

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202203-0004-1 Page: 1 of 49

Radio Test Report

FCC ID: 2A5CF-BKL

Original Grant

Report No.	: TBR-C-202203-0004-1
Applicant	: Shenzhen BKLNOG Electronic Technology Co., Ltd.
Equipment Under	st (EUT)
EUT Name	: Computer Mice
Model No.	: BE701
Series Model No.	H120-RD, H120-BE, H120-YW, H120-BK, H121-RD, H121-BE, H121-YW, H121-BK, H122-RD, H122-BE, H120-GY, H123-RD, H123-BE, H123-YW, H123-BK, BE2, BE3, Z-ONE, Z2, Z3, Z4, Z5, B1, B2, B3, B4, B5, H125, H126, H127, H128
Brand Name	: BKLNOG
Sample ID	: 202203-0004-1-1#202203-0004-1-2#
Receipt Date	: 2022-03-03
Test Date	: 2022-03-03 to 2022-03-22
Issue Date	: 2022-03-23
Standards	: FCC Part 15, Subpart C 15.247
Test Method	: ANSI C63.10: 2013
Conclusions	: PASS
	In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer

Engineer Supervisor

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

: INAN SU : fuy tà.

Contents

CON	TENTS	2
1.	GENERAL INFORMATION ABOUT EUT	
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	7
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	
2.	TEST SUMMARY	10
3.	TEST SOFTWARE	10
4.	TEST EQUIPMENT	11
5.CO	NDUCTED EMISSION TEST	12
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	13
	5.5 EUT Operating Mode	13
	5.6 Test Data	13
5.	RADIATED EMISSION TEST	14
	6.1 Test Standard and Limit	14
	6.2 Test Setup	15
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	17
	6.5 EUT Operating Condition	17
	6.6 Test Data	
6.	RESTRICTED BANDS AND BAND-EDGE TEST	18
	7.1 Test Standard and Limit	18
	7.2 Test Setup	18
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	
	7.5 EUT Operating Condition	
	7.6 Test Data	
7.	NUMBER OF HOPPING CHANNEL	
	8.1 Test Standard and Limit	21
	8.2 Test Setup	21
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Condition	21

TOBY

Report No.: TBR-C-202203-0004-1 Page: 3 of 49

	8.6 Test Data	21
8.	AVERAGE TIME OF OCCUPANCY	
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 EUT Operating Condition	
	9.4 Deviation From Test Standard	22
	9.5 Test Data	
9.	CHANNEL SEPARATION AND BANDWIDTH TEST	
	10.1 Test Standard and Limit	
	10.2 Test Setup	
	10.3 Test Procedure	
	10.4 Deviation From Test Standard	23
	10.5 EUT Operating Condition	23
	10.6 Test Data	23
10.	PEAK OUTPUT POWER TEST	24
	11.1 Test Standard and Limit	24
	11.2 Test Setup	
	11.3 Test Procedure	
	11.4 Deviation From Test Standard	24
	11.5 EUT Operating Condition	24
	11.6 Test Data	
11.	ANTENNA REQUIREMENT	
	12.1 Standard Requirement	
	12.2 Deviation From Test Standard	
	12.3 Antenna Connected Construction	
	12.4 Result	
ATT	ACHMENT A RADIATED EMISSION TEST DATA	
ATT	ACHMENT B RESTRICTED BANDS REQUIREMENT TEST DATA	
ATT	ACHMENT C NUMBER OF HOPPING CHANNEL TEST DATA	
	ACHMENT D AVERAGE TIME OF OCCUPANCY TEST DATA	
	ACHMENT E CHANNEL SEPARATION AND BANDWIDTH TEST DATA	
	IDWIDTH TEST DATA:	
	ACHMENT F PEAK OUTPUT POWER TEST DATA	
ALL	ACTIVIENT F FEAR OUTFUT FOWER TEST DATA	

 Report No.: TBR-C-202203-0004-1

 Page:
 4 of 49

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202203-0004-1	Rev.01	Initial issue of report	2022-03-23
	Con		TOBI
The second		THE F	
TUR	The second	N ROBY	
The state of the s	BU C	TOBI D	
Le la	00		
ION E		The state	
1000	000	A COMPANY	TOBI

1. General Information about EUT

1.1 Client Information

Applicant		henzhen BKLNOG Electronic Technology Co., Ltd.	
Address	:	Kengzi Street 3rd Floor, Building A, No. 4-2 longtianxiapocun, Shenzhen, China	
Manufacturer		enzhen BKLNOG Electronic Technology Co., Ltd.	
Address	÷	Kengzi Street 3rd Floor, Building A, No. 4-2 longtianxiapocun, Shenzhen, China	

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Computer Mice			
Models No.		BE701, H120-RD, H120-BE, H120-YW, H120-BK, H121-RD, H121-BE, H121-YW, H121-BK, H122-RD, H122-BE, H120-GY, H123-RD, H123-BE, H123-YW, H123-BK, BE2, BE3, Z-ONE, Z2, Z3, Z4, Z5, B1, B2, B3, B4, B5, H125, H126, H127, H128			
Model Difference	5		All these models are the same in the same PCB, layout and circuit, the only difference is the model.		
MODD -	~	Operation Frequency:	2402MHz~2480MHz		
Product		Number of Channel:	40 Channels See Note 2		
Description		Antenna Gain:	-2.1 dBi PCB Antenna		
		Modulation Type:	GFSK		
Power Rating		DC 1.5V*2 by AAA Batter	у.		
Software Version	:	N/A			
Hardware Version		N/A			
Remark	· · ·	The adapter and antenna the RF conduction test pr	a gain provided by the applicant, the verified for ovided by TOBY test lab.		
Note:	1				

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(2) Channel List:

Channel List					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	15	2432	30	2462
01	2404	16	2434	31	2464
02	2406	17	2436	32	2466
03	2408	18	2438	33	2468
04	2410	19	2440	34	2470
05	2412	20	2442	35	2472
06	2414	21	2444	36	2474
07	2416	22	2446	37	2476
08	2418	23	2448	38	2478
09	2420	24	2450	39	2480
10	2422	25	2452	1200	6
11	2424	26	2454	GRUP	
12	2426	27	2456		
13	2428	28	2458		
14	2430	29	2460	2010	

Note: Test frequencies are lowest channel: 2402MHz, middle channel: 2440MHz and highest channel: 2480MHz.

(3) The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested

Adapter & TX Mode

EUT

1.4 Description of Support Units

The EUT has been tested as an independent unit.

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

	For Conducted Test
Final Test Mode	Description
Mode 1	TX Mode

	For Radiated Test
Final Test Mode	Description
Mode 1	TX GFSK Mode
Mode 2	TX Mode(GFSK) Channel 00/19/39
Mode 3	Hopping TX Mode

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate. We have pretested all the test modes above.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (4Mbps)

(2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane as the normal use. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth mode.

Test Software Version		ol the corresponding transmission frequency through the EUT entity key.	
Frequency	2402 MHz	2440 MHz	2480 MHz
GFSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.20 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351. Designation Number:CN1223

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

TOBY

2. Test Summary

Standard Section	To of Mana	To al Communic(a)			
FCC	Test Item	Test Sample(s)	Judgment	Remark	
FCC 15.207(a)	Conducted Emission	202203-0004-1#-1#	N/A	N/A	
FCC 15.209 & 15.247(d)	Radiated Unwanted Emissions	202203-0004-1#-1#	PASS	N/A	
FCC 15.203	Antenna Requirement	202203-0004-1#-2#	PASS	N/A	
FCC 15.247(a)	99% Occupied Bandwidth & 20dB Bandwidth	202203-0004-1#-2#	PASS	N/A	
FCC 15.247(b)(1)	Peak Output Power	202203-0004-1#-2#	PASS	N/A	
FCC 15.247(a)(1)	Carrier frequency separation	202203-0004-1#-2#	PASS	N/A	
FCC 15.247(a)(1)	Time of occupancy	202203-0004-1#-2#	PASS	N/A	
FCC 15.247(b)(1)	Number of Hopping Frequency	202203-0004-1#-2#	PASS	N/A	
FCC 15.247(d)	Band Edge	202203-0004-1#-2#	PASS	N/A	
FCC 15.207(a)	Conducted Unwanted Emissions	202203-0004-1#-2#	PASS	N/A	
FCC 15.205	Emissions in Restricted Bands	202203-0004-1#-2#	PASS	N/A	

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

e	st Software			
2	Test Item	Test Software	Manufacturer	Version No.
	Conducted Emission	EZ-EMC	EZ	CDI-03A2
	Radiation Emission	EZ-EMC	EZ	FA-03A2RE
	Radiation Emission	TS+	Tonsced	3.0.0.4
	RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0

4. Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 02, 2021	Jul. 01, 2022
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 02, 2021	Jul. 01, 2022
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 02, 2021	Jul. 01, 2022
LISN	Rohde & Schwarz	ENV216	101131	Jul. 02, 2021	Jul. 01, 2022
Radiation Emission T	est				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 02, 2021	Jul. 01, 2022
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 02, 2021	Jul. 01, 2022
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Feb.27, 2022	Feb.26, 2023
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 02, 2022	Mar. 01, 2023
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Mar. 02, 2022	Mar. 01, 2023
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 06, 2021	Jul. 05, 2022
Pre-amplifier	Sonoma	310N	185903	Feb. 26, 2022	Feb.25, 2023
Pre-amplifier	HP	8449B	3008A00849	Feb. 26, 2022	Feb.25, 2023
Pre-amplifier	SKET	LNPA_1840G-50	SK201904032	Feb. 26, 2022	Feb.25, 2023
Cable	HUBER+SUHNER	100	SUCOFLEX	Feb. 26, 2022	Feb.25, 2023
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducted E	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 02, 2021	Jul. 01, 2022
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 03, 2021	Sep. 02, 2022
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 03, 2021	Sep. 02, 2022
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 03, 2021	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO26	Sep. 03, 2021	Sep. 02, 2022
PE Dowor Songer	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO29	Sep. 03, 2021	Sep. 02, 2022
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO31	Sep. 03, 2021	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO33	Sep. 03, 2021	Sep. 02, 2022

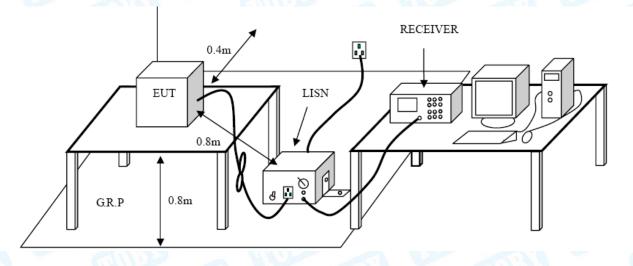
Report No.: TBR-C-202203-0004-1 Page: 12 of 49

5.Conducted Emission Test

- 5.1 Test Standard and Limit
 - 5.1.1Test Standard FCC Part 15.207 RSS-Gen 8.8
 - 5.1.2 Test Limit

Frequency	Maximum RF Lin	Maximum RF Line Voltage (dBμV)		
	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Conducted Emission Test Limit


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

N/A.

5. Radiated Emission Test

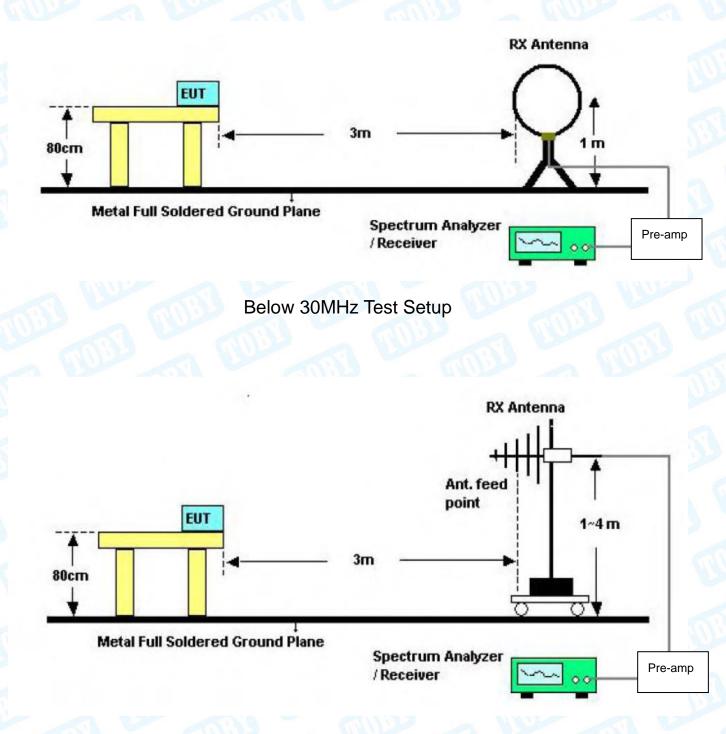
- 6.1 Test Standard and Limit
 - 6.1.1 Test Standard
 - FCC Part 15.209 & FCC Part 15.247(d)
 - 6.1.2 Test Limit

Radiated Emission Limit (9 kHz~1000MHz)

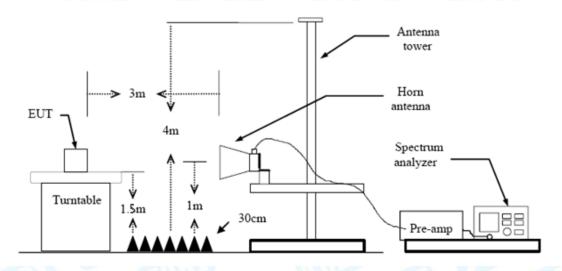
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3 3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency (MHz)	Distance Meters(at 3m)		
	Peak	Average	
Above 1000	74	54	


Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)


Report No.: TBR-C-202203-0004-1 Page: 15 of 49

6.2 Test Setup

Below 1000MHz Test Setup

Above 1GHz Test Setup

6.3 Test Procedure

- (1) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency Below 1GHz. The EUT was placed on a rotating 0.8m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

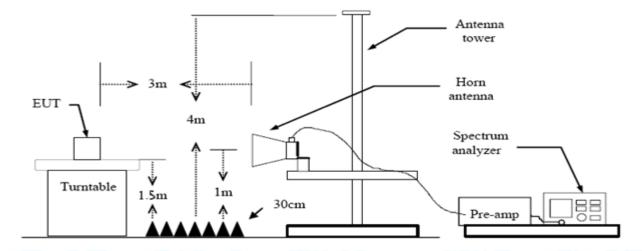
6.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values. Please refer to the Attachment A.

6. Restricted Bands and Band-edge test

- 7.1 Test Standard and Limit
 - 7.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)


7.1.2 Test Limit

Restricted Frequency	Distance Meters(at 3m)		
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)	
2310 ~2390	74	54	
2483.5 ~2500	74	54	
	onducted measurement		
A A A A A A A A A A A A A A A A A A A	Peak (dBm)see 7.3 e)	Average (dBm) see 7.3 e	
2310 ~2390	-41.20	-21.20	
2483.5 ~2500	-41.20	-21.20	

Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

7.2 Test Setup

Radiated measurement

Conducted measurement

	HILL	-	Color -
EUT		Spectru	m Analyzer

7.3 Test Procedure

---Radiated measurement

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

---Conducted measurement

a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).

b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).

c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies \leq 30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).

d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).

e) Convert the resultant EIRP to an equivalen t electric field strength using the following

relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m EIRP is the equivalent isotropically radiated power in dBm

- d is the specified measurement distance in m
- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.
- 7.4 Deviation From Test Standard

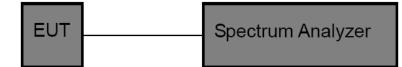
No deviation

7.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

7.6 Test Data

Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. Please refer to the Attachment B.


TOBY

7. Number of Hopping Channel

- 8.1 Test Standard and Limit
 - 8.1.1 Test Standard
 - FCC Part 15.247 (a)(1)
 - 8.1.2 Test Limit

Section	Test Item	Limit
15.247	Number of Hopping Channel	>15

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 KHz, VBW=100 KHz, Sweep time= Auto.
- 8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Condition

The EUT was set to the Hopping Mode by the Customer.

8.6 Test Data

Please refer to the Attachment C.

TOBY

8. Average Time of Occupancy

- 9.1 Test Standard and Limit
 - 9.1.1 Test Standard
 - FCC Part 15.247 (a)(1)
 - 9.1.2 Test Limit

Test Item	Limit
Average Time of Occupancy	0.4 sec

9.2 Test Setup

9.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100KHz, VBW=300KHz.
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.

9.4 EUT Operating Condition

The average time of occupancy on any channel within the Period can be calculated with formulas:

The Dwell Time = Burst Width * Total Hops. The detailed calculations are showed as follows: The duration for dwell time calculation: 0.4 [s] * hopping number = 0.4 [s] * 20 [ch] = 8.0 [s*ch];The burst width, which is directly measured, refers to the duration on one channel hop.

The maximum number of hopping channels in 8.0s =3*(8.0/0.24) =100

The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

The EUT was set to the Hopping Mode by the Customer.

9.4 Deviation From Test Standard

No deviation

9.5 Test Data

Please refer to the Attachment D.

9. Channel Separation and Bandwidth Test

10.1 Test Standard and Limit

- 10.1.1 Test Standard
- FCC Part 15.247
- 10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	<=1 MHz (20dB bandwidth)	2400~2483.5
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5

10.2 Test Setup

10.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: Channel Separation: RBW=100 kHz, VBW=100 kHz. Bandwidth: RBW=30 kHz, VBW=100 kHz.
- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (4) Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:30 kHz, and Video Bandwidth:100 kHz. Sweep Time set auto.

10.4 Deviation From Test Standard

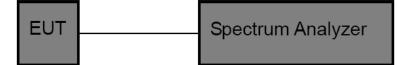
No deviation

10.5 EUT Operating Condition

The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Bandwidth Test.

10.6 Test Data

Please refer to the Attachment E.



10. Peak Output Power Test

- 11.1 Test Standard and Limit
 - 11.1.1 Test Standard
 - FCC Part 15.247 (b) (1)
 - 11.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	Hopping Channels>75 Power<1W(30dBm)	2400~2483.5
	Other <125 mW(21dBm)	GUDD - U

11.2 Test Setup

11.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:
 Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz.
 RBW=3 MHz, VBW=3 MHz for bandwidth more than 1MHz.

11.4 Deviation From Test Standard

No deviation

11.5 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

11.6 Test Data

Please refer to the Attachment F.

11. Antenna Requirement

12.1 Standard Requirement

12.1.1 Standard

FCC Part 15.203

12.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

12.2 Deviation From Test Standard

No deviation

12.3 Antenna Connected Construction

The gains of the antenna used for transmitting is -2.1 dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

12.4 Result

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

Antenna Type		
Permanent attached antenna		
The second	Unique connector antenna	
	Professional installation antenna	

Attachment A-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

30MHz~1GHz

Temperature:	23.7℃	Relative Humidity:	46%
Fest Voltage:	DC 3V		THE P
Ant. Pol.	Horizontal		
est Mode:	TX GFSK Mode 2402MHz	AUU	
Remark:	Only worse case is reported		
80.0 dBuV/m			
30 1 X X X X X X X X X X X X X X X X X X	3 X	(RF)FCC 150	C 3M Radiation Margin -6 dB
20 30.000 40 50	60 70 80 (MHz)	300 400 500	0 600 700 1000.0

1	MHz 30.8535	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	30.8535	21.02					Detection
		31.92	-14.04	17.88	40.00	-22.12	peak
2	46.0164	35.49	-22.25	13.24	40.00	-26.76	peak
3	64.8865	41.29	-24.17	17.12	40.00	-22.88	peak
4	271.3246	33.73	-16.86	16.87	46.00	-29.13	peak
5 *	684.7454	33.72	-7.15	26.57	46.00	-19.43	peak
6	972.3374	33.67	-2.71	30.96	54.00	-23.04	peak

*:Maximum data x:Over limit !:over margin

Emission Level= Read Level+ Correct Factor

					1111		
Temperature:	23.7℃	1	N.	Relative Hu	umidity:	46%	N.S.S.
Test Voltage:	DC 3V	200		GIUL S	-		
Ant. Pol.	Vertica				AND		
Test Mode:	TX GF	SK Mode 24	102MHz	100		COL	50
Remark:	Only w	orse case is	s reported	NULL		A ROAD	-
80.0 dBu¥/m							
30 1 2 30 30 30	4 M. M. W	n lonn and a de	hummun	5 		3M Radiation Margin - 6	
20 30.000 40 50	60 70		(MHz)	300	400 500	600 700	1000.000
	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1 36	.2541	38.18	-17.72	20.46	40.00	-19.54	peak
2 * 42	.3022	42.25	-20.59	21.66	40.00	-18.34	peak
	.3318	41.24	-23.00	18.24	40.00	-21.76	peak
	.4331	43.14	-24.21	18.93	40.00	-21.07	peak
5 323	3.3204	34.39	-15.55	18.84	46.00	-27.16	peak
6 620).7096	34.32	-8.25	26.07	46.00	-19.93	peak

*:Maximum data x:Over limit !:over margin

Emission Level= Read Level+ Correct Factor

Above 1GHz (Only worse case is reported)

Temp	era	ture:	25 ℃		122	Relative	Humidity:	55%	C		
Test V	/olt	age:	DC 3	3V		ALC:	~	1 6			
Ant. F	ol.		Horiz	zontal	and!		CIUD	2	2		
Test N	Noc	le:	TX C	TX GFSK Mode 2402MHz							
Remark:				eport for the cribed limit.	emission w	vhich more t	han 10 dB b	elow the	110		
		Freque (MHz		Reading (dBu∀)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
1	1 * 4804.2			37.60	1.37	38.97	54.00	-15.03	AVG		
2	2 4804.300			51.01	1.37	52.38	74.00	-21.62	peak		

Ten	npera	ture:	25 ℃	NUC-		Relative Hu	midity:	55%	
Tes	st Volt	age:	DC 3	8V	AUS	-	N N P		130
Ant	t. Pol.		Verti	cal	No.	and		CULI	19
Tes	st Moo	de:	TX G	FSK Mode	2402MHz	Ch-	AND!		11
Remark: No report for the emission which more than 10 dB below the prescribed limit.							3 6		
	No.	Freque (MH:	-	Reading (dBu∀)	Factor (dB/m)	Level (dBu∀/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	4804.2	222	48.17	1.37	49.54	74.00	-24.46	peak
	2 *	4804.2	297	38.01	1.37	39.38	54.00	-14.62	AVG
Em	issio	n Level=	Read	Level+ Cor	rect Facto	r			

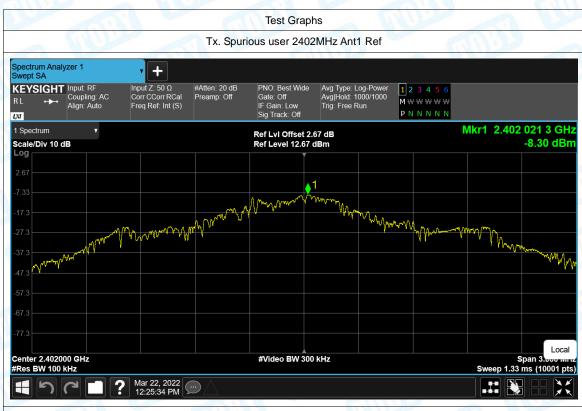
Т	empera	ature:	25° ℃		C.	Relative Hu	midity: 5	55%	3	
Т	est Vol	tage:	DC 3	3V		CIU:	~	16		
A	nt. Pol	-	Horiz	zontal			GIUD			
Т	est Mo	de:	TX GFSK Mode 2440MHz							
F	Remark: No report for the emission which more than 10 dB below the prescribed limit.							60		
	No.	Freque (MHz	-	Reading (dBu∀)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	1 4880.120 50.19 1.54 51.73 74.00 -22.27 peak								
2 * 4880.124 38.03 1.54 39.57 54.00 -14.43 AVG										
E	Emission Level= Read Level+ Correct Factor									

Temper	ature:	25 ℃	2		Relative	Humidity:	55%	
Test Vo	Itage:	DC	3V	(ADD	-			201
Ant. Po	Ι.	Vert	ical	and the second second	and		EH1	
Test Mo	Mode: TX GFSK Mode 2440MHz						611	
Remark	ark: No report for the emission which more than 10 dB below the prescribed limit.							3 2
No.	Frequer (MHz		Reading (dBu∀)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	4880.4	10	38.23	1.55	39.78	54.00	-14.22	AVG
2	4880.512 49.46 1.55 51.01 74.00 -22.99 peak							peak
Emissio	Emission Level= Read Level+ Correct Factor							

Temper	ature:	25°C	C C		Relative	Humidity:	55%	CUM		
Test Vo	Itage:	DC	3V		CID.		1 6			
Ant. Po	I.	Hori	prizontal							
Test Mo	de:	TX	GFSK Mode 2480MHz							
Remark: No report for the emission which more than 10 dB below prescribed limit.							pelow the			
No.	Frequer (MHz		Reading (dBu∀)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
1	4960.2	74	48.34 1.81 50.15 74.00 -23.85 peak							
2 *	4960.3	18	37.53 1.81 39.34 54.00 -14.66 AVG							
Emissic	on Level=	Emission Level= Read Level+ Correct Factor								

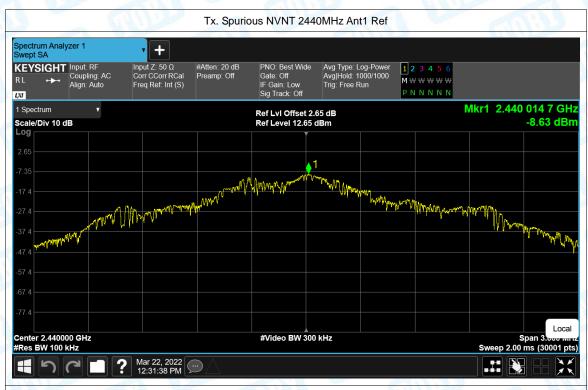
Temper	ature:	25 ℃	2		Relative H	lumidity:	55%				
Test Vo	Itage:	DC	3V	and b							
Ant. Po	I.	Vert	ical	No.	CIN D		CH1	L'AN			
Test Mo	Test Mode: TX GFSK Mode 2480MHz							-			
Remark	c :		eport for the scribed limit.	emission v	which more t	han 10 dB t	pelow the	3			
No.	Frequer (MHz		Reading (dBu∀)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
1	4960.3	47	48.68	1.81	50.49	74.00	-23.51	peak			
2 *	4960.4	17	37.86	39.67	54.00	-14.33	AVG				

Report No.: TBR-C-202203-0004-1


31 of 49

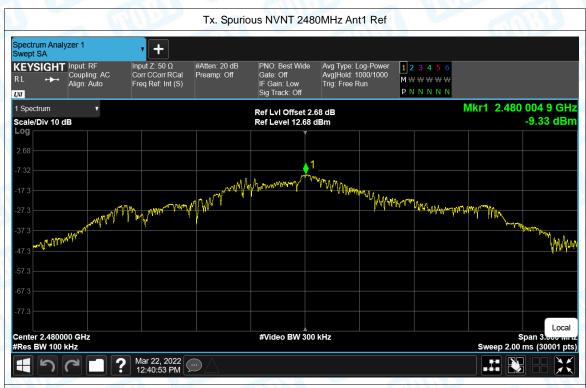
TOBY

Condition	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	2402	-38.70	-20	Pass
NVNT	2440	-36.79	-20	Pass
NVNT	2480	-37.14	-20	Pass


Page:

Tx. Spurious NVNT 2402MHz Ant1 Emission

01.611			-					1					
Spectrum Analy Swept SA	zer 1			• +									
KEYSIGHT RL ↔→→	Input: F Couplir Align: A	ng: AC	Co	ut Z: 5 rr CCoi eq Ref:	rRCal	#Atten: 20 dE Preamp: Off	Gat IF C	D: Fast e: Off Sain: Low Track: Off	Avg Type Avg Hold Trig: Free		1 2 3 4 5 6 M₩₩₩₩₩₩ P N N N N N		
1 Spectrum Scale/Div 10 dl	в	v						_vl Offset _evel 12.6				Mkr1	2.401 7 GH -25.65 dBn
Log 2.67 -7.33													
-17.3	1												DL1 -28.30 dBn
-37.3 -47.3 -57.3			\ <mark>3</mark>		∂ 4	<u>ہ</u>	5						and the state of t
-67.3 -77.3	مىلىس		مسالمن	en didea.		ter and the second s		e Rosepe e l'André est	المعريفطير إعطاره استحليه				
Start 30 MHz #Res BW 100 k	Hz						#Vi	deo BW 3	00 kHz			Sweep ~	Stop 26.50 GH 2.54 s (10001 pts
5 Marker Table		•											
	Trace	Scale			Х		Y		Function	F F	unction Width	Func	tion Value
1 N	1	f				01 7 GHz		25.65 dBm					
2 N 3 N	1	f				31 1 GHz 31 1 GHz		47.00 dBm 47.00 dBm					
4 N	1	f				06 0 GHz		47.00 dBn 61.77 dBn					
5 N 6	1	f				23 3 GHz		66.85 dBm					Local
ま り(2		M 1:	lar 22, 2:26:0	2022 4 PM 🤇								



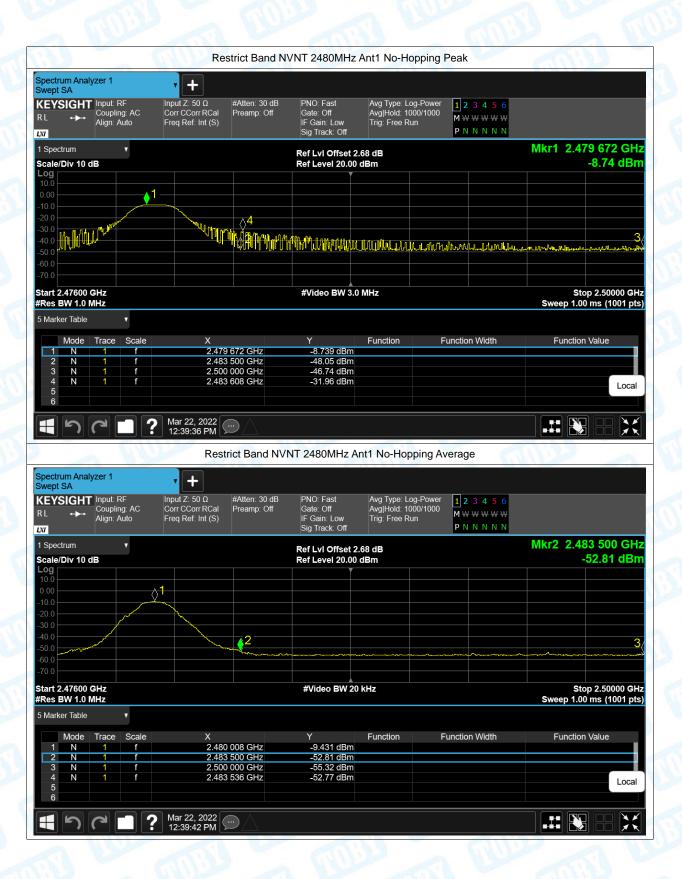
Tx. Spurious NVNT 2440MHz Ant1 Emission

Spectrum Anal Swept SA	lyzer 1		• +							
KEYSIGHT	lnput: I Coupli Align: /	ng: AC	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S)	#Atten: 20 dB Preamp: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Lo Avg Hold: 50 Trig: Free Ri	/50	1 2 3 4 5 6 M \overline		
1 Spectrum Scale/Div 10	dB	•			Ref LvI Offset Ref Level 12.6					2.439 7 GH -11.55 dB
2.65										
17.4 27.4										DL1 -28.63 d
37.4 47.4 57.4			-0 ³	4						
.67.4 .77.4										
tart 30 MHz Res BW 100	kHz				#Video BW 3	00 kHz				⊥ Stop 26.50 G 54 s (30001 p
5 Marker Table		T								
Mode 1 N	Trace	Scale	X	439 7 GHz	Y -11.55 dBm	Function	F	unction Width	Functio	n Value
2 N	1	f		439 7 GHZ 879 3 GHz	-45.42 dBm					
3 N	1	f		879 3 GHz	-45.42 dBm					
4 N	1	f		319 0 GHz	-62.36 dBm					Loca
5 N 6	1	f	9.	885 7 GHz	-66.16 dBm					1000
ר ב	2	- ?	Mar 22, 2022 12:33:58 PM							

Tx. Spurious NVNT 2480MHz Ant1 Emission

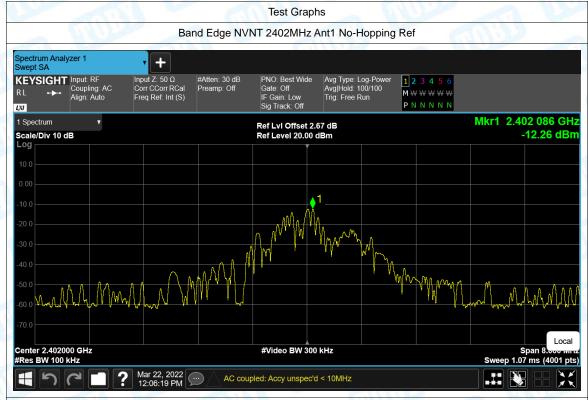
		Input: F	RF	Input Z: 50 Ω Corr CCorr RCal	#Atten: 20 dB Preamp: Off	PNO: Fast Gate: Off	Avg Type: Log Avg Hold: 10/1		1 2 3 4 5 6		
L	++-	Align: A		Freq Ref: Int (S)	Fleamp. On	IF Gain: Low Sig Track: Off	Trig: Free Run		M ** ** ** ** P N N N N N		
Spec	trum		•			Ref LvI Offse	2.68 dB			Mkr1	2.479 4 0
	'Div 10	dB				Ref Level 12.	68 dBm				-15.46 d
g 38											
12		^ ¹	I								
3		¥									
											DL1 -29.3
		<mark> </mark>		<mark>2</mark>							
				-Y							
					, 4 5		and the second		and the second		
.3							All Manufactures and the local data	and the second second			
.3											
	30 MHz 3W 100	kHz				#Video BW	300 kHz			Sweep ~2	Stop 26.50
	er Table		V								
	Mode	Trace	Scale	Х	Y	Function	Function Width	Func	tion Value		
4	Ν	1	f	2.479 4 GHz							
1	N	1	f	4.940 2 GHz							
1	Ν	1	f	4.940 2 GHz 7.499 0 GHz							
3	N		f	10.119 5 GHz							Lo
	N N	1									

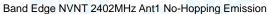
Attachment B-- Restricted Bands Requirement Test Data


Condition	Frequency	Hopping	Spur Freq	Power	Gain	E	Detector	Limit	Verdict
	(MHz)	Mode	(MHz)	(dBm)	(dBi)	(dBuV/m)		(dBuV/m)	
NVNT	2402	No-Hopping	2310	-49.59	2	47.67	Peak	74	Pass
NVNT	2402	No-Hopping	2310	-56.5	2	40.76	Average	54	Pass
NVNT	2402	No-Hopping	2383.92	-44.21	2	53.05	Peak	74	Pass
NVNT	2402	No-Hopping	2382.288	-55.16	2	42.1	Average	54	Pass
NVNT	2402	No-Hopping	2390	-49.04	2	48.22	Peak	74	Pass
NVNT	2402	No-Hopping	2390	-56.47	2	40.79	Average	54	Pass
NVNT	2480	No-Hopping	2483.5	-48.05	2	49.21	Peak	74	Pass
NVNT	2480	No-Hopping	2483.5	-52.81	2	44.45	Average	54	Pass
NVNT	2480	No-Hopping	2483.608	-31.96	2	65.3	Peak	74	Pass
NVNT	2480	No-Hopping	2483.536	-52.77	2	44.49	Average	54	Pass
NVNT	2480	No-Hopping	2500	-46.74	2	50.52	Peak	74	Pass
NVNT	2480	No-Hopping	2500	-55.32	2	41.94	Average	54	Pass

Report No.: TBR-C-202203-0004-1 Page: 35 of 49

		60.11		
		Test Graphs		
	Restrict Band N	VNT 2402MHz Ant1	No-Hopping Peak	
Spectrum Analyzer 1 Swept SA	• +			
RI Coupling: AC C	put Z: 50 Ω #Atten: 30 dB orr CCorr RCal Preamp: Off req Ref: Int (S)	Gate: Off Avg	Type: Log-Power 1 2 3 4 5 6 Hold: 100/100 M W W W W Free Run M N N N N	
1 Spectrum v		Ref LvI Offset 2.67 dB		Mkr1 2.401 872 GHz -7.78 dBm
Scale/Div 10 dB		Ref Level 20.00 dBm		-/./o ubiii
0.00				<u>1</u>
-10.0 -20.0				
-30.0			<u>4</u>	3↓
-50.0 -60.0	<u>৵৽৵৽৾ঢ়৾ঢ়৴৽৽৾৸৴৾৾৾ৼ৾৾</u> য়৽৶য়ঀয়ৢঀ৾৽৵৾ঢ়৽৻ড়৻৽৵৽৽ঢ়৾৾য়৾৽৵৽৻ড়৻৻৶৸৵ড়৴	yohundalamana ang tanang ang ang ang ang ang ang ang ang an	ong garan and marked have get and a strategy and the second	-ะใ.a
-70.0				
Start 2.31000 GHz #Res BW 1.0 MHz		#Video BW 3.0 MHz		Stop 2.40600 GHz Sweep 1.00 ms (1001 pts)
5 Marker Table				
Mode Trace Scale	X 2.401 872 GHz	Y Fund -7.785 dBm	ction Function Width	Function Value
2 N 1 f 3 N 1 f	2.310 000 GHz 2.390 000 GHz	-49.59 dBm -48.00 dBm		
4 N 1 f	2.383 920 GHz	-44.21 dBm		Local
6				
1 C I ? !	Mar 22, 2022			
	Restrict Band NVI	NT 2402MHz Ant1 N	o-Hopping Average	
Spectrum Analyzer 1	• +			
RL + Coupling: AC Coupling: A	put Z: 50 Ω #Atten: 30 dB orr CCorr RCal Preamp: Off req Ref: Int (S)	Gate: Off Avg IF Gain: Low Trig:	Type: Log-Power 1 2 3 4 5 6 Hold: 1000/1000 M W W W W W Free Run P N N N N N	
<u>I</u> Spectrum v		Sig Track: Off Ref LvI Offset 2.67 dB		Mkr2 2.310 000 GHz
Scale/Div 10 dB Log		Ref Level 20.00 dBm		-56.50 dBm
10.0				
-10.0				
-30.0				
-50.0 2	مر و معد ال مراد مر مار مر مر مر مور معر مرد مرد مرد مرد مرد مرد مرد مرد مرد مر		<u> </u>	3
-60.0				
Start 2.31000 GHz #Res BW 1.0 MHz		#Video BW 18 kHz		Stop 2.40600 GHz Sweep 4.20 ms (1001 pts)
5 Marker Table 🔹 🔻				
Mode Trace Scale	X 2.402 064 GHz	Y Fund -8.366 dBm	ction Function Width	Function Value
2 N 1 f 3 N 1 f	2.310 000 GHz 2.390 000 GHz	-56.50 dBm -56.36 dBm		
4 N 1 f	2.382 288 GHz	-55.16 dBm		Local
6				
1 n c l ? !	Mar 22, 2022 💬 🛆 12:07:19 PM			





(2) Conducted Band Edge Test

Condition	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	2402	Ant1	No-Hopping	-42.54	-20	Pass
NVNT	2480	Ant1	No-Hopping	-40.5	-20	Pass

- N. K. K.										
Spectrum An Swept SA	alyzer 1		• +							
KEYSIGH RL ↔→	Coupli	ng: AC	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S)	#Atten: 30 dB Preamp: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Avg Hold: ' Trig: Free	1000/1000	1 2 3 4 5 6 M W W W W P N N N N N		
1 Spectrum Scale/Div 10) dB	•			Ref LvI Offset 2 Ref Level 20.00				Mkr1 2.4	402 175 GH -9.84 dBn
_og					Y					
10.0										
00.00										_ 1 -
10.0										X
20.0										DI 1 -3 26 dE
30.0										DL1-32.26 dE
40.0							∂ 4		43	
50.0	han me dan	An skeep montakeled	d sector and a standard builton to board		والمرافقين والمامي والمامية ومراجع	Andrea and in the little surray	X and an an a share	antificate de come come a alterne Antibil de come	3	under TI
60.0						and Balan and Anna Balandar a Indea Co				
70.0										
tart 2.3060 Res BW 10					#Video BW 30	00 kHz				top 2.40600 GH 60 ms (4001 pt
Marker Tabl	e	•								
Mode	Trace	Scale	Х		Y	Function	Fu	unction Width	Functi	on Value
1 N	1	f		2 175 GHz	-9.845 dBm					
2 N	1	f		000 GHz	-44.92 dBm					
3 N 4 N	1	f f		000 GHz 725 GHz	-56.95 dBm -54.80 dBm					
4 N 5			2.300	0 720 GHZ	-94.00 ubiii					Loca
6										
1 ち	2		Mar 22, 2022 12:06:36 PM							

Band Edge NVNT 2480MHz Ant1 No-Hopping Emission

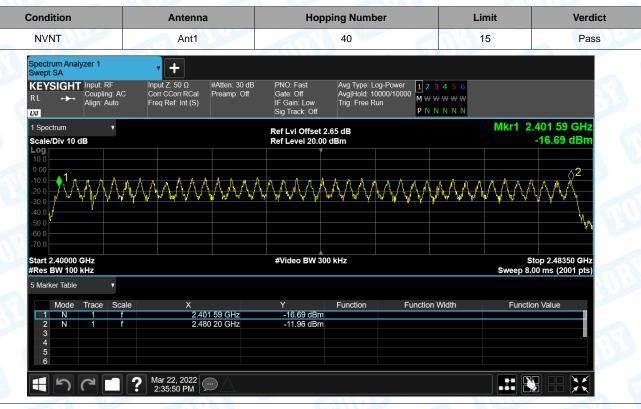
rept SA					
EYSIGHT Input: RF Coupling: AC	Input Z: 50 Ω #Atten: 30 dB Corr CCorr RCal Preamp: Off	PNO: Fast Gate: Off	Avg Type: Log-Powe Avg Hold: 2000/200		
- Align: Auto	Freq Ref: Int (S)	IF Gain: Low	Trig: Free Run	M ** ** ** **	
		Sig Track: Off		PNNNN	
Spectrum 🔻		Ref LvI Offset 2	68 dB		Mkr1 2.480 1 G
ale/Div 10 dB		Ref Level 20.00			-10.34 d
g		Ţ			
).0					
00 1					
0.0					
0.0					DL1 -29.19
	3				
).0	me and a second and a	www.hallanabarnetaplowahall	when bet on the second of the	workstrandanestranana	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0.0					
		10 (. l			et 0.57000
art 2.47600 GHz es BW 100 kHz		#Video BW 30	U KHZ		Stop 2.57600 Sweep 9.60 ms (1001
					Sweep 3.00 ms (1001
Marker Table					
Mode Trace Scale	Х	Y	Function	Function Width	Function Value
	2.480 1 GHz	-10.34 dBm			
1 N 1 f	2.483 5 GHz	-49.69 dBm			
2 N 1 f		EE 0.4 ID			
2 N 1 f 3 N 1 f	2.500 0 GHz	-55.84 dBm			
2 N 1 f		-55.84 dBm -49.69 dBm			Lo
2 N 1 f 3 N 1 f 4 N 1 f	2.500 0 GHz				La
2 N 1 f 3 N 1 f 4 N 1 f 5	2.500 0 GHz				Lo

Report No.: TBR-C-202203-0004-1 Page: 39 of 49

	CINI					ennis
Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	user	2402	Hopping	-46.72	-20	Pass
NVNT	user	2480	Hopping	-41.01	-20	Pass

Band Edge(Hopping) NVNT user 2402MHz Ant1 Hopping Emission

ectrum Ana /ept SA	lyzer 1		• [+]							
EYSIGH ⁻ └ +▶+	Couplin Couplin Align: A	ng: AC	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S)	#Atten: 30 dB Preamp: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: L Avg Hold: 10 Trig: Free R	0000/10000 .un	1 2 3 4 5 6 M ₩ ₩ ₩ ₩ ₩ P N N N N N		
Spectrum ale/Div 10	dD	T			Ref LvI Offset 2 Ref Level 20.00				Mkr1 2.4	02 025 C
g	ав				Rei Levei 20.00	авт				-7.05 u
0.0										
00										
										X
										DL1 -28.2
.0										001-20.2
									110	<u> </u>
									{\} 0 43	a stall
0.0	******	Annal Conference (Section	erji dini ili addit ta antis fantifika instandaind		n de land mandel i en angeande Ville.	and a faith an an a faith and a faith and	اليادقياني ومتوطلين لراط	Harderige, et au biller de bienter		and the second
art 2.30600 es BW 100					#Video BW 30	0 kHz				top 2.40600 60 ms (4001
/larker Table		T								, , , , , , , , , , , , , , , , , , ,
Mode	Trace	Scale	Х		Y	Function	Fu	nction Width	Functio	n Value
1 N	1	f		025 GHz	-7.831 dBm					
2 N	1	f		000 GHz	-44.79 dBm					
		e e	2 390	000 GHz	-56.82 dBm					
3 N	1				E 4 00 JD					
4 N	1	f		000 GHz	-54.93 dBm					Lo
		f			-54.93 dBm					Lo



Band Edge(Hopping) NVNT user 2480MHz Ant1 Hopping Emission

EYSIGHT ↔	Input: F Couplir Align: A	ng: AC	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S)	#Atten: 30 dB Preamp: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Log Avg Hold: 100 Trig: Free Ru	000/10000 <mark>M</mark> ₩	3 4 5 6 ₩₩₩₩ N N N N		
pectrum ale/Div 10 c	зB	V			Ref LvI Offset Ref Level 20.00				Mkr1 2	2.480 0 Gi -8.64 dB
					Ĭ					
	۸ 4				. N					DL1 -28.52
0.0		hopping		man man	h. H.	elletter and the second	nAmmlinen As	m Meloansish	what Alien	~~n_el ⁿ m.l
rt 2.47600 es BW 100					#Video BW 3	00 kHz				top 2.57600 (60 ms (1001
larker Table Mode	Trace	▼ Scale	x		Y	Function	Functior	Width	Functio	n Value
1 N	1	f		80 0 GHz	-8.642 dBm					
2 N 3 N	1	f		183 5 GHz 500 0 GHz	-52.53 dBm -56.32 dBm					
3 N 4 N 5 6	1	f		183 7 GHz	-56.32 dBm -49.53 dBm					

Attachment C-- Number of Hopping Channel Test Data

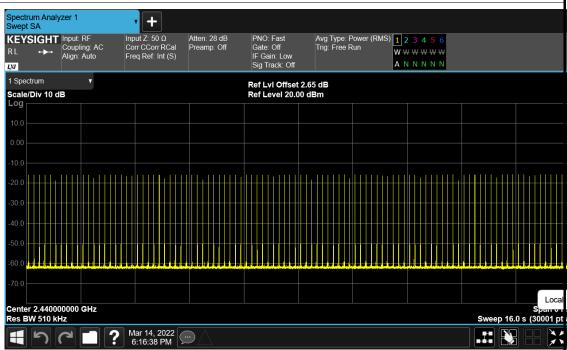
Attachment D-- Average Time of Occupancy Test Data

Temper	ature:	25°		Re	elative Humidity:	55%		
Test Vo	Itage:	DC 3V						
Test Mo	de:	Hopping Mode (GFSK)						
Remark	k: The number of total hopping frequencies up to 40.						K	
Test	Test Channe		Reading	Total hops	Test Result	Limit	Result	
Mode	(MH:	z)	Time (ms)	iotai nops	(ms)	(ms)	Result	
GFSK	2440		0.104	100	10.4	400	PASS	

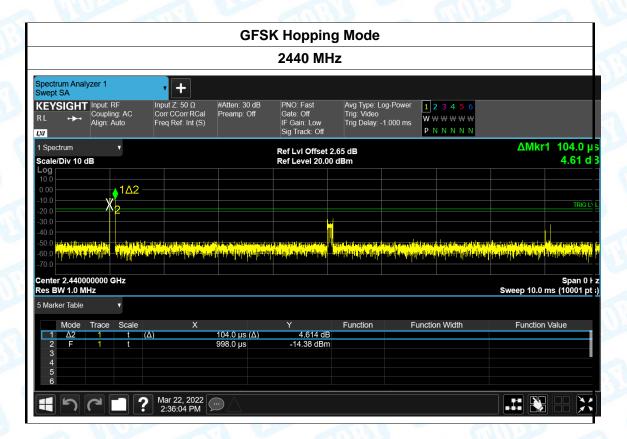
The Dwell Time = Burst Width * Total Hops. The detailed calculations are showed as follows:

The duration for dwell time calculation: 0.4 [s] * hopping number = 0.4 [s] * 40 [ch] = 16[s*ch];

The burst width, which is directly measured, refers to the duration on one channel hop.


The maximum number of hopping channels in 16s is 100.

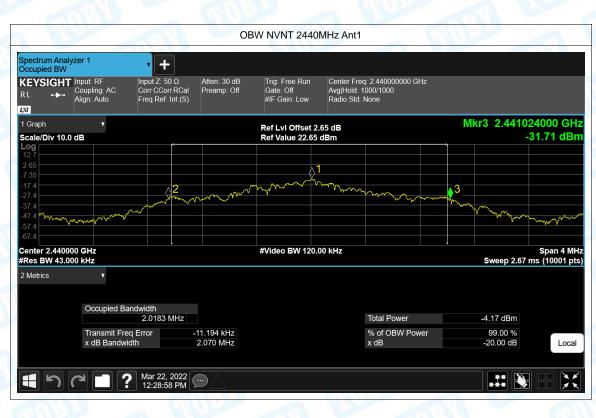
Reading Time=0.104


TOBY

GFSK Hopping Mode

2440 MHz

Attachment E-- Channel Separation and Bandwidth Test


Data

Bandwidth Test Data:

Condition	Frequency (MHz)	Antenna	20% OBW (MHz)	2/3 *20dB BW (MHz)
NVNT	2402	Ant1	2.060	1.373
NVNT	2440	Ant1	2.070	1.380
NVNT	2480	Ant1	2.071	1.380

OBW NVNT 2480MHz Ant1 Spectrum Analyzer 1 Occupied BW **•** +

 KEYSIGHT
 Input: RF

 R L
 +++

 Align: Auto

 Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) Trig: Free Run Gate: Off #IF Gain: Low Center Freq: 2.480000000 GHz Avg|Hold: 1000/1000 Radio Std: None Atten: 30 dB Preamp: Off DA Mkr3 2.481023000 GHz 1 Graph ۷ Ref LvI Offset 2.68 dB Ref Value 22.68 dBm -34.87 dBm Scale/Div 10.0 dB **∲1** Sm 3 Center 2.480000 GHz #Res BW 43.000 kHz #Video BW 120.00 kHz Span 4 MHz Sweep 2.67 ms (10001 pts) 2 Metrics ۷ Occupied Bandwidth 2.0132 MHz Total Power -4.39 dBm Transmit Freq Error -12.392 kHz % of OBW Power 99.00 % -20.00 dB x dB Bandwidth 2.071 MHz x dB Local **?** Mar 22, 2022 - C

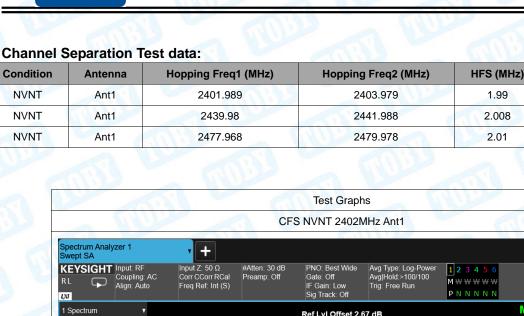
Limit (MHz)

1.373

1.38

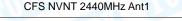
1.38

Verdict

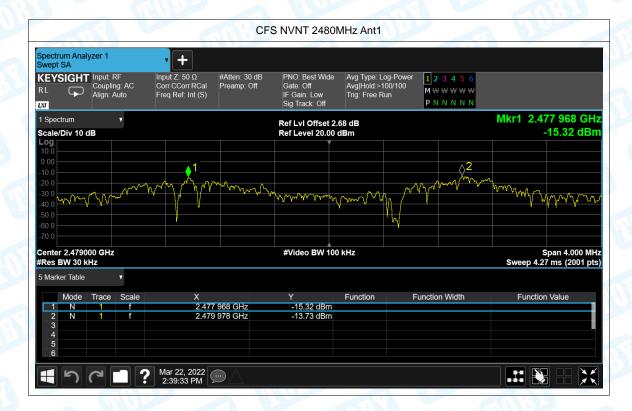

Pass Pass

Pass

Report No.: TBR-C-202203-0004-1


46 of 49

Page:


TOBY

TB-RF-074-1.0

Condition Frequency (MHz) Conducted Power (dBm) Antenna NVNT 2402 Ant1 -7.685 NVNT 2440 Ant1 -8.106 NVNT 2480 Ant1 -8.671

#Atten: 30 dB Preamp: Off

Attachment F-- Peak Output Power Test Data

+

Input Z: 50 Ω

Corr CCorr RCal Freq Ref: Int (S)

L)a	Sig Track: Off	PNN	N N N
1 Spectrum v Scale/Div 10 dB	Ref LvI Offset 2.6 Ref Level 20.00 di		Mkr1 2.401 849 GHz -7.68 dBm
Log			
10.0			
0.00			
-10.0			
-20.0	Mar and a start and a start a st	and the second s	u
			Marked All Market Ball II - 1911 - 1910 - 1
-10.0 -20.0 -30.0 -40.0			
-50.0			a an
-60.0			
-70.0			
-70.0			Local
Center 2.402000 GHz #Res BW 2.0 MHz	#Video BW 6.0 N	NHz	Span 10.00 mmz Sweep 1.33 ms (10001 pts)
Mar 22, 2022 12:03:21 PM	$\bigcirc \triangle$		
COBL	Power NVNT user 244	10MHz Ant1	
Spectrum Analyzer 1 Swept SA			
KEYSIGHT Input: RF Input Z: 50 Ω Coupling: AC Corr CCorr RCal	#Atten: 30 dB PNO: Fast Preamp: Off Gate: Off	Avg Type: Log-Power 1 2 3 4 Avg Hold: 1000/1000 1 1 2 3 4	
RL +++ Align: Auto Freq Ref: Int (S)		Trig: Free Run P N N ∩	
1 Spectrum v Scale/Div 10 dB	Ref LvI Offset 2.6 Ref Level 20.00 di	5 dB	Mkr1 2.439 632 GHz -8.11 dBm
	Rei Levei 20.00 di		-6.11 dBm
10.0			
0.00			
-10.0			
-10.0 -20.0 -30.0 + + + + + + + + + + + + + + + + + +		***	
-30.0			
-40.0			

Limit (dBm)

21

21

21

Verdict

Pass

Pass

Pass

Spectrum Analyzer 1 Swept SA

 KEYSIGHT
 Input: RF

 R L
 Coupling: AC

 Align: Auto

Test Graphs Power NVNT user 2402MHz Ant1

PNO: Fast Gate: Off

Avg Type: Log-Power Avg|Hold: 1000/1000 Trig: Free Run

1 2 3 4 5 6 M ₩ ₩ ₩ ₩ ₩

TB-RF-074-1.0

