

|                                  | TEST REPORT                                                                                                                                        |  |  |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| FCC ID:                          | 2A578-T08                                                                                                                                          |  |  |  |
| Test Report No:                  | TCT230103E024                                                                                                                                      |  |  |  |
| Date of issue:                   | Feb. 01, 2023                                                                                                                                      |  |  |  |
| Testing laboratory:              | SHENZHEN TONGCE TESTING LAB                                                                                                                        |  |  |  |
| Testing location/ address:       | 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuha Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China |  |  |  |
| Applicant's name:                | INTRO UNION ELECTRONICS CO., LIMITED                                                                                                               |  |  |  |
| Address:                         | 501, 2 Building, NO.280-2, Dabutou Village, Songyuansha<br>Community, Guanhu Sub-district, Longhua District, Shenzhen,<br>China                    |  |  |  |
| Manufacturer's name:             | INTRO UNION ELECTRONICS CO., LIMITED                                                                                                               |  |  |  |
| Address:                         | 501, 2 Building, NO.280-2, Dabutou Village, Songyuansha<br>Community, Guanhu Sub-district, Longhua District, Shenzhen,<br>China                    |  |  |  |
| Standard(s):                     | FCC CFR Title 47 Part 2.1091                                                                                                                       |  |  |  |
| Product Name:                    | Bluetooth FM transmitter                                                                                                                           |  |  |  |
| Trade Mark:                      | N/A                                                                                                                                                |  |  |  |
| Model/Type reference:            | MTG BT FM Transmitter, 6132510, T08                                                                                                                |  |  |  |
| Rating(s):                       | Input: DC 12V-24V<br>Output: QC18W+5V/2.4A                                                                                                         |  |  |  |
| Date of receipt of test item     | Jan. 03, 2023                                                                                                                                      |  |  |  |
| Date (s) of performance of test: | Dec. 28, 2022 - Feb. 01, 2023                                                                                                                      |  |  |  |
| Tested by (+signature):          | Yannie ZHONG                                                                                                                                       |  |  |  |
| Check by (+signature):           | Beryl ZHAO                                                                                                                                         |  |  |  |
| Approved by (+signature):        | Tomsin Jones 34                                                                                                                                    |  |  |  |

#### General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.





# **Table of Contents**

| 1.1                 | eneral Pro<br>. EUT des<br>. Model(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cription |           | (0)      |  | 3<br>3      |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|----------|--|-------------|
| 2. Fa<br>2.1<br>2.2 | cilities and Exercises and Exe | nd Accre | ditations | S        |  | 4<br>4<br>4 |
| J. 10               | (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | is and m | (i)       | ent Data |  |             |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |          |  |             |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |          |  |             |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |          |  |             |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |          |  |             |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |          |  |             |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |          |  |             |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |          |  |             |



Report No.: TCT230103E024

# 1. General Product Information

# 1.1. EUT description

| Product Name:         | Bluetooth FM transmitter                              | (3)      |
|-----------------------|-------------------------------------------------------|----------|
| Model/Type reference: | MTG BT FM Transmitter                                 |          |
| Sample Number:        | TCT230103E022-0101                                    | <b>X</b> |
| Operation Frequency:  | For BT: 2402MHz~2480MHz<br>For FM: 88.1MHz – 107.9MHz |          |
| Modulation Type:      | For BT: GFSK, π/4-DQPSK, 8DPSK<br>For FM: FM          |          |
| Antenna Type:         | For BT: PCB Antenna<br>For FM: Internal Antenna       |          |
| Antenna Gain:         | 2.12dBi                                               |          |
| Rating(s):            | Input: DC 12V-24V<br>Output: QC18W+5V/2.4A            |          |

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

### 1.2. Model(s) list

| No.          | Model No.             | Tested with |
|--------------|-----------------------|-------------|
| 1            | MTG BT FM Transmitter | $\boxtimes$ |
| Other models | 6132510, T08          |             |

Note: MTG BT FM Transmitter is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names. So the test data of MTG BT FM Transmitter can represent the remaining models.





NTRE TECHNOLOGY Report No.: TCT230103E024

### 2. Facilities and Accreditations

#### 2.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

**Designation Number: CN1205** 

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

#### 2.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339





Report No.: TCT230103E024

### 3. Test Results and Measurement Data

The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b), Limits for Maximum Permissible Exposure (MPE),

| Frequency range | Electric field | Magnetic field strength          | Power density          | Averaging time (minutes) |  |
|-----------------|----------------|----------------------------------|------------------------|--------------------------|--|
| (MHz)           | strength(V/m)  | (A/m)                            | (mW/cm <sup>2</sup> )  |                          |  |
|                 | (A) Limi       | ts for Occupational/Controlled E | xposures               |                          |  |
| 0.3-3.0         | 614            | 1.63                             | *(100)                 | 6                        |  |
| 3.0–30          | 1842/f         | 4.89/f                           | *(900/f <sup>2</sup> ) | 6                        |  |
| 30–300          | 61.4           | 0.163                            | 1.0                    | 6                        |  |
| 300-1500        | -              | -                                | f/300                  | 6                        |  |
| 1500-100,000    | -              | -                                | 5                      | 6                        |  |
|                 | (B) Limits fo  | or General Population/Uncontrol  | led Exposure           |                          |  |
| 0.3-1.34        | 614            | 1.63                             | *(100)                 | 30                       |  |
| 1.34–30         | 824/f          | 2.19/f                           | *(180/f <sup>2</sup> ) | 30                       |  |
| 30–300          | 27.5           | 0.073                            | 0.2                    | 30                       |  |
| 300-1500        | -              | -                                | f/1500                 | 30                       |  |
| 1500–100,000    | -              | -                                | 1.0                    | 30                       |  |

Note: f = frequency in MHz

#### **EVALUATION METHOD**

Transmission formula:  $Pd = (Pout*G)/(4*pi*r^2)$ 

Where

Pd = power density in mW/cm<sup>2</sup>, Pout = output power to antenna in mW, G = gain of antenna in linear scale;

Pi = 3.1416, R = distance between observation point and center of the radiator in cm

#### **Assessment Result**

| □ Passed | ■ Not Applicable |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|

| Frequency range (MHz) | Туре   | Conducted<br>Power (dBm) | Maximum<br>Tune-up (dBm) | Power Density<br>(mW/cm2) | Limit<br>(mW/cm2) | Result |
|-----------------------|--------|--------------------------|--------------------------|---------------------------|-------------------|--------|
| 2402-2480             | BT-EDR | 0.36                     | 1.00                     | 0.000408                  | 1.0000            | Pass   |
| 88.1 – 107.9          | FM     | -33.143                  | -32.00                   | 0.000001                  | 0.2000            | Pass   |

Note: The exposure evaluation safety distance is 20cm.

