

Page 1 of48

TEST REPORT

Product Name	:	iPet Automatic Cat Litter Box
Brand Mark	:	HHOLOVE
Model No.	:	U000A022
FCC ID	:	2A5DZ-U000A022
Report Number	:	BLA-EMC-202201-A1604
Date of Sample Receipt	:	2022/1/7
Date of Test	:	2022/1/7 to 2022/3/1
Date of Issue	:	2022/3/1
Test Standard	:	47 CFR Part 15, Subpart C 15.249
Test Result	:	Pass

Prepared for:

HHO (Hangzhou) Digital Technology Co., Ltd. Room 106-2, Building 1, 1818-2 West Wenyi Road, Yuhang District, Hangzhou City

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China TEL: +86-755-23059481

Compiled by: Approved by:

Jozu Blue Zhong

Review by: Date:

neels

syanis

REPORT REVISE RECORD

Version No.	Date	Description	
00	2022/3/1	Original	

TABLE OF CONTENTS

1	TES	ST SUMMARY	5
2	GEN	NERAL INFORMATION	6
3	GEN	NERAL DESCRIPTION OF E.U.T	6
4	TES	T ENVIRONMENT	7
5	TES		7
с С	ME		
6	WE/		
7	DES	SCRIPTION OF SUPPORT UNIT	8
8	LAE	BORATORY LOCATION	
9	TES	ST INSTRUMENTS LIST	9
10	RAI	DIATED EMISSIONS	12
	10.1	LIMITS	
	10.2	BLOCK DIAGRAM OF TEST SETUP	
	10.3	PROCEDURE	
	10.4	TEST DATA	14
11	RES	STRICTED BAND AROUND FUNDAMENTAL FREQUENCY	22
	11 1	LIMITS	22
	11.2	BLOCK DIAGRAM OF TEST SETUP	
	11.3	PROCEDURE	
	11.4	TEST DATA	25
12	FIE	LD STRENGTH OF THE FUNDAMENTAL SIGNAL (15.249(A))	29
	12 1		20
	12.1	BLOCK DIAGRAM OF TEST SETUP	
	12.3	PROCEDURE	
	12.4	TEST DATA	32
13	20D	B BANDWIDTH	
	13.1	LIMITS	
	13.2	BLOCK DIAGRAM OF TEST SETUP	
	13.3	TEST DATA	
	13.4	Test Plots	
14	col	NDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	41

Report No.: BLA-EMC-202201-A1604 Page 4 of48

14.1	LIMITS	41
14.2	BLOCK DIAGRAM OF TEST SETUP	41
14.3	PROCEDURE	
14.4	ТЕЅТ DATA	43
15 ANT	ENNA REQUIREMENT	45
15.1	Conclusion	45
APPENDI	IX A: PHOTOGRAPHS OF TEST SETUP	46
APPENDI	X B: PHOTOGRAPHS OF EUT	48

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Radiated Emissions	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.4&6.5&6.6	47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)	Pass
Restricted Band Around Fundamental Frequency	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.4&6.5&6.6	47 CFR Part 15, Subpart C 15.205 & 15.249(d) & 15.209	Pass
Field Strength of the Fundamental Signal (15.249(a))	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.5&6.6	47 CFR Part 15, Subpart C 15.249(a)	Pass
20dB Bandwidth	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.9	47 CFR Part 15, Subpart C 15.215	Pass
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.249	N/A	47 CFR Part 15, Subpart C 15.203	Pass

2 GENERAL INFORMATION

Applicant	HHO (Hangzhou) Digital Technology Co., Ltd.		
Address	Room 106-2, Building 1, 1818-2 West Wenyi Road, Yuhang District, Hangzhou City		
Manufacturer	HHO (Hangzhou) Digital Technology Co., Ltd.		
Address	Room 106-2, Building 1, 1818-2 West Wenyi Road, Yuhang District, Hangzhou City		
Factory	Zhejiang Daxiong Mould Industry Co.,Ltd		
Address	Xicheng Mould City, Huangyan District, Taizhou, Zhejiang		
Product Name	iPet Automatic Cat Litter Box		
Test Model No.	U000A022		

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	BQHV20210920-1.0
Software Version	BQSV20211120-0.5

Operation Frequency:	5850MHz-5870MHz	
Channel spacing:	1MHz	
Channel numbers:	21	
Modulation type:	CW	
Antenna Type:	PCB antenna	
Antenna gain:	0dBi(Provided by customer)	
Power supply:	DC 5.0V	

4 TEST ENVIRONMENT

Environment	Temperature	Voltage	
Normal	25°C	DC5V	

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION
TX	Keep the EUT in transmitting mode

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)	
Radiated Emission(9kHz-30MHz)	±4.34dB	
Radiated Emission(30Mz-1000MHz)	±4.24dB	
Radiated Emission(1GHz-18GHz)	±4.68dB	
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB	

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
Note:				
"" means no any support device during testing.				

8 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

No tests were sub-contracted.

9 TEST INSTRUMENTS LIST

Test Equipment Of Radiated Emissions									
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due				
Chamber	SKET	966	N/A	10/11/2020	9/11/2023				
Spectrum	Spectrum R&S		40 100817 24/9/2021 23/9/		23/9/2022				
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022				
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022				
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022				
Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022				
EMI software EZ		EZ-EMC	N/A	N/A	N/A				
Loop antenna	SCHNARZBECK	FMZB1519B	00102	00102 26/9/2020					

Test Equipment Of Restricted Band Around Fundamental Frequency									
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due				
Chamber	SKET	966	N/A	10/11/2020	9/11/2023				
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022				
Receiver	R&S	ESR7	101199 24/9/2021		23/9/2022				
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227 26/9/2020		25/9/2022				
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022				
Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022				
EMI software	EZ	EZ-EMC	N/A	N/A	N/A				
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022				

Test Equipment Of Field Strength of the Fundamental Signal (15.249(a))									
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due				
Chamber	SKET	966	N/A	10/11/2020	9/11/2023				
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022				
Receiver	R&S	ESR7 101199 24/9/		24/9/2021	23/9/2022				
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022				
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022				
Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022				
EMI software	EZ	EZ-EMC	N/A	N/A	N/A				
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022				

Test Equipment Of 20dB Bandwidth									
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due				
Shield room SKET		833 N/A		25/11/2020	24/11/2023				
Receiver	R&S	ESPI3	101082	24/9/2021	23/9/2022				
LISN	R&S	ENV216	3560.6550.15	24/9/2021	23/9/2022				
LISN 安泰信		AT166-2	AKK1806000003	26/9/2021	25/9/2022				
EMI software EZ		EZ-EMC	N/A	N/A	N/A				

Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)									
Equipment Manufacturer Model S/N Cal.Date Cal.									
Shield room	SKET	833	N/A	25/11/2020	24/11/2023				
Receiver	R&S	ESPI3	101082	24/9/2021	23/9/2022				

Report No.: BLA-EMC-202201-A1604 Page 11 of48

LISN	R&S	ENV216	3560.6550.15	24/9/2021	23/9/2022
LISN	AT	AT166-2	AKK1806000003	26/9/2021	25/9/2022
EMI software	EZ	EZ-EMC	N/A	N/A	N/A

10 RADIATED EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.249					
Test Method	ANSI C63.10 (2013) Section 6.4&6.5&6.6					
Test Mode (Pre-Scan)	ТХ					
Test Mode (Final Test)	ТХ					
Tester	Jozu					
Temperature	25°C					
Humidity	60%					

10.1 LIMITS

Energy on av(MIIz)	Field	Measurement		
Frequency(MHZ)	strength(microvolts/meter)	distance(meters)		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for above 1000MHz. Radiated emission limits above 1000MHz is based on measurements employing an average detector.

10.2 BLOCK DIAGRAM OF TEST SETUP

10.3 PROCEDURE

For testing performed with the loop antenna, the center of the loop was positioned 1 m above the ground and positioned with its plane vertical at the specified distance from the EUT. During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane. Only the worst position of vertical was shown in the report.

10.4 TEST DATA

[TestMode: TX low channel]; [Polarity: Horizontal]

Test Lab: BlueAsia EMC Lab (RE #1)	Project: 202201-A16	
EUT: iPet Automatic Cat Litter Box	Test Engineer: Charging	
M/N: U000A22	Temperature: 25℃	
S/N:	Humidity: 45%RH	
Test Mode: 5.8G mode	Test Voltage: AC 230V/50Hz	
Note:	Test Data: 2022-02-25 09:58:17	

No.	Frequency	Limit dBuV/m	Level dBuV/m	Delta dB	Reading dBuV	Factor dB/m	Detector	Polar	Height cm	Angle deg
1*	41.883MHz	40.0	24.5	-15.5	0.5	24.0	QP	Hor	100.0	60.0
2*	131.850MHz	43.5	25.3	-18.2	2.0	23.3	QP	Hor	100.0	359.0
3*	288.020MHz	46.0	26.3	-19.7	2.5	23.8	QP	Hor	100.0	298.0
4*	419.698MHz	46.0	28.8	-17.2	1.3	27.5	QP	Hor	100.0	356.0
5*	610.181MHz	46.0	32.5	-13.5	1.2	31.3	QP	Hor	100.0	276.0
6*	735.069MHz	46.0	35.0	-11.0	2.3	32.7	QP	Hor	100.0	344.0

[TestMode: low channel]; [Polarity: Vertical]

Test Lab: BlueAsia EMC Lab (RE #1)	Project: 202201-A16
EUT: iPet Automatic Cat Litter Box	Test Engineer: Charging
M/N: U000A22	Temperature: 25°C
S/N:	Humidity: 45%RH
Test Mode: 5.8G mode	Test Voltage: AC 230V/50Hz
Note:	Test Data: 2022-02-25 10:00:13

No.	Frequency	Limit dBuV/m	Level	Delta	Reading	Factor	Detector	Polar	Height	Angle
		ubuv/m	ubuv/m	uD	ubuv	ub/m			GIII	ucy
1*	143.975MHz	43.5	34.0	-9.5	10.4	23.6	QP	Ver	100.0	286.0
2*	215.998MHz	43.5	31.5	-12.0	10.0	21.5	QP	Ver	100.0	220.0
3*	288.020MHz	46.0	32.3	-13.7	8.5	23.8	QP	Ver	100.0	244.0
4*	360.043MHz	46.0	35.8	-10.2	9.8	26.0	QP	Ver	100.0	323.0
5*	431.944MHz	46.0	37.0	-9.0	9.3	27.7	QP	Ver	100.0	220.0
6*	763.199MHz	46.0	35.1	-10.9	1.7	33.4	QP	Ver	100.0	298.0

[TestMode: TX low channel]; [Polarity: Vertical]

IVIN.	Freq.	Level	Factor	ment	Limit	Over		
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
*	3655.500	44.02	7.76	51.78	74.00	-22.22	peak	
	5770.500	42.61	3.91	46.52	74.00	-27.48	peak	
	7415.500	42.09	6.79	48.88	74.00	-25.12	peak	
	8261.500	41.69	8.23	49.92	74.00	-24.08	peak	
	9507.000	40.74	9.06	49.80	74.00	-24.20	peak	
3	1640.000	39.36	11.96	51.32	74.00	-22.68	peak	
	*	MHz * 3655.500 5770.500 7415.500 8261.500 9507.000 11640.000	MHz dBuV * 3655.500 44.02 5770.500 42.61 7415.500 42.09 8261.500 41.69 9507.000 40.74 11640.000 39.36	MHz dBuV dB/m * 3655.500 44.02 7.76 5770.500 42.61 3.91 7415.500 42.09 6.79 8261.500 41.69 8.23 9507.000 40.74 9.06 11640.000 39.36 11.96	MHz dBuV dB/m dBuV/m * 3655.500 44.02 7.76 51.78 5770.500 42.61 3.91 46.52 7415.500 42.09 6.79 48.88 8261.500 41.69 8.23 49.92 9507.000 40.74 9.06 49.80 11640.000 39.36 11.96 51.32	MHz dBuV dB/m dBuV/m dBuV/m * 3655.500 44.02 7.76 51.78 74.00 5770.500 42.61 3.91 46.52 74.00 7415.500 42.09 6.79 48.88 74.00 8261.500 41.69 8.23 49.92 74.00 9507.000 40.74 9.06 49.80 74.00 11640.000 39.36 11.96 51.32 74.00	MHz dBuV dB/m dBuV/m dBuV/m dB * 3655.500 44.02 7.76 51.78 74.00 -22.22 5770.500 42.61 3.91 46.52 74.00 -27.48 7415.500 42.09 6.79 48.88 74.00 -25.12 8261.500 41.69 8.23 49.92 74.00 -24.08 9507.000 40.74 9.06 49.80 74.00 -24.20 11640.000 39.36 11.96 51.32 74.00 -22.68	MHz dBuV dB/m dBuV/m dBuV/m dB Detector * 3655.500 44.02 7.76 51.78 74.00 -22.22 peak 5770.500 42.61 3.91 46.52 74.00 -27.48 peak 7415.500 42.09 6.79 48.88 74.00 -25.12 peak 8261.500 41.69 8.23 49.92 74.00 -24.08 peak 9507.000 40.74 9.06 49.80 74.00 -24.20 peak 11640.000 39.36 11.96 51.32 74.00 -22.68 peak

*:Maximum data x:Over limit !:over margin

(Reference Only

[TestMode: TX low channel]; [Polarity: Horizontal]

Mk.	Freq.	Level	Factor	ment	Limit	Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
*	3843.500	44.99	7.12	52.11	74.00	-21.89	peak		
	5418.000	42.38	4.07	46.45	74.00	-27.55	peak		
	7768.000	41.17	7.61	48.78	74.00	-25.22	peak		
	8520.000	40.98	8.11	49.09	74.00	-24.91	peak		
	9859.500	39.70	9.93	49.63	74.00	-24.37	peak		
1	1460.000	38.21	11.85	50.06	74.00	-23.94	peak		
	Mk.	Mk. Freq. MHz * 3843.500 5418.000 7768.000 8520.000 9859.500 11460.000	Mk. Freq. Level MHz dBuV * 3843.500 44.99 5418.000 42.38 7768.000 41.17 8520.000 40.98 9859.500 39.70 11460.000 38.21	Mk. Freq. Level Factor MHz dBuV dB/m * 3843.500 44.99 7.12 5418.000 42.38 4.07 7768.000 41.17 7.61 8520.000 40.98 8.11 9859.500 39.70 9.93 11460.000 38.21 11.85	Mk. Freq. Level Factor metastite MHz dBuV dB/m dBuV/m * 3843.500 44.99 7.12 52.11 5418.000 42.38 4.07 46.45 7768.000 41.17 7.61 48.78 8520.000 40.98 8.11 49.09 9859.500 39.70 9.93 49.63 11460.000 38.21 11.85 50.06	Mk. Freq. Level Factor ment Limit MHz dBuV dB/m dBuV/m dBuV/m dBuV/m * 3843.500 44.99 7.12 52.11 74.00 5418.000 42.38 4.07 46.45 74.00 7768.000 41.17 7.61 48.78 74.00 8520.000 40.98 8.11 49.09 74.00 9859.500 39.70 9.93 49.63 74.00 11460.000 38.21 11.85 50.06 74.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB/m dBuV/m dBuV/m dBuV/m dB * 3843.500 44.99 7.12 52.11 74.00 -21.89 5418.000 42.38 4.07 46.45 74.00 -25.22 7768.000 41.17 7.61 48.78 74.00 -24.91 9859.500 39.70 9.93 49.63 74.00 -24.37 11460.000 38.21 11.85 50.06 74.00 -23.94	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB/m dBuV/m dBuV/m dB Detector * 3843.500 44.99 7.12 52.11 74.00 -21.89 peak 5418.000 42.38 4.07 46.45 74.00 -27.55 peak 7768.000 41.17 7.61 48.78 74.00 -22.22 peak 8520.000 40.98 8.11 49.09 74.00 -24.91 peak 9859.500 39.70 9.93 49.63 74.00 -24.37 peak 11460.000 38.21 11.85 50.06 74.00 -23.94 peak	Mk. Freq. Level Factor ment Limit Over MHz dBu// dBl/m dBu//m dBu//m dB Detector Comment * 3843.500 44.99 7.12 52.11 74.00 -21.89 peak 5418.000 42.38 4.07 46.45 74.00 -27.55 peak 7768.000 41.17 7.61 48.78 74.00 -25.22 peak 8520.000 40.98 8.11 49.09 74.00 -24.91 peak 9859.500 39.70 9.93 49.63 74.00 -24.37 peak 11460.000 38.21 11.85 50.06 74.00 -23.94 peak

*:Maximum data x:Over limit !:over margin

(Reference Only

[TestMode: TX mid channel]; [Polarity: Vertical]

No.	Mk.	Freq.	Reading Level	Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	3702.500	43.56	7.72	51.28	74.00	-22.72	peak		
2		5864.500	44.82	3.90	48.72	74.00	-25.28	peak		
3		7791.500	42.68	7.68	50.36	74.00	-23.64	peak		
4		8966.500	41.59	8.04	49.63	74.00	-24.37	peak		
5		10705.500	38.76	11.48	50.24	74.00	-23.76	peak		
6		11720.000	38.57	11.75	50.32	74.00	-23.68	peak		

*:Maximum data x:Over limit !:over margin

(Reference Only

[TestMode: TX mid channel]; [Polarity: Horizontal]

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	3843.500	45.61	7.12	52.73	74.00	-21.27	peak		
2		5864.500	42.48	3.90	46.38	74.00	-27.62	peak		
3		8496.500	42.19	8.14	50.33	74.00	-23.67	peak		
4		9765.500	40.73	9.63	50.36	74.00	-23.64	peak		
5		11011.000	39.55	11.99	51.54	74.00	-22.46	peak		
6		11720.000	37.83	11.75	49.58	74.00	-24.42	peak		
0	6	11/20.000	37.03	11.75	49.00	74.00	-24.42	реак		

*:Maximum data x:Over limit !:over margin

(Reference Only

[TestMode: TX high channel]; [Polarity: Vertical]

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2433.500	46.39	-3.39	43.00	74.00	-31.00	peak		
2		3702.500	43.73	6.06	49.79	74.00	-24.21	peak		
3		5864.500	43.07	1.78	44.85	74.00	-29.15	peak		
4		7838.500	41.46	8.87	50.33	74.00	-23.67	peak		
5	*	9695.000	40.87	10.77	51.64	74.00	-22.36	peak		

*:Maximum data x:Over limit !:over margin

(Reference Only

[TestMode: TX high channel]; [Polarity: Horizontal]

	MHz	10.47							
		ann	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
	3608.500	43.15	6.11	49.26	74.00	-24.74	peak		
	4877.500	46.03	1.34	47.37	74.00	-26.63	peak		
	7204.000	41.40	6.82	48.22	74.00	-25.78	peak		
	8473.000	41.67	9.62	51.29	74.00	-22.71	peak		
*	9765.500	40.96	10.94	51.90	74.00	-22.10	peak		-
	11740.000	38.32	13.09	51.41	74.00	-22.59	peak		
	*	3608.500 4877.500 7204.000 8473.000 * 9765.500 11740.000	3608.500 43.15 4877.500 46.03 7204.000 41.40 8473.000 41.67 * 9765.500 40.96 11740.000 38.32	3608.500 43.15 6.11 4877.500 46.03 1.34 7204.000 41.40 6.82 8473.000 41.67 9.62 * 9765.500 40.96 10.94 11740.000 38.32 13.09	3608.500 43.15 6.11 49.26 4877.500 46.03 1.34 47.37 7204.000 41.40 6.82 48.22 8473.000 41.67 9.62 51.29 * 9765.500 40.96 10.94 51.90 11740.000 38.32 13.09 51.41	3608.500 43.15 6.11 49.26 74.00 4877.500 46.03 1.34 47.37 74.00 7204.000 41.40 6.82 48.22 74.00 8473.000 41.67 9.62 51.29 74.00 * 9765.500 40.96 10.94 51.90 74.00 11740.000 38.32 13.09 51.41 74.00	3608.500 43.15 6.11 49.26 74.00 -24.74 4877.500 46.03 1.34 47.37 74.00 -26.63 7204.000 41.40 6.82 48.22 74.00 -25.78 8473.000 41.67 9.62 51.29 74.00 -22.71 * 9765.500 40.96 10.94 51.90 74.00 -22.10 11740.000 38.32 13.09 51.41 74.00 -22.59	3608.500 43.15 6.11 49.26 74.00 -24.74 peak 4877.500 46.03 1.34 47.37 74.00 -26.63 peak 7204.000 41.40 6.82 48.22 74.00 -25.78 peak 8473.000 41.67 9.62 51.29 74.00 -22.71 peak * 9765.500 40.96 10.94 51.90 74.00 -22.10 peak 11740.000 38.32 13.09 51.41 74.00 -22.59 peak	3608.500 43.15 6.11 49.26 74.00 -24.74 peak 4877.500 46.03 1.34 47.37 74.00 -26.63 peak 7204.000 41.40 6.82 48.22 74.00 -25.78 peak 8473.000 41.67 9.62 51.29 74.00 -22.71 peak * 9765.500 40.96 10.94 51.90 74.00 -22.10 peak 11740.000 38.32 13.09 51.41 74.00 -22.59 peak

*:Maximum data x:Over limit !:over margin

(Reference Only

11 RESTRICTED BAND AROUND FUNDAMENTAL FREQUENCY

Test Standard	47 CFR Part 15, Subpart C 15.249
Test Method	ANSI C63.10 (2013) Section 6.4&6.5&6.6
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25 ℃
Humidity	60%

11.1 LIMITS

Frequency	Limit (dBuV/m @3m)	Remark
30MHz-88MHz	40.0	Quasi-peak Value
88MHz-216MHz	43.5	Quasi-peak Value
216MHz-960MHz	46.0	Quasi-peak Value
960MHz-1GHz	54.0	Quasi-peak Value
Above 1GHz	54.0	Average Value
Above 1GHz	74.0	Peak Value

Emission radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

11.2 BLOCK DIAGRAM OF TEST SETUP

11.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

11.4 TEST DATA

	[TestMode:	TX low channel	I: [Polarity: Vertical]
--	------------	----------------	-------------------------

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		5350.000	44.75	1.55	46.30	74.00	-27.70	peak		
2		5460.000	44.74	1.78	46.52	74.00	-27.48	peak		
3		5725.000	44.07	1.80	45.87	74.00	-28.13	peak		
4	*	5875.000	45.13	1.77	46.90	74.00	-27.10	peak		

*:Maximum data x:Over limit !:over margin

(Reference Only

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over				
		MHz	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	5350.000	45.31	1.55	46.86	74.00	-27.14	peak			
2		5460.000	44.85	1.78	46.63	74.00	-27.37	peak			
3		5725.000	44.35	1.80	46.15	74.00	-27.85	peak			
4		5875.000	44.52	1.77	46.29	74.00	-27.71	peak			

(Reference Only

(Reference Only

Freq. Level Factor ment MHz dBuV dB/m dBuV/m dBuV/m dB Detector Comment 1 * 5875.000 50.50 1.77 52.27 74.00 -21.73 peak

*:Maximum data x:Over limit !:over margin

(Reference Only

12 FIELD STRENGTH OF THE FUNDAMENTAL SIGNAL (15.249(A))

Test Standard	47 CFR Part 15, Subpart C 15.249
Test Method	ANSI C63.10 (2013) Section 6.5&6.6
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25 ℃
Humidity	60%

12.1 LIMITS

Fundamental	Field strength of	Field strength of
frequency(MHz)	fundamental(microvolts/meter)	harmonics(microvolts/meter)
902-928	50	500
2400-2483.5	50	500
5725-5875	50	500
24000-24250	250	2500

Remark: The frequencies above 1000MHz are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Frequency	Limit (dBµV/m @3m)	Remark
Field strength of	94.0	Average Value
fundamental 5725MHz-5875MHz	114.0	Peak Value

12.2 BLOCK DIAGRAM OF TEST SETUP

12.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

12.4 TEST DATA

No.	đ	Mk.	Freq.	Level	Factor	ment	Limit	Over			
-			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	5	*	5850.264	82.29	1.79	84.08			peak		10

*:Maximum data x:Over limit !:over margin

(Reference Only

(Reference Only

(Reference Only

(Reference Only

(Reference Only

(Reference Only

13 20DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.249
Test Method	ANSI C63.10 (2013) Section 6.9
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25 ℃
Humidity	60%

13.1 LIMITS

Limit: N/A

13.2 BLOCK DIAGRAM OF TEST SETUP

13.3 TEST DATA

Test Frequency MHz	20dB Bandwidth kHz	Result
5850	81.6kHz	Pass
5860	82.2 kHz	Pass
5870	85.8 kHz	Pass

13.4 TEST PLOTS

Marker	TRACE 1 2 3 4 5 6	e: RMS	Avg T			z	50 Ω AC 0000 kH	2.200	RF	r 2 /	ker	lar
Select Mark	Mkr2 82.2 kHz	:>100/100 	AvgjH	* Trig: Free Run #Atten: 30 dB	ide 🖵 .ow	PNO: Wid IFGain:Lo	t 3.8 dB	Offse	Ref			
	0.369 dB						00 dBm	20.0	Ref	V	B/div) dl
Nori	1										_	.00
	2 <u>\</u> 2 <u>\</u> 3 25.37 (Em)	N/			8).0).0
De		×3	~~~~~		~~~~	~~~~	~~~	~		~		0.0
				-							-	1.0
Fixe).O
The second se	Span 600.0 kHz .000 ms (1001 pts)	Sweep 1.		100 kHz*	¢∨BW	#\	GHz	000 (Hz	600 30 ki	5.8 W 3	ter s B	en le
	FUNCTION VALUE	NCTION WIDTH	JNCTION	Y F		244.0.011-	×		SCL	E TRC	MODE	R
Propertie				-26.731 dBm	z Iz (Δ) z	82.2 kHz 169 8 GHz	5.860	(Δ)	f f	1	Δ3 F	
M												1
												1
		STATUS										3

ι xi Marker 2 Δ	RF 50 Ω AC 85.800000 kHz	Z PNO: Wide IEGain: I ow #Atten: 30 d	INT ALIGN AUTO Avg Type: RMS un Avg Hold:>100/100 B	01:50:46 PM Mar 01, 2022 TRACE 1 2 3 4 5 6 TYPE M WWWW DET A N N N N N	Marker
10 dB/div	Ref Offset 3.8 dB Ref 20.00 dBm	in Gain. Low		∆Mkr2 85.8 kHz -0.455 dB	Marker I On
				1	Marker Co
-10.0			X	2 <u>43</u> -26.06 dBm	Co Mar
-40.0					On
-60.0					
Center 5.87 #Res BW 30	00000 GHz) kHz	#VBW 100 kHz*	Sweep 1	Span 600.0 kHz .000 ms (1001 pts)	
MKR MODE TRC	SCL × f 5.870 2	205 2 GHz -6.054 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	
3 F 1 4 5	f 5.870 1	162.6 GHz -25.646 dBm			All Marker
7 8 9					
					8

14 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)

Test Standard	47 CFR Part 15, Subpart C 15.249
Test Method	ANSI C63.10 (2013) Section 6.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25 ℃
Humidity	60%

14.1 LIMITS

Frequency of	Conducted limit(dBµV)						
emission(MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					
		·					

*Decreases with the logarithm of the frequency.

14.2 BLOCK DIAGRAM OF TEST SETUP

14.3 PROCEDURE

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

14.4 TEST DATA

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.5899	35.10	9.87	44.97	56.00	-11.03	QP	
2	*	0.5899	27.61	9.87	37.48	46.00	-8.52	AVG	
3	8	1.1818	20.83	9.92	30.75	56.00	-25.25	QP	
4		1.1818	14.16	9.92	24.08	46.00	-21.92	AVG	
5		2.0019	23.00	9.94	32.94	56.00	-23.06	QP	
6		2.0019	15.85	9.94	25.79	46.00	-20.21	AVG	
7		4.9420	19.36	10.01	29.37	56.00	-26.63	QP	
8		4.9420	12.68	10.01	22.69	46.00	-23.31	AVG	
9		5.8019	21.77	10.05	31.82	60.00	-28.18	QP	
10		5.8019	14.65	10.05	24.70	50.00	-25.30	AVG	
11		13.5220	35.98	10.29	46.27	60.00	-13.73	QP	
12		13.5220	25.46	10.29	35.75	50.00	-14.25	AVG	

*:Maximum data x:Over limit !:over margin

(Reference Only

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2819	32.12	9.77	41.89	60.76	-18.87	QP	
2		0.2819	24.70	9.77	34.47	50.76	-16.29	AVG	
3	8	0.5700	32.11	9.80	41.91	56.00	-14.09	QP	
4	*	0.5700	27.04	9.80	36.84	46.00	- <mark>9.1</mark> 6	AVG	
5		0.9860	24.87	9.84	34.71	56.00	-21.29	QP	
6		0.9860	19.22	9.84	29.06	46.00	-16.94	AVG	
7		2.1020	22.38	9.86	32.24	56.00	-23.76	QP	
8		2.1020	17.73	9.86	27.59	46.00	-18.41	AVG	
9		4.9940	20.23	9.95	30.18	56.00	-25.82	QP	
10		4.9940	15.37	9.95	25.32	46.00	-20.68	AVG	
11		13.5220	35.06	10.27	45.33	60.00	-14.67	QP	
12		13.5220	22.28	10.27	32.55	50.00	-17.45	AVG	

(Reference Only

15 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.249
Test Method	N/A

15.1 CONCLUSION

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

APPENDIX B: PHOTOGRAPHS OF EUT

Reference to the test report No. BLA-EMC-202201-A1601

----END OF REPORT----

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.