

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202202336F01

TEST Report

Applicant: SHENZHEN SHUOCAI PHOTOELECTRIC

TECHNOLOGY CO., LTD

Address of Applicant: 4th Floor, Building B5, Fenghuanggang Third Industrial Zone,

Xixiang Street, Baoan, Shenzhen

Manufacturer: SHENZHEN SHUOCAI PHOTOELECTRIC

TECHNOLOGY CO., LTD

Address of 4th Floor, Building B5, Fenghuanggang Third Industrial Zone,

Manufacturer: Xixiang Street, Baoan, Shenzhen

Equipment Under Test (EUT)

Product Name: Sound-sensitive Music Atmosphere Lights

Model No.: SCSYD001

Series model: SCSYD002, SCSYD003, SCSYD004, SCSYD005,

SCSYD006, SCSYD007, SCSYD008, SCSYD009, SCSYD0010, SCSYD0011, SCSYD0012, SCSYD0013,

SCSYD0014, SCSYD0015, SCSYD0016, SCSYD0017,

SCSYD0018, SCSYD0019, SCSYD0020

Trade Mark: N/A

FCC ID: 2A5EJ-SCSYD001

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Feb.24,2022

Date of Test: Feb.24,2022~Mar.05,2022

Date of report issued: Mar.05,2022

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Mar.05,2022	Original

Tested/ Prepared By	Ervin Xu	Date:	Mar.05,2022
	Project Engineer	_	
Check By:	Bruce 2hu	Date:	Mar.05,2022
	Reviewer		
Approved By :	Kerin Yang	Date:	Mar.05,2022
	Authorized Signature	_	

2. Contents

	Page
1. VERSION	2
2. CONTENTS	
3. TEST SUMMARY	4
4. GENERAL INFORMATION	5
4.1. GENERAL DESCRIPTION OF EUT 4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS 4.6. TEST FACILITY. 4.7. TEST LOCATION. 4.8. ADDITIONAL INSTRUCTIONS 5. TEST INSTRUMENTS LIST.	
6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED OUTPUT POWER 6.3. CHANNEL BANDWIDTH 6.4. POWER SPECTRAL DENSITY 6.5. BAND EDGES 6.5.1. Conducted Emission Method 6.5.2. Radiated Emission Method 6.6. SPURIOUS EMISSION 6.6.1. Conducted Emission Method 6.6.2. Radiated Emission Method 6.6.2. Radiated Emission Method	
7. TEST SETUP PHOTO	31
8. EUT CONSTRUCTIONAL DETAILS	31

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	30~1000MHz	3.45 dB	(1)		
Radiated Emission	1~6GHz	3.54 dB	(1)		
Radiated Emission	6~40GHz	5.38 dB	(1)		
Conducted Disturbance 0.15~30MHz 2.66 dB (1)					
Note (1): The measurement unc	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.		

4. General Information

4.1. General Description of EUT

<u> </u>	
Product Name:	Sound-sensitive Music Atmosphere Lights
Model No.:	SCSYD001
Series model:	SCSYD002, SCSYD003, SCSYD004, SCSYD005, SCSYD006, SCSYD007, SCSYD008, SCSYD009, SCSYD0010, SCSYD0011, SCSYD0012, SCSYD0013, SCSYD0014, SCSYD0015, SCSYD0016, SCSYD0017, SCSYD0018, SCSYD0019, SCSYD0020
Test sample(s) ID:	HTT202202336-1(Engineer sample) HTT202202336-2(Normal sample)
Operation frequency	2402~2480 MHz
Number of Channels	40
Modulation Type	GFSK
Channel separation	2MHz
Antenna Type:	PCB Antenna
Antenna Gain:	0 dBi
Power Supply:	DC 3.7V/200mAh Form Battery and DC 5V From External Circuit
Adapter Information (Auxiliary test provided by the lab):	Mode: CD122 Input: AC100-240V, 50/60Hz, 500mA Output: DC 5V, 2A

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

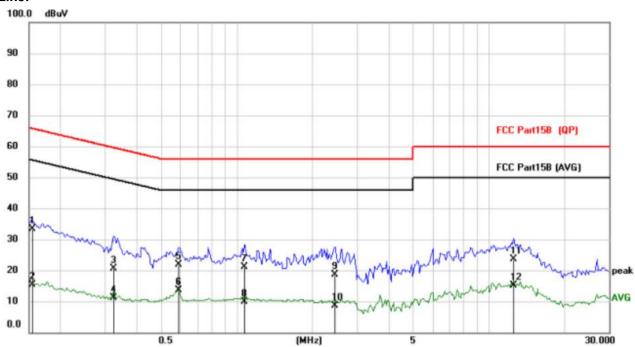
Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date
	3m Semi- Anechoic	Shenzhen C.R.T		No.	(mm-dd-yy)	(mm-dd-yy)
1	Chamber	technology co., LTD	9*6*6	HTT-E028	Aug. 10 2020	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2020	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	May 21 2021	May 20 2022
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	May 21 2021	May 20 2022
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	May 21 2021	May 20 2022
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	May 21 2021	May 20 2022
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	May 21 2021	May 20 2022
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	May 21 2021	May 20 2022
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	Aug. 22 2021	Aug. 21 2022
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	Aug. 22 2021	Aug. 21 2022
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Aug. 22 2021	Aug. 21 2022
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Aug. 22 2021	Aug. 21 2022
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	May 21 2021	May 20 2022
14	high-frequency Amplifier	HP	8449B	HTT-E014	May 21 2021	May 20 2022
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	May 21 2021	May 20 2022
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	May 21 2021	May 20 2022
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May 21 2021	May 20 2022
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May 21 2021	May 20 2022
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	May 21 2021	May 20 2022
20	Attenuator	Robinson	6810.17A	HTT-E007	May 21 2021	May 20 2022
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	May 21 2021	May 20 2022
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	May 21 2021	May 20 2022
23	DC power supply	Agilent	E3632A	HTT-E023	May 21 2021	May 20 2022
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	May 21 2021	May 20 2022
25	Analog signal generator	Agilent	N5181A	HTT-E025	May 21 2021	May 20 2022
26	Vector signal generator	Agilent	N5182A	HTT-E026	May 21 2021	May 20 2022
27	Power sensor	Keysight	U2021XA	HTT-E027	May 21 2021	May 20 2022
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	May 21 2021	May 20 2022
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

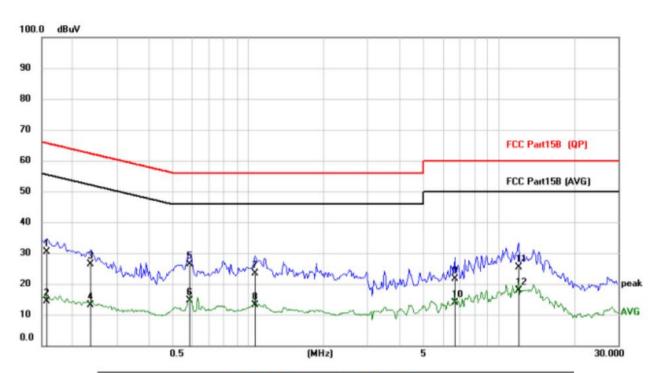
6. Test results and Measurement Data

6.1. Conducted Emissions


	<u> </u>			
Test Requirement:	FCC Part15 C Section 15.20	7		
Test Method:	ANSI C63.10:2013			
Test Frequency Range:	150KHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9KHz, VBW=30KHz, S	Sweep time=auto		
Limit:	Eroguepou rongo (MHz)	Limit	(dBuV)	
	Frequency range (MHz)	Quasi-peak		erage
	0.15-0.5	66 to 56*		o 46*
	0.5-5	56		16
	5-30	60		50
Test setup:	* Decreases with the logarith Reference Plan	•		
Test procedure:	AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators line impedance stabilization 500hm/50uH coupling imp	EMI Receiver	This provide:	sa
	 The peripheral devices are LISN that provides a 50oh termination. (Please refer photographs). Both sides of A.C. line are interference. In order to fir positions of equipment an according to ANSI C63.10 	e also connected to the m/50uH coupling impute to the block diagram of the checked for maximum and the maximum emised all of the interface contacts.	ne main power edance with of the test seem conducted sision, the related ables must be	er through a 50ohm etup and d ative be changed
Test Instruments:	Refer to section 6.0 for detail			
Test mode:	Refer to section 5.2 for detail			
Test environment:		mid.: 52%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz			1
Test results:	Pass			
Tool Toodito.	. 400			

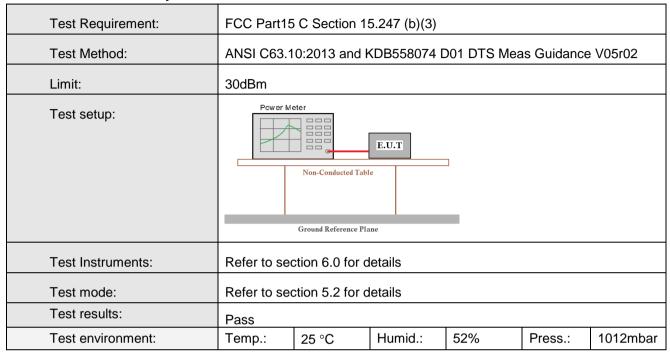
Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:


Line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1556	23.11	10.37	33.48	65.70	-32.22	QP
2		0.1556	4.94	10.37	15.31	55.70	-40.39	AVG
3		0.3255	10.22	10.42	20.64	59.57	-38.93	QP
4		0.3255	0.79	10.42	11.21	49.57	-38.36	AVG
5		0.5907	11.25	10.58	21.83	56.00	-34.17	QP
6		0.5907	2.95	10.58	13.53	46.00	-32.47	AVG
7		1.0743	10.24	10.89	21.13	56.00	-34.87	QP
8		1.0743	-0.90	10.89	9.99	46.00	-36.01	AVG
9		2.4588	7.84	10.83	18.67	56.00	-37.33	QP
10		2.4588	-2.16	10.83	8.67	46.00	-37.33	AVG
11		12.5472	11.76	11.80	23.56	60.00	-36.44	QP
12		12.5472	3.45	11.80	15.25	50.00	-34.75	AVG

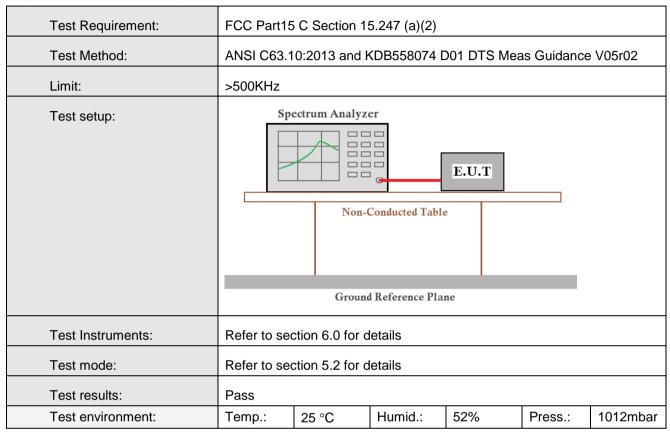
Neutral:


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1578	20.21	10.26	30.47	65.58	-35.11	QP
2		0.1578	4.05	10.26	14.31	55.58	-41.27	AVG
3		0.2358	16.24	10.21	26.45	62.24	-35.79	QP
4		0.2358	2.92	10.21	13.13	52.24	-39.11	AVG
5	*	0.5868	15.81	10.48	26.29	56.00	-29.71	QP
6		0.5868	4.12	10.48	14.60	46.00	-31.40	AVG
7		1.0665	12.66	10.80	23.46	56.00	-32.54	QP
8		1.0665	2.41	10.80	13.21	46.00	-32.79	AVG
9		6.6699	10.59	10.93	21.52	60.00	-38.48	QP
10		6.6699	3.02	10.93	13.95	50.00	-36.05	AVG
11		12.0246	13.54	11.78	25.32	60.00	-34.68	QP
12		12.0246	5.98	11.78	17.76	50.00	-32.24	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

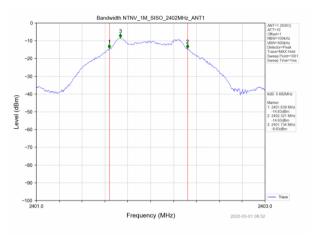
6.2. Conducted Output Power



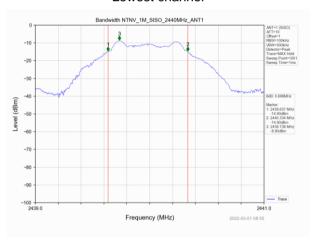
Measurement Data

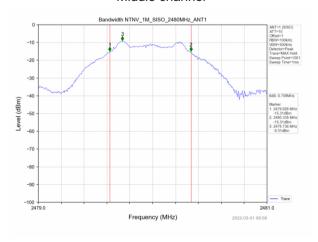
Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	-8.46		
Middle	-8.77	30.00	Pass
Highest	-9.14		

6.3. Channel Bandwidth

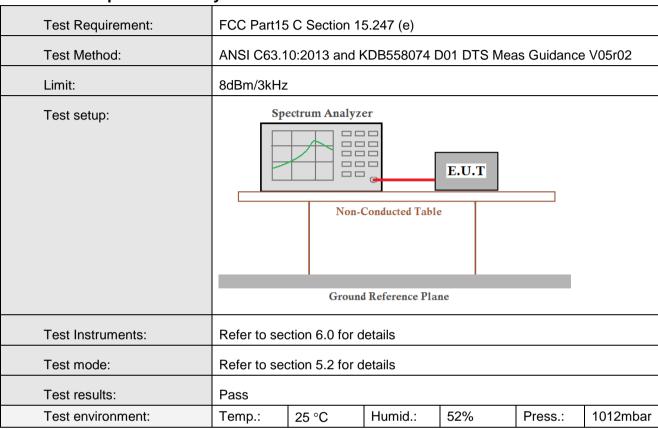


Measurement Data


Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.682		
Middle	0.698	>500	Pass
Highest	0.709		

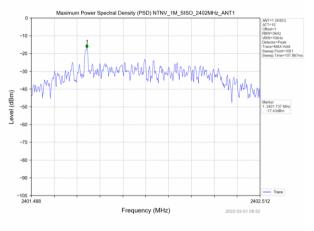

Test plot as follows:

Lowest channel

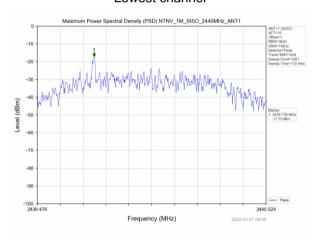

Middle channel

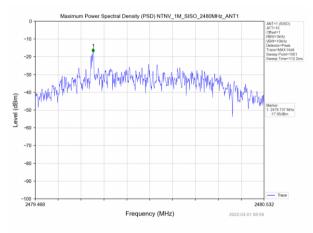
Highest channel

6.4. Power Spectral Density



Measurement Data

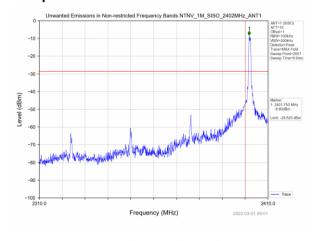

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result	
Lowest	-17.43			
Middle	-17.51	8.00	Pass	
Highest	-17.95			

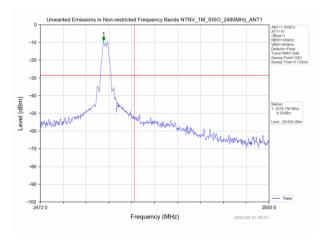

Test plot as follows:

Lowest channel

Middle channel

Highest channel




6.5. Band edges

6.5.1 Conducted Emission Method

0.5.1 Conducted Emission Method									
Test Requirement:	FCC Part15	5 C Section 1	5.247 (d)						
Test Method:	ANSI C63.1	10:2013 and h	KDB558074 [D01 DTS Mea	as Guidance	e V05r02			
Limit:	spectrum ir is produced the 100 kH: the desired	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Sp	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to se	ction 6.0 for c	letails						
Test mode:	Refer to se	ction 5.2 for c	letails						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

Test plot as follows:

Lowest channel

Highest channel

¹F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

6.5.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205						
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	All of the restrict 2500MHz) data		tested, only	the worst ba	and's (2310MHz to				
Test site:		Measurement Distance: 3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak				
	Above 1G112	RMS	1MHz	3MHz	Average				
Limit:	Frequency Limit (dBuV/m @3m) Value								
	Above 1	GHz –	54.0 74.0		Average Peak				
Test setup:	Tum Table Can Selection (150cm Selection 150cm								
Test Procedure:	1. The EUT was			eamplifier	E motoro abovo				
	the ground at determine the 2. The EUT was antenna, which tower. 3. The antenna ground to det horizontal and measuremen 4. For each sus and then the and the rotal to the maximum 5. The test-rece Specified Bar 6. If the emission limit specified the EUT wou 10dB margin average meth 7. The radiation And found the	a 3 meter can e position of the set 3 meters ch was mounted height is varied termine the mad vertical polar t. pected emission antenna was turned reading. Silver system was how level of the Ed, then testing old be reported, would be re-tend as specifie measurement.	aber. The take highest rade away from the away from the don the top of the from one maximum value izations of the from 0 degrees set to Pear aximum Hold be stop Otherwise the sted one by d and then rest are performance in the from the fr	ole was rotate diation. The interference of a variable meter to four error of the field are antenna at the was arrangents from 1 m grees to 360 at Detect Fund Mode. The mode was 1 pped and the he emissions one using preported in a med in X, Y, to is worse care	ed 360 degrees to ce-receiving e-height antenna meters above the strength. Both re set to make the d to its worst case eter to 4 meters degrees to find nction and OdB lower than the e peak values of s that did not have eak, quasi-peak or				
Test Instruments:	Refer to section								
Test mode:	Refer to section	5.2 for details							
Test results:	Pass								

Tel: 0755-23595200 Fax: 0755-23595201

Report No.: HTT	Γ202202336F01
-----------------	---------------

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
-------------------	--------	-------	---------	-----	---------	----------

Measurement Data

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

	(- ,						
Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2390	58.26	26.20	5.72	33.30	56.88	74	-17.12	peak
2390	46.30	26.20	5.72	33.30	44.92	54	-9.08	AVG

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2390	60.37	26.20	5.72	33.30	58.99	74	-15.01	peak
2390	46.27	26.20	5.72	33.30	44.89	54	-9.11	AVG

Operation Mode: GFSK TX High channel (2480MHz)

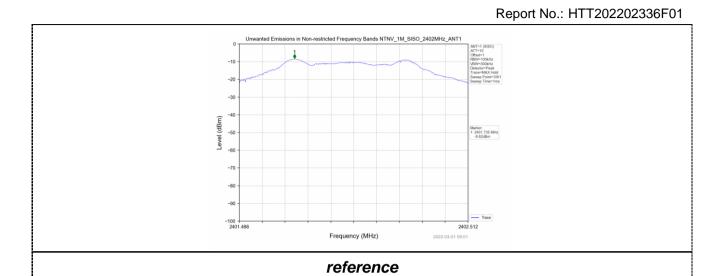
Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	55.21	28.60	6.97	32.70	58.08	74	-15.92	peak
2483.5	41.38	28.60	6.97	32.70	44.25	54	-9.75	AVG

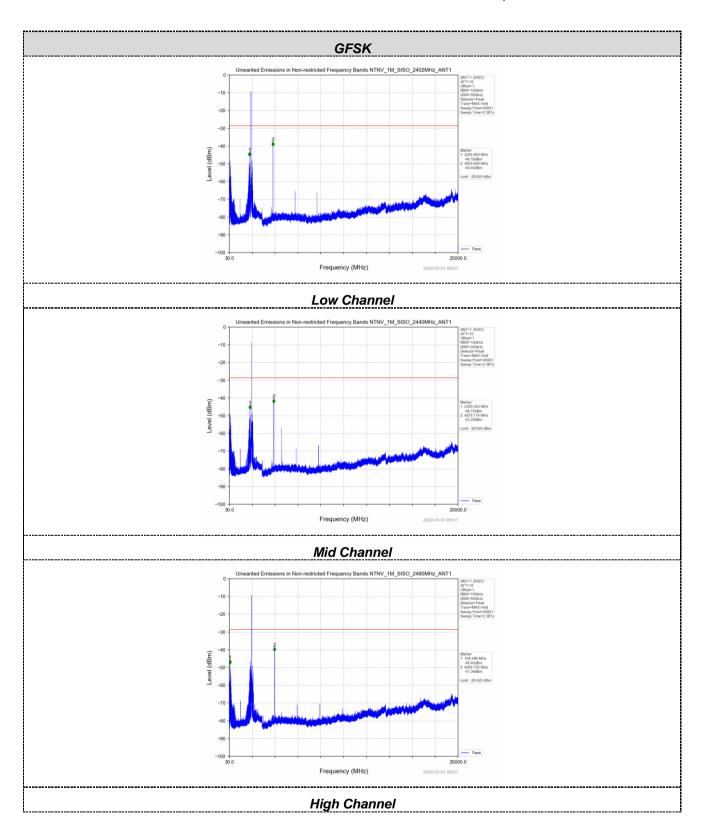
Vertical:

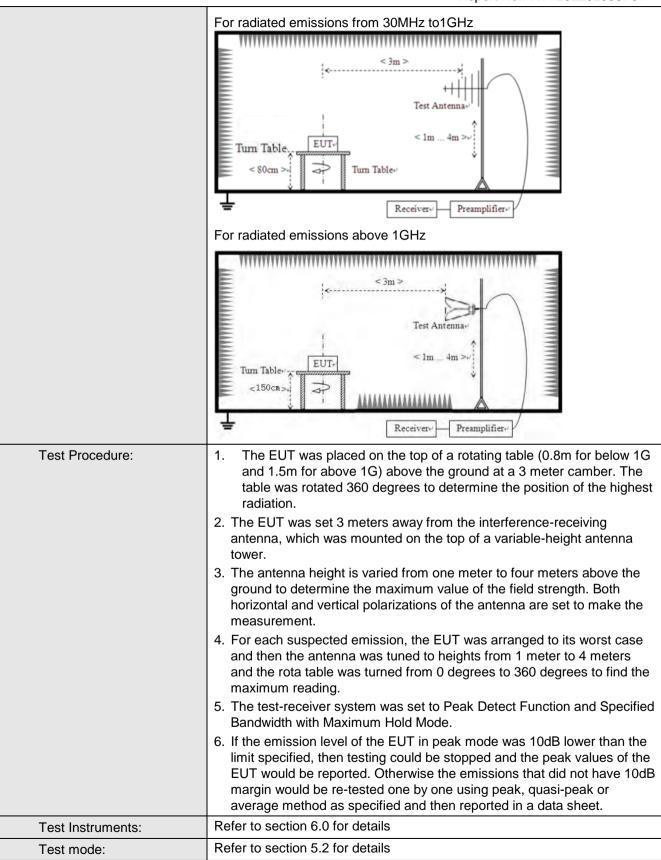
Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	57.15	28.60	6.97	32.70	60.02	74	-13.98	peak
2483.5	42.57	28.60	6.97	32.70	45.44	54	-8.56	AVG

6.6. Spurious Emission


6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar


Test plot as follows:



6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section	n 15	.209				
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement Distar	ice: 3	Bm				
Receiver setup:	Frequency		Detector RI		N	VBW	Value
	9KHz-150KHz	Qυ	asi-peak	2001	Hz	600Hz	z Quasi-peak
	150KHz-30MHz	Qι	asi-peak	9KF	Ηz	30KH	z Quasi-peak
	30MHz-1GHz	Qι	ıasi-peak 120K		Ήz	300KH	z Quasi-peak
	Ab 2112 4 CH =		Peak	1MF	Ηz	3MHz	Peak
	Above 1GHz		Peak	1MF	Ηz	10Hz	Average
Limit:	Frequency		Limit (u\	//m)	٧	'alue	Measurement Distance
	0.009MHz-0.490M	Hz	2400/F(k	2400/F(KHz)		QP	300m
	0.490MHz-1.705MH		24000/F(KHz)		QP		30m
	1.705MHz-30MHz		30		QP		30m
	30MHz-88MHz		100			QP	
	88MHz-216MHz	,	150			QP	
	216MHz-960MH	Z	200			QP	3m
	960MHz-1GHz		500			QP	5111
	Above 1GHz		500		Average		
	7,5000 10112		5000		Peak		
Test setup:	For radiated emissio	ns fro	< 3m >	*******			

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					

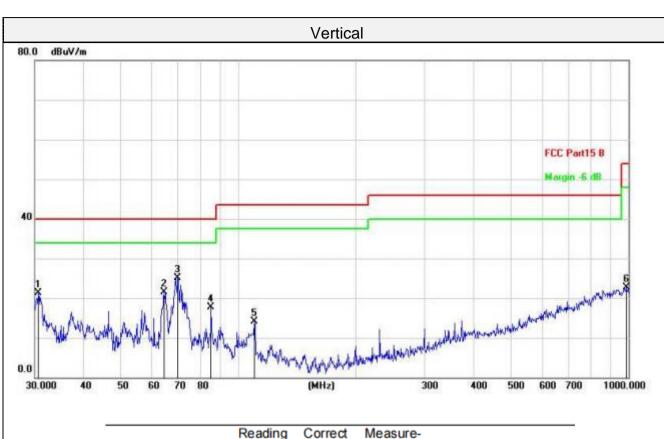
Measurement data:

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.



■ Below 1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		45.3755	30.99	-17.21	13.78	40.00	-26.22	QP
2		60.7044	38.25	-18.26	19.99	40.00	-20.01	QP
3		69.6005	37.87	-19.89	17.98	40.00	-22.02	QP
4		113.3163	34.53	-20.18	14.35	43.50	-29.15	QP
5	*	290.0172	45.05	-17.26	27.79	46.00	-18.21	QP
6		354.1831	42.57	-16.81	25.76	46.00	-20.24	QP

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		30.6379	39.75	-18.53	21.22	40.00	-18.78	QP
2		64.4331	40.37	-18.94	21.43	40.00	-18.57	QP
3	*	69.8450	45.01	-19.94	25.07	40.00	-14.93	QP
4		84.9995	39.61	-21.96	17.65	40.00	-22.35	QP
5		109.7960	35.09	-20.89	14.20	43.50	-29.30	QP
6		986.0717	26.76	-3.97	22.79	54.00	-31.21	QP

Final Level =Receiver Read level + Correct Factor

Above 1-25GHz

CH Low (2402MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	51.33	31.40	8.18	32.10	58.81	74.00	-15.19	peak
4804	36.57	31.40	8.18	32.10	44.05	54.00	-9.95	AVG
7206	44.25	35.80	10.83	31.40	59.48	74.00	-14.52	peak
7206	28.77	35.80	10.83	31.40	44.00	54.00	-10.00	AVG

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detecto Type
4804	52.39	31.40	8.18	32.10	59.87	74.00	-14.13	peak
4804	36.27	31.40	8.18	32.10	43.75	54.00	-10.25	AVG
7206	42.99	35.80	10.83	31.40	58.22	74.00	-15.78	peak
7206	30.22	35.80	10.83	31.40	45.45	54.00	-8.55	AVG

CH Middle (2440MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4880	51.26	31.40	9.17	32.10	59.73	74.00	-14.27	peak
4880	36.47	31.40	9.17	32.10	44.94	54.00	-9.06	AVG
7320	44.32	35.80	10.83	31.40	59.55	74.00	-14.45	peak
7320	29.88	35.80	10.83	31.40	45.11	54.00	-8.89	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

ter Reading (dBµV)	Factor (dB/m)	Cable Loss	Factor	Emission Level	Limits	Margin	_				
(dBµV)	(dB/m)	j				_					
(dBµV)	(dB/m)			1			Detector				
	. ,	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type				
53.30	31.40	9.17	32.10	61.77	74.00	-12.23	peak				
33.30	31.40	3.17	32.10	01.77	74.00	-12.20	peak				
36.15	31.40	9.17	32.10	44.62	54.00	-9.38	AVG				
42.88	35.80	10.83	31.40	58.11	74.00	-15.89	peak				
29.31	35.80	10.83	31.40	44.54	54.00	-9.46	AVG				
Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.											
	29.31	29.31 35.80	29.31 35.80 10.83	29.31 35.80 10.83 31.40	29.31 35.80 10.83 31.40 44.54	29.31 35.80 10.83 31.40 44.54 54.00	29.31 35.80 10.83 31.40 44.54 54.00 -9.46				

CH High (2480MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4960	51.47	31.40	9.17	32.10	59.94	74.00	-14.06	peak
4960	37.15	31.40	9.17	32.10	45.62	54.00	-8.38	AVG
7440	42.90	35.80	10.83	31.40	58.13	74.00	-15.87	peak
7440	27.25	35.80	10.83	31.40	42.48	54.00	-11.52	AVG

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4960	52.38	31.40	9.17	32.10	60.85	74.00	-13.15	peak
4960	34.28	31.40	9.17	32.10	42.75	54.00	-11.25	AVG
7440	41.66	35.80	10.83	31.40	56.89	74.00	-17.11	peak
7440	28.57	35.80	10.83	31.40	43.80	54.00	-10.20	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

