

FCC TEST REPORT FCC ID: 2A5EV-FW068

Product Name : 3 in 1 Wireless Charger

Model Name : FW068

Additional Model : refer to page 7

Brand Name : N/A

Report No. : PTC22052502201E-FC01

Prepared for

Shenzhen Finemold Technologies CO.,LTD

No. 85, Rentian Industrial Zone, Fuhai Street, Baoan District, Shenzhen City, Guangdong Province

Prepared by

Precise Testing & Certification Co., Ltd
Building 1, No. 6, Tongxin Road, Dongcheng Street, Dongguan, Guangdong, China

1TEST RESULT CERTIFICATION

Applicant's name : Shenzhen Finemold Technologies CO.,LTD

Address : No. 85, Rentian Industrial Zone, Fuhai Street, Baoan District, Shenzhen

City, Guangdong Province

Manufacture's name : Shenzhen Finemold Technologies CO.,LTD

Address : No. 85, Rentian Industrial Zone, Fuhai Street, Baoan District, Shenzhen

City, Guangdong Province

Product name : 3 in 1 Wireless Charger

Model name : FW068

Additional Model : refer to page 7

Standards : FCC CFR47 Part 15C

Test procedure : ANSI C63.10:2013

Test Date : May. 30, 2022 to Jun. 10, 2022

Date of Issue : Jun. 10, 2022

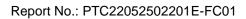
Test Result : Pass

This device described above has been tested by PTC, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTC, this document may be altered or revised by PTC, personal only, and shall be noted in the revision of the document.

Test Engineer:

Simon Pu / Engineer


Technical Manager:

Ronnie Liu / Manager

Contents

		Page
1TE	EST RESULT CERTIFICATION	2
2	TEST SUMMARY	5
3	TEST FACILITY	6
4	GENERAL INFORMATION	7
	4.1GENERAL DESCRIPTION OF E.U.T	7
	4.2 Test Mode	8
5	EQUIPMENT DURING TEST	10
	5.1 EQUIPMENTS LIST	10
	5.2 MEASUREMENT UNCERTAINTY	
	5.3 DESCRIPTION OF SUPPORT UNITS	13
6	CONDUCTED EMISSION	14
	6.1 E.U.T. OPERATION	14
	6.2 EUT SETUP	14
	6.3 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	15
	6.4 MEASUREMENT PROCEDURE:	15
	6.5 CONDUCTED EMISSION LIMIT	15
	6.6 MEASUREMENT DESCRIPTION	15
	6.7 CONDUCTED EMISSION TEST RESULT	
7	RADIATED SPURIOUS EMISSIONS	18
	7.1 EUT OPERATION	18
	7.2 TEST SETUP	19
	7.3 SPECTRUM ANALYZER SETUP	20
	7.4 TEST PROCEDURE	21
	7.5 SUMMARY OF TEST RESULTS	22
8	20DB BANDWIDTH	26
	8.1 BLOCK DIAGRAM OF TEST SETUP	26
	8.2 RULES AND SPECIFICATIONS	26
	8.3 TEST PROCEDURE	26
	0 / Drout	26

9	ANTENNA APPLICATION	29
	9.1 ANTENNA REQUIREMENT	29
	9.2 RESULT	29
9 TE	EST PHOTOS	30
10 E	EUT PHOTOS	32

2 Test Summary

Test Items	Test Requirement	Result	
Conduct Emission	15.207	PASS	
Radiated Spurious Emissions	15.209	PASS	
20dB Bandwidth	Part 15.215(c)	PASS	
Antenna requirement	15.203	PASS	

3 TEST FACILITY

Precise Testing & Certification Co., Ltd

Address: Building 1, No. 6, Tongxin Road, Dongcheng Street, Dongguan, Guangdong, China

A2LA Certificate No.: 4408.01
FCC Registration Number: 790290
FCC Designation Number: CN1219

IC Registration Number: 12191A

CAB identifier: CN0080

4 General Information

4.1 General Description of E.U.T.

Product Name	:	3 in 1 Wireless Charger
Model Name :		FW068
Operating frequency	:	110~205kHz
Antenna Type		Coil Antenna
Power supply	:	Input: DC 9V/2.2A,12V/2A Adapter: XY18U30-QC1 Input: AC 100-240V~50/60Hz 0.6A Output: DC 5V3A DC 9V2A DC 12V1.5A
Wireless Charging output Power		Mobile phone output: 5W/7.5W/10W/15W iWatch output: 2.5W Airpods: 3W
Antenna Gain		0 dBi
Hardware Version	:	N/A
Software Version	:	N/A

Additional Model:

FW001,FW002,FW003,FW004,FW005,FW006,FW007,FW008,FW009,FW010,FW011,FW012,FW013, FW014,FW015,FW016,FW017,FW018,FW019,FW020,FW021,FW022,FW023,FW024,FW025,FW026, FW027,FW028,FW029,FW030,FW031,FW032,FW033,FW034,FW035,FW036,FW037,FW038,FW039, FW040,FW041,FW042,FW043,FW044,FW045,FW046,FW047,FW048,FW049,FW050,FW051,FW052, FW053,FW054,FW055,FW056,FW057,FW058,FW059,FW060,FW061,FW062,FW063,FW064,FW065, FW066.FW067.FW069.FW070.FW071.FW072.FW073.FW074.FW075.FW076.FW077.FW078.FW079. FW080.FW081.FW082.FW083.FW084.FW085.FW086.FW087.FW088.FW089.FW090.FW091.FW092. FW093,FW094,FW095,FW096,FW097,FW098,FW099,FW100,FW101,FW102,FW103,FW104,FW105, FW106,FW107,FW108,FW109,FW110,FW111,FW112,FW113,FW114,FW115,FW116,FW117,FW118, FW119,FW120,FW121,FW122,FW123,FW124,FW125,FW126,FW127,FW128,FW129,FW130,FW131, FW132,FW133,FW134,FW135,FW136,FW137,FW138,FW139,FW140,FW141,FW142,FW143,FW144, FW145,FW146,FW147,FW148,FW149,FW150,FW151,FW152,FW153,FW154,FW155,FW156,FW157, FW158,FW159,FW160,FW161,FW162,FW163,FW164,FW165,FW166,FW167,FW168,FW169,FW170, FW171,FW172,FW173,FW174,FW175,FW176,FW177,FW178,FW179,FW180,FW181,FW182,FW183, FW184,FW185,FW186,FW187,FW188,FW189,FW190,FW191,FW192,FW193,W194,FW195,FW196, FW197.FW198.FW199.FW200.

The model name and color are different.

4.2 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was prescanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode or test configuration mode mentioned above was evaluated respectively.

This EUT is tested with a adapter, the adapter are checked and only worst case is record with the adaptor GaN Mini I.

Antenna1(charging Mobile phone vertically Coil):

Pretest Mode	Description		
Mode 1	Stand charging mode(5W,no load, half load, full load)		
Mode 2	Stand charging mode(7.5W,no load, half load, full load)		
Mode 3	Stand charging mode(10W,no load, half load, full load)		
Mode 4	Stand charging mode(15W,no load, half load, full load)		

Antenna2(charging Mobile phone horizontally):

Pretest Mode	Description
Mode 1	Stand charging mode(5W,no load, half load, full load)
Mode 2	Stand charging mode(7.5W,no load, half load, full load)
Mode 3	Stand charging mode(10W,no load, half load, full load)
Mode 4	Stand charging mode(15W,no load, half load, full load)

Note: Antenna1 and Antenna2 cannot work at the same time.

Antenna3(iWatch):

Pretest Mode	Description		
Mode 1	Stand charging mode(2.5W,no load, half load, full load)		

Antenna4(Airpods):

Pretest Mode	Description
Mode 1	Stand charging mode(3W,no load, half load, full load)

Combination Mode:

Pretest Mode	Description	
Mode 1	Charging mobile phone + iWatch	
Mode 2	Charging mobile phone + Airpods	
Mode 3	Charging mobile phone + iWatch + Airpods	
Mode 4	Charging iWatch + Airpods	

Remark: All mode are pretested and the worst case is record(Combination Mode _Mode 3)..

5 Equipment During Test

5.1 Equipments List

RF Conducted Test

Name of Equipment	Manufacturer	Model	Serial No.	Last calibration	Calibration Due	Calibration period
MXA Signal Analyzer	Agilent	N9020A	MY56070279	Aug. 21, 2021	Aug. 22, 2022	1 year
Coaxial Cable	CDS	79254	46107086	Aug. 21, 2021	Aug. 22, 2022	1 year
Power Meter	Anritsu	ML2495A	0949003	Aug. 21, 2021	Aug. 22, 2022	1 year
Power Sensor	Anritsu	MA2411B	0917017	Aug. 21, 2021	Aug. 22, 2022	1 year
Spectrum Analyzer	Rohde&Schwa rz	FSU26	1166.1660.26	Aug. 21, 2021	Aug. 22, 2022	1 year

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list. Radiated Emissions

Name of Equipment	Manufacturer	Model	Serial No.	Last calibration	Calibration Due	Calibratio n period
EMI Test Receiver	Rohde&Schw arz	ESCI	101417	Aug. 21, 2021	Aug. 22, 2022	1 year
Loop Antenna	Schwarzbeck	FMZB 1519	012	Aug. 21, 2021	Aug. 22, 2022	1 year
Bilog Antenna	SCHWARZBE CK	VULB9160	9160-3355	Aug. 21, 2021	Aug. 22, 2022	1 year
Preamplifier (low frequency)	SCHWARZBE CK	BBV 9475	9745-0013	Aug. 21, 2021	Aug. 22, 2022	1 year
Cable	Schwarzbeck	PLF-100	549489	Aug. 21, 2021	Aug. 22, 2022	1 year
Spectrum Analyzer	Agilent	E4407B	MY45109572	Aug. 21, 2021	Aug. 22, 2022	1 year
Horn Antenna	SCHWARZBE CK	9120D	9120D-1246	Aug. 21, 2021	Aug. 22, 2022	1 year
Power Amplifier	LUNAR EM	LNA1G18- 40	J1010000008	Aug. 21, 2021	Aug. 22, 2022	1 year
Horn Antenna	SCHWARZBE CK	BBHA 9170	9170-181	Aug. 21, 2021	Aug. 22, 2022	1 year
Amplifier	SCHWARZBE CK	BBV 9721	9721-205	Aug. 21, 2021	Aug. 22, 2022	1 year

Cable	H+S	CBL-26	N/A	Aug. 21, 2021	Aug. 22, 2022	1 year
RF Cable	R&S	R204	R21X	Aug. 21, 2021	Aug. 22, 2022	1 year

Conducted Emissions

Name of Equipment	Manufacturer	Model	Serial No.	Last calibration		
EMI Test Receiver	Rohde&Schw arz	ESCI	101417	Aug. 21, 2021	Aug. 22, 2022	1 year
Artificial Mains Network	Rohde&Schw arz	L2-16B	000WX31025	Aug. 21, 2021	Aug. 22, 2022	1 year
Artificial Mains Network	Rohde&Schw arz	ENV216	101342	Aug. 21, 2021	Aug. 22, 2022	1 year

5.2 Measurement Uncertainty

Parameter	Uncertainty
RF output power, conducted	±1.0dB
Power Spectral Density, conducted	±2.2dB
Radio Frequency	± 1 x 10 ⁻⁶
Bandwidth	± 1.5 x 10 ⁻⁶
Time	±2%
Duty Cycle	±2%
Temperature	±1°C
Humidity	±5%
DC and low frequency voltages	±3%
Conducted Emissions (150kHz~30MHz)	±3.64dB
Radiated Emission(9KHz~30MHz)	±2.54dB
Radiated Emission(30MHz~1GHz)	±5.03dB
Radiated Emission(1GHz~25GHz)	±4.74dB
Remark: The coverage Factor (k=2), and measurement L	Incertainty for a level of Confidence of 95%

5.3 Description of Support Units

Equipment	Model No.	Series No.
Adapter	XY18U30-QC1	N/A
Load	Phone	N/A
Load	iWatch	N/A
Load	Airpods	N/A

6 Conducted Emission

Test Requirement: : FCC CFR 47 Part 15 Section 15.207

Test Method: : ANSI C63.10:2013

Test Result: : PASS

Frequency Range: : 150kHz to 30MHz

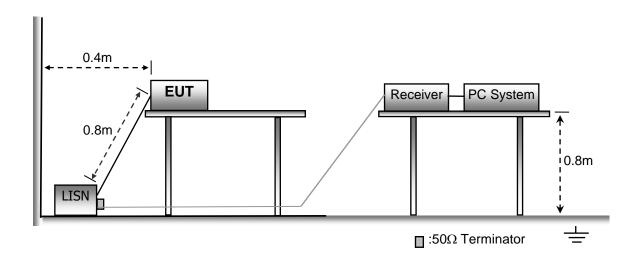
Class/Severity: : Class B

Detector: : Peak for pre-scan (9kHz Resolution Bandwidth)

6.1 E.U.T. Operation

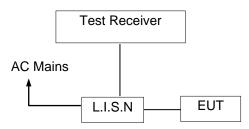
Operating Environment:

Temperature: : 25.5 °C


Humidity: : 51 % RH

Atmospheric Pressure: : 101.2kPa

Test Voltage : AC 120V/60Hz


6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10: 2013

6.3 Test SET-UP (Block Diagram of Configuration)

6.4 Measurement Procedure:

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured was complete.

6.5 Conducted Emission Limit

Conducted Emission

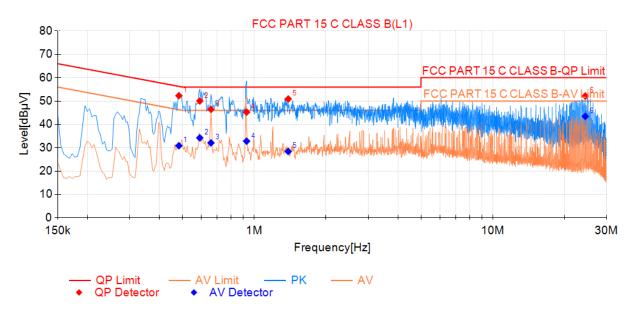
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

Note:

- 1. The lower limit shall apply at the transition frequencies
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

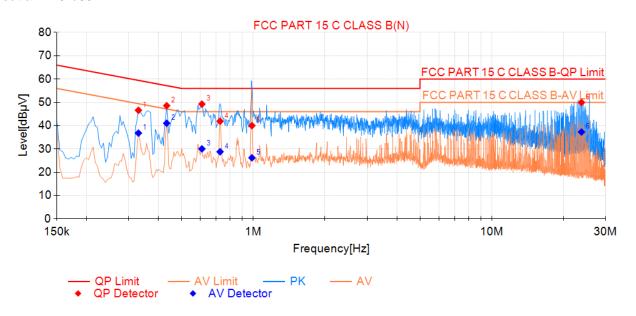
6.6 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.


6.7 Conducted Emission Test Result

Pass.

EUT is Keeping TX+Charging mode. All the modulation modes were tested with both AC230V 50Hz and AC120V 60Hz, the data of the worst mode (AC 120V/60Hz) are recorded in the following pages and the others modulation methods do not exceed the limits.


Line -120V/60Hz:

Final	Final Data List												
NO.	Freq. [MHz]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	AV Value [dBµV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict					
1	0.483	52.29	56.29	4.00	30.87	46.29	15.42	PASS					
2	0.591	50.03	56.00	5.97	34.23	46.00	11.77	PASS					
3	0.659	46.44	56.00	9.56	32.09	46.00	13.91	PASS					
4	0.929	45.26	56.00	10.74	32.83	46.00	13.17	PASS					
5	1.388	50.90	56.00	5.10	28.42	46.00	17.58	PASS					
6	24.414	52.17	60.00	7.83	43.45	50.00	6.55	PASS					

Neutral -120V/60Hz:

Final	Final Data List												
NO.	Freq. [MHz]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Value [dBµV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict					
1	0.330	46.63	59.45	12.82	36.83	49.45	12.62	PASS					
2	0.434	48.59	57.19	8.60	41.07	47.19	6.12	PASS					
3	0.609	49.29	56.00	6.71	30.07	46.00	15.93	PASS					
4	0.726	41.92	56.00	14.08	28.83	46.00	17.17	PASS					
5	0.987	40.03	56.00	15.97	26.23	46.00	19.77	PASS					
6	23.762	50.00	60.00	10.00	37.31	50.00	12.69	PASS					

7 Radiated Spurious Emissions

Test Requirement : FCC CFR47 Part 15 Section 15.209

Test Method : ANSI C63.10:2013

Test Result : PASS
Measurement Distance : 3m

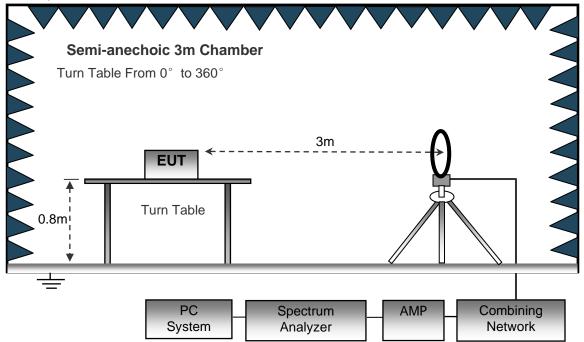
Limit : See the follow table

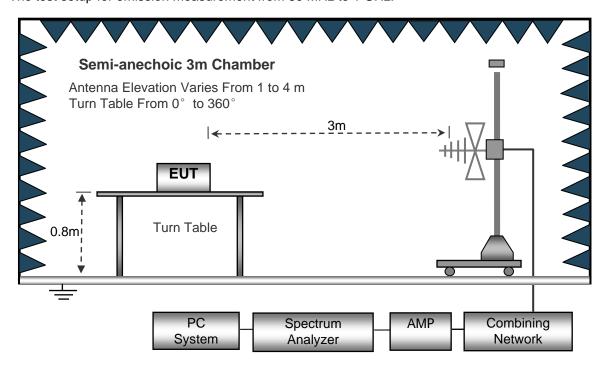
	Field Strer	ngth	Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz) 300		10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

7.1 EUT Operation

Operating Environment:

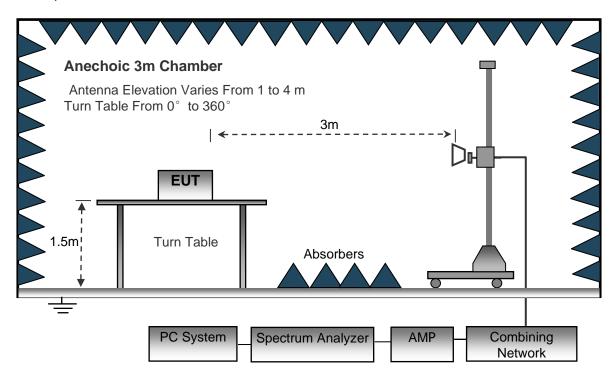
Temperature : $23.5 \, ^{\circ}\text{C}$ Humidity : $51.1 \, ^{\circ}\text{RH}$


Atmospheric Pressure : 101.2kPa


7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site

The test setup for emission measurement below 30MHz.



The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

7.4 Test Procedure

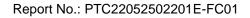
- 1. The testing follows the guidelines in Spurious Radiated Emissions of ANSI C63.10-2013.
- 2. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (From 1m to 4m) and turntable (from 0 degree to 360 degree) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Final measurement (Above 1GHz): The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1MHz. The measurement will be performed in horizontal and vertical polarization of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 degree to 360 degree in order to have the antenna inside the cone of radiation.
- 7. Test Procedure of measurement (For Above 1GHz):
- 1) Monitor the frequency range at horizontal polarization and move the antenna over all sides of the EUT(if necessary move the EUT to another orthogonal axis).
- 2) Change the antenna polarization and repeat 1) with vertical polarization.
- 3) Make a hardcopy of the spectrum.
- 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 5) Change the analyser mode to Clear/ Write and found the cone of emission.
- 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3m and the antenna will be still inside the cone of emission.
- 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarization and azimuth and the peak and average detector, which causes the maximum emission.
- 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

7.5 Summary of Test Results

Test Frequency: 9KHz-30MHz

Frequency(128KHz):

Frequency (MHz)	Read Level (dBuV)	Polar	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector
0.1280(F)	46.83	Loop	19.3	2.54	0	68.67	105.46	-36.79	Peak
0.1280(F)	37.60	Loop	19.3	2.54	0	59.44	105.46	-46.02	AV
0.110	13.97	Loop	19.28	2.53	0	35.78	106.78	-71.00	Peak
0.110	4.10	Loop	19.28	2.53	0	25.91	106.78	-80.87	AV
0.2459	14.26	Loop	19.3	2.54	0	36.10	99.79	-63.69	Peak
0.2459	4.24	Loop	19.3	2.54	0	26.08	99.79	-73.71	AV
0.5060	5.68	Loop	19.53	2.59	0	27.80	73.52	-45.72	QP
0.9495	3.30	Loop	19.53	2.59	0	25.42	68.05	-42.63	QP
3.5659	1.77	Loop	19.53	2.59	0	23.89	69.54	-45.65	QP


Frequency(110.5KHz):

Report No.: PTC22052502201E-FC01

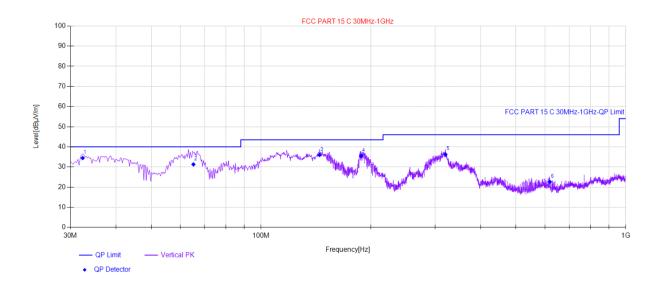
Frequency (MHz)	Read Level (dBuV)	Polar	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector
0.110	13.62	Loop	19.28	2.53	0	35.43	106.78	-71.35	Peak
0.110	4.06	Loop	19.28	2.53	0	25.87	106.78	-80.91	AV
0.1105(F)	46.75	Loop	19.28	2.53	0	68.56	106.74	-38.18	Peak
0.1105(F)	37.62	Loop	19.28	2.53	0	59.43	106.74	-47.31	AV
0.2459	14.69	Loop	19.3	2.54	0	36.10	99.79	-63.69	Peak
0.2459	5.02	Loop	19.3	2.54	0	26.08	99.79	-73.71	AV
0.5060	5.99	Loop	19.53	2.59	0	27.80	73.52	-45.72	QP
0.9495	3.37	Loop	19.53	2.59	0	25.42	68.05	-42.63	QP
3.5659	2.31	Loop	19.53	2.59	0	23.89	69.54	-45.65	QP

Remark: Final Level=Receiver level+Factor.

According to FCC Part 15.209(d), the emission limits for the frequency bands 9-90KHz, 110-490KHz and above 1000MHz. Radiated emission limits in these three bans are based on measurements employing an average detector. The value: Peak>QP>AV. So the result is passed.

Test Frequency: 30MHz ~ 1GHz

Horizontal:

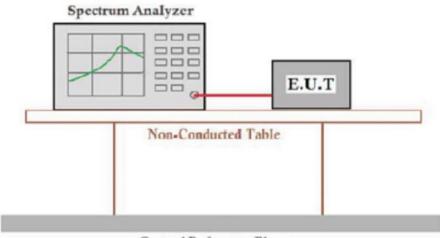


Final I	Final Data List												
NO.	Freq.	Factor	QP Value	QP Limit	QP Margin	Height	Angle	Dolority					
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity					
1	70.26	-19.29	31.58	40.00	8.42	100	273	Horizontal					
2	116.33	-18.40	29.41	43.50	14.09	100	100	Horizontal					
3	166.53	-16.04	33.20	43.50	10.30	100	185	Horizontal					
4	208.24	-18.65	38.84	43.50	4.66	100	157	Horizontal					
5	297.90	-15.55	42.65	46.00	3.35	100	160.1	Horizontal					
6	616.12	-7.94	23.93	46.00	22.07	100	130	Horizontal					

Remark: Emission Level=Receiver level+Cable Loss +Ant factor-Amp Factor
Over Limit=Emission Level-Limited

Vertical:

Final Data List								
NO.	Freq.	Factor	QP Value	QP Limit	QP Margin	Height	Angle	Polarity
	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	
1	32.43	-18.20	34.44	40.00	5.56	100	119	Vertical
2	65.24	-18.61	31.31	40.00	8.69	100	304.8	Vertical
3	144.70	-16.44	35.97	43.50	7.53	100	143	Vertical
4	188.11	-17.95	35.50	43.50	8.00	100	295	Vertical
5	320.27	-14.85	36.21	46.00	9.79	100	55	Vertical
6	619.28	-7.90	22.63	46.00	23.37	100	257	Vertical


Remark: Emission Level=Receiver level+Cable Loss +Ant factor-Amp Factor

Over Limit=Emission Level-Limited

8 20dB Bandwidth

8.1 Block Diagram of Test Setup

Ground Reference Plane

8.2 Rules and specifications

DFR 47 Part 15.215(c)

ANSI C63.10-2013

8.3 Test Procedure

Intentional radiator operating under the alternative provisions to the general emission limits, as contained in 15.217 and in subpart E of this part, must be designed to ensure that 20dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equip compliance with the 20dB attenuation specification may base on measurement at the intentional radiator's antenna output terminal unless the intentional radiator uses a permanently attached antenna, in which case compliance shall be deomonstrated by measuring the radiated emissions.

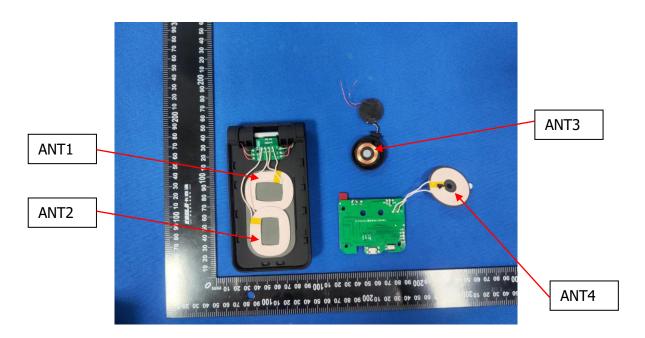
8.4 Result

Pass.

Antenna1 and Antenna2(Charging Mobile phone):

Antenna3(Charging iWatch):

Antenna4(Charging Airpods):

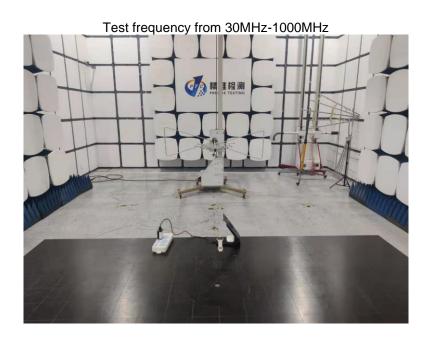

9 Antenna Application

9.1 Antenna Requirement

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

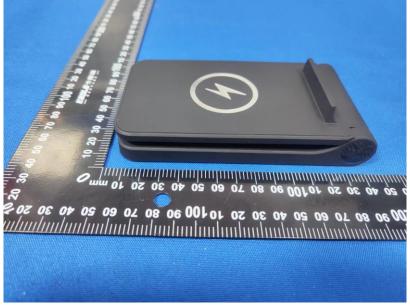
9.2 Result

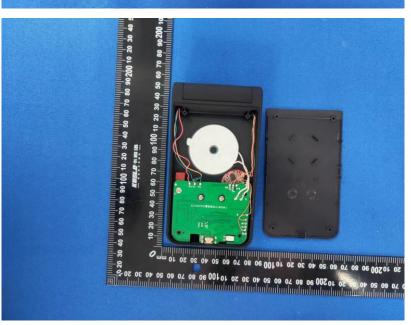
The EUT'S antenna, permanent attached antenna, is coil Antenna. The antenna's gain is 0 dBi and meets the requirement.

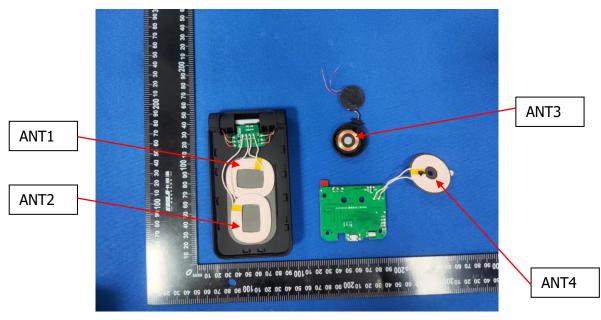

Conducted Emissions

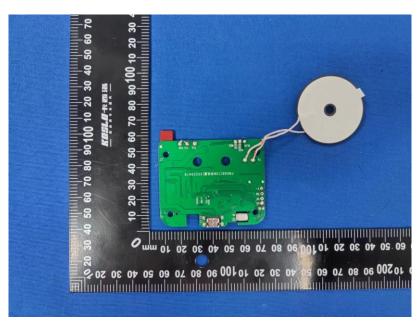
Radiated Spurious Emissions Test Frequency From 9KHz-30MHz

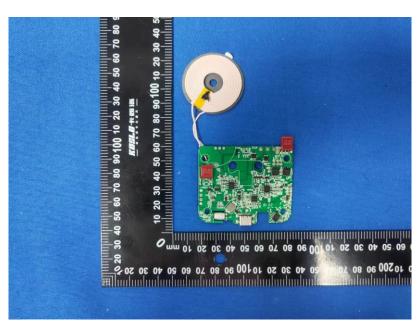
10 EUT PHOTOS

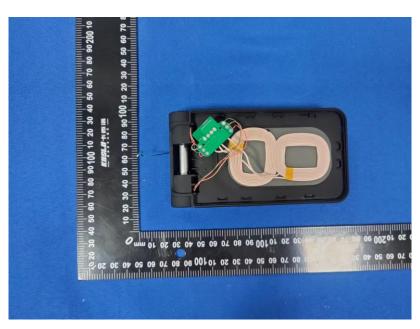


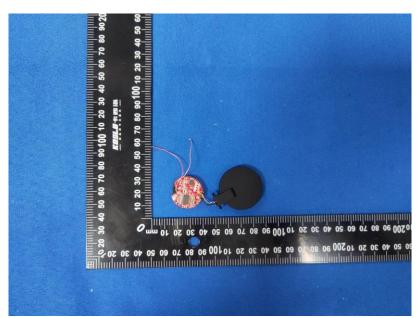












*****THE END REPORT*****