

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202204-0256-2

Page: 1 of 6

RF Exposure Evaluation

FCC ID: 2A56X-A04

1. Client Information

Applicant	C.	JJY Technology Co.,Limited						
Address : 5 Songpingshan Road, #201 JiaDa R&D Building Lobby B Shenzhen, China 518057								
Manufacturer	K	NJY Technology Co.,Limited						
		5 Songpingshan Road, #201 JiaDa R&D Building Lobby B Shenzhen, China 518057						

2. General Description of EUT

EUT Name		Wireless charger						
Models No.	÷	A04	404					
Model Different			Il these models are on the same PCB, the layout and circuit are dentical, the only difference is the model name.					
		Operation Frequency:	600-700KHz					
Product Description	:	Modulation Type:	ASK					
Description		Antenna:	Coil Antenna					
Power Rating		Input: DC5V						
Software Version	oftware Version : N/A							
Hardware Version		V1.0						
Connecting I/O Port(S)		Please refer to the User's Manual						

Note: More test information about the EUT please refer the RF Test Report.

TB-RF-074-1. 0

Tel: +86 75526509301

Page: 2 of 6

RF Exposure Considerations

1. Measuring Standard

KDB 680106 D01 RF Exposure Wireless Charging App v03.

2. Requirements

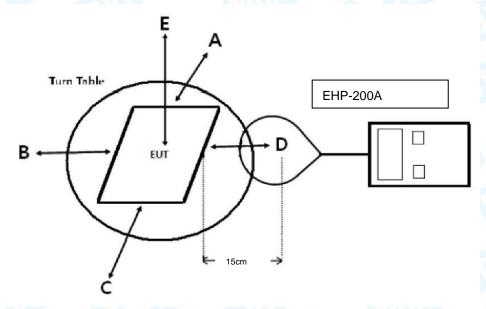
According to the item 5.2 of KDB 680106 D01v03: Inductive wireless power transfer applications that meet all of the following requirements are excluded from submitting an RF exposure evaluation:

- (1) Power transfer frequency is less than 1 MHz.
- (2) Output power from each primary coil is less than or equal to 15 watts.
- (3) The system may consist of more than one source primary coils, charging one or more clients. If more than one primary coil is present, the coil pairs may be powered on at the same time.
- (4) Client device is placed directly in contact with the transmitter.
- (5) Mobile exposure conditions only (portable exposure conditions are not covered by this exclusion).
- (6) The aggregate H-field strengths anywhere at or beyond 15 cm surrounding the device, and 20 cm away from the surface from all coils that by design can simultaneously transmit, and while those coils are simultaneously energized, are demonstrated to be less than 50% of the applicable MPE limit.

Limits For Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)						
(A) Limits for Occupational/Controlled Exposures										
0.3-3.0	614	1.63	*(100)	6						
3.0-30	1842/f	4.89/f	*(900/f²)	6						
30-300	61.4	0.163	1.0	6						
300-1500	1	1	f/300	6						
1500-100,000	/	/	5	6						
	(B) Limits for Genera	l Population/Uncontrolle	d Exposure							
0.3-1.34	614	1.63	*(100)	30						
1.34-30	824/f	2.19/f	*(180/f ²)	30						
30-300	27.5	0.073	0.2	30						
300-1500	1	1	f/1500	30						
1500-100,000	/	1	1.0	30						

F=frequency in MHz


^{*=}Plane-wave equivalent power density

RF exposure compliance will need to be determined with respect to 1.1307(c) and (d) of the FCC rules. The emissions should be within the limits at 300kHz in Table 1 of 1.1310(use the 300kHz limits for 150kHz:614V/m,1.63A/m).

Page: 3 of 6

3. Test Setup

Note: The aggregate H-field strengths at 15 cm surrounding the device and 20 cm above the top surface.

4.Test Procedure

- 1) The RF exposure test was performed in anechoic chamber.
- 2) The aggregate H-field strengths at 15 cm surrounding the device and 20 cm above the top surface.
- 3) The highest emission level was recorded and compared with limit as soon as measurement of each points (A, B, C, D, E) were completed.
- 4) The EUT was measured according to the dictates of KDB 680106 D01 v03.

Remark:

The EUT's test position A, B, C, D and E is valid for the E and H field measurement

5. Test Equipment List

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Electric and Magnetic Field Probe-Analyzer	NARDA	EHP-200A	101166	Aug. 27, 2021	Aug. 26, 2022
Field intensity probe	NARDA	EP-601	811ZX01000	Jun. 05, 2021	Jun. 04, 2022

6. Deviation From Test Standard

No deviatio

Report No.: TBR-C-202204-0256-2

Page: 4 of 6

7. Equipment Approval Considerations

The EUT does comply with item 5.2 of KDB 680106 D01v02 as follows table;

Requirements of KDB 680106 D01	Yes / No	Description
Power transfer frequency is less than 1 MHz	Yes	The device operate in the frequency range 600KHz -700KHz
Output power from each primary coil is less than 15 watts	Yes	The maximum output power of the primary coil is 5W.
The system may consist of more than one source primary coils, charging one or more clients. If more than one primary coil is present, the coil pairs may be powered on at the same time.	Yes	The transfer system includes one primary coils and clients that are able to detect and allow coupling only between individual pairs of coils.
Client device is placed directly in contact with the transmitter.	Yes	Client device is placed directly in contact with the transmitter.
Mobile exposure conditions only (portable exposure conditions are not covered by this exclusion).	Yes	Mobile exposure conditions
The aggregate H-field strengths at 15 cm surrounding the device and 20 cm above the top surface from all simultaneous transmitting coils are demonstrated to be less than 50% of the MPE limit.	Yes	The EUT H-field strengths at 15 cm surrounding the device and 20 cm above the top surface from all simultaneous transmitting coils are demonstrated to be less than 50% of the MPE limit.

In all other cases, unless excluded above, an RF exposure evaluation report must be reviewed and accepted through a KDB or PBA inquiry to enable authorization of the equipment. When evaluation is required to show compliance; for example, using field strength, power density, SAR measurements or computational modeling etc., the specific authorization requirements will be determined based on the results of the RF exposure evaluation

Page: 5 of 6

8. Mode of operation during the test / Test peripherals used

Test Modes:							
AC/DC Adapter (5V/1A) + EUT + Watch (Battery Status: <1%)	Pre-tested						
AC/DC Adapter (5V/1A) + EUT + Watch Phone (Battery Status: <50%)	Pre-tested						
AC/DC Adapter (5V/1A) + EUT + Watch Phone (Battery Status: <99%)	Pre-tested						
	AC/DC Adapter (5V/1A) + EUT + Watch (Battery Status: <1%) AC/DC Adapter (5V/1A) + EUT + Watch Phone (Battery Status: <50%)						

9. Test Result

E-Filed Strength at 15 cm from the edges surrounding the EUT and 15 cm above the top surface

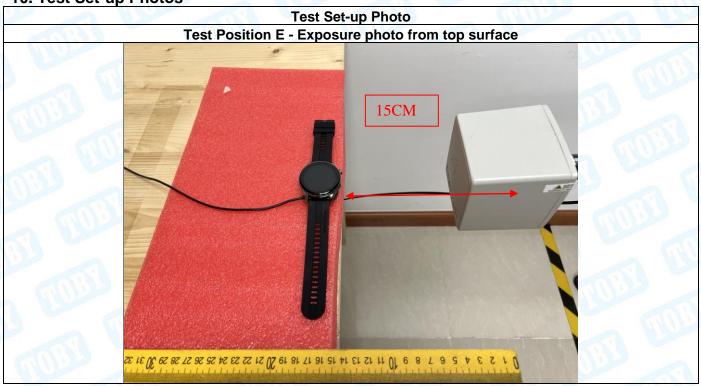
_	00		10.10		1 01				
	Charging	Frequency	Meas	sured E-Fie	E-Field	E-Field			
	Charging Battery			Te	Strength	Strength			
	Level	Range (MHz)	۸	D	С	D	Е	50% Limits	Limits
é	Level	(1011 12)	A B C	C	D	С	(V/m)	(V/m)	
	1%	0.666	35.285	30.378	32.697	32.732	32.371	307.0	614.0
	50%	0.666	37.178	30.601	32.272	33.748	31.732	307.0	614.0
	99%	0.666	36.397	30.256	32.978	31.553	32.585	307.0	614.0

H-Filed Strength at 15 cm from the edges surrounding the EUT and 15 cm above the top surface

	Fraguenav	Measured H-Field Strength Values (A/m)					H-Field	H-Field
.,			Te	st Positio	n		Strength	Strength
unit	•		_		,	E	50% Limits	Limits
	(IVITZ)	А	В	C	D		(A/m)	(A/m)
uT	0.666	0.265	0.260	0.303	0.235	0.215		
A/m	0.666	0.212	0.208	0.242	0.188	0.172	0.815	1.63
uT	0.666	0.266	0.265	0.313	0.213	0.264	N TOL	
A/m	0.666	0.213	0.212	0.250	0.170	0.211	0.815	1.63
uT	0.666	0.325	0.255	0.261	0.226	0.231	-	-
A/m	0.666	0.260	0.204	0.209	0.213	0.185	0.815	1.63
	A/m uT A/m uT	(MHz) uT 0.666 A/m 0.666 uT 0.666 A/m 0.666 uT 0.666 uT 0.666	unit Range (MHz) A uT 0.666 0.265 A/m 0.666 0.212 uT 0.666 0.266 A/m 0.666 0.213 uT 0.666 0.325	unit Frequency Range (MHz) Te uT 0.666 0.265 0.260 A/m 0.666 0.212 0.208 uT 0.666 0.266 0.265 A/m 0.666 0.213 0.212 uT 0.666 0.213 0.212 uT 0.666 0.325 0.255	unit Frequency Range (MHz) Test Position uT 0.666 0.265 0.260 0.303 A/m 0.666 0.212 0.208 0.242 uT 0.666 0.266 0.265 0.313 A/m 0.666 0.213 0.212 0.250 uT 0.666 0.325 0.255 0.261	unit Frequency Range (MHz) Test Position uT 0.666 0.265 0.260 0.303 0.235 A/m 0.666 0.212 0.208 0.242 0.188 uT 0.666 0.266 0.265 0.313 0.213 A/m 0.666 0.213 0.212 0.250 0.170 uT 0.666 0.325 0.255 0.261 0.226	unit Frequency Range (MHz) Test Position uT 0.666 0.265 0.260 0.303 0.235 0.215 A/m 0.666 0.212 0.208 0.242 0.188 0.172 uT 0.666 0.266 0.265 0.313 0.213 0.264 A/m 0.666 0.213 0.212 0.250 0.170 0.211 uT 0.666 0.325 0.255 0.261 0.226 0.231	unit Frequency Range (MHz) Test Position Strength 50% Limits (A/m) uT 0.666 0.265 0.260 0.303 0.235 0.215 A/m 0.666 0.212 0.208 0.242 0.188 0.172 0.815 uT 0.666 0.266 0.265 0.313 0.213 0.264 A/m 0.666 0.213 0.212 0.250 0.170 0.211 0.815 uT 0.666 0.325 0.255 0.261 0.226 0.231

H-Field Strength at 20cm from the top surface of the EUT

Charging Battery Level	Unit	Frequency Range (MHz)	Measured H-Field Strength Values (A/m) Test Position E	FCC H-Field Strength 50% Limits (A/m)	FCC H-Field Strength Limits (A/m)
1%	uT	0.666	0.335	-0	
1%	A/m	0.666	0.268	0.815	1.63
50%	uT	0.666	0.241	WVO.	
50%	A/m	0.666	0.193	0.815	1.63
99%	uT	0.666	0.323	-	
99%	A/m	0.666	0.258	0.815	1.63


Note: A/m=uT/1.25

Report No.: TBR-C-202204-0256-2

Page: 6 of 6

10. Test Set-up Photos

----END OF REPORT----