

	SAR TEST REPORT			
Report Reference No:	LCSA02274049EB	ab		
Date Of Issue:	March 20, 2024			
Testing Laboratory Name::	Shenzhen LCS Compliance Test	ing Laboratory Ltd.		
Address:	101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China			
Testing Location/ Procedure:	Full application of Harmonised standa	rds ■		
	Partial application of Harmonised star	ndards 🗆		
	Other standard testing method \Box			
Applicant's Name:	Shenzhen Yigao Electronic Technolo	gy Co., Limited		
Address:	4F-5F, C1 Building, Tongfuyu Xinqiao Ir Shenzhen, Guangdong, China	ndustrial Park Shajing, Baoan		
Test Specification:				
Standard:	FCC 47CFR §2.1093, ANSI/IEEE C95	5.1-2019, IEEE 1528-2013		
Test Report Form No:	LCSEMC-1.0			
	Shenzhen LCS Compliance Testing Laboratory Ltd.			
TRF Originator	Shenzhen LCS Compliance Testing L	aboratory Ltd.		
Master TRF:		-		
Master TRF: Shenzhen LCS Compliance Test This publication may be reproduced LCS Compliance Testing Laboratory Shenzhen LCS Compliance Testing damages resulting from the reader's in	Dated 2014-09 ting Laboratory Ltd. All rights reserve in whole or in part for non-commercial purp y Ltd. is acknowledged as copyright owne Laboratory Ltd. takes noresponsibility for a nterpretation of the reproduced material due	ed. boses as long as the Shenzhe er and source of the materia and will not assume liability fo		
Master TRF: Shenzhen LCS Compliance Test This publication may be reproduced in LCS Compliance Testing Laboratory Shenzhen LCS Compliance Testing damages resulting from the reader's in Test Item Description	Dated 2014-09 ting Laboratory Ltd. All rights reserve in whole or in part for non-commercial purp y Ltd. is acknowledged as copyright owne Laboratory Ltd. takes noresponsibility for a nterpretation of the reproduced material due 10.1inch tablet	ed. boses as long as the Shenzhe er and source of the materia and will not assume liability fo		
Master TRF: Shenzhen LCS Compliance Test This publication may be reproduced LCS Compliance Testing Laboratory Shenzhen LCS Compliance Testing damages resulting from the reader's in Test Item Description Trade Mark	Dated 2014-09 ting Laboratory Ltd. All rights reserve in whole or in part for non-commercial purp y Ltd. is acknowledged as copyright owne Laboratory Ltd. takes noresponsibility for a nterpretation of the reproduced material due 10.1inch tablet EGOTEK	ed. boses as long as the Shenzhe er and source of the materia and will not assume liability fo		
Master TRF: Shenzhen LCS Compliance Test This publication may be reproduced in LCS Compliance Testing Laboratory Shenzhen LCS Compliance Testing damages resulting from the reader's in Test Item Description	Dated 2014-09 ting Laboratory Ltd. All rights reserve in whole or in part for non-commercial purp y Ltd. is acknowledged as copyright owne Laboratory Ltd. takes noresponsibility for a nterpretation of the reproduced material due 10.1inch tablet EGOTEK	ed. boses as long as the Shenzhe er and source of the materia and will not assume liability fo to its placement and context.		
Master TRF: Shenzhen LCS Compliance Test This publication may be reproduced in LCS Compliance Testing Laboratory Shenzhen LCS Compliance Testing damages resulting from the reader's in Test Item Description: Trade Mark: Model/Type Reference: Ratings	Dated 2014-09 ting Laboratory Ltd. All rights reserve in whole or in part for non-commercial purp y Ltd. is acknowledged as copyright owne Laboratory Ltd. takes noresponsibility for a <u>nterpretation of the reproduced material due</u> 10.1inch tablet EGOTEK AK10 Input: 5V=2000mA For AC/DC Adapter Input: 100-240V~ Adapter Output: 5V=2000mA	ed. boses as long as the Shenzhe er and source of the materia and will not assume liability fo to its placement and context.		
Master TRF: Shenzhen LCS Compliance Test This publication may be reproduced in LCS Compliance Testing Laboratory Shenzhen LCS Compliance Testing damages resulting from the reader's in Test Item Description: Trade Mark: Model/Type Reference: Ratings	Dated 2014-09 ting Laboratory Ltd. All rights reserve in whole or in part for non-commercial purp y Ltd. is acknowledged as copyright owner Laboratory Ltd. takes noresponsibility for a nterpretation of the reproduced material due 10.1inch tablet EGOTEK AK10 Input: 5V=2000mA For AC/DC Adapter Input: 100-240V~ Adapter Output: 5V=2000mA DC 3.8V by Rechargeable Li-ion Batter	ed. boses as long as the Shenzhe er and source of the materia and will not assume liability fo to its placement and context.		
Master TRF: Shenzhen LCS Compliance Test This publication may be reproduced in LCS Compliance Testing Laboratory Shenzhen LCS Compliance Testing damages resulting from the reader's in Test Item Description: Trade Mark Model/Type Reference	Dated 2014-09 ting Laboratory Ltd. All rights reserve in whole or in part for non-commercial purp y Ltd. is acknowledged as copyright owner Laboratory Ltd. takes noresponsibility for a nterpretation of the reproduced material due 10.1inch tablet EGOTEK AK10 Input: 5V=2000mA For AC/DC Adapter Input: 100-240V~ Adapter Output: 5V=2000mA DC 3.8V by Rechargeable Li-ion Batter	ed. boses as long as the Shenzhe er and source of the materia and will not assume liability fo to its placement and context.		
Master TRF: Shenzhen LCS Compliance Test This publication may be reproduced i LCS Compliance Testing Laboratory Shenzhen LCS Compliance Testing damages resulting from the reader's i Test Item Description: Trade Mark Model/Type Reference Ratings: Result	Dated 2014-09 ting Laboratory Ltd. All rights reserve in whole or in part for non-commercial purp y Ltd. is acknowledged as copyright owne Laboratory Ltd. takes noresponsibility for a nterpretation of the reproduced material due 10.1inch tablet EGOTEK AK10 Input: 5V=2000mA For AC/DC Adapter Input: 100-240V~ Adapter Output: 5V=2000mA DC 3.8V by Rechargeable Li-ion Batter Positive	ed. poses as long as the Shenzhe er and source of the materia and will not assume liability for a to its placement and context. , 50/60Hz, 0.35A ery, 6000mAh		

Positive

SAR -- TEST REPORT

Li和检测股份 CSTesting Lab	SAR TEST REPORT		SAR TEST REPORT		SAR TEST REPORT	
Test Report No. :	LCSA02274049EB	March 20, 2024 Date of issue				
EUT	: 10.1inch tablet					
Type/Model	: AK10					
Applicant Address Telephone Fax	: 4F-5F, C1 Building, Tongf Baoan, Shenzhen, Guang	uyu Xinqiao Industrial Park Shajing,				
Manufacturer Address Telephone Fax		uyu Xinqiao Industrial Park Shajing,				
Factory	 Shenzhen EGO Devices Co., Limited 4F-5F, C1 Building, Tongfuyu Xinqiao Industrial Park Shajing, Baoan, Shenzhen, Guangdong, China 					
Telephone Fax	: / : /					

Test Result

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revison History

Revision	Issue Date	Revision Content	Revised By
000	March 20, 2024	Initial Issue	122

1. TEST STANDARDS AND TEST DESCRIPTION. 6 1.1. STATEMENT OF COMPLIANCE 6 1.2. TEST LOCATION 7 1.3. TEST FACILITY. 7 1.4. TEST LABORATORY ENVIRONMENT. 7 1.5. TEST FACILITY. 7 1.6. DUT ANTENNA LOCATIONS 10 1.7. TEST SPECIFICATION. 8 1.8. RF ENVOSURE HIMITS 12 1.9. EQUIPMENT LIST. 13 2.19. EQUIPMENT LIST. 13 2.10. SAR MEASUREMENTS SYSTEM CONFIGURATION 14 2.1. SAR MEASUREMENTS SYSTEM CONFIGURATION 14 2.1. SAR MEASUREMENT SYSTEM 14 2.1. SAR MEASUREMENT NOBLE CTRONICS (DAE) 17 2.4. SAM TWIN PHANTOM 17 2.5. ELI PHANTOM 17 2.6. DEVICE HOLDER FOR TRANSMITTERS 19 2.6. DEVICE HOLDER FOR TRANSMITTERS 20 3.7. MEASUREMENT PROCEDURE 20 3.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8		TABLE OF CONTENTS	
1.1. STATEMENT OF COMPLIANCE 6 1.2. TEST LOCATION 7 1.3. TEST EACILITY 7 1.4. TEST LABORATORY ENVIRONMENT 7 1.5. PRODUCT DISCRIPTION 8 1.6. DUT ANTENNA LOCATIONS 10 1.7. TEST SPECIFICATION 12 1.8. RF ERYORURE LIMITS 12 1.9. EQUIPMENT LIST 13 2.1. SAR MEASUREMENTS SYSTEM 14 2.1. SAR MEASUREMENTS SYSTEM 14 2.1. SAR MEASUREMENT PROCEDURE 17 2.4. SAM TWIN PHANTOM 17 2.5. ELI PHANTOM 17 2.6. DEVICE HOLDER FOR TRANSMITTERS 19 2.7. MEASUREMENT VARIABILITY AND UNCERTAINTY 24 3.1. SAR MEASUREMENT VARIABILITY AND UNCERTAINTY 24 3.2. SAR	1. TES	T STANDARDS AND TEST DESCRIPTION	6
12. TEST LOCATION. 7 13. TEST FACILITY. 7 14. TEST LABORATORY ENVIRONMENT 7 15. PRODUCT DESCRIPTION 8 16. DUT ANTENNA LOCATIONS 10 17. TEST SPECIFICATION 8 18. RF EXPOSURE LIMITS 12 19. EQUIPMENT LIST 13 21. SAR MEASUREMENTS SYSTEM 14 21. SAR MEASUREMENT SYSTEM 14 22. ISOTORCE = Field Propes E EXIDV4 16 23. DATA ACQUISITION ELECTRONICS (DAE) 17 24. SAM TWEN PHANTOM 17 25. ELI PHANTOM 18 26. DEVICE HOLDER FOR TRANSMITTERS 19 27. MEASUREMENT VARIABILITY AND UNCERTAINTY 24 31. SAR MEASUREMENT VARIABILITY 24 32. SAR MEASUREMENT VARIABILITY 24 33. SAR MEASUREMENT VARIABILITY 24 34. TEST POSITION CONFIGURATION 25 35. SAR SYSTEM VERIFICATION PROCEDURE 26 35. SAR SYSTEM			
13. TEST FACILITY. 7 14. TEST LABORATORY ENVIRONMENT 7 15. PRODUCT DESCRIPTION 7 15. PRODUCT DESCRIPTION 8 16. DUT ANTENNA LOCATIONS 10 17. TEST SPECIFICATION 11 18. RF EXPOSUBE LIMITS 12 19. EQUIPMENT LIST 13 2. SAR MEASUREMENTS SYSTEM CONFIGURATION 14 2.1. SAR MEASUREMENTS SYSTEM 14 2.2. ISOTROPIC E-FIELD PROBE EX3DV4 16 2.3. DATA ACQUISITION ELECTRONICS (DAE) 17 2.4. SAM TWIN PHANTOM 17 2.5. ELI PHANTOM 17 2.6. DEVICE HOLDER FOR TRANSMITTERS 19 2.7. MEASUREMENT VARIABILITY AND UNCERTAINTY 24 3.1. SAR MEASUREMENT VARIABILITY AND UNCERTAINTY 24 3.2. SAR MEASUREMENT VARIABILITY 24 3.1. SAR MEASUREMENT VARIABILITY 24 3.2. SAR MEASUREMENT UNCERTAINTY 25 4. DESCRIPTION OF TEST POSITION <td></td> <td></td> <td></td>			
1.4. TEST LABORATORY ENVIRONMENT 7 1.5. PRODUCT DESCRIPTION 7 1.6. DUT ANTENNA LOCATIONS 10 1.7. TEST SPECIFICATION 11 1.8. RF EXPOSURE LIMITS 12 1.9. EQUIPMENT LIST 12 1.9. EQUIPMENT LIST 13 2. SAR MEASUREMENTS SYSTEM CONFIGURATION 14 2.1. SAR MEASUREMENT SYSTEM 14 2.2. ISOTROPIC E-FIELD PROBE EX3DV4 16 2.3. DATA ACQUISTION ELECTRONICS (DAE) 17 2.4. SAM TWIN PHANTOM 17 2.5. ELI PHANTOM 18 2.6. DEVICE HOLDER FOR TRANSMITTERS 19 2.7. MEASUREMENT PROCEDURE 20 3. SAR MEASUREMENT VARIABILITY AND UNCERTAINTY 24 3.1. SAR MEASUREMENT VARIABILITY 24 3.2. SAR MEASUREMENT VARIABILITY 24 3.2. SAR MEASUREMENT VARIABILITY 24 3.1. TEST POSITION OF TEST POSITION 25 5. J. TESST ONFIGURATION 25 5. J. TESST ONFIGURATION 25 5. SAR SYSTEM VERIFICATION PROCEDURE 36 5. J. TESST CONDIGURATION 26 5.1. TESSUE SIMULATE LIQUID 26			
15. PRODUCT DESCRIPTION	1.4.		
1.6. DUT ANTENNA LOCATIONS 10 1.7. TEST SPECIFICATION 11 1.8. RF EXPOSURE LIMITS 12 1.9. EQUIPMENT LIST 13 2. SAR MEASUREMENTS SYSTEM CONFIGURATION 14 2.1. SAR MEASUREMENT SYSTEM 16 2.3. DATA ACQUISITION ELECTRONICS (DAE) 17 2.4. SAM TWIN PHANTOM 17 2.5. ELIPINATOM 18 2.6. DEVICE HOLDER FOR TRANSMITTERS 19 2.7. MEASUREMENT PROCEDURE 20 3. SAR MEASUREMENT PROCEDURE 24 3. SAR MEASUREMENT VARIABILITY 24 3.2. SAR MEASUREMENT UNCERTAINTY 24 3.2. SAR MEASUREMENT UNCERTAINTY 24 3.2. SAR MEASUREMENT UNCERTAINTY 24 3.2. SAR MEASUREMENT VARIABILITY 24 3.2. SAR MEASUREMENT VARIABILITY 24 3.2. SAR MEASUREMENT NALIABILITY 24 3.2. SAR MEASUREMENT VARIABILITY 24 4. DESCRIPTION OF TEST POSITION 25 5. SAR SYSTEM	1.5.		
1.8. RF EXPOSURE LIMITS 12 1.9. EQUIPMENT LIST 13 2. SAR MEASUREMENTS SYSTEM CONFIGURATION 14 2.1. SAR MEASUREMENT SYSTEM 14 2.1. SAR MEASUREMENT SYSTEM 16 2.2. ISOTOPIC E-FIEL PROBE EX3DV4 16 2.3. DATA ACQUISITION ELECTRONICS (DAE) 17 2.4. SAM TWIN PHANTOM 17 2.5. ELIPHANTOM 18 2.6. DEVICE HOLDER FOR TRANSMITTERS 19 2.7. MEASUREMENT VARIABILITY AND UNCERTAINTY 24 3.1. SAR MEASUREMENT VARIABILITY AND UNCERTAINTY 24 3.2. SAR MEASUREMENT VARIABILITY 24 3.1. SAR MEASUREMENT VARIABILITY 24 3.2. SAR MEASUREMENT UNCERTAINTY 24 3.2. SAR MEASUREMENT UNCERTAINTY 24 4. DESCRIPTION OF TEST POSITION. 25 4.1. TEST POSITIONS CONFIGURATION 25 5. SAR SYSTEM VERIFICATION PROCEDURE 26 5.1. TISSUE SIMULATE LIQUID 26 5.2. SAR SYSTEM CHECK. 28 6. SAR MEASUREMENT PROCEDURE 30 6.1. CONDUCTED POWER MEASUREMENT 30 6.1. CONDUCTED POWER MEASUREMENT 30 6.	1.6.		
1.9. EQUIPMENT LIST 13 2. SAR MEASUREMENTS SYSTEM CONFIGURATION 14 2.1. SAR MEASUREMENT SYSTEM 14 2.2. ISOTROPIC E-FIELD PROBE EX3DV4 16 2.3. DATA ACQUISTION ELECTRONICS (DAE) 17 2.4. SAM TWIN PHANTOM 17 2.5. ELI PHANTOM 17 2.6. DEVICE HOLDER FOR TRANSMITTERS 19 2.7. MEASUREMENT PROCEDURE 20 3. SAR MEASUREMENT VARIABILITY AND UNCERTAINTY. 24 3.1. SAR MEASUREMENT VARIABILITY 24 3.2. SAR MEASUREMENT VARIABILITY 24 3.1. SAR MEASUREMENT VARIABILITY 24 3.2. SAR MEASUREMENT UNCERTAINTY 24 3.2. SAR MEASUREMENT UNCERTAINTY 24 3.4. DESCRIPTION OF TEST POSITION 25 4.1. TEST POSITION SCONFIGURATION 25 5. SAR SYSTEM VERIFICATION PROCEDURE 26 5.1. TISSUE SMULATE LIQUID 26 5.2. SAR SYSTEM CHECK 28 6. SAR MEASUREMENT PROCEDURE 26 5.2. SAR SYSTEM CHECK 28 6. SAR MEASUREMENT PROCEDURE 30 6.1. CONDUCTED POWER MEASUREMENT 30 6.2. WIFI TEST CONDIG	1.7.		
2. SAR MEASUREMENTS SYSTEM CONFIGURATION 14 2.1. SAR MEASUREMENT SYSTEM 14 2.2. ISOTROPIC E-FIELD PROBE EX3DV4 16 2.3. DATA ACQUISITION ELECTRONICS (DAE) 17 2.4. SAM TWIN PHANTOM 17 2.5. ELI PHANTOM 17 2.6. DEVICE HOLDER FOR TRANSMITTERS 19 2.7. MEASUREMENT FORCEDURE 20 3. SAR MEASUREMENT VARIABILITY AND UNCERTAINTY. 24 3. SAR MEASUREMENT VARIABILITY 24 3.2. SAR MEASUREMENT VARIABILITY 24 4.1. TEST POSITION OF TEST POSITION 25 4.1. TEST POSITION SCONFIGURATION 25 5. SAR SYSTEM VERIFICATION PROCEDURE 26 5.1. TISSUE SIMULATE LIQUID 26 5.2. SAR SYSTEM CHECK 28 6. SAR MEASUREMENT PROCEDURE 30 6.1. CONDUCTED POWER MEASUREMENT 30 6.2. WIFI TEST CONFIGURATION 30 6.3. POWER REJULTON 31 7.1. CONDUCTED POWER MEASUREMENT 31 6.4. POW			
2.1. SAR MEASUREMENT SYSTEM 14 2.2. ISOTROPIC E-FIELD PROBE EX3DV4. 16 2.3. DATA ACQUISITION ELECTRONICS (DAE) 17 2.4. SAM TWIN PHANTOM 17 2.5. ELI PHANTOM 17 2.5. ELI PHANTOM 17 2.5. ELI PHANTOM 18 2.6. DEVICE HOLDER FOR TRANSMITTERS. 19 2.7. MEASUREMENT VARIABILITY AND UNCERTAINTY. 24 3.1. SAR MEASUREMENT VARIABILITY 24 3.2. SAR MEASUREMENT UNCERTAINTY 24 3.2. SAR MEASUREMENT UNCERTAINTY 24 3.2. SAR MEASUREMENT UNCERTAINTY 24 3.1. TEST POSITION OF TEST POSITION 25 5. SAR SYSTEM VERIFICATION PROCEDURE 26 5.1. TISSUE SIMULATE LIQUID 26 5.2. SAR SYSTEM VERIFICATION PROCEDURE 26 5.2. SAR SYSTEM CHECK 28 6. SAR MEASUREMENT PROCEDURE 30 6.1. CONDUCTED POWER MEASUREMENT 30 6.2. WIFI TEST CONFIGURATION 33 7. TEST CONDITIONS AND RESULTS 34 7.1. CONDUCTED POWER RESULTS 34 7.1. CONDUCTED POWER RESULTS 34 7.1. CONDUCTED POWER RESULTS <td>1.9.</td> <td>Equipment list</td> <td>13</td>	1.9.	Equipment list	13
2.2. ISOTROPIC E-FIELD PROBE EX3DV4	2. SAR	MEASUREMENTS SYSTEM CONFIGURATION	14
2.2. ISOTROPIC E-FIELD PROBE EX3DV4	2.1.	SAR MEASUREMENT SYSTEM	14
2.4. SAM TWIN PHANTOM 17 2.5. ELI PHANTOM 18 2.6. DEVICE HOLDER FOR TRANSMITTERS 19 2.7. MEASUREMENT PROCEDURE 20 3. SAR MEASUREMENT VARIABILITY AND UNCERTAINTY 24 3.1. SAR MEASUREMENT VARIABILITY 24 3.2. SAR MEASUREMENT VARIABILITY 24 3.2. SAR MEASUREMENT UNCERTAINTY 24 4.1. Test POSITION OF TEST POSITION 25 4.1. Test POSITION S CONFIGURATION 25 5. SAR SYSTEM VERIFICATION PROCEDURE 26 5.1. TISSUE SIMULATE LIQUID. 26 5.2. SAR SYSTEM CHECK 28 6. SAR MEASUREMENT PROCEDURE 26 5.1. TISSUE SIMULATE LIQUID. 26 5.2. SAR SYSTEM CHECK 28 6. SAR MEASUREMENT PROCEDURE 30 30 6.1. CONDUCTED POWER MEASUREMENT 30 6.2. WIFI TEST CONFIGURATION 30 6.3. POWER DRIFT 30 6.4. POWER DRIFT 33 7. TEST	2.2.		
2.5. ELI PHANTOM182.6. DEVICE HOLDER FOR TRANSMITTERS.192.7. MEASUREMENT PROCEDURE.203. SAR MEASUREMENT VARIABILITY AND UNCERTAINTY243.1. SAR MEASUREMENT VARIABILITY243.2. SAR MEASUREMENT VARIABILITY243.2. SAR MEASUREMENT UNCERTAINTY244. DESCRIPTION OF TEST POSITION254.1. TEST POSITION SCONFIGURATION255. SAR SYSTEM VERIFICATION PROCEDURE265.1. TISSUE SIMULATE LIQUID265.2. SAR SYSTEM CHECK286. SAR MEASUREMENT PROCEDURE306.1. CONDUCTED POWER MEASUREMENT306.2. WIFI TEST CONFIGURATION306.3. POWER REDUCTION337. TEST CONDIFIONS AND RESULTS347.1. CONDUCTED POWER RESULTS347.1.	2.3.	DATA ACQUISITION ELECTRONICS (DAE)	17
2.6. DEVICE HOLDER FOR TRANSMITTERS.192.7. MEASUREMENT PROCEDURE.203. SAR MEASUREMENT VARIABILITY AND UNCERTAINTY.243.1. SAR MEASUREMENT VARIABILITY.243.2. SAR MEASUREMENT UNCERTAINTY244. DESCRIPTION OF TEST POSITION254.1. TEST POSITION CONFIGURATION255. SAR SYSTEM VERIFICATION PROCEDURE265.1. TISSUE SIMULATE LIQUID265.2. SAR SYSTEM VERIFICATION PROCEDURE265.2. SAR SYSTEM CHECK.286. SAR MEASUREMENT PROCEDURE306.1. CONDUCTED POWER MEASUREMENT306.2. WIFI TEST CONFIGURATION.306.3. POWER REDUCTION337. TEST CONFIGURATION337. TEST CONDICTED POWER RESULTS.347.1. CONDUCTED POWER RESULTS.347.1. CONDUCTED POWER RESULTS.347.1. CONDUCTED POWER RESULTS.347.1. CONDUCTED POWER RESULTS.347.4. MULTIPLE TRANSMITTER EVALUATION417.3. SAR MEASUREMENT RESULTS447.4. MULTIPLE TRANSMITTER EVALUATION46APPENDIX A: DETAILED SYSTEM CHECK RESULTS47	2.4.	SAM TWIN PHANTOM	17
2.7. MEASUREMENT PROCEDURE203. SAR MEASUREMENT VARIABILITY AND UNCERTAINTY243.1. SAR MEASUREMENT VARIABILITY243.2. SAR MEASUREMENT UNCERTAINTY244. DESCRIPTION OF TEST POSITION254.1. TEST POSITION CONFIGURATION255. SAR SYSTEM VERIFICATION PROCEDURE265.1. TISSUE SIMULATE LIQUID265.2. SAR SYSTEM VERIFICATION PROCEDURE265.2. SAR SYSTEM CHECK286. SAR MEASUREMENT PROCEDURE306.1. CONDUCTED POWER MEASUREMENT306.2. WIFI TEST CONFIGURATION336.4. POWER DEDUCTION337. TEST CONDITIONS AND RESULTS347.1. CONDUCTED POWER RESULTS347.1. CONDUCTED POWER RESULTS347.1. CONDUCTED POWER RESULTS347.4. MULTIPLE TRANSMITTER EVALUATION447.4. MULTIPLE TRANSMITTER EVALUATION46APPENDIX A: DETAILED SYSTEM CHECK RESULTS47	2.5.		
3. SAR MEASUREMENT VARIABILITY AND UNCERTAINTY 24 3.1. SAR MEASUREMENT VARIABILITY 24 3.2. SAR MEASUREMENT UNCERTAINTY 24 4. DESCRIPTION OF TEST POSITION 25 4.1. TEST POSITIONS CONFIGURATION 25 5. SAR SYSTEM VERIFICATION PROCEDURE 26 5.1. TISSUE SIMULATE LIQUID. 26 5.2. SAR SYSTEM CHECK 28 6. SAR MEASUREMENT PROCEDURE 26 5.2. SAR SYSTEM CHECK 28 6. SAR MEASUREMENT PROCEDURE 30 6.1. CONDUCTED POWER MEASUREMENT 30 6.2. WIFI TEST CONFIGURATION 30 6.3. POWER REDUCTION 33 6.4. POWER DRIFT 33 7. TEST CONDITIONS AND RESULTS 34 7.1. CONDUCTED POWER RESULTS 34 7.2. STAND-ALONE SAR TEST EVALUATION 41 7.3. SAR MEASUREMENT RESULTS 44 7.4. MULTIPLE TRANSMITTER EVALUATION 41 7.4. MULTIPLE TRANSMITTER EVALUATION 46 APPENDIX A: DETAILED SYSTEM CHECK RESULTS 47	2.6.	DEVICE HOLDER FOR TRANSMITTERS	19
3.1. SAR MEASUREMENT VARIABILITY.243.2. SAR MEASUREMENT UNCERTAINTY244. DESCRIPTION OF TEST POSITION.254.1. TEST POSITIONS CONFIGURATION255. SAR SYSTEM VERIFICATION PROCEDURE265.1. TISSUE SIMULATE LIQUID.265.2. SAR SYSTEM CHECK.286. SAR MEASUREMENT PROCEDURE306.1. CONDUCTED POWER MEASUREMENT306.2. WIFI TEST CONFIGURATION.306.3. POWER REDUCTION336.4. POWER DRIFT337. TEST CONDITIONS AND RESULTS.347.1. CONDUCTED POWER RESULTS.347.2. STAND-ALONE SAR TEST EVALUATION.417.3. SAR MEASUREMENT RESULTS.447.4. MULTIPLE TRANSMITTER EVALUATION.46APPENDIX A: DETAILED SYSTEM CHECK RESULTS.47	2.7.	MEASUREMENT PROCEDURE	20
3.2. SAR MEASUREMENT UNCERTAINTY 24 4. DESCRIPTION OF TEST POSITION 25 4.1. TEST POSITIONS CONFIGURATION 25 5. SAR SYSTEM VERIFICATION PROCEDURE 26 5.1. TISSUE SIMULATE LIQUID 26 5.2. SAR SYSTEM CHECK 28 6. SAR MEASUREMENT PROCEDURE 30 6.1. CONDUCTED POWER MEASUREMENT 30 6.2. WIFI TEST CONFIGURATION 30 6.3. POWER REDUCTION 33 6.4. POWER DRIFT 33 7. TEST CONDITIONS AND RESULTS 34 7.1. CONDUCTED POWER RESULTS 34 7.2. STAND-ALONE SAR TEST EVALUATION 41 7.3. SAR MEASUREMENT RESULTS 44 7.4. MULTIPLE TRANSMITTER EVALUATION 46 APPENDIX A: DETAILED SYSTEM CHECK RESULTS 47	3. SAR	MEASUREMENT VARIABILITY AND UNCERTAINTY	24
3.2. SAR MEASUREMENT UNCERTAINTY 24 4. DESCRIPTION OF TEST POSITION 25 4.1. TEST POSITIONS CONFIGURATION 25 5. SAR SYSTEM VERIFICATION PROCEDURE 26 5.1. TISSUE SIMULATE LIQUID 26 5.2. SAR SYSTEM CHECK 28 6. SAR MEASUREMENT PROCEDURE 30 6.1. CONDUCTED POWER MEASUREMENT 30 6.2. WIFI TEST CONFIGURATION 30 6.3. POWER REDUCTION 33 6.4. POWER DRIFT 33 7. TEST CONDITIONS AND RESULTS 34 7.1. CONDUCTED POWER RESULTS 34 7.2. STAND-ALONE SAR TEST EVALUATION 41 7.3. SAR MEASUREMENT RESULTS 44 7.4. MULTIPLE TRANSMITTER EVALUATION 46 APPENDIX A: DETAILED SYSTEM CHECK RESULTS 47	3.1.	SAR MEASUREMENT VARIABILITY	24
4.1. TEST POSITIONS CONFIGURATION255. SAR SYSTEM VERIFICATION PROCEDURE265.1. TISSUE SIMULATE LIQUID265.2. SAR SYSTEM CHECK286. SAR MEASUREMENT PROCEDURE306.1. CONDUCTED POWER MEASUREMENT306.2. WIFI TEST CONFIGURATION306.3. POWER REDUCTION336.4. POWER DRIFT337. TEST CONDITIONS AND RESULTS347.1. CONDUCTED POWER RESULTS347.2. STAND-ALONE SAR TEST EVALUATION417.3. SAR MEASUREMENT RESULTS447.4. MULTIPLE TRANSMITTER EVALUATION46APPENDIX A: DETAILED SYSTEM CHECK RESULTS47	3.2.	SAR MEASUREMENT UNCERTAINTY	24
5. SAR SYSTEM VERIFICATION PROCEDURE 26 5.1. TISSUE SIMULATE LIQUID 26 5.2. SAR SYSTEM CHECK 28 6. SAR MEASUREMENT PROCEDURE 30 6.1. CONDUCTED POWER MEASUREMENT 30 6.2. WIFI TEST CONFIGURATION 30 6.3. POWER REDUCTION 33 6.4. POWER DRIFT 33 7. TEST CONDITIONS AND RESULTS 34 7.1. CONDUCTED POWER RESULTS 34 7.2. STAND-ALONE SAR TEST EVALUATION 41 7.3. SAR MEASUREMENT RESULTS 44 7.4. MULTIPLE TRANSMITTER EVALUATION 46 APPENDIX A: DETAILED SYSTEM CHECK RESULTS 47	4. DES	CRIPTION OF TEST POSITION	25
5.1. TISSUE SIMULATE LIQUID			
5.2. SAR SYSTEM CHECK286. SAR MEASUREMENT PROCEDURE306.1. CONDUCTED POWER MEASUREMENT306.2. WIFI TEST CONFIGURATION306.3. POWER REDUCTION336.4. POWER DRIFT337. TEST CONDITIONS AND RESULTS347.1. CONDUCTED POWER RESULTS347.2. STAND-ALONE SAR TEST EVALUATION417.3. SAR MEASUREMENT RESULTS447.4. MULTIPLE TRANSMITTER EVALUATION46APPENDIX A: DETAILED SYSTEM CHECK RESULTS47	5. SAR	SYSTEM VERIFICATION PROCEDURE	26
5.2. SAR SYSTEM CHECK286. SAR MEASUREMENT PROCEDURE306.1. CONDUCTED POWER MEASUREMENT306.2. WIFI TEST CONFIGURATION306.3. POWER REDUCTION336.4. POWER DRIFT337. TEST CONDITIONS AND RESULTS347.1. CONDUCTED POWER RESULTS347.2. STAND-ALONE SAR TEST EVALUATION417.3. SAR MEASUREMENT RESULTS447.4. MULTIPLE TRANSMITTER EVALUATION46APPENDIX A: DETAILED SYSTEM CHECK RESULTS47	5.1.	TISSUE SIMULATE LIQUID	
6.1. CONDUCTED POWER MEASUREMENT306.2. WIFI TEST CONFIGURATION.306.3. POWER REDUCTION336.4. POWER DRIFT337. TEST CONDITIONS AND RESULTS347.1. CONDUCTED POWER RESULTS347.2. STAND-ALONE SAR TEST EVALUATION417.3. SAR MEASUREMENT RESULTS447.4. MULTIPLE TRANSMITTER EVALUATION46APPENDIX A: DETAILED SYSTEM CHECK RESULTS47			
6.2. WIFI TEST CONFIGURATION.306.3. POWER REDUCTION336.4. POWER DRIFT337. TEST CONDITIONS AND RESULTS.347.1. CONDUCTED POWER RESULTS.347.2. STAND-ALONE SAR TEST EVALUATION417.3. SAR MEASUREMENT RESULTS.447.4. MULTIPLE TRANSMITTER EVALUATION.46APPENDIX A: DETAILED SYSTEM CHECK RESULTS47	6. SAR	MEASUREMENT PROCEDURE	30
6.2. WIFI TEST CONFIGURATION.306.3. POWER REDUCTION336.4. POWER DRIFT337. TEST CONDITIONS AND RESULTS.347.1. CONDUCTED POWER RESULTS.347.2. STAND-ALONE SAR TEST EVALUATION417.3. SAR MEASUREMENT RESULTS.447.4. MULTIPLE TRANSMITTER EVALUATION.46APPENDIX A: DETAILED SYSTEM CHECK RESULTS47	61	CONDUCTED POWER MEASUREMENT	30
6.3. POWER REDUCTION336.4. POWER DRIFT337. TEST CONDITIONS AND RESULTS347.1. CONDUCTED POWER RESULTS347.2. STAND-ALONE SAR TEST EVALUATION417.3. SAR MEASUREMENT RESULTS447.4. MULTIPLE TRANSMITTER EVALUATION46APPENDIX A: DETAILED SYSTEM CHECK RESULTS47			
6.4. POWER DRIFT	6.3.		
7.1. CONDUCTED POWER RESULTS 34 7.2. STAND-ALONE SAR TEST EVALUATION 41 7.3. SAR MEASUREMENT RESULTS 44 7.4. MULTIPLE TRANSMITTER EVALUATION 46 APPENDIX A: DETAILED SYSTEM CHECK RESULTS 47	6.4.		
7.2. STAND-ALONE SAR TEST EVALUATION 41 7.3. SAR MEASUREMENT RESULTS 44 7.4. MULTIPLE TRANSMITTER EVALUATION 46 APPENDIX A: DETAILED SYSTEM CHECK RESULTS 47	7. TES	T CONDITIONS AND RESULTS	34
7.2. STAND-ALONE SAR TEST EVALUATION 41 7.3. SAR MEASUREMENT RESULTS 44 7.4. MULTIPLE TRANSMITTER EVALUATION 46 APPENDIX A: DETAILED SYSTEM CHECK RESULTS 47	71	CONDUCTED POWER RESULTS	34
7.3. SAR MEASUREMENT RESULTS			
7.4. MULTIPLE TRANSMITTER EVALUATION			
APPENDIX B: DETAILED TEST RESULTS	APPE	NDIX A: DETAILED SYSTEM CHECK RESULTS	47
	APPE	NDIX B: DETAILED TEST RESULTS	47

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Scan code to check authenticity

1. TEST STANDARDS AND TEST DESCRIPTION 1.1. Statement of Compliance

The maximum of results of SAR found during testing for AK10 are follows:

<Highest Reported standalone SAR Summary>

Classment Class	Frequency Band	Body (Report SAR1-g (W/kg)		
01835	Danu	(Separation Distance 0mm)		
DTS	wiFi2.4G	0.670		
ST LCS Testing	WIFI5.2G	0.339		
NII	WIFI5.3G	0.386		
INII	WIFI5.6G	0.462		
	WIFI5.8G	0.713		

Note

1) This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47CFR §2.1093 and ANSI/IEEE C95.1-2019, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

1.2. Test Location

Company:	Shenzhen LCS Compliance Testing Laboratory Ltd.
Address:	101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
Telephone:	(86)755-82591330
Fax:	(86)755-82591330
Web:	www.LCS-cert.com
E-mail:	webmaster@LCS-cert.com

1.3. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC Designation Number is CN5024. CAB identifier is CN0071. CNAS Registration Number is L4595. Test Firm Registration Number: 254912.

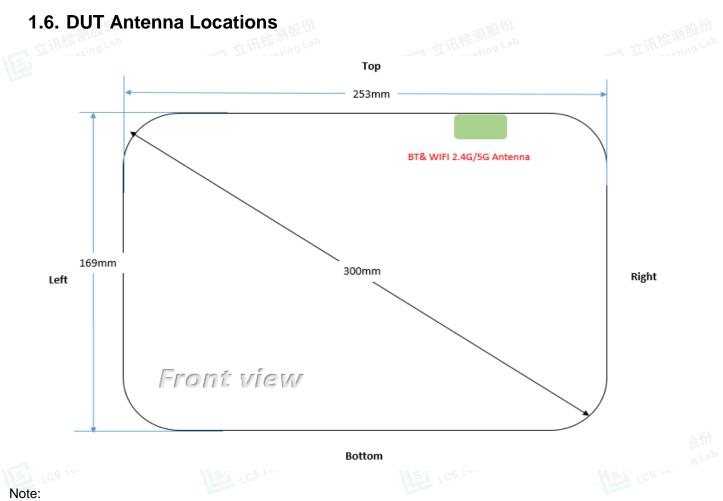
1.4. Test Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C	till the pring La
Relative humidity	Min. = 30%, Max. = 70%	ST LCS TOST
Ground system resistance	< 0.5 Ω	
Atmospheric pressure:	950-1050mbar	
	and in compliance with requirement of standards and in compliance with requirement of standards	

1.5. Product Description

The **Shenzhen Yigao Electronic Technology Co., Limited**'s Model: AK10 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

EUT	: 10.1inch tablet
Test Model	: AK10
Additional Model No	: ET-1027,ET-1028,AK11,AK12
Model Declaration	: PCB board, structure and internal of these model(s) are the same,So no additional models were tested
Power Supply	 Input: 5V 2000mA For AC/DC Adapter Input: 100-240V~, 50/60Hz, 0.35A Adapter Output: 5V 2000mA DC 3.8V by Rechargeable Li-ion Battery, 6000mAh
Hardware Version	:/
Software Version	:/
Bluetooth	:
Frequency Range	: 2402MHz~2480MHz
Channel Number	: 79 channels for Bluetooth V5.4 (DSS) 40 channels for Bluetooth V5.4 (DTS)
Channel Spacing	: 1MHz for Bluetooth V5.4 (DSS) 2MHz for Bluetooth V5.4 (DTS)
Modulation Type	2MHz for Bluetooth V5.4 (DTS) : GFSK, π/4-DQPSK, 8-DPSK for Bluetooth V5.4 (DSS) GFSK for Bluetooth V5.4 (DTS)
Bluetooth Version	: V5.4
Antenna Description	: FPC Antenna, 1.65dBi(Max.)
WIFI(2.4G Band)	:
Frequency Range	: 2412MHz~2462MHz
Channel Number	: 11 Channels for 20MHz bandwidth (2412~2462MHz) 7 Channels for 40MHz bandwidth (2422~2452MHz)
Channel Spacing	: 5MHz
Modulation Type	: IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK) IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ax: OFDMA (1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK)
Antenna Description	: FPC Ántenna, 1.65dBi(Max.)
WIFI(5.2G Band)	:
Frequency Range	: 5150MHz~5250MHz
Channel Number	: 4 channels for 20MHz bandwidth(5180MHz~5240MHz)
Modulation Type	2 channels for 40MHz bandwidth(5190MHz~5230MHz) : IEEE 802.11a: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ac: OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ax: OFDMA (1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK)



S/	
Page 9	of 47 FCC ID: 2A5EI-AK10 Report No.: LCSA02274049EB
Antenna Description	: FPC Antenna, 1.41dBi(Max.)
5.3G WLAN	and B
Frequency Range	: 5250-5350MHz
Channel Number	
Modulation Type	2 channels for 40MHz bandwidth(5270MHz~5310MHz) : IEEE 802.11a: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ac: OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ax: OFDMA (1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK)
Antenna Description	: FPC Ántenna, 1.40dBi(Max.)
5.5G WLAN	
Frequency Range	: 5470-5725MHz
Channel Number	: 11 Channels for 20MHz bandwidth(5500MHz-5700MHz) 5 Channels for 40MHz bandwidth(5510MHz-5670MHz)
Modulation Type	: IEEE 802.11a: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ac: OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ax: OFDMA (1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK)
Antenna Description	: FPC Ántenna, 1.31dBi(Max.)
WIFI(5.8G Band)	:
Frequency Range	: 5725MHz~5850MHz
Channel Number	: 5 channels for 20MHz bandwidth(5745MHz~5825MHz) 2 channels for 40MHz bandwidth(5755MHz~5795MHz)
Modulation Type	: IEEE 802.11a: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11a: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ac: OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ax: OFDMA (1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK)
Antenna Description	: FPC Ántenna, 1.44dBi(Max.)

 Per KDB 616217, the diagonal length is > 200mm, the device is considered a "tablet" device and needed to test 0mm 1-g body SAR.

Distance from the antenna to the EUT edge(mm)					
Mode Front Back Left Right Top Bottom					
BT&WIFI 2.4G/5G Antenna 5 5 172 64 5 146					

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Scan code to check authenticity

1.7. Test Specification

1.7. Test Specific	
Identity	Document Title
FCC 47CFR §2.1093	Radiofrequency Radiation Exposure Evaluation: Portable Devices
ANSI/IEEE C95.1-2019	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.
IEEE 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
KDB 248227 D01	SAR Guidance for IEEE 802 11 Wi-Fi SAR v02r02
KDB 616217 D04	SAR for Tablet and Laptop
KDB 447498 D01	General RF Exposure Guidance v06
KDB 865664 D01	SAR Measurement 100 MHz to 6 GHz v01r04
KDB 865664 D02	RF Exposure Reporting v01r02
KDB 690783 D01	SAR Listings on Grants v01r03

1.8. RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain*Trunk)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

Notes:

* The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

** The Spatial Average value of the SAR averaged over the whole body.

*** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.)

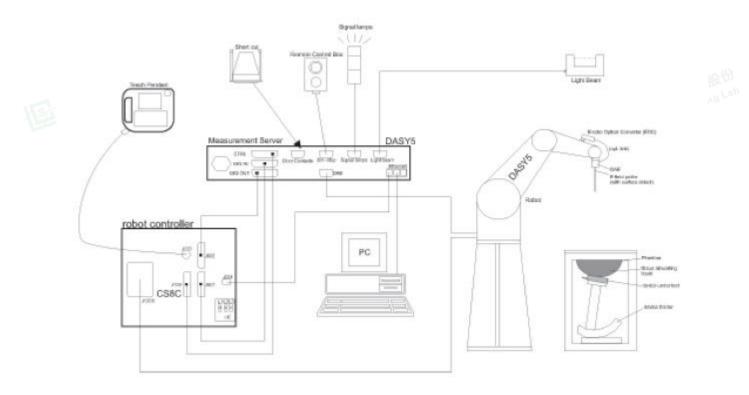
1.9. Equipment list

		PEAG DASY5 Profes		I Winsting	Lab	甘州
		AR Test System (Free	quency range 30	00MHz-6GHz)		LCS 1º
Sof	tware Reference D	ASY52; SEMCAD X				
		Hard	dware Referend			
	Equipment	Manufacturer	Model	Serial Number	Calibration Date	Due date of calibration
\boxtimes	PC	Lenovo	NA	NA	NA	NA
\boxtimes	Twin Phantom	SPEAG	SAM V5.0	1850	NCR	NCR
\boxtimes	ELI Phantom	SPEAG	ELI V6.0	2010	NCR	NCR
\boxtimes	DAE	SPEAG	DAE3	373	2024/1/3	2025/1/2
\boxtimes	E-Field Probe	SPEAG	EX3DV4	3805	2023/11/23	2024/11/22
\boxtimes	Validation Kits	SPEAG	D2450V2	808	2023/10/23	2026/10/22
\boxtimes	Validation Kits	SPEAG	D5GHzV2	1046	2023/10/23	2026/10/22
\boxtimes	Agilent Network Analyz	er Agilent	8753E	SU38432944	2023/6/9	2024/6/8
\boxtimes	Dielectric Probe Kit	SPEAG	DAK3.5	1425	NCR	NCR
\boxtimes	Universal Radio Communication Teste	r R&S	CMW500	42115	2023/10/29	2024/10/28
\boxtimes	Directional Coupler	MCLI/USA	4426-20	03746	2023/6/9	2024/6/8
\boxtimes	Power meter	Agilent	E4419B	MY45104493	2023/10/29	2024/10/28
\boxtimes	Power meter	Agilent	E4419B	MY45100308	2023/10/29	2024/10/28
\boxtimes	Power sensor	Agilent	E9301H	MY41495616	2023/10/29	2024/10/28
\boxtimes	Power sensor	Agilent	E9301H	MY41495234	2023/10/29	2024/10/28
\boxtimes	Signal Generator	Agilent	E4438C	MY49072627	2023/6/9	2024/6/8
\square	Broadband Preamplifie	er /	BP-01M18G	P190501	2023/6/15	2024/6/14
\boxtimes	DC POWER SUPPLY	/ I-SHENG	SP-504	NA	NCR	NCR
\boxtimes	Speed reading thermometer	HTC-1	NA	LCS-E-138	2023/6/13	2024/6/12

Note: All the equipments are within the valid period when the tests are performed.

SAR MEASUREMENTS SYSTEM CONFIGURATION

2.1. SAR Measurement System


This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY5 professional system). A E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation $SAR = \sigma$ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-Simulate.

The DASY5 system for performing compliance tests consists of the following items: A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software .An arm extension for accommodation the data acquisition electronics (DAE).

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.

F-1. SAR Measurement System Configuration

• The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.

A probe alignment unit which improves the (absolute) accuracy of the probe positioning.

A computer operating Windows 7.

DASY5 software.

- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand, right-hand and Body Worn usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validating the proper functioning of the system.

2.2. Isotropic E-field Probe EX3DV4

	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in TSL (rotation around probe axis) ± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

2.3. Data Acquisition Electronics (DAE)

2.3. Data Acquis	sition Electronics (DAE)	
Model	DAE	ing the second
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY4/5 embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.	A Contraction of the second se
Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4mV,400mV)	
Input Offset Voltage	< 5µV (with auto zero)	
Input Bias Current	< 50 f A	
Dimensions	60 x 60 x 68 mm	

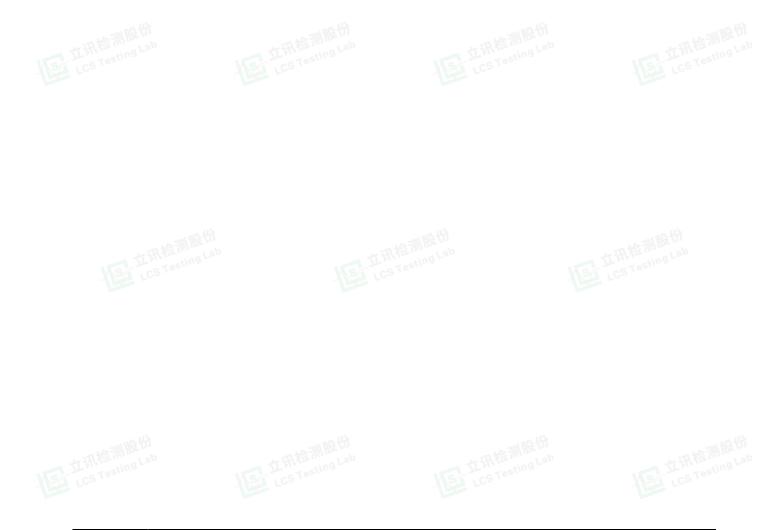
2.4. SAM Twin Phantom

Material	Vinylester, glass fiber reinforced (VE- GF)	- n - n	
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)		an BG (f)
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	I	sting Lab
Dimensions (incl. Wooden Support)	Length: 1000 mm Width: 500 mm Height: adjustable feet		
Filling Volume	approx. 25 liters	-	
Wooden Support	SPEAG standard phantom table		

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com


Scan code to check authenticity

2.5. ELI Phantom

Vinylester, glass fiber reinforced (VE-GF) Compatible with all SPEAG tissue	8
simulating liquids (incl. DGBE type)	
2.0 ± 0.2 mm (bottom plate)	
Major axis: 600 mm	
Minor axis: 400 mm	
approx. 30 liters	
SPEAG standard phantom table	
	Major axis: 600 mm Minor axis: 400 mm approx. 30 liters

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure.

2.6. Device Holder for Transmitters

F-2. Device Holder for Transmitters

- The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centres for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.
- The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.7. Measurement procedure

2.7.1. Scanning procedure

Step 1: Power reference measurement

The "reference" and "driff" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure.

Step 2: Area scan

The SAR distribution at the exposed side of the head was measured at a distance of 4mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm*15mm or 12mm*12mm or 10mm*10mm.Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Zoom scan

Around this point, a volume of 32mm*32mm*30mm (f≤2GHz), 30mm*30mm*30mm (f for 2-3GHz) and 24mm*24mm*22mm (f for 5-6GHz) was assessed by measuring 5x5x7 points (f≤2GHz), 7x7x7 points (f for 2-3GHz) and 7x7x12 points (f for 5-6GHz). On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

The data at the surface was extrapolated, since the centre of the dipoles is 2.0mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. (This can be variable. Refer to the probe specification). The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The volume was integrated with the trapezoidal algorithm. One thousand points were interpolated to calculate the average. All neighbouring volumes were evaluated until no neighboring volume with a higher average value was found.

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the postprocessing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std. 1528-2013.

				•	
			\leq 3 GHz	> 3 GHz	
Maximum distance fro (geometric center of pr			$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	古讯检测股份
Maximum probe angle surface normal at the n			30°±1°	20°±1°	LCS Testing Lab
			$\leq 2 \text{ GHz}: \leq 15 \text{ mm}$ 2 - 3 GHz: $\leq 12 \text{ mm}$	$\begin{array}{l} 3-4 \text{ GHz:} \leq 12 \text{ mm} \\ 4-6 \text{ GHz:} \leq 10 \text{ mm} \end{array}$	
Maximum area scan sp	oatial resolu	ution: Δx_{Area} , Δy_{Area}	When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test of measurement point on the test	on, is smaller than the above, must be \leq the corresponding levice with at least one	
Maximum zoom scan s	spatial reso	lution: Δx_{Zoom} , Δy_{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	3 – 4 GHz: ≤ 5 mm [*] 4 – 6 GHz: ≤ 4 mm [*]	股份
	uniform	grid: ∆z _{Z∞m} (n)	$\leq 5 \text{ mm}$	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 4 \ \mathrm{mm} \\ 4-5 \ \mathrm{GHz:} \leq 3 \ \mathrm{mm} \\ 5-6 \ \mathrm{GHz:} \leq 2 \ \mathrm{mm} \end{array}$	ngLa
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	$\leq 4 \text{ mm}$	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
	grid	∆z _{Zoom} (n>1): between subsequent points	<u>≤</u> 1.5·∆z	z _{Zoom} (n-1)	. 10
Minimum zoom scan volume	x, y, z	•	\geq 30 mm	$3 - 4 \text{ GHz} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz} \ge 22 \text{ mm}$	立语检测股的 LCSTestingLab

Step 4: Power reference measurement (drift)

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %

2.7.2. Data Storage

The DASY software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [m W/g], [m W/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

2.7.3. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Normi, ai0, ai1, ai2
- Conversion factor	ConvFi	
- Diode compressior	n point Dcpi	
Device parameters:	- Frequency	f
 Crest factor 	cf	
Media parameters:	 Conductivity 	3
- Density	ρ	

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

 $V_i = U_i + U_i^2 \cdot c f / d c p_i$

With Vi = compensated signal of channel i (i = x, y, z) Ui = input signal of channel i (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_{i} = (V_{i})^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^{2})/f$ With Vi = compensated signal of channel i Normi = sensor sensitivity of channel I (i = x, y, z) (i = x, y, z)[mV/(V/m)2] for E-field Probes ConvF = sensitivity enhancement in solution aij = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] Ei = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$

The primary field data are used to calculate the derived field units.

$SAR = (Etot^2 \cdot \sigma) / (\varepsilon \cdot 1000)$

SAR = local specific absorption rate in mW/g with Etot = total field strength in V/m σ = conductivity in [mho/m] or [Siemens/m] ϵ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

 $P_{pwe} = E_{tot}^2 / 3770$ or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with Ppwe = equivalent power density of a plane wave in mW/cm2 Etot = total electric field strength in V/m Htot = total magnetic field strength in A/m

3.1. SAR measurement variability

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01r04, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \ge 1.45 W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

3.2. SAR measurement uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

4. Description of Test Position

4.1. Test Positions Configuration

Per FCC KDB616217 D04, The required minimum test separation distance for incorporating transmitters and antennas into laptop, notebook and netbook computer displays is determined with the display screen opened at an angle of 90° to the keyboard compartment. If a computer has other operating configurations that require a different or more conservative display to keyboard angle for normal use, a KDB inquiry should be submitted to determine the test requirements. When antennas are incorporated in the keyboard section of a laptop computer, SAR is required for the bottom surface of the keyboard.

Provided tablet use conditions are not supported by the laptop computer, SAR tests for bystander exposure from the edges of the keyboard and display screen of laptop computers are generally not required. However, when edge testing is necessary, the similar concerns for simultaneous transmission on adjacent or multiple edges described for tablets also apply.

For this device, the transmit antenna are located at the screen section. Body operating configurations are tested with the device bottom side positioned against a flat phantom with test separation distance of 0mm in a normal use configuration.

SAR System Verification Procedure 5. 立讯检测股份

5.1. Tissue Simulate Liquid

5.1.1. Recipes for Tissue Simulate Liquid

LCS Testing Lat The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands :

Ingredients			Frequency (MHz)		
(% by weight)	450	700-900	1750-2000	2300-2500	2500-2700
Water	38.56	40.30	55.24	55.00	54.92
Salt (NaCl)	3.95	1.38	0.31	0.2	0.23
Sucrose	56.32	57.90	0	0	0
HEC	0.98	0.24	0	0	0
Bactericide	0.19	0.18	0	0	0
Tween	0	0	44.45	44.80	44.85
Water: De-ionized Tween: Polyoxyet			HEC: Hydroxyethyl	Cellulose	
HSL5GHz is com	posed of the follo	wing ingredients:			
Water: 50-65%					
Mineral oil: 10-30	0%				
Emulsifiers: 8-25	5%				
Sodium salt: 0-1	.5%				

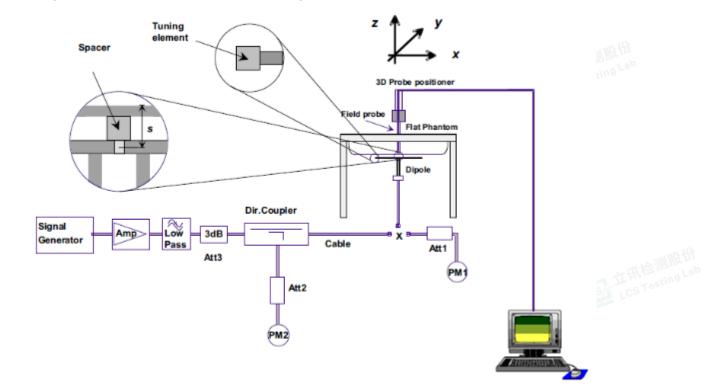
Table 1: Recipe of Tissue Simulate Liquid

5.1.2. Measurement for Tissue Simulate Liquid

The dielectric properties for this Tissue Simulate Liquids were measured by using the DAKS. The Conductivity (σ) and Permittivity (ρ) are listed in bellow table. For the SAR measurement given in this report. The temperature variation of the Tissue Simulate Liquids was 22±2°C.

Tissue	Measured	Target Tiss	sue (±5%)	Measure	d Tissue	Liquid	Measured
Туре	Frequency (MHz)	٤r	σ(S/m)	٤r	σ(S/m)	Temp. (℃)	Date
2450 Head	2450	39.2 (37.24~41.16)	1.8 (1.71~1.89)	39.387	1.779	23.4	March 04, 2024
5250Head	5250	36.0 (34.20~37.80)	4.66 (4.43~4.89)	36.196	4.650	22.7	March 14, 2024
5600 Head	5600	35.5 (33.73~37.28)	5.07 (4.82~5.32)	35.168	5.098	22.8	March 14, 2024
5750 Head	5750	35.3 (33.54~37.07)	5.27 (5.01~5.53)	35.546	5.177	23.0	March 14, 2024

Table 2: Measurement result of Tissue electric parameters



5.2. SAR System Check

The microwave circuit arrangement for system Check is sketched in F-1. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the following table (A power level of 250mW (below 3GHz) or 100mW (3-6GHz) was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range 22±2°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15±0.5 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

F-1. the microwave circuit arrangement used for SAR system check

5.2.1. Justification for Extended SAR Dipole Calibrations

1) Referring to KDB865664 D01 requirements for dipole calibration, instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.

- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated value;
- c) Return-loss is within 20% of calibrated measurement;
- d) Impedance is within 5Ω from the previous measurement.

2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

5.2.2. Summary System Check Result(s)

	, -,				-mil Bez	202		-mil Berry
	Measured	Measured	Measured SAR	Measured SAR	Target SAR (normalized	Target SAR (normalized	Liquid	
tion Kit	250mW	SAR 250mW	(normalized to 1W)	(normalized to 1W)	(normalized (+10%)		Temp. (℃)	Measured Date
	1g (W/kg)	10g (W/kg)	1g (W/kg)	10g (W/kg)	1-g(W/kg)	10-g(W/kg)		
Head	12.52	5.72	50.08	22.88	53.5 (48.15~58.85)	24.8 (22.32~27.28)	23.4	March 04, 2024
	Measured		Measured SAR	Measured SAR	Target SAR	Target SAR		
tion Kit	SAR 100mW	Measured SAR 100mW	(normalized to 1W)	(normalized to 1W)	(normalized to 1W) (±10%)	(normalized to 1W) (±10%)	Liquid Temp. (°C)	Measured Date
	1g (W/kg)	10g (W/kg)	1g (W/kg)	10g (W/kg)	1-g(W/kg)	10-g(W/kg)		
Head (5.25GHz)	7.60	2.28	76.00	22.80	78.1 (70.29~85.91)	22.2 (19.98~24.42)	22.7	March 14, 2024
Head (5.6GHz)	8.36	2.18	83.60	21.80	81.9 (73.71~90.09)	23.1 (20.79~25.41)	22.8	March 14, 2024
Head (5.75GHz)	8.15	2.28	81.50	22.80	77.4 (69.66~85.14)	21.6 (19.44~23.76)	23.0	March 14, 2024
	tion Kit Head tion Kit Head (5.25GHz) Head (5.6GHz) Head	tion Kit Head Head Head Kion Kit Head (5.25GHz) Head (5.6GHz) Head (5.6GHz) Head (5.6GHz) Head (5.6GHz) Head (5.6GHz) Head (5.15GHz) Head (5.6GHz) Head (5.15GHz) Head (5.1	Measured SAR 250mW Measured SAR 250mW 1g (W/kg) 10g (W/kg) Head 12.52 5.72 Head 12.52 5.72 Measured SAR 100mW Measured SAR 100mW Measured SAR 100mW Head (5.25GHz) 19 (W/kg) 10g (W/kg) Head (5.6GHz) 7.60 2.28 Head (5.6GHz) 8.36 2.18	Measured SAR 250mW Measured SAR 250mW Measured SAR 250mW SAR 100 (W/kg) 10 (W/kg) 10 (W/kg) 10 (W/kg) Head 12.52 5.72 50.08 Head 12.52 5.72 50.08 Measured SAR 100mW Measured SAR 100mW Measured Measured SAR Measured SAR Head (5.25GHz) 10g (W/kg) 10g (W/kg) 10g (W/kg) Head (5.6GHz) 7.60 2.28 76.00 Head (5.6GHz) 8.36 2.18 83.60	Measured SAR 250mW Measured SAR 250mW Measured SAR 250mW Measured (normalized to 1W) Measured (normalized to 1W) 1g (W/kg) 10g (W/kg) 1g (W/kg) 10g (W/kg) 10g (W/kg) Head 12.52 5.72 50.08 22.88 Measured SAR 100mW Measured SAR 100mW Measured SAR Measured SAR Measured SAR Measured SAR 100mW Measured SAR 100mW Measured SAR Measured SAR Measured SAR Measured SAR 100mW 10g (W/kg) 10g (W/kg) 10g (W/kg) 10g (W/kg) Head (5.25GHz) 7.60 2.28 76.00 22.80 Head (5.6GHz) 8.36 2.18 83.60 21.80	Measured SAR 250mWMeasured SAR 250mWMeasured SAR 250mWMeasured SARMeasured SARTarget SAR (normalized to 1W)Target SAR (normalized to 1W)1g (W/kg)10g (W/kg)10g (W/kg)10g (W/kg)10g (W/kg)1-g(W/kg)Head12.525.7250.0822.88 $\frac{53.5}{(48.15-58.85)}$ Measured SAR 100mWMeasured SAR 100mWMeasured (normalized to 1W)Target SAR (normalized to 1W)Head (5.25GHz)10g (W/kg)10g (W/kg)10g (W/kg)10g (W/kg)Head (5.6GHz)7.602.2876.0022.8078.1 (70.29-85.91)Head (5.6GHz)8.362.1883.6021.8081.9 (73.71-90.09)Head8.152.2881.5022.8077.4	Measured SAR 250mW Measured SAR 250mW Measured SAR 250mW Measured SAR 250mW Measured SAR Measured SAR Measured SAR Target SAR (normalized to 1W) Target SAR (22.32-27.28) Head 12.52 5.72 50.08 22.88 $\frac{53.5}{(48.15-58.85)}$ $\frac{24.8}{(22.32-27.28)}$ Measured tion Kit Measured SAR 100mW Measured SAR 100mW Measured SAR Measured SAR Measured to 1W) Target SAR (normalized to 1W)	Measured SAR 250mW Measured SAR 250mW Measured SAR 250mW Measured SAR (normalized to 1W) Measured SAR Target SAR (normalized to 1W) Target SAR (normalized to 1W) Liquid temp. (±10%) Head 10g (W/kg) 10g (W/kg) 10g (W/kg) 10g (W/kg) 10-g(W/kg) 10-g(W/kg) 23.4 Head 12.52 5.72 50.08 22.88 $\frac{53.5}{(48.15-58.85)}$ $\frac{24.8}{(22.32-27.28)}$ 23.4 Measured SAR Measured SAR 100mW Measured SAR Measured SAR Measured SAR Target SAR (normalized to 1W) Target SAR (normalized to 1W) 23.4 Head 10g (W/kg) 10g (W/kg) 10g (W/kg) 10g (W/kg) 10-g(W/kg) 23.4 Head 100mW Measured SAR 100mW Measured to 1W) Target SAR (normalized to 1W) Target SAR (normalized to 1W) Target SAR (normalized to 1W) Target SAR (normalized to 1W) 10-g(W/kg) Head (5.25GHz) 7.60 2.28 76.00 22.80 78.1 (70.29-85.91) 22.2 (19.98-24.42) 22.7 Head (5.6GHz) 8.36 2.18 83.60 21.80 81.9 (73.71-90.09

Table 3: Please see the Appendx A

6. SAR measurement procedure

The measurement procedures are as follows:

6.1. Conducted power measurement

a. For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously Transmission, at maximum RF power in each supported wireless interface and frequency band.
b. Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power.

6.2. WIFI Test Configuration

For WiFi SAR testing, a communication link is set up with the testing software for WiFi mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Per KDB 248227D01, a minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The repotted SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

6.2.1. Initial Test Position Procedure

For exposure condition with multiple test position, such as handsets operating next to the ear, devices with hotspot mode or IJMPC mini-tablet , procedures for <u>initial test position</u> can be applied. Using the transmission mode determined by the DSSS procedure or <u>initial test configuration</u>, area scans are measured for all position in an exposure condition. The test position with the highest extrapolated(peak) SAR is used as the initial test position. When reported SAR for the <u>initial test position</u> is ≤ 0.4 W/kg, no additional testing for the remaining test position is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR position until the reported SAR result is ≤ 0.8 W/kg or all test position are measured. For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the repotted SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

6.2.2. Initial Test Configuration Procedure

An <u>initial test configuration</u> is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required (see section 5.3.2 of KDB 248227D01). SAR test reduction of subsequent highest output test channels is based on the reported SAR of the initial test configuration. For next to the ear, hotspot mode and CIMC mini-tablet exposure configurations where multiple test positions are required, the <u>initial test position</u> procedure is applied to minimize the number of test positions required for SAR measurement using the <u>initial test configuration</u> transmission mode. For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the <u>initial test configuration</u>. When the reported SAR of the <u>initial test configuration</u> is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the <u>initial test configuration</u> until the repotted SAR is ≤ 1.2 W/kg or all required channels are tested.

6.2.3. Sub Test Configuration Procedure

SAR measurement requirements for the remaining 802 11 transmission mode configurations that have not been tested in the <u>initial test configuration</u> are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units.

When the highest reported SAR for the <u>initial test configuration</u>, according to the <u>initial test position</u> or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to <u>initial test</u> <u>configuration</u> specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.

6.2.4. WiFi 2.4G SAR Test Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions.

a) 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

1) When the reported SAR of the highest measured maximum output power channel (section 3.1 of of KD8 248227D01) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.

2) When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

b) 2.4GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3 of of KD8 248227D01 SAR is not required for the following 2.4 GHz OFDM conditions.

1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.

2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

c) SAR Test Requirements for OFDM configurations

When SAR measurement is required for 802.11 a/g/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-I and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the <u>initial test configuration</u> and <u>subsequent test configuration</u> requirements. In applying the <u>initial test configuration</u> and <u>subsequent test configuration</u> procedures, the 802.11 transmission configuration with the highest specified maximum output power should be clearly distinguished to apply the procedures.

6.2.5. U-NII-1 and U-NII-2A Bands

For devices that operate in only one of the U-NII-1 and U-NII-2A bands, the normally required SAR procedures for OFDM configurations are applied. For devices that operate in both U-NII bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following:

1) When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFOM SAR requirements. If the highest repotted SAR for a test configuration is \leq 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, both bands are tested independently for SAR.

2) When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, both bands are tested independently for SAR.

3) The two U-NII bands may be aggregated to support a 160 MHz channel on channel number 50. Without additional testing, the maximum output power for this is limited to the lower of the maximum output power cetified for the two bands. When SAR measurement is required for at least one of the bands and the highest reported SAR adjusted by the ratio of specified maximum output power of aggregated to standalone band is > 1.2 W/kg, SAR is required for the 160 MHz channel. This procedure does not apply to an aggregated band with maximum output higher than the standalone band(s); the aggregated band must be tested independently for SAR. SAR is not required when the 160 MHz channel is operating at a reduced maximum power and also qualifies for SAR test exclusion.

6.2.6. U-NII-2C and U-NII-3 Bands

The frequency range covered by these bands is 380 MHz (5.47-5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. when Terminal Doppler Weather Radar (TOWR) restriction applies, the channels at 5.60-5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification to avoid SAR requirements. 10 TOWR restriction does not apply under the new rules; all channels that operate at 5.60-5.65 GHz must be included to apply the SAR test reduction and measurement procedures.

When the same transmitter and antenna(s) are used for U-NII-2C band and U-NII-3 band or 5.8 GHz band of §15.247, the bands may be aggregated to enable additional channels with 20, 40 or 80 MHz bandwidth to span across the band gap, as illustrated in Appendix B. The maximum output power for the additional band gap channels is limited to the bower of those certified for the bands. Unless band gap channels are permanently disabled, they must be considered for SAR testing. The frequency range covered by these bands is 380 MHz (5.47-5.85 GHz), which requires a mihimum of at least two SAR probe calibration frequency points to support SAR measurements. To maintain SAR measurement accuracy and to facilitate test reduction, the channels in U-NII-2C band above 5.65 GHz may be grouped with the 5.8 GHz channels in U-NII-3 or §15.247 band to enable two SAR probe calibration frequency points to support and gap channels. 11 When band gap channels are supported and the bands are not aggregated for SAR testing, band gap channels must be considered independently in each band according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

6.2.7. OFDM Transmission Mode SAR Test Channel Selection Requirements

For 2.4 GHz and 5 GHz bands, When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations(for example 802.11a, 802.11n and 802.11ac, or 802.11g and 802.11n, with the same channel bandwidth, modulation, and data rate, etc), the lower order 802.11 mode (i.e., 802.11a is chosen over 802.11n then 802.11ac, or 802.11g is chosen over 802.11n) is used for SAR measurement.

When the maximum output power are the same for multiple test channel, either according to the default or additional power measurement requirement, SAR is measured using the channel closest to the middle of the frequency band or aggregted band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

6.3. Power Reduction

The product without any power reduction.

6.4. Power Drift

To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This ensures that the power drift during one measurement is within 5%.

7. TEST CONDITIONS AND RESULTS

7.1. Conducted Power Results

According KDB 447498 D01 General RF Exposure Guidance v06 Section 4.1 2) states that "Unless it is specified differently in the published RF exposure KDB procedures, these requirements also apply to test reduction and test exclusion considerations. Time-averaged maximum conducted output power applies to SAR and, as required by § 2.1091(c), time-averaged ERP applies to MPE. When an antenna port is not available on the device to support conducted power measurement, such as FRS and certain Part 15 transmitters with built-in integral antennas, the maximum output power allowed for production units should be used to determine RF exposure test exclusion and compliance."

7.1.1. Conducted Power Measurement Results(WIFI 2.4G)

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Tune up
NVNT	b	2412	Ant1	15.50	16
NVNT	Testing b	2437	Ant1	15.27	16
NVNT	b	2462	Ant1	14.88	15
NVNT	g	2412	Ant1	14.19	15
NVNT	g	2437	Ant1	13.38	14
NVNT	g	2462	Ant1	13.29	14
NVNT	n20	2412	Ant1	12.77	13
NVNT	n20	2437	Ant1	11.83	12
NVNT	n20	2462	Ant1	11.88	12
NVNT	n40	2422	Ant1	11.47	12
NVNT	n40	2437	Ant1	11.03	12
NVNT	n40	2452	Ant1	6 ng 11.35	12
NVNT	ax20	2412	Ant1	11.13	12
NVNT	ax20	2437	Ant1	11.30	12
NVNT	ax20	2462	Ant1	11.33	12
NVNT	ax40	2422	Ant1	11.44	12
NVNT	ax40	2437	Ant1	11.36	12
NVNT	ax40	2452	Ant1	11.27	12

Note:

a) Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.

b) Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.

1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.

2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.

c) For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured.

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

WIFI 2.4G (802.11b): Duty cycle=99.13%

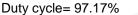
		Ref Offset 2.1											Mkr1	1.700 ms
dB/d	liv F	Ref 20.00 d	IBm			-					_		18	8.49 dBm
		<u></u>				72/	21							
»Ь						\perp						_		
.0														
		1										1		
Ľ														
۳Г														
		2000000 G	Hz											Span 0 Hz
	r 2.41 W 8 N		Hz		#VB\	N 8.	0 MHz					Sweep	20.00 ms	Span 0 Hz (10001 pts)
S BI	N 8 N	1Hz sal	×		Y		FUN	CTION	FUNCT	ION WIDTH			20.00 ms	Span 0 Hz (10001 pts)
S BI	W 8 N	Hz sc. t t (Δ)	× 1.700 6.624	ms (Δ)	Y 18.49 -0.4	dBm 0 dB	FUN		FUNCT	ION WIDTH				Span 0 Hz (10001 pts)
S B	W 8 N	1Hz sal	× 1.700 6.624	ms ms (Δ) ms (Δ)	Y 18.49 -0.4	dBm	FUN		FUNCT	ION WIDTH				Span 0 Hz (10001 pts)
N MOE	W 8 N	Hz sc. t t (Δ)	× 1.700 6.624	ms (Δ)	Y 18.49 -0.4	dBm 0 dB	FUN		FUNCT	ION WIDTH				Span 0 Hz (10001 pts)
N MOE	W 8 N	Hz sc. t t (Δ)	× 1.700 6.624	ms (Δ)	Y 18.49 -0.4	dBm 0 dB	FUN		FUNCT	ION WIDTH				Span 0 Hz (10001 pts)
S B	W 8 N	Hz sc. t t (Δ)	× 1.700 6.624	ms (Δ)	Y 18.49 -0.4	dBm 0 dB	FUN		FUNCT	ION WIDTH				Span 0 Hz (10001 pts)
N MOE	W 8 N	Hz sc. t t (Δ)	× 1.700 6.624	ms (Δ)	Y 18.49 -0.4	dBm 0 dB	FUN		FUNCT	ION WIDTH				Span 0 Hz (10001 pts)

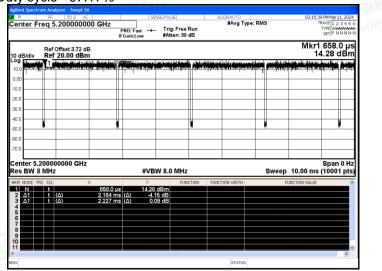
7.1.2. Conducted Power Measurement Results(WIFI 5.2G)

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Tune up
NVNT	а	5180	Ant1	12.28	13
NVNT	a	5200	Ant1 CS	12.98	13
NVNT	а	5240	Ant1	12.22	13
NVNT	n20	5180	Ant1	11.82	12
NVNT	n20	5200	Ant1	11.46	12
NVNT	n20	5240	Ant1	11.44	12
NVNT	n40	5190	Ant1	11.18	12
NVNT	n40	5230	Ant1	11.18	12
NVNT	ac20	5180	Ant1	11.44	12
NVNT	ac20	5200	Ant1	11.50	12
NVNT	ac20	5240	Ant1	11.51	12
NVNT	ac40	5190	Ant1	11.14	estin9 12
NVNT	ac40	5230	Ant1	11.23	12
NVNT	ax20	5180	Ant1	11.28	12
NVNT	ax20	5200	Ant1	11.97	12
NVNT	ax20	5240	Ant1	11.30	12
NVNT	ax40	5190	Ant1	10.30	11
NVNT	ax40	5230	Ant1	10.47	11

Note:

a) Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.


b) Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.


1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.

2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.

c) For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured.

WIFI 5.2G (802.11a):

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs Scan code to check authenticity

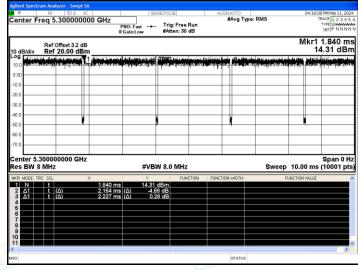
7.1.3. Conducted Power Measurement Results(WIFI 5.3G)

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Tune up
NVNT	а	5260	Ant1	12.48	13
NVNT	a	5300	Ant1 CS	12.51	13
NVNT	а	5320	Ant1	12.43	13
NVNT	n20	5260	Ant1	11.80	12
NVNT	n20	5300	Ant1	11.78	12
NVNT	n20	5320	Ant1	11.47	12
NVNT	n40	5270	Ant1	10.37	11
NVNT	n40	5310	Ant1	10.32	11
NVNT	ac20	5260	Ant1	11.46	12
NVNT	ac20	5300	Ant1	11.56	12
NVNT	ac20	5320	Ant1	11.65	12
NVNT	ac40	5270	Ant1	10.37	resting 11
NVNT	ac40	5310	Ant1	10.28	11
NVNT	ax20	5260	Ant1	11.57	12
NVNT	ax20	5300	Ant1	11.71	12
NVNT	ax20	5320	Ant1	11.58	12
NVNT	ax40	5270	Ant1	10.54	11
NVNT	ax40	5310	Ant1	10.43	11

Note:

a) Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.

b) Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.


1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.

2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.

c) For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured.

WIFI 5.3G (802.11a):

Duty cycle= 97.17%

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

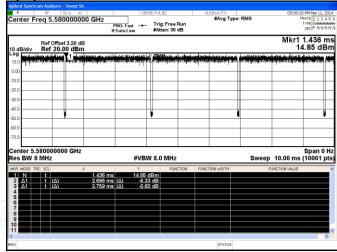
7.1.4. Conducted Power Measurement Results(WIFI 5.5G)

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Tune up
NVNT	а	5500	Ant1	12.17	13
NVNT	a	5580	Ant1	12.59	13
NVNT	а	5700	Ant1	12.43	13
NVNT	n20	5500	Ant1	11.52	12
NVNT	n20	5580	Ant1	11.16	12
NVNT	n20	5700	Ant1	11.88	12
NVNT	n40	5510	Ant1	11.12	12
NVNT	n40	5550	Ant1	11.31	12
NVNT	n40	5670	Ant1	11.14	12
NVNT	ac20	5500	Ant1	11.45	12
NVNT	ac20	5580	Ant1	11.04	12
NVNT	ac20	5700	Ant1	11.07	estin9 12
NVNT	ac40	5510	Ant1	11.14	12
NVNT	ac40	5550	Ant1	11.27	12
NVNT	ac40	5670	Ant1	11.13	12
NVNT	ax20	5500	Ant1	10.51	11
NVNT	ax20	5580	Ant1	10.15	11
NVNT	ax20	5700	Ant1	10.67	11
NVNT	ax40	5510	Ant1	10.14	11
NVNT	ax40	5550	Ant1	10.29	11
NVNT	ax40	5670	Ant1	10.20	11

Note:

a) Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.

b) Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.


1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.

2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.

c) For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due 国立讯检测股份 LCS Testing Lab to an even number of channels, both channels should be measured.

WIFI 5.5G (802.11a):

Duty cycle=97.72%

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

7.1.5. Conducted Power Measurement Results(WIFI 5.8G)

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Tune up
NVNT	а	5745	Ant1	12.46	13
NVNT	a 🌾	5785	Ant1 CS	12.27	13
NVNT	а	5825	Ant1	12.55	13
NVNT	n20	5745	Ant1	11.74	12
NVNT	n20	5785	Ant1	11.6	12
NVNT	n20	5825	Ant1	11.07	12
NVNT	n40	5755	Ant1	10.34	11
NVNT	n40	5795	Ant1	10.85	11
NVNT	ac20	5745	Ant1	11.85	12
NVNT	ac20	5785	Ant1	11.64	12
NVNT	ac20	5825	Ant1	11.18	12
NVNT	ac40	5755	Ant1	10.33	esting 11
NVNT	ac40	5795	Ant1	10.82	11
NVNT	ax20	5745	Ant1	10.24	11
NVNT	ax20	5785	Ant1	10.29	11
NVNT	ax20	5825	Ant1	10.62	11
NVNT	ax40	5755	Ant1	8.94	9
NVNT	ax40	5795	Ant1	9.55	10

Note:

a) Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.

b) Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.

1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.

2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.

c) For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured.

WIFI 5.8G (802.11a):

Duty cycle =97.72%

	RF 50 Q			SE	ENSE:PULSE		AL	IGN AU	ro g Type:	DMC		0 PM Mar 11, 2
enter F	req 5.82500		PNO: I	Fast ↔	. Trig: Free	Run		#Av	g Type:	RMS		TYPE WWWW DET P N N I
		1	FGain	:Low	#Atten: 38	dB						
	Ref Offset 3.1										Mkr1	641.0 4.46 dE
) dB/div 99	Ref 25.00 (JBM		23001								4.40 aL
5.0 Hideot		La dela de constante sectedada E dena (grafo a prografo	1	مراجلا والترفيكة	ار در از بر در در از رواید ار در از بر در در از رواید	100	adatan.	t net	in the second	ali kabatangtan Tidakangtan		dala n Ilipai.
.00		e - Merchard Ad	118	II. believ	and the states	a a te fi	lead to	la dest			e i de ale set	and a shall
.00			-									
5.0												
5.0												
5.0												
5.0	•			۹				,			1	
5.0												
5.0												
enter 5.	825000000 G	Hz		-#X/D						0	10.00	
enter 5. es BW 8	8 MHz				W 8.0 MH					· · ·	10.00 ms	
enter 5. es BW 8	8 MHz	×		Y	FU	Z NCTION	FUNCT	TON WI	отн	· · ·	10.00 ms	
enter 5. es BW 8 R MODE TR 1 N 2 A1	8 MHz RC SCL t (Δ)	× 641.0 µs 2.696 ms	(Δ)	Y 14.46 0.	FU dBm 50 dB		FUNCT	TON WI	DTH	· · ·		
enter 5./ es BW 8 R MODE TR N 2 A1 3 A1	8 MHz RC SCL	× 641.0 µs	(Δ)	Y 14.46 0.	FU 6 dBm		FUNCT	TON WI	DTH	· · ·		
enter 5./ es BW 8 R MODE TR 2 A1 3 A1	8 MHz RC SCL t (Δ)	× 641.0 µs 2.696 ms	(Δ)	Y 14.46 0.	FU dBm 50 dB		FUNCT	TION WI	тн	· · ·		
enter 5. es BW 8 R MODE 17 1 N 2 A1 3 A1 4 5 6 6 7	8 MHz RC SCL t (Δ)	× 641.0 µs 2.696 ms	(Δ)	Y 14.46 0.	FU dBm 50 dB		FUNCT	TON WI	DTH	· · ·		
enter 5. es BW 8 R MODE TR 2 A1 3 A1 4 5 6 7 7	8 MHz RC SCL t (Δ)	× 641.0 µs 2.696 ms	(Δ)	Y 14.46 0.	FU dBm 50 dB		FUNCT	TON WI	HTC	· · ·		
enter 5.2 es BW 8 R MODE TH 2 A1 3 A1 4 5 B 8	8 MHz RC SCL t (Δ)	× 641.0 µs 2.696 ms	(Δ)	Y 14.46 0.	FU dBm 50 dB		FUNCT	TION WI	DTH	· · ·		
enter 5. es BW 8 R MODE TR 1 N 2 A1	8 MHz RC SCL t (Δ)	× 641.0 µs 2.696 ms	(Δ)	Y 14.46 0.	FU dBm 50 dB		FUNCT	TION WI	TH	· · ·		Span 0 (10001

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

7.1.6. Conducted Power Measurement Results(Bluetooth)

+ HIL Man La	d/b	+ ill III non Lab	THE	I post ab	十讯 恒 四
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Tune up
NVNT	1-DH5	2402	Ant1	0.45	1.00
NVNT	1-DH5	2441	Ant1	0.59	1.00
NVNT	1-DH5	2480	Ant1	0.09	1.00
NVNT	2-DH5	2402	Ant1	0.02	1.00
NVNT	2-DH5	2441	Ant1	0.52	1.00
NVNT	2-DH5	2480	Ant1	0.14	1.00
NVNT	3-DH5	2402	Ant1	0.06	1.00
NVNT	3-DH5	2441	Ant1	0.51	1.00
NVNT	3-DH5	2480	Ant1	0.16	1.00

BLE

TestMode	Antenna	Frequency (MHz)	Antenna	Conducted Power (dBm)	Tune up
		2402	Ant1	0.16	1.00
BLE 1M	Ant1	2440	Ant1	2.73	3.00
~ 顺限份		2480	Ant1	1.58	2.00
TifferingLa	1	2404	Ant1	0.05	1.00
BLE 2M	Ant1	2442	Ant1	0.32	1.00
		2478	Ant1	-0.76	0.00

7.2. Stand-alone SAR test evaluation

Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and Product specific 10g SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition is satisfied. These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions.

	MHz	5	10	15	20	25	mm	
	150	39	77	116	155	194		13
	300	27	55	82	110	137	1	Lab
	450	22	45	67	89	112	1	
	835	16	33	49	66	82	1	
	900	16	32	47	63	79		
	1500	12	24	37	49	61	SAR Test	
	1900	11	22	33	44	54	Exclusion Threshold (mW)	
	2450	10	19	29	38	48	In conota (IIII)	
	3600	8	16	24	32	40	1	
	5200	7	13	20	26	33	1	
	5400	6	13	19	26	32	1	
	5800	6	12	19	25	31	1	
							-	THE WERE
	MHz	30	35	40	45	50	mm	LCS Testing
	150	232	271	310	349	387		rca.
	300	164	192	219	246	274		
Γ	450	134	157	179	201	224		
	835	98	115	131	148	164	7	
	900	95	111	126	142	158		
Γ	1500	73	86	98	110	122	SAR Test	
	1900	65	76	87	98	109	Exclusion Threshold (mW)	
	2450	57	67	77	86	96	111/2011014 (1111)	
	3600	47	55	63	71	79		
	5200	39	46	53	59	66		(3)
	5400	39	45	52	58	65		Lab
	2400							

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

The test exclusions are applicable only when the minimum test separation distance is > 50 mm and for 立讯检测股份 transmission frequencies between 100 MHz and 6 GHz.

MHz 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 mm 100 474 481 487 494 501 507 514 621 527 534 541 547 554 561 567 150 387 397 407 417 427 437 447 457 467 477 487 497 507 517 527 300 274 294 314 334 354 374 394 414 434 454 474 494 514 534 554 450 224 254 284 314 344 374 404 434 464 494 524 554 584 614 644 835 164 220 275 331 387 442 498 578 638 698 75			3A	кіе	SUE	XCIU	ISIO	nernr	esno	nasi			2 - 0	GHZ	and	> 50	mm		
150 387 397 407 417 427 437 447 457 467 477 487 497 507 517 527 300 274 294 314 334 354 374 394 414 434 454 474 494 514 534 554 450 224 254 284 314 344 374 404 434 464 494 524 554 584 614 644 835 164 220 275 331 387 442 498 554 609 665 721 776 832 888 943 900 158 218 278 338 398 458 518 578 638 698 758 818 878 938 998 1500 122 222 322 422 522 622 722 822 922 1022 1122 1222 1322 1422 1522 1900 109 209 399	MF	Ηz	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	mm	
300 274 294 314 334 354 374 394 414 434 454 474 494 514 534 554 450 224 254 284 314 344 374 404 434 464 494 524 554 584 614 644 835 164 220 275 331 387 442 498 554 609 665 721 776 832 888 943 900 158 218 278 338 398 458 518 578 638 698 758 818 878 938 998 1500 122 222 322 422 522 622 722 822 922 1022 1122 1322 1422 1522 1900 109 209 309 409 509 609 709 809 909 1009 1109 1209 <td>10</td> <td>0</td> <td>474</td> <td>481</td> <td>487</td> <td>494</td> <td>501</td> <td>507</td> <td>514</td> <td><u></u>б21</td> <td>527</td> <td>534</td> <td>541</td> <td>547</td> <td>554</td> <td>561</td> <td>567</td> <td></td> <td></td>	10	0	474	481	487	494	501	507	514	<u></u> б21	527	534	541	547	554	561	567		
450 224 254 284 314 344 374 404 434 464 494 524 554 584 614 644 835 164 220 275 331 387 442 498 554 609 665 721 776 832 888 943 900 158 218 278 338 398 458 518 578 638 698 758 818 878 938 998 1500 122 222 322 422 522 622 722 822 922 1022 1122 1222 1322 1422 1522 1900 109 209 309 409 509 609 706 896 996 1096 1196 1296 1396 1496 2450 96 196 296 396 496 596 696 796 896 996 1096 1196 1296 1396 1496 2450 96 196 296 39	15	0	387	397	407	417	427	437	447	457	467	477	487	497	507	517	527		
835 164 220 275 331 387 442 498 554 609 665 721 776 832 888 943 900 158 218 278 338 398 458 518 578 638 698 758 818 878 938 998 1500 122 222 322 422 522 622 722 822 922 1022 1122 1222 1322 1422 1522 1900 109 209 309 409 509 609 709 809 909 1009 1109 1209 1309 1409 1509 2450 96 196 296 396 496 596 696 796 896 996 1096 1196 1296 1396 1496 3600 79 179 279 379 479 579 679 779 879 979 <t< td=""><td>30</td><td>0</td><td>274</td><td>294</td><td>314</td><td>334</td><td>354</td><td>374</td><td>394</td><td>414</td><td>434</td><td>454</td><td>474</td><td>494</td><td>514</td><td>534</td><td>554</td><td></td><td></td></t<>	30	0	274	294	314	334	354	374	394	414	434	454	474	494	514	534	554		
900 158 218 278 338 398 458 518 578 638 698 758 818 878 938 998 1500 122 222 322 422 522 622 722 822 922 1022 1122 1222 1322 1422 1522 mW 1900 109 209 309 409 509 609 700 809 909 1009 1109 1209 1309 1409 1509 2450 96 196 296 396 496 596 696 796 896 996 1096 1196 1296 1396 1496 3600 79 179 279 379 479 579 679 779 879 979 1079 1179 1279 1379 1479 5200 66 166 266 366 466 566 665 765 865	45	0	224	254	284	314	344	374	404	434	464	494	524	554	584	614	644		
1500 122 222 322 422 522 622 722 822 922 1022 1122 1222 1322 1422 1522 mW 1900 109 209 309 409 509 609 709 809 909 1009 1109 1209 1309 1409 1509 2450 96 196 296 396 496 596 696 796 896 996 1096 1196 1209 1309 1409 1509 2450 96 196 296 396 496 596 696 796 896 996 1096 1196 1296 1396 1496 3600 79 179 279 379 479 579 679 779 879 979 1079 1179 1279 1379 1479 5200 66 166 266 366 466 566 666 766 866 966 1066 1166 1265 1365 1465 5400<	83	5	164	220	275	331	387	442	498	554	609	665	721	776	832	888	943		
1900 109 209 309 409 509 609 709 809 909 1009 1109 1209 1309 1409 1509 2450 96 196 296 396 496 596 696 796 896 996 1096 1196 1296 1396 1409 1509 2450 96 196 296 396 496 596 696 796 896 996 1096 1196 1296 1396 1496 3600 79 179 279 379 479 579 679 779 879 979 1079 1179 1279 1379 1479 5200 66 166 266 366 466 566 666 766 866 966 1066 1166 1266 1366 1466 5400 65 165 265 365 465 565 665 765 865	90	0	158	218	278	338	398	458	518	578	638	698	758	818	878	938	998		
2450 96 196 296 396 496 596 696 796 896 996 1096 1196 1296 1396 1496 3600 79 179 279 379 479 579 679 779 879 979 1079 1179 1279 1379 1479 5200 66 166 266 366 466 566 666 766 866 966 1066 1166 1266 1366 1466 5400 65 165 265 365 465 565 665 765 865 965 1066 1166 1266 1366 1465 5400 65 165 265 365 465 565 665 765 865 965 1065 1165 1265 1365 1465	150	00	122	222	322	422	522	622	722	822	922	1022	1122	1222	1322	1422	1522	mW	
3600 79 179 279 379 479 579 679 779 879 979 1079 1179 1279 1379 1479 5200 66 166 266 366 466 566 666 766 866 966 1066 1166 1266 1366 1466 5400 65 165 265 365 465 565 665 765 865 965 1065 1165 1265 1365 1465	190	00	109	209	309	409	509	609	709	809	909	1009	1109	1209	1309	1409	1509		
5200 66 166 266 366 466 566 666 766 866 966 1066 1166 1266 1366 1466 5400 65 165 265 365 465 565 665 765 865 965 1065 1165 1265 1365 1465	245	50	96	196	296	396	496	596	696	796	896	996	1096	1196	1296	1396	1496		
5400 65 165 265 365 465 565 665 765 865 965 1065 1165 1265 1365 1465	360	00	79	179	279	379	479	579	679	779	879	979	1079	1179	1279	1379	1479		
	520	00	66	166	266	366	466	566	666	766	866	966	1066	1166	1266	1366	1466		
5800 62 162 262 362 462 562 662 762 862 962 1062 1162 1262 1362 1462	540	00	65	165	265	365	465	565	665	765	865	965	1065	1165	1265	1365	1465		
	580	00	62	162	262	362	462	562	662	762	862	962	1062	1162	1262	1362	1462		

SAR Test Exclusion Thresholds for 100 MHz – 6 GHz and > 50 mm

F	F		Test	Max	Mary Davis	Exclusion	Fuchasian
Freq. Band	Frequency (MHz)	Position	Separation (mm)	Power (dBm)	Max Power (mW)	Threshold (mW)	Exclusion (Yes/No)
	2480	Rear side	5	3.0	2.00	10	Yes
	2480	Left side	172	3.0	2.00	1316	Yes
BT	2480	Right side	64	3.0	2.00	236	Yes
	2480	Top side	5	3.0	2.00	10	Yes
	2480	Bottom side	146	3.0	2.00	1056	Yes
	2462	Rear side	5	16.0	39.81	10	No No
	2462	Left side	172	16.0	39.81	1316	yes
Wi-Fi 2.4G	2462	Right side	64	16.0	39.81	236	Yes
2.40	2462	Top side	5	16.0	39.81	10	No
	2462	Bottom side	146	16.0	39.81	1056	Yes
	5240	Rear side	5	13.0	19.95	10	No
	5240	Left side	172	13.0	19.95	1316	Yes
Wi-Fi 5.2G	5240	Right side	64	13.0	19.95	236	Yes
0.20	5240	Top side	5	13.0	19.95	10	No
	5240	Bottom side	146	13.0	19.95	1056	Yes
	5320	Rear side	5	13.0	19.95	10	No
	5320	Left side	172	13.0	19.95	1316	Yes
Wi-Fi 5.3G	5320	Right side	64	13.0	19.95	236	Yes
0.00	5320	Top side	5	13.0	19.95	10	No
	5320	Bottom side	146	13.0	19.95	1056	Yes

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

Page 43 of 47

FCC ID:2A5EI-AK10

Report No.: LCSA02274049EB

	5580	Rear side	5	13.0	19.95	10	No
	5580	Left side	205	13.0	19.95	1316	Yes
Wi-Fi 5.6G	5580	Right side	19	13.0	19.95	236	Yes
0.00	5580	Top side	5	13.0	19.95	10	No
	5580	Bottom side	155	13.0	19.95	1056	Yes
	5825	Rear side	5	13.0	19.95	10	No
	5825	Left side	205	13.0	19.95	1316	Yes
Wi-Fi 5.8G	5825	Right side	19	13.0	19.95	236	Yes
0.00	5825	Top side	5	13.0	19.95	10	No
	5825	Bottom side	155	13.0	19.95	1056	Yes

From what is shown in the table above, we can draw the conclusion that:

	EUT Sides for	or SAR Te	sting				
Mode	Exposure Condition	Front	Back	Left	Right	Тор	Bottom
BT	Body	N/A	No	No	No	No	No
WIFI 2.4G	Body	N/A	Yes	No	No	Yes	No
WIFI 5.2G	Body	N/A	Yes	No	No	Yes	No
WIFI 5.3G	Body	N/A	Yes	No	No	Yes	No
WIFI 5.6G	Body	N/A	Yes	No	No	Yes	No
WIFI 5.8G	Body	N/A	Yes	No	No	Yes	No
EUT Sides for SAR Testing.	其讯检测股份		立讯林	动服 B		1	LiR检测股

Note:

According to KDB616217, exposures to hands for typical consumer transmitters used in tablets are not expected to exceed the extremity SAR limit; therefore, SAR evaluation for the front surface of tablet display screens are generally not necessary.

The calculated SAR is obtained by the following formula:

Reported SAR=Measured SAR*10^{(Ptarget-Pmeasured))/10} Scaling factor=10^{(Ptarget-Pmeasured))/10}

Reported SAR= Measured SAR* Scaling factor

Where

P_{target} is the power of manufacturing upper limit;

P_{measured} is the measured power;

Measured SAR is measured SAR at measured power which including power drift) Reported SAR which including Power Drift and Scaling factor

7.3.1. SAR Results [WIFI 2.4G]

	-nil BZ V*							WALL DRU. V.	
SAR Values [WIFI 2.4G]									
Ch/	Channel Type	Test Position	Duty Cycle Factor	Conducted Power (dBm)	Maximum Allowed Power (dBm)	PowerDrift	Scaling	SAR _{1-g} results(W/kg)	
Freq. (MHz)						(%)	Factor	Measured	Reported
	measured / reported SAR numbers - Body (distance 0mm)								
1/2412	802.11b	Rear side	1.009	15.5	16	-0.02	1.122	0.592	0.670
1/2412	802.11b	Top side	1.009	15.5	16	-0.14	1.122	0.525	0.594

Note:

1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B.

2) When the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is \leq 1.2 W/kg, SAR test for the other 802.11 modes are not required.

7.3.2. SAR Results [WIFI 5.2G]

+ HAL MALA	p	+ A The Man Lab						Hi th	TE In Lat
	SAR Values [WIFI 5.2G]								
Ch/	Channel Type	Test	Duty Cycle Factor	Conducted Power (dBm)	Maximum Allowed Power (dBm)	PowerDrift (%)	Scaling Factor	SAR _{1-g} results(W/kg)	
Freq. (MHz)		Position						Measured	Reported
	measured / reported SAR numbers - Body (distance 0mm)								
40/5200	802.11a	Rear side	1.029	12.98	13	0.01	1.005	0.328	0.339
40/5200	802.11a	Top side	1.029	12.98	13	0.15	1.005	0.16	0.165

Note:

1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B.

2) When the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is \leq 1.2 W/kg, SAR test for the other 802.11 modes are not required

7.3.3. SAR Results [WIFI 5.3G]

			SAR Valu	ies [WIFI 5.3G]				
Ch/	Channel Type	Test Position	Duty	Conducted Power (dBm)	Maximum Allowed Power (dBm)	PowerDrift	Scaling	SAR _{1-g} results(W/kg)	
Freq. (MHz)			Cycle Factor			(%)	Factor	Measured	Reported
		measured / repo	orted SAR	numbers - Boo	ly (distance 0	mm)			
60/5300	802.11a	Rear side	1.029	12.51	13	0.19	1.119	0.335	0.386
60/5300	802.11a	Top side	1.029	12.51	13	0.04	1.119	0.162	0.187
	-								

Note:

1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B.

2) When the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is \leq 1.2 W/kg, SAR test for the other 802.11 modes are not required

- trittering La	9	till raing Lab						र रा में	JEL Jung Lab
	SAR Values [WIFI 5.5G]								
Ch/	Channel Type	Test Position	Duty Cycle Factor	Conducted Power (dBm)	Maximum Allowed Power (dBm)	PowerDrift	Scaling	SAR _{1-g} results(W/kg)	
Freq. (MHz)						(%)	Factor	Measured	Reported
	measured / reported SAR numbers - Body (distance 0mm)								
116/5580	802.11a	Rear side	1.023	12.59	13	0	1.099	0.411	0.462
116/5580	802.11a	Top side	1.023	12.59	13	0.1	1.099	0.185	0.208

Note:

1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B.

2) When the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is \leq 1.2 W/kg, SAR test for the other 802.11 modes are not required

7.3.5. SAR Results [WIFI 5.8G]

SAR Values [WIFI 5.8G]									
Ch/	Channel Type	Test Position	Duty Cycle Factor	Conducted Power (dBm)	Maximum Allowed Power (dBm)	PowerDrift	Scaling	SAR _{1-g} results(W/kg)	
Freq. (MHz)						(%)	Factor	Measured	Reported
	measured / reported SAR numbers - Body (distance 0mm)								
165/5825	802.11a	Rear side	1.023	12.55	13	0.08	1.109	0.628	0.713
165/5825	802.11a	Top side	1.023	12.55	13	-0.17	1.109	0.29	0.329

Note:

1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B.

2) When the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is \leq 1.2 W/kg, SAR test for the other 802.11 modes are not required

7.4. Multiple Transmitter Evaluation

7.4.1. Simultaneous SAR SAR test evaluation

NO.	Simultaneous Tx Combination	Body
1	WiFi 2.4G +WiFi 5G+ Bluetooth	No

Note:

- 1) Wi-Fi 2.4G/5G and Bluetooth share the same Tx antenna and can't transmit simultaneously.
- 2) The device does not support DTM function.

APPENDIX A: DETAILED SYSTEM CHECK RESULTS

APPENDIX B: DETAILED TEST RESULTS

APPENDIX C: CALIBRATION CERTIFICATE

APPENDIX D: PHOTOGRAPHS

