:	DC 5V1.0A from adapter or others

Operatio	Operation Frequency each of channel						
Channe I	Frequency	Chann el	Frequency	Chann el	Frequency	Chann el	Frequency
1	2402	11	2422	21	2442	31	2462
2	2404	12	2424	22	2444	32	2464
3	2406	13	2426	23	2446	33	2466
4	2408	14	2428	24	2448	34	2468
5	2410	15	2430	25	2450	35	2470
6	2412	16	2432	26	2452	36	2472
7	2414	17	2434	27	2454	37	2474
8	2416	18	2436	28	2456	38	2476
9	2418	19	2438	29	2458	39	2478
10	2420	20	2440	30	2460	40	2480

Note:


In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

Page 9 of 42

3.2 DESCRIPTION OF TEST MODES

Transmitting mode	Keep the EUT in continuously transmitting mode			
Remark: During the test, the duty cycle >98%, the test voltage was tuned from 85% to 115% of the				
nominal rated supply vo	oltage, and found that the worst case was under the nominal rated supply			
condition. So the report	just shows that condition's data			

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Conducted Emission

AC POWER-----adapter---

Radiated Emission

EUT

Conducted Spurious

EUT

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
1	adapter	HUAWEI	HW-100400C01	N/A	Provide by lab

Page 10 of 42

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1)
- The support equipment was authorized by Declaration of Confirmation. For detachable type I/O cable should be specified the length in cm in ${}^{\mathbb{F}}$ Length $_{\mathbb{F}}$ column. (2)

Project No.: ZKT-220302L1292 Page 11 of 42

3.5EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	9020A	MY45109572	Sep. 21, 2021	Sep. 20, 2022
2	Spectrum Analyzer (1GHz-40GHz)	Agilent	E4446A	100363	Sep. 21, 2021	Sep. 20, 2022
3	Test Receiver (9kHz-7GHz)	R&S	ESCI7	101169	Sep. 21, 2021	Sep. 20, 2022
4	Bilog Antenna (30MHz-1400MHz)	Schwarzbeck	VULB9168	00877	Sep. 21, 2021	Sep. 20, 2022
5	Horn Antenna (1GHz-18GHz)	SCHWARZBEC K	BBHA9120D	1541	Sep. 21, 2021	Sep. 20, 2022
6	Horn Antenna (18GHz-40GHz)	A.H. System	SAS-574	588	Sep. 21, 2021	Sep. 20, 2022
7	Amplifier (30-1000MHz)	EM Electronics	EM330 Amplifier	N/A	Sep. 21, 2021	Sep. 20, 2022
8	Amplifier (1GHz-40GHz)	QUANJUDA	DLE-161	097	Sep. 21, 2021	Sep. 20, 2022
9	Loop Antenna (9KHz-30MHz)	SCHWARZBEC K	FMZB1519B	014	Sep. 21, 2021	Sep. 20, 2022
10	RF cables1 (9kHz-30MHz)	N/A	9kHz-30MHz	N/A	Sep. 21, 2021	Sep. 20, 2022
11	RF cables2 (30MHz-1GHz)	N/A	30MHz-1GHz	N/A	Sep. 21, 2021	Sep. 20, 2022
12	RF cables3 (1GHz-40GHz)	N/A	1GHz-40GHz	N/A	Sep. 21, 2021	Sep. 20, 2022
13	CMW500 Test	R&S	CMW500	106504	Sep. 21, 2021	Sep. 20, 2022
14	ESG Signal Generator	Agilent	E4421B	GB40051203	Sep. 21, 2021	Sep. 20, 2022
15	Signal Generator	Agilent	N5182A	MY47420215	Sep. 21, 2021	Sep. 20, 2022
16	D.C. Power Supply	LongWei	TPR-6405D	\	\	\
17	Software	Frad	EZ-EMC	FA-03A2 RE	\	\

Conduction Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	LISN	R&S	ENV216	101471	Sep. 21, 2021	Sep. 20, 2022
2	LISN	CYBERTEK	EM5040A	E185040014 9	Sep. 21, 2021	Sep. 20, 2022
3	Test Cable	N/A	C01	N/A	Sep. 21, 2021	Sep. 20, 2022
4	Test Cable	N/A	C02	N/A	Sep. 21, 2021	Sep. 20, 2022
5	EMI Test Receiver	R&S	ESRP3	101946	Sep. 21, 2021	Sep. 20, 2022
6	Absorbing Clamp	DZ	ZN23201	N/A	Sep. 21, 2021	Sep. 20, 2022

Page 12 of 42

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

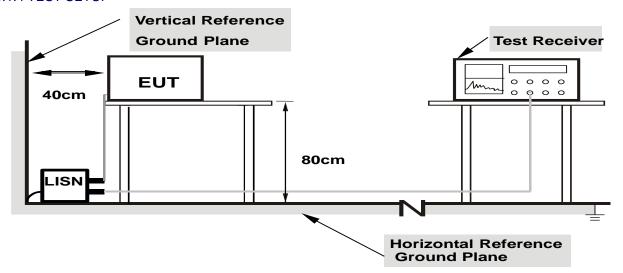
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS

EDEOLIENCY (MH-)	Limit (Standard	
FREQUENCY (MHz)	Quasi-peak	Average	Stariuaru
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

(1) *Decreases with the logarithm of the frequency.

4.1.2 TEST PROCEDURE


- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.e.
- 8 For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation

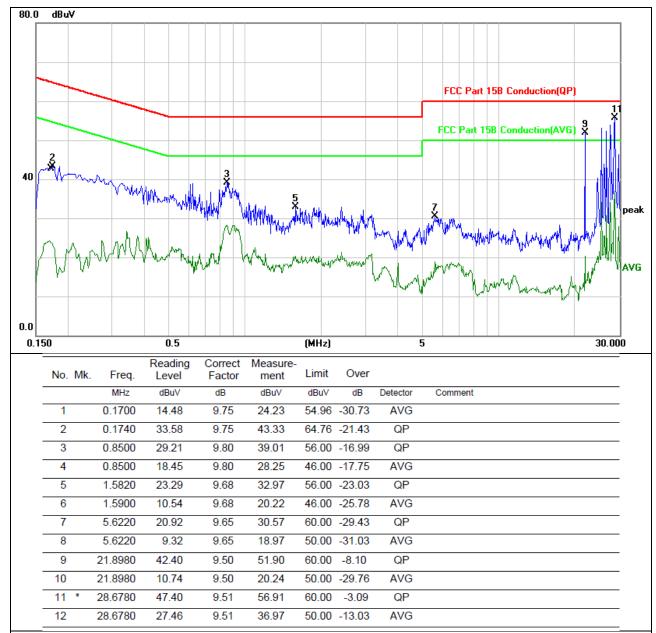
Project No.: ZKT-220302L1292 Page 13 of 42

4.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

4.1.5 EUT OPERATING CONDITIONS

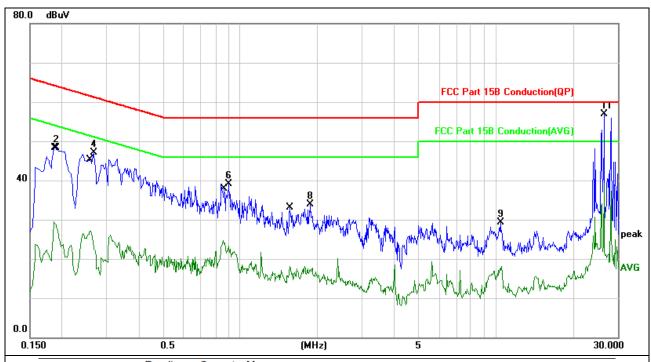

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

We pretest AC 120V, the worst voltage was AC 120V and the data recording in the report.

Project No.: ZKT-220302L1292 Page 14 of 42

4.1.6 TEST RESULT

Temperature :	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	L
Test Voltage :	AC 120V/60Hz		



Notes:

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor

Project No.: ZKT-220302L1292 Page 15 of 42

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	N
Test Voltage :	AC 120V/60Hz		

No. M	1k. F	req.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	N	ИНZ	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1	860	19.70	9.75	29.45	54.21	-24.76	AVG	
2	0.1	900	38.58	9.75	48.33	64.03	-15.70	QP	
3	0.2	2580	17.38	9.77	27.15	51.49	-24.34	AVG	
4	0.2	2660	37.38	9.78	47.16	61.24	-14.08	QP	
5	0.8	3540	14.90	9.79	24.69	46.00	-21.31	AVG	
6	0.9	9020	29.36	9.78	39.14	56.00	-16.86	QP	
7	1.5	620	8.47	9.69	18.16	46.00	-27.84	AVG	
8	1.8	3780	24.27	9.66	33.93	56.00	-22.07	QP	
9	10.4	1300	19.51	9.78	29.29	60.00	-30.71	QP	
10	10.5	340	8.38	9.78	18.16	50.00	-31.84	AVG	
11 *	26.5	300	46.55	9.48	56.03	60.00	-3.97	QP	
12	26.5	300	29.73	9.48	39.21	50.00	-10.79	AVG	

Notes:

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor

Page 16 of 42

4.2 RADIATED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.209						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak		
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak		
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak		
	Above 1GHz	Peak	1MHz	3MHz	Peak		
	Above IGHZ	Peak	1MHz	10Hz	Average		

4.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT

	Limit (dBuV/m) (at 3M)			
FREQUENCY (MHz)	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

4.2.2 TEST PROCEDURE

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.1 meters above the ground at a 3 meter semi-anechoiccamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of avariable-height antenna tower.

Page 17 of 42

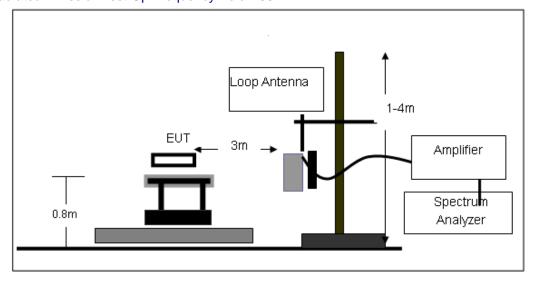
c. The antenna height is varied from one meter to four meters above the ground to determine the maximum valueof the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned toheights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could bestopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dBmargin would be re-tested one by one using peak, quasi-peak or average method as specified and then reportedin a data sheet.

Above 1GHz test procedure as below:

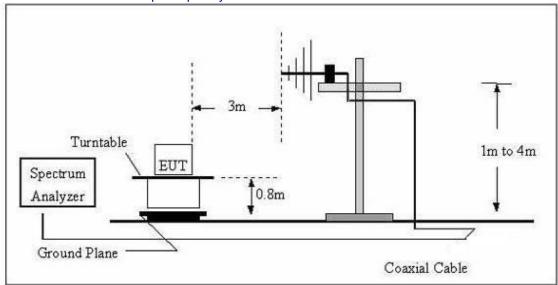
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and table 0.8 metre to 1.5 metre (Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel

Note:

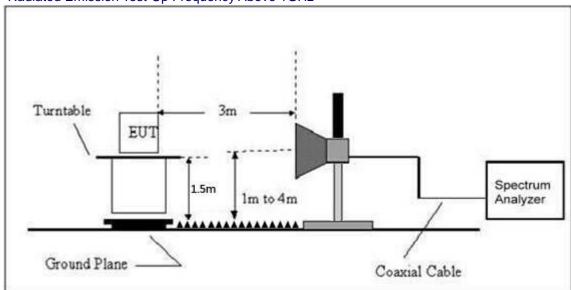

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

4.2.3 DEVIATION FROM TEST STANDARD

No deviation


4.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz



Project No.: ZKT-220302L1292 Page 18 of 42

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

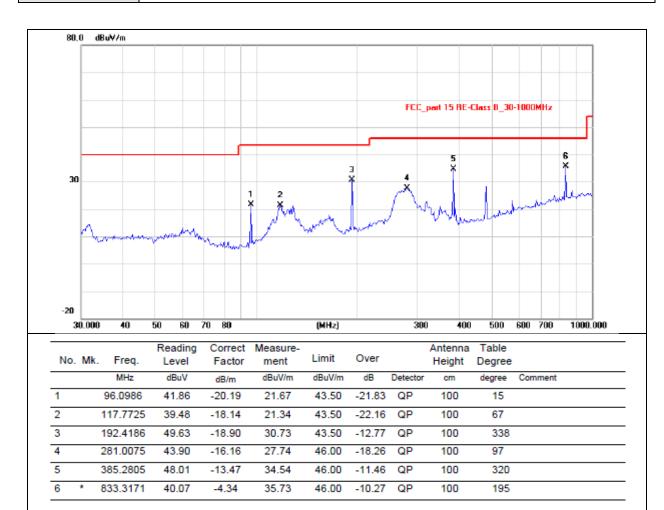
(C) Radiated Emission Test-Up Frequency Above 1GHz

4.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

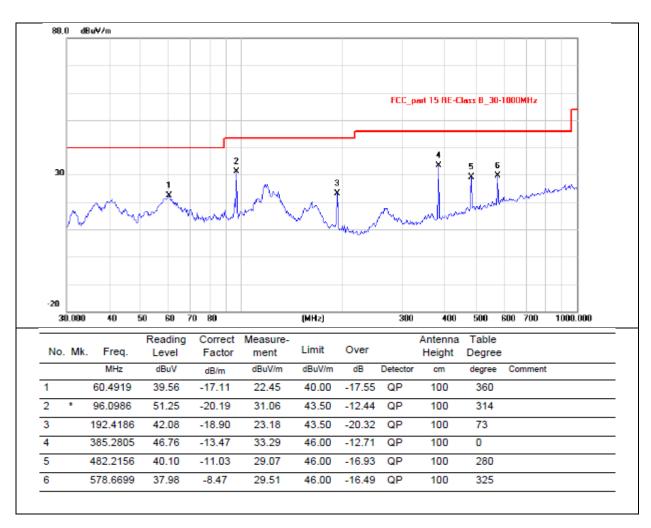
Project No.: ZKT-220302L1292 Page 19 of 42

4.2.6 TEST RESULTS


Between 9KHz - 30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

Project No.: ZKT-220302L1292 Page 20 of 42


Between 30MHz - 1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz		

Page 21 of 42

Temperature:	26℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz		

Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

1GHz~25GHz

Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			L	ow Chan	nel:2402MH	z			
V	4824.00	56.57	30.55	5.77	24.66	56.45	74.00	-17.55	PK
V	4824.00	40.44	30.55	5.77	24.66	40.32	54.00	-13.68	AV
V	7236.00	55.51	30.33	6.32	24.55	56.05	74.00	-17.95	PK
V	7236.00	37.79	30.33	6.32	24.55	38.33	54.00	-15.67	AV
V	9648.00	55.50	30.85	7.45	24.69	56.79	74.00	-17.21	PK
V	9648.00	39.25	30.85	7.45	24.69	40.54	54.00	-13.46	AV
Н	4824.00	54.47	30.55	5.77	24.66	54.35	74.00	-19.65	PK
Н	4824.00	39.56	30.55	5.77	24.66	39.44	54.00	-14.56	AV
Н	7236.00	54.83	30.33	6.32	24.55	55.37	74.00	-18.63	PK
Н	7236.00	40.59	30.33	6.32	24.55	41.13	54.00	-12.87	AV
Н	9648.00	55.14	30.85	7.45	24.69	56.43	74.00	-17.57	PK
Н	9648.00	41.75	30.85	7.45	24.69	43.04	54.00	-10.96	AV

Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			Mi	ddle Cha	nnel:2440M	Hz			
V	4874.00	54.00	30.55	5.77	24.66	53.88	74.00	-20.12	PK
V	4874.00	38.90	30.55	5.77	24.66	38.78	54.00	-15.22	AV
V	7311.00	53.84	30.33	6.32	24.55	54.38	74.00	-19.62	PK
V	7311.00	39.87	30.33	6.32	24.55	40.41	54.00	-13.59	AV
V	9748.00	56.03	30.85	7.45	24.69	57.32	74.00	-16.68	PK
V	9748.00	41.81	30.85	7.45	24.69	43.10	54.00	-10.90	AV
Н	4874.00	56.20	30.55	5.77	24.66	56.08	74.00	-17.92	PK
Н	4874.00	41.21	30.55	5.77	24.66	41.09	54.00	-12.91	AV
Н	7311.00	54.20	30.33	6.32	24.55	54.74	74.00	-19.26	PK
Н	7311.00	38.07	30.33	6.32	24.55	38.61	54.00	-15.39	AV
Н	9748.00	54.22	30.85	7.45	24.69	55.51	74.00	-18.49	PK
Н	9748.00	40.29	30.85	7.45	24.69	41.58	54.00	-12.42	AV

Project No.: ZKT-220302L1292 Page 23 of 42

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			Н	ligh Chan	nel:2480MF	łz			
V	4924.00	55.73	30.55	5.77	24.66	55.61	74.00	-18.39	PK
V	4924.00	40.28	30.55	5.77	24.66	40.16	54.00	-13.84	AV
V	7386.00	54.69	30.33	6.32	24.55	55.23	74.00	-18.77	PK
V	7386.00	40.58	30.33	6.32	24.55	41.12	54.00	-12.88	AV
V	9848.00	55.88	30.85	7.45	24.69	57.17	74.00	-16.83	PK
V	9848.00	41.41	30.85	7.45	24.69	42.70	54.00	-11.30	AV
Н	4924.00	55.99	30.55	5.77	24.66	55.87	74.00	-18.13	PK
Н	4924.00	39.81	30.55	5.77	24.66	39.69	54.00	-14.31	AV
Н	7386.00	55.18	30.33	6.32	24.55	55.72	74.00	-18.28	PK
Н	7386.00	39.28	30.33	6.32	24.55	39.82	54.00	-14.18	AV
Н	9848.00	56.09	30.85	7.45	24.69	57.38	74.00	-16.62	PK
Н	9848.00	41.35	30.85	7.45	24.69	42.64	54.00	-11.36	AV

Page 24 of 42

5.RADIATED BAND EMISSIONMEASUREMENT

5.1 TEST REQUIREMENT

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2	ANSI C63.10: 2013					
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.						
Test site:	Measurement [Distance: 3m					
Receiver setup:	Frequency Detector RBW VBW Value						
	Above Peak 1MHz 3MHz Peak						
	1GHz	Average	1MHz	3MHz	Average		

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

EDEOLIENCY (MH-)	Class B (dBu)	V/m) (at 3M)
FREQUENCY (MHz)	PEAK	AVERAGE
Above 1000	74	54

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

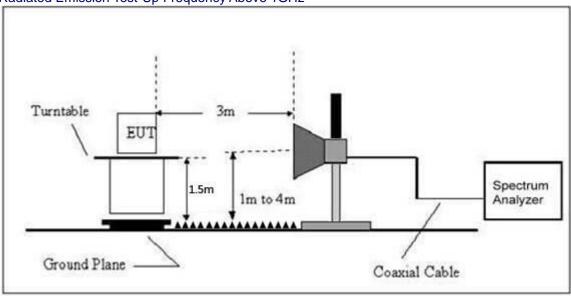
5.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could bestopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dBmargin would be re-tested one by one using peak, quasi-peak or average method as specified and then reportedin a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported


5.3 DEVIATION FROM TEST STANDARD

No deviation

Project No.: ZKT-220302L1292 Page 25 of 42

5.4 TEST SETUP

Radiated Emission Test-Up Frequency Above 1GHz

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Project No.: ZKT-220302L1292 Page 26 of 42

5.6 TEST RESULT

	Polar (H/V)	Frequenc y (MHz)	Meter Reading (dBuV)	Pre- amplifier (dB)	Cable Loss (dB)	Antenna Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV /m)	Detec tor Type	Result
				Low	/ Channe	el 2402MHz				
	Н	2390.00	59.78	30.22	4.85	23.98	58.39	74.00	PK	PASS
	Н	2390.00	44.34	30.22	4.85	23.98	42.95	54.00	AV	PASS
	Н	2400.00	61.39	30.22	4.85	23.98	60.00	74.00	PK	PASS
	Н	2400.00	42.85	30.22	4.85	23.98	41.46	54.00	AV	PASS
	V	2390.00	62.49	30.22	4.85	23.98	61.10	74.00	PK	PASS
	V	2390.00	44.86	30.22	4.85	23.98	43.47	54.00	AV	PASS
	V	2400.00	56.55	30.22	4.85	23.98	55.16	74.00	PK	PASS
802.11b	V	2400.00	45.42	30.22	4.85	23.98	44.03	54.00	AV	PASS
002.110				High	Channe	el: 2480MH	<u>z</u>			
	Н	2483.50	61.93	30.22	4.85	23.98	60.54	74.00	PK	PASS
	Н	2485.50	47.24	30.22	4.85	23.98	45.85	54.00	AV	PASS
	Н	2483.50	59.10	30.22	4.85	23.98	57.71	74.00	PK	PASS
	Н	2485.50	47.81	30.22	4.85	23.98	46.42	54.00	AV	PASS
	V	2483.50	63.26	30.22	4.85	23.98	61.87	74.00	PK	PASS
	V	2485.50	44.77	30.22	4.85	23.98	43.38	54.00	AV	PASS
	V	2483.50	62.83	30.22	4.85	23.98	61.44	74.00	PK	PASS
	V	2485.50	48.59	30.22	4.85	23.98	47.20	54.00	AV	PASS

Remark:

^{1.} Emission Level = Meter Reading + Antenna Factor + Cable Loss - Pre-amplifier, Margin= Emission Level - Limit

Page 27 of 42

6.POWER SPECTRAL DENSITY TEST

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074 D0115.247 Meas Guidance v 05r02

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247	Power Spectral Density	8dBm/3kHz	2400-2483.5	PASS			

6.2 TEST PROCEDURE

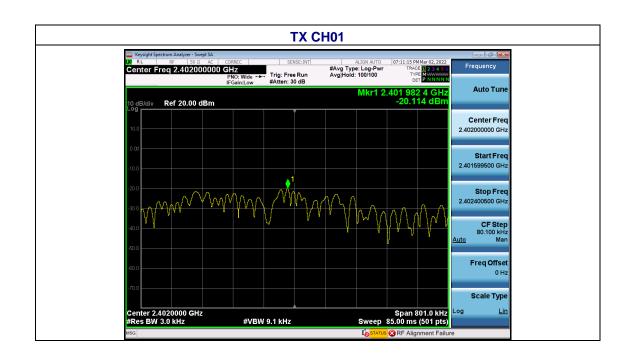
- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

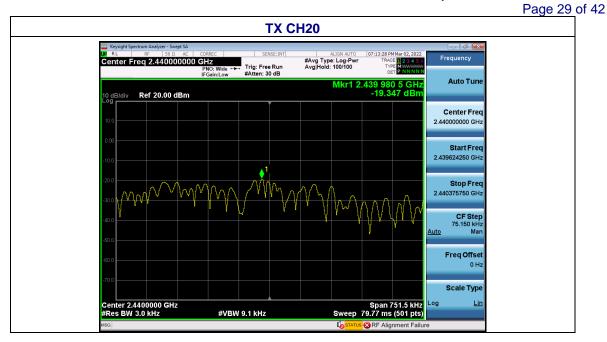
6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.


Project No.: ZKT-220302L1292 Page 28 of 42

6.6 TEST RESULT

Temperature :	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Test Voltage :	DC 3.7V
Test Mode :	GFSK		

Frequency	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
2402 MHz	-20.114	8	PASS
2440 MHz	-19.347	8	PASS
2480 MHz	-18.724	8	PASS

Page 30 of 42

7. CHANNEL BANDWIDTH& 99% OCCUPY BANDWIDTH

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

7.2 TEST PROCEDURE

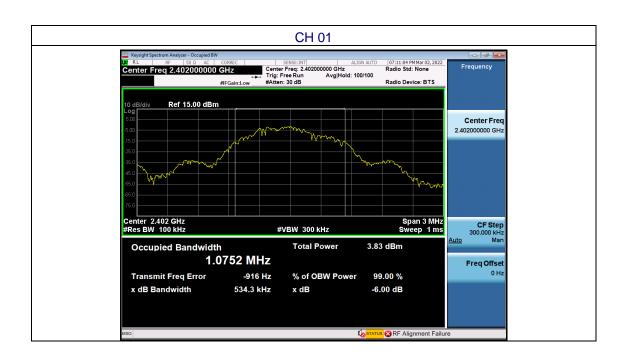
- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) ≥ 3 xRBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

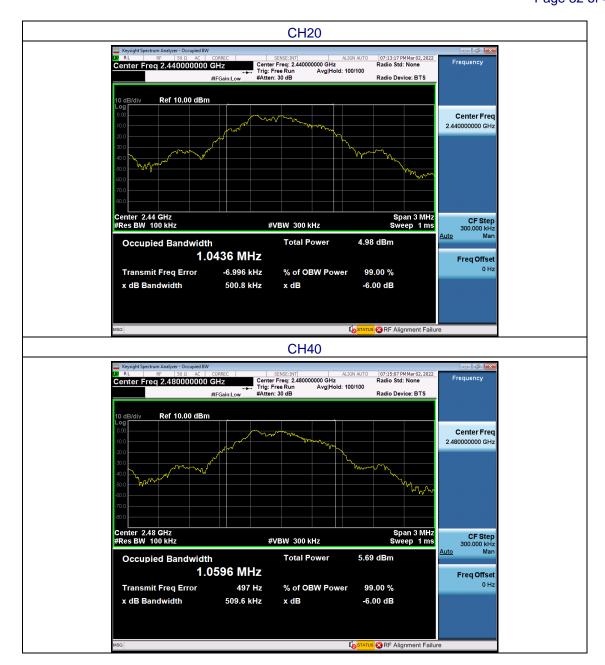
7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.


Project No.: ZKT-220302L1292 Page 31 of 42

7.6 TEST RESULT

Temperature :	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Test Voltage :	DC 3.7V
Test Mode :	GFSK		

Test CH	-6dB Channel Bandwidth (MHz)	99% occupy bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.5343	1.0752		
Middle	0.5008	1.0436	>500	Pass
Highest	0.5096	1.0596		

Page 33 of 42

8.MAXIMUM OUTPUT POWER MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.247 (b)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

8.1 APPLIED PROCEDURES/LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power meter

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULT

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Test Voltage :	DC 3.7V

Test CH	Peak Output Power (dBm)		
Lowest	1.032	Limit(dBm)	Result
Middle	1.136		
Highest	0.254	30.00	Pass

Page 34 of 42

9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

9.1 APPLICABLE STANDARD

in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in15.209(a).

9.2 TEST PROCEDURE

Using the following spectrum analyzer setting:

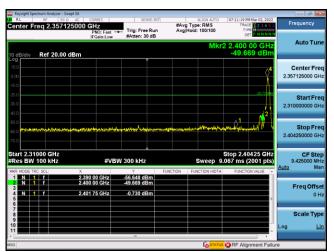
- A) Set the RBW = 100KHz.
- B) Set the VBW = 300KHz.
- C) Sweep time = auto couple.
- D) Detector function = peak.
- E) Trace mode = max hold.
- F) Allow trace to fully stabilize.

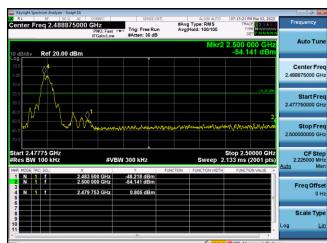
9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

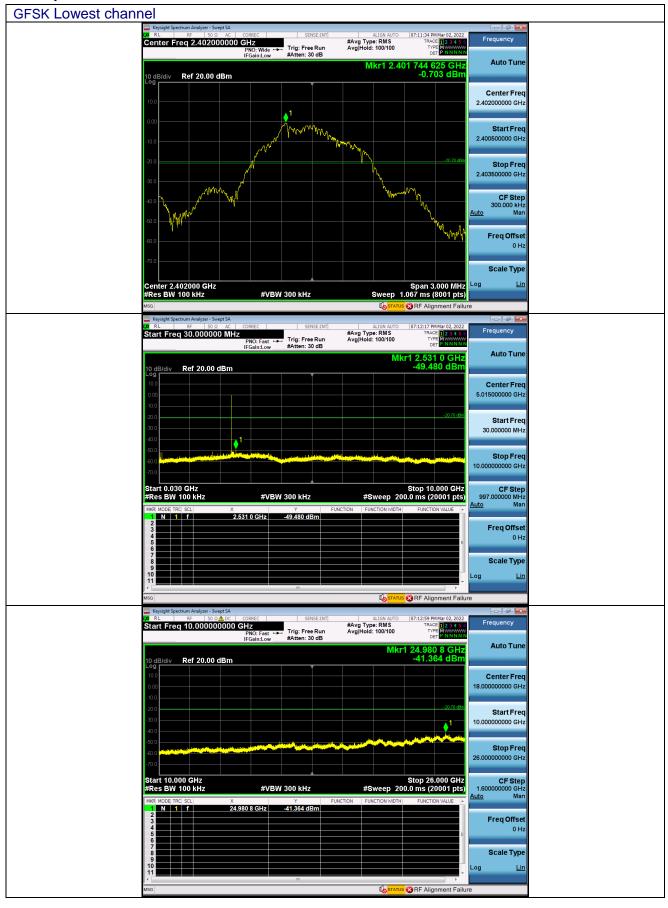

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

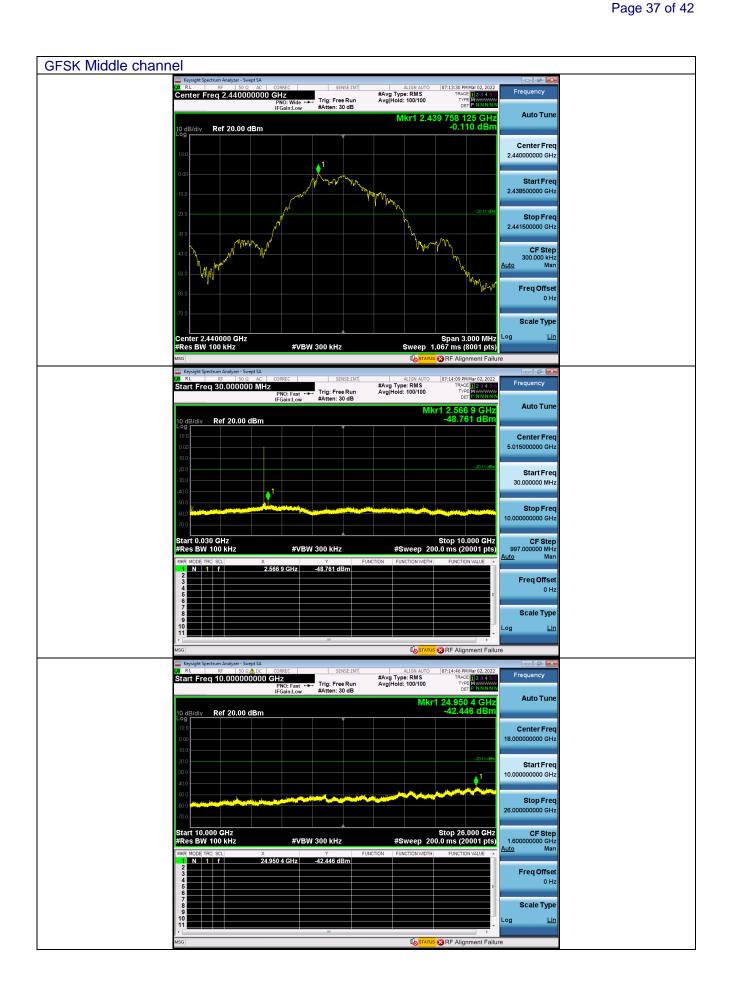

9.6 TEST RESULTS

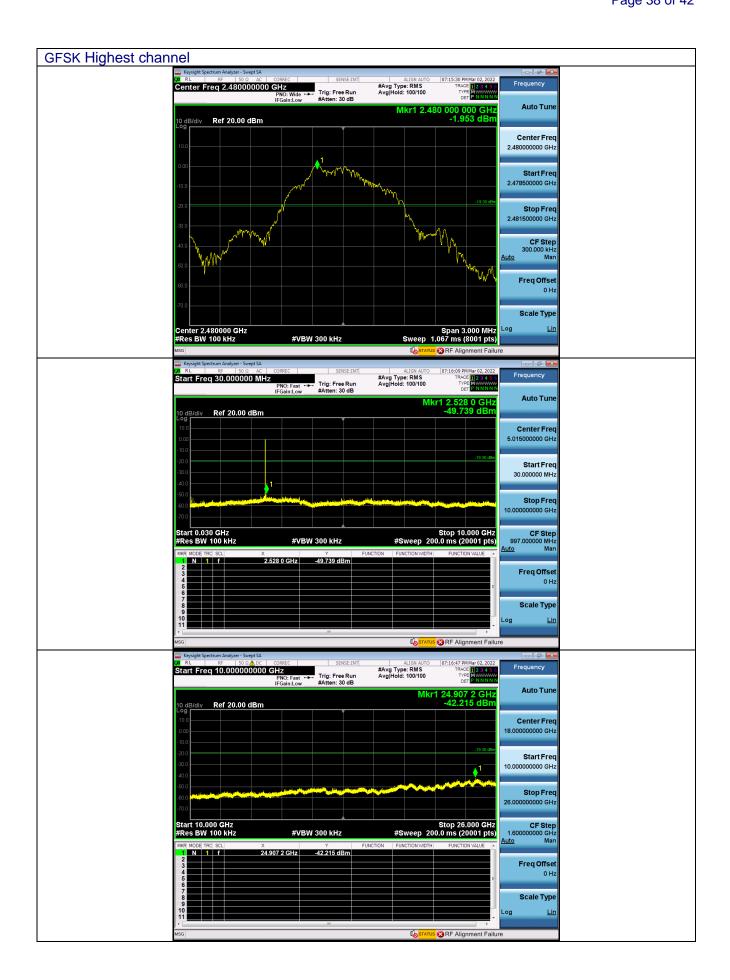
Project No.: ZKT-220302L1292 Page 35 of 42

Test plot as follows:

Test mode: GFSK






Lowest channel

Highest channel

Test plot as follows:

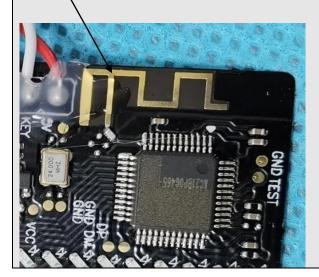
Page 39 of 42

10. ANTENNA REQUIREMENT

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.


Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The PCB antenna used in the product is a permanently connected antenna that complies with the provisions of part 15.203 requirement in this section. The antenna used in this product is a PCB antenna, The directional gains of antenna used for transmitting is 0 dBi.

EUT Antenna:

Project No.: ZKT-220302L1292 Page 40 of 42

11. TEST SETUP PHOTO

Project No.: ZKT-220302L1292 Page 41 of 42

Project No.: ZKT-220302L1292 Page 42 of 42

12. EUT CONSTRUCTIONAL DETAILS

Reference to the external photos file and internal photos file for details.

*** ** END OF REPORT ****