

Address:

# **HAC T-Coil Test Report**

### For

Applicant Name: SHENZHEN AMS COMMUNICATION COMPANY LIMITED

Address: 5F, Unit B, Building 1#, Hongfa Industrial Park, Lezhujiao, Jiuwei

Community, Hangcheng Street, Bao'an District, Shenzhen, China

EUT Name: Mobile phone

Brand Name: MAZE SPEED, SOHO STYLE, LUSH MINT, TRUE SLIM, LIST

MINT, MINT MIST

Model Number: M1586K

Series Model Number: Refer to section 2

**Issued By** 

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park,

Tantou Community, Songgang Street, Bao'an District, Shenzhen,

China

Report Number: BTF230816R00202

Test Standards: ANSI C63.19-2011 FCC 47 CFR §20.19 KDB 285076 D01v06

KDB 285076 D02v04 KDB 285076 D03v01r05

FCC ID: 2A55S-M1586K

Test Conclusion: Pass

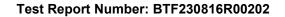
Test Date: 2023-08-15 to 2023-08-16

Date of Issue: 2023-08-18

Prepared By: Monica Zhou

Monica Zhou / Project Engineer

Date: 2023-08-18


Approved By:

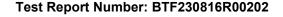
Ryan.CJ / EMC Manager

Date: 2023-08-18

BLAB \*

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.






| Revision History |                         |                                                        |  |
|------------------|-------------------------|--------------------------------------------------------|--|
| Version          | Issue Date              | Revisions Content                                      |  |
| R_V0             | 2023-08-18              | Original                                               |  |
|                  |                         |                                                        |  |
| Note:            | Once the revision has l | peen made, then previous versions reports are invalid. |  |



# **Table of Contents**

| 1. Introduction                                        | 4  |
|--------------------------------------------------------|----|
| 1.1 Identification of Testing Laboratory               | 4  |
| 1.2 Identification of the Responsible Testing Location |    |
| 1.3 Laboratory Condition                               |    |
| 1.4 Announcement                                       | 4  |
| 2. Product Information                                 | 5  |
| 2.1 Application Information                            | 5  |
| 2.2 Manufacturer Information                           | 5  |
| 2.3 Factory Information                                | 5  |
| 2.4 General Description of Equipment under Test (EUT)  | 5  |
| 2.5 Equipment under Test Ancillary Equipment           | 5  |
| 2.6 Technical Information                              |    |
| 2.7 Air Interfaces / Bands Indicating Operating Modes  | 6  |
| 3. Summary of Test Results                             |    |
| 3.1 Test Standards                                     |    |
| 3.2 Attestation of Testing Summary                     | 7  |
| 4. Test Uncertainty                                    |    |
| 5. Measurement System                                  |    |
| 5.1 Definition of Hearing Aid Compatibility (HAC)      | 9  |
| 5.2 MVG HAC System                                     |    |
| 5.3 T-Coil Measurement Set-up                          |    |
| 5.4 System Calibration                                 |    |
| 6. HAC (T-Coil) Measurement                            |    |
| 6.1 T-Coil Performance Requirements                    |    |
| 6.2 T-Coil measurement points and reference plane      |    |
| 6.3 T-Coil Measurement Procedure                       |    |
| 7. Max. Conducted RF Output Power                      |    |
| 8. T-Coil Test Result                                  |    |
| 9. Test Equipment List                                 |    |
| ANNEX A System Validation Result                       |    |
| ANNEX B Test Data                                      |    |
| ANNEX C Test Setup Photo                               |    |
| ANNEX D EUT External & Internal Photos                 |    |
| ANNEX E Calibration Information                        | 50 |



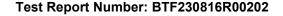


### 1. Introduction

# 1.1 Identification of Testing Laboratory

| Company Name: | BTF Testing Lab (Shenzhen) Co., Ltd.                                                                                                |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Address:      | F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China |
| Phone Number: | +86-0755-23146130                                                                                                                   |
| Fax Number:   | +86-0755-23146130                                                                                                                   |

# 1.2 Identification of the Responsible Testing Location


| Test Location:          | BTF Testing Lab (Shenzhen) Co., Ltd.                                                                                                                                                                              |  |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Address:                | F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China                                                                               |  |  |
| Description:            | All measurement facilities used to collect the measurement data are located at F101,201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China |  |  |
| FCC Registration Number | 518915                                                                                                                                                                                                            |  |  |
| Designation Number      | CN1330                                                                                                                                                                                                            |  |  |

# 1.3 Laboratory Condition

| Ambient Temperature:       | 21°C to 25°C       |
|----------------------------|--------------------|
| Ambient Relative Humidity: | 48% to 59%         |
| Ambient Pressure:          | 100 kPa to 102 kPa |

#### 1.4 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.





# 2. Product Information

# 2.1 Application Information

| Company Name: | SHENZHEN AMS COMMUNICATION COMPANY LIMITED                                                                                       |  |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|
| Address:      | 5F, Unit B, Building 1#, Hongfa Industrial Park, Lezhujiao, Jiuwei Community, Hangcheng Street, Bao'an District, Shenzhen, China |  |  |

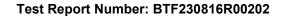
### 2.2 Manufacturer Information

| Company Name: | SHENZHEN AMS COMMUNICATION COMPANY LIMITED                                    |
|---------------|-------------------------------------------------------------------------------|
| Address:      | 5F, Unit B, Building 1#, Hongfa Industrial Park, Lezhujiao, Jiuwei Community, |
| Address.      | Hangcheng Street, Bao'an District, Shenzhen, China                            |

# 2.3 Factory Information

| Company Name: | SHENZHEN AMS COMMUNICATION COMPANY LIMITED                                                                                       |  |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|
| Address:      | 5F, Unit B, Building 1#, Hongfa Industrial Park, Lezhujiao, Jiuwei Community, Hangcheng Street, Bao'an District, Shenzhen, China |  |  |

# 2.4 General Description of Equipment under Test (EUT)


| EUT Name                                  | Mobile phone                                                           |
|-------------------------------------------|------------------------------------------------------------------------|
| Under Test Model Name                     | M1586K                                                                 |
| Series Model Name                         | S1586K, L1586K, T1586K, LT58K, MT58K                                   |
| Description of Model name differentiation | Only the model name and brand name are different, others are the same. |
| Sample No.                                | BTFSN230727E008-1/2                                                    |

# 2.5 Equipment under Test Ancillary Equipment

|                       | Rechargeable Battery |         |  |
|-----------------------|----------------------|---------|--|
| Ancillary Equipment 1 | Capacity             | 2100mAh |  |
|                       | Rated Voltage        | 3.7V    |  |

## 2.6 Technical Information

| Network and Wireless connectivity | 2G Network GSM/GPRS/EGPRS 850/1900 MHz 3G Network WCDMA/HSDPA/HSUPA Band 2/4/5 4G Network FDD LTE Band 2/4/5/12/17/30/66/71 2.4G WIFI 802.11b, 802.11g, 802.11n(HT20) Bluetooth (EDR+BLE) |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|



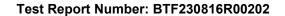


# 2.7 Air Interfaces / Bands Indicating Operating Modes

| Air Interface | Band       | Туре | Simultaneous Transmitter | Name of Service |
|---------------|------------|------|--------------------------|-----------------|
| GSM           | 850        | VO   | WLAN & BT                | CMRS Voice      |
|               | 1900       | VO   | WLAN & BT                | CMRS Voice      |
|               | GPRS/EGPRS | DT   | N/A                      | N/A             |
| WCDMA         | Band II    | VO   | WLAN & BT                | CMRS Voice      |
|               | Band IV    | VO   | WLAN & BT                | CMRS Voice      |
|               | Band V     | VO   | WLAN & BT                | CMRS Voice      |
|               | HSPA       | DT   | N/A                      | N/A             |
|               | Band 2     | VD   | WLAN & BT                | VoLTE           |
|               | Band 4     | VD   | WLAN & BT                | VoLTE           |
|               | Band 5     | VD   | WLAN & BT                | VoLTE           |
| LTE           | Band 12    | VD   | WLAN & BT                | VoLTE           |
| LIE           | Band 17    | VD   | WLAN & BT                | VoLTE           |
|               | Band 30    | VD   | WLAN & BT                | VoLTE           |
|               | Band 66    | VD   | WLAN & BT                | VoLTE           |
|               | Band 71    | VD   | WLAN & BT                | VoLTE           |
| WLAN          | 2.4g       | DT   | WWAN                     | N/A             |
| ВТ            | 2450       | DT   | WWAN                     | N/A             |

\* HAC Rating was not based on concurrent voice and data modes; Noncurrent mode was found to represent worst case rating for both M and T rating.

Note1: The air interface is exempted from testing by low power exemption that its average antenna input power plus its MIF is ≤17 dBm, and is rated as M4.


Note2: According to ANSI C63.19 2011-version, for the air interface technology of a device is exempt from testing whose peak antenna input power, averaged over intervals ≤50 µs, is ≤23 dBm. An RF air interface technology that is exempted from testing shall be rated as M4.

# 3. Summary of Test Results

# 3.1 Test Standards

| No. | Identity             | Document Title                                                                                                                                 |
|-----|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | ANSI C63.19-2011     | American National Standard for Methods of Measurement of Compatibility between Wireless Communication Devices and Hearing Aids                 |
| 2   | FCC 47 CFR §20.19    | Hearing Aid Compatible Mobile Headsets                                                                                                         |
| 3   | KDB 285076 D01v06    | Equipment Authorization Guidance for Hearing Aid Compatibility                                                                                 |
| 4   | KDB 285076 D02v04    | Guidance for performing T-Coil tests for air interfaces supporting voice over IP (e.g., LTE and WiFi) to support CMRS based telephone services |
| 5   | KDB 285076 D03v01r05 | Hearing aid compatibility frequently asked questions                                                                                           |

NA: Not Applicable VO: Voice Only VD: CMRS and IP Voice Service over Digital Transport DT: Digital Transport Only





# 3.2 Attestation of Testing Summary

| Frequency Band | T-rating |
|----------------|----------|
| GSM 850        | T4       |
| GSM 1900       | T4       |
| WCDMA II       | Т3       |
| WCDMA IV       | Т3       |
| WCDMA V        | Т3       |
| LTE Band 2     | T3       |
| LTE Band 4     | T3       |
| LTE Band 5     | T3       |
| LTE Band 12    | T4       |
| LTE Band 17    | T4       |
| LTE Band 30    | T3       |
| LTE Band 66    | T3       |
| LTE Band 71    | Т3       |
| HAC Rate C     |          |

#### Notes:

<sup>1.</sup> It is compliance with HAC limits for this device that specified in FCC 47 CFR Part 20.19 and ANSI C63.19.

<sup>2.</sup> When the test result is a critical value, we will use the measurement uncertainty give the judgment result based on the 95% risk level.





# 4. Test Uncertainty

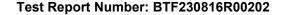
| UNCERTAINTY EVA                                                | LUATION FOR AU | DIO HAC I      | MEASURE | MENT                |                    |
|----------------------------------------------------------------|----------------|----------------|---------|---------------------|--------------------|
| Uncertainty Component                                          | Tol (+- %)     | Prob.<br>Dist. | Div.    | Uncertainty<br>(dB) | Uncertainty<br>(%) |
|                                                                | Measurement Sy | stem           |         |                     |                    |
| RF reflections                                                 | 0.1            | R              | √3      | 0.06                |                    |
| Acoustic noise                                                 | 0.1            | R              | √3      | 0.06                |                    |
| Probe coil sensitivity                                         | 0.49           | R              | √3      | 0.28                |                    |
| Reference signal level                                         | 0.25           | R              | √3      | 0.14                |                    |
| Positioning accuracy                                           | 0.4            | R              | √3      | 0.23                |                    |
| Cable loss                                                     | 0.1            | N              | 2       | 0.05                |                    |
| Frequency analyzer                                             | 0.15           | R              | √3      | 0.09                |                    |
| System repeatability                                           | 0.2            | N              | 1       | 0.20                |                    |
| Repeatability of the WD                                        | 0.4            | N              | 1       | 0.40                |                    |
| Combined Standard Uncertainty                                  |                | N              | 1       | 0.61                |                    |
| Expanded uncertainty (confidence level of 95%,k = 2)           |                | N              | K=2     | 1.22                | 15.05              |
| REPORTED Expanded uncertainty (confidence level of 95%, k = 2) |                | N              | K=2     | 1.20                | 15.00              |





# 5. Measurement System

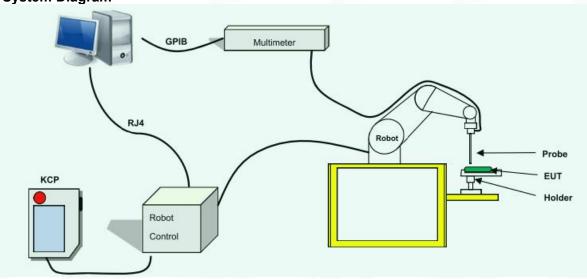
# 5.1 Definition of Hearing Aid Compatibility (HAC)


The purpose of this standard is to establish categories for hearing aids and for WD (wireless communications devices) that can indicate to health care practitioners and hearing aid users which hearing aids are compatible with which WD, and to provide tests that can be used to assess the electromagnetic characteristics of hearing aids and WD and assign them to these categories. The various parameters required, in order to demonstrate compatibility and accessibility are measured. The design of the standard is such that when a hearing aid and WD achieve one of the categories specified, as measured by the methodology of this standard, the indicated performance is realized.

In order to provide for the usability of a hearing aid with a WD, several factors must be coordinated:

- a) Radio frequency (RF) measurements of the near-field electric and magnetic fields emitted by a WD to categorize these emissions for correlation with the RF immunity of a hearing aid.
- b) Magnetic field measurements of a WD emitted via the audio transducer associated with the T-coil mode of the hearing aid, for assessment of hearing aid performance.
- c) Measurements with the hearing aid and a simulation of the categorized WD T-coil emissions to assess the hearing aid RF immunity in the T-coil mode.

The WD radio frequency (RF) and audio band emissions are measured. Hence, the following are measurements made for the WD:


- a) RF E-Field emissions
- b) T-coil mode, magnetic signal strength in the audio band
- c) T-coil mode, magnetic signal and noise articulation index
- d) T-coil mode, magnetic signal frequency response through the audio band Corresponding to the WD measurements, the hearing aid is measured for:
- a) RF immunity in microphone mode
- b) RF immunity in T-coil mode





# 5.2 MVG HAC System

#### **MVG HAC System Diagram**



#### 5.2.1 Robot



A standard high precision 6-axis robot (Denso) with te aches pendant with Scanning System

- · It must be able to scan all the volume of the phanto m to evaluate the tridimensional distribution of SAR.
- $\cdot$  Must be able to set the probe orthogonal of the surface of the phantom ( $\pm 30^{\circ}$ ).
- · Detects stresses on the probe and stop itself if nece ssary to keep the integrity of the probe.



### 5.2.2 T-coil Probe



Figure 1 – MVG COMOHAC T-coil Probe

| Coil Dimension      | 6.55 mm length * 2.29 mm diameter |
|---------------------|-----------------------------------|
| DC resistance       | 860.6 Ω                           |
| Wire size           | 51AWG                             |
| Inductance at 1 kHz | 132.1 mH at 1 kHz                 |

| Device Under Test              |                      |  |  |  |  |  |
|--------------------------------|----------------------|--|--|--|--|--|
| Device Type                    | COMOHAC T-COIL PROBE |  |  |  |  |  |
| Manufacturer                   | MVG                  |  |  |  |  |  |
| Model                          | STCOIL               |  |  |  |  |  |
| Serial Number                  | SN 07/17 TCP38       |  |  |  |  |  |
| Product Condition (new / used) | New                  |  |  |  |  |  |
| Frequency Range of Probe       | 200-5000 Hz          |  |  |  |  |  |

This probe is designed to fulfill ANSI recommendations for the measurement of audio frequency magnetic fields radiated by mobile phones. The T-Coil probe has two connectors:

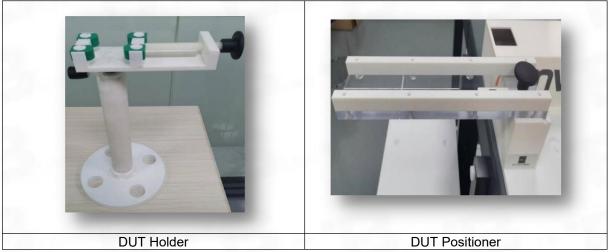
the 6 male wires connector enables to fix the probe on the robot the BNC connector enables to link the probe to the audio DAQ

This probe was designed for a 6-axis robot. The coil is oriented with a 45 degree angle so that used with a 6-axis robot, both radial and axial measurements can be performed with one probe.

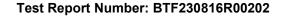
#### 5.2.3 TMFS



MVG COMOHAC Magnetic Simulator







| Device Under Test              |                                  |  |  |  |  |
|--------------------------------|----------------------------------|--|--|--|--|
| Device Type                    | COMOHAC Magnetic Field Simulator |  |  |  |  |
| Manufacturer                   | MVG                              |  |  |  |  |
| Model                          | STMFS                            |  |  |  |  |
| Serial Number                  | SN 13/22 TMFS30                  |  |  |  |  |
| Product Condition (new / used) | New                              |  |  |  |  |
| Frequency Range                | 200-5000 Hz                      |  |  |  |  |

All methods used to perform the measurements and calibrations comply with the ANSI C63.19. All measurements were performed with the TMFS in the standard device test configuration, with the TMFS in free space, 10 mm below the coil center.

#### 5.2.4 Device Holder/DUT positioner



During test, use DUT positioner to check if the Speaker is aligned with the positioner center.





# 5.3 T-Coil Measurement Set-up

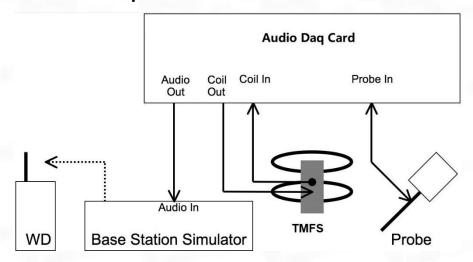
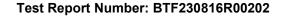




Fig. 2. T-coil signal measurement test setup

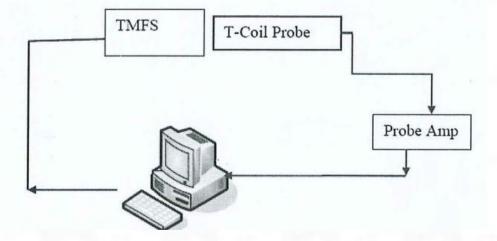
The sequence of the measurement is T-Coil testing procedure over a wireless communication device:

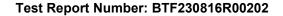
- 1. Confirm Geometry & signal check. Probe phantom alignment and check of accuracy.
- 2. Background noise measurement in the area of the WD.
- 3. Perform 50x50mm area scan with narrow band signal to determine ABM1, ABM2 and SNR for axial and radial orientation positions.
- 4. For Axial position, perform optimal SNR point measurement with a broadband signal determine Frequency Response
- 5. Define the all applicable input audio level according to ANSI C63.19-2011 and KDB 285076 D02v03. Note:
- #. The EUT do not use the special HAC SW.
- #. Setting the maximum volume for EUT during the measurement.
- #. For the measurement, it don't use the "post-test measurement processing of results".
- #. Per KDB 285076 D01v05, handsets that that have the ability to support concurrent connections using simultaneous transmissions shall be independently tested for each air interface/band given in ANSI C63.19-2011. At the present time ANSI C63.19 does not provide simultaneous transmission test procedures.





## 5.4 System Calibration


For correct and calibrated measurement of the voltages and ABM field, Denso will perform a calibration job as below.


#### for cable loss calibration:

- a) Use Audio Generator to determine the loss between Audio Generator and TMFS
- b) Audio output power to TMFS: 1025Hz, 500mV.
- c) adjust the audio signal output power to check the cable loss, and use front panel of Multimeter to show target level: 1025Hz, 500mW. (for example, set the audio output power to TMFS: 1025Hz, 0.5924V)

#### for system verification:

- a) Place TMFS properly—the distance between the center of TMFS and T-coil probe is 10mm.
- b) send the signal to TMFS, and use probe to measure the ABM1 over the TMFS.



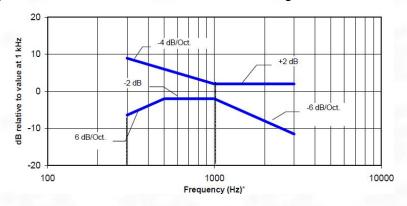




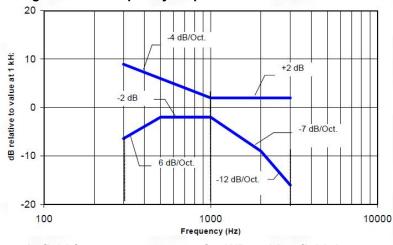
# 6. HAC (T-Coil) Measurement

# 6.1 T-Coil Performance Requirements

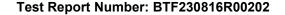
In order to be rated for T-Coil use, a WD shall meet the requirements for signal level and signal quality contained in this part.


#### 1) T-Coil coupling field intensity

When measured as specified in ANSI C63.19, the T-Coil signal shall be  $\geq -18$  dB (A/m) at 1 kHz, in a 1/3 octave band filter for all orientations.


#### 2) Frequency response

The frequency response of the axial component of the magnetic field, measured in 1/3 octave bands, shall follow the response curve specified in this sub-clause, over the frequency range 300 Hz to 3000 Hz. Figure 1 and Figure 2 provide the boundaries for the specified frequency.


These response curves are for true field strength measurements of the T-Coil signal. Thus the 6 dB/octave probe response has been corrected from the raw readings.



Magnetic field frequency response for WDs with a field ≤ -15 dB (A/m) at 1 kHz



Magnetic field frequency response for WDs with a field that exceeds -15dB(A/m) at 1 kHz





#### 3) Signal quality

This part provides the signal quality requirement for the intended T-Coil signal from a WD. Only the RF immunity of the hearing aid is measured in T-Coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. So, the only criteria that can be measured is the RF immunity in T-Coil mode. This is measured using the same procedure as for the audio coupling mode and at the same levels.

The worst signal quality of the three T-Coil signal measurements shall be used to determine the T-Coil mode category per Table 3

| Category    | Telephone parameters WD signal quality<br>[(signal + noise) – to – noise ratio in decibels] |
|-------------|---------------------------------------------------------------------------------------------|
| Category T1 | 0 dB to 10 dB                                                                               |
| Category T2 | 10 dB to 20 dB                                                                              |
| Category T3 | 20 dB to 30 dB                                                                              |
| Category T4 | > 30 dB                                                                                     |

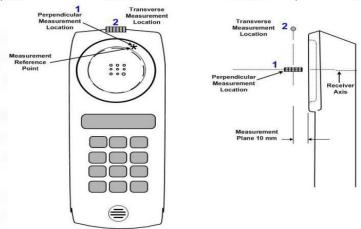
Table 3: T-Coil signal quality categories





## 6.2 T-Coil measurement points and reference plane

Figure 3 illustrate the references and reference plane that shall be used in a typical EUT emissions measurement. The principle of this section is applied to EUT with similar geometry. Please refer to Appendix C for the setup photographs.


The area is 5 cm by 5 cm.

The area is centered on the audio frequency output transducer of the EUT.

The area is in a reference plane, which is defined as the planar area that contains the highest point in the area of the phone that normally rests against the user's ear. It is parallel to the centerline of

the receiver area of the phone and is defined by the points of the receiver-end of the EUT handset, which, in normal handset use, rest against the ear.

The measurement plane is parallel to, and 10 mm in front of, the reference plane.



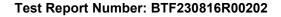
Axis and planes for WD audio frequency magnetic field measurements



Test Report Number: BTF230816R00202

#### 6.3 T-Coil Measurement Procedure

According to ANSI C63.19-2011, section 7.4:


This section describes the procedures used to measure the ABM (T-Coil) performance of the WD. In addition to measuring the absolute signal levels, the A-weighted magnitude of the unintended signal shall also be determined. To assure that the required signal quality is measured, the measurement of the intended signal and the measurement of the unintended signal must be made at the same location for each measurement position. In addition, the RF field strength at each measurement location must be at or below that required for the assigned category.

Measurements shall not include undesired properties from the WD's RF field; therefore, use of a coaxial connection to a base station simulator or nonradiating load might be necessary. However, even with a coaxial connection to a base station simulator or nonradiating load, there might still be RF leakage from the WD, which can interfere with the desired measurement. Premeasurement checks should be made to avoid this possibility. All measurements shall be performed with the WD operating on battery power with an appropriate normal speech audio signal input level given in ANSI C63.19-2011 Table 7.1. If the device display can be turned off during a phone call, then that may be done during the measurement as well.

Measurements shall be performed at two locations specified in ANSI C63.19-2011 A.3, with the correct probe orientation for a particular location, in a multistage sequence by first measuring the field intensity of the desired T-Coil signal (ABM1) that is useful to a hearing aid T-Coil. The undesired magnetic components (ABM2) shall be examined for each probe orientation to determine the possible effects from the WD display and battery current paths that might disrupt the desired T-Coil signal. The undesired magnetic signal (ABM2) must be measured at the same location as the desired ABM or T-Coil signal (ABM1), and the ratio of desired to undesired ABM signals must be calculated. For the perpendicular field location, only the ABM1 frequency response shall be determined in a third measurement stage.

The following steps summarize the basic test flow for determining ABM1 and ABM2. These steps assume that a sine-wave or narrowband 1/3 octave signal can be used for the measurement of ABM1.

- a) A validation of the test setup and instrumentation may be performed using a TMFS or Helmholtz coil. Measure the emissions and confirm that they are within the specified tolerance.
- b) Position the WD in the test setup and connect the WD RF connector to a base station simulator or a nonradiating load as shown in ANSI C63.19-2011 Figure 7.1 or Figure 7.2. Confirm that the equipment that requires calibration has been calibrated and that the noise level meets the requirements of ANSI C63.19-2011 clause 7.3.1
- c) The drive level to the WD is set such that the reference input level specified in ANSI C63.19-2011 Table 7.1 is input to the base station simulator (or manufacturer's test mode equivalent) in the 1 kHz, 1/3 octave band. This drive level shall be used for the T-Coil signal test (ABM1) at f = 1 kHz. Either a sine wave at 1025 Hz or a voice-like signal, band-limited to the 1 kHz 1/3 octave, as defined in C63.19-2011 clause 7.4.2, shall be used for the reference audio signal. If interference is found at 1025 Hz, an alternative nearby reference audio signal frequency may be used.47 The same drive level shall be used for the ABM1 frequency response measurements at each 1/3 octave band center frequency. The WD volume control may be set at any level up to maximum, provided that a signal at any frequency at maximum modulation would not result in clipping or signal overload.
- d) Determine the magnetic measurement locations for the WD device (A.3), if not already specified by the manufacturer, as described in C63.19-2011 clause 7.4.4.1.1 and 7.4.4.2.
- e) At each measurement location, measure and record the desired T-Coil magnetic signals (ABM1 at fi) as specified in C63.19-2011 clause 7.4.4.2 in each ISO 266-1975 R10 standard 1/3 octave band. The desired audio band input frequency (fi) shall be centered in each 1/3 octave band maintaining the same drive level as determined in item c) and the reading taken for that band.
- f) Equivalent methods of determining the frequency response may also be employed, such as fast Fourier transform (FFT) analysis using noise excitation or input—output comparison using simulated speech. The full-band integrated or half-band integrated probe output, as specified in D.9, may be used, as long as the





appropriate calibration curve is applied to the measured result, so as to yield an accurate measurement of the field magnitude. (The resulting measurement shall be an accurate measurement in dB A/m.)

- g) All measurements of the desired signal shall be shown to be of the desired signal and not of an undesired signal. This may be shown by turning the desired signal ON and OFF with the probe measuring the same location. If the scanning method is used, the scans shall show that all measurement points selected for the ABM1 measurement meet the ambient and test system noise criteria in C63.19-2011 clause 7.3.1.
- h) At the measurement location for each orientation, measure and record the undesired broadband audio magnetic signal (ABM2) as specified in C63.19-2011 clause 7.4.4.4 with no audio signal applied (or digital zero applied, if appropriate) using A-weighting49 and the half-band integrator. Calculate the ratio of the desired to undesired signal strength (i.e., signal quality).
- i) Determine the category that properly classifies the signal quality, based on C63.19-2011 Table 8.5.





# 7. 2G Max. Conducted RF Output Power

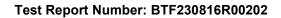
|               |                      | Burst Average Power (dBm) |          |          |                  | Frame-Average Power (dBm) |          |          |
|---------------|----------------------|---------------------------|----------|----------|------------------|---------------------------|----------|----------|
| Mode: GSM850  | Maximum Tune-up(dBm) | CH128                     | CH190    | CH251    | Division Factors | CH128                     | CH190    | CH251    |
|               |                      | 824.2MHz                  | 836.6MHz | 848.8MHz |                  | 824.2MHz                  | 836.6MHz | 848.8MHz |
| GSM           | 31.50                | 31.38                     | 31.37    | 31.29    | -9.03            | 22.35                     | 22.34    | 22.26    |
|               |                      | Burst Average Power (dBm) |          |          |                  | Frame-Average Power (dBm) |          |          |
|               |                      | 24.50                     |          | u2,      |                  |                           |          | (42)     |
| Mode: GSM1900 | Maximum Tune-up(dBm) | CH512                     | CH661    | CH810    | Division Factors | CH512                     | CH661    | CH810    |
| Mode: GSM1900 | Maximum Tune-up(dBm) |                           |          | ,        | Division Factors |                           |          | ` '      |

**3G** 

|           |                            | WCDMA Band II Conducted Power (dBm) |                      |        |  |
|-----------|----------------------------|-------------------------------------|----------------------|--------|--|
|           |                            |                                     |                      |        |  |
| Mode      | Maximum Tune-up(dBm)       | CH9262                              | CH9400               | CH9538 |  |
|           |                            | 1852.4                              | 1880.0               | 1907.6 |  |
| RMC 12.2K | 21.00                      | 20.84                               | 20.78                | 20.76  |  |
|           |                            | WCDMA Band IV                       |                      |        |  |
| Mode      | Maximum Tune-up(dBm)       | Conducted Power (dBm)               |                      |        |  |
| Mode      |                            | CH1312                              | CH1450               | CH1513 |  |
|           |                            | 1712.4                              | 1740.0               | 1752.6 |  |
| RMC 12.2K | 21.50                      | 21.23                               | 21.20                | 21.07  |  |
|           |                            | WCDMA Band V                        |                      |        |  |
| Mode      | Maximum Tune-up(dBm)       |                                     | Conducted Power (dBm | )      |  |
| iviode    | waxiiiuiii Turie-up(ubiii) | CH4132                              | CH4182               | CH4233 |  |
|           |                            | 826.4                               | 836.4                | 846.6  |  |
| RMC 12.2K | 22.00                      | 21.82                               | 21.82                | 21.83  |  |

# 4G

Band2


| Bandwidth | Modulation | RB         | RB offset Maximum Tune-up(dBm) | 18700                | 18900     | 19100     |           |
|-----------|------------|------------|--------------------------------|----------------------|-----------|-----------|-----------|
| Danuwium  |            | allocation |                                | Maximum Tune-up(ubm) | 1860.0MHz | 1880.0MHz | 1900.0MHz |
|           | QPSK       |            | 0                              | 21.50                | 21.35     | 21.24     | 21.32     |
|           |            | QPSK 1     | 50                             | 21.50                | 21.13     | 21.13     | 21.32     |
|           |            |            | 99                             | 21.50                | 21.23     | 21.24     | 21.34     |
| 20MHz     |            |            | 0                              | 20.50                | 20.24     | 20.20     | 20.15     |
|           |            | 50         | 25                             | 20.50                | 20.25     | 20.28     | 20.19     |
|           |            |            | 50                             | 20.50                | 20.19     | 20.18     | 20.29     |
|           |            | 100        | 0                              | 20.50                | 20.18     | 20.13     | 20.19     |

Band4

| Bandwidth | Modulation   | RB         | RB offset | Maximum Tune-up(dBm)  | 20050     | 20176     | 20300     |
|-----------|--------------|------------|-----------|-----------------------|-----------|-----------|-----------|
| Danuwidin | iviodulation | allocation | RD Ollset | waxiinum rune-up(ubm) | 1720.0MHz | 1732.5MHz | 1745.0MHz |
|           |              |            | 0         | 23.50                 | 23.09     | 22.81     | 22.91     |
|           |              | 1          | 50        | 23.50                 | 23.03     | 22.82     | 22.86     |
|           |              |            | 99        | 23.50                 | 23.01     | 22.77     | 22.75     |
| 20MHz     | QPSK         |            | 0         | 22.00                 | 21.92     | 21.91     | 21.92     |
|           |              | 50         | 25        | 22.00                 | 21.82     | 21.85     | 21.77     |
|           |              |            | 50        | 22.00                 | 21.76     | 21.91     | 21.96     |
|           |              | 100        | 0         | 22.00                 | 21.84     | 21.92     | 21.81     |

Band 5

| Bandwidth | Modulation | RB         | RB offset  | Maximum Tune-up(dBm) | 20450    | 20252    | 20600    |       |
|-----------|------------|------------|------------|----------------------|----------|----------|----------|-------|
| Danuwium  | Wodulation | allocation | IND Oliset | Maximum Tune-up(ubm) | 829.0MHz | 836.5MHz | 844.0MHz |       |
|           |            |            |            | 0                    | 22.50    | 22.15    | 22.27    | 22.24 |
|           |            | QPSK 25    | 25         | 22.50                | 22.09    | 22.29    | 22.29    |       |
|           |            |            | 49         | 22.50                | 22.12    | 22.30    | 22.33    |       |
| 10MHz     | QPSK       |            | 0          | 21.50                | 21.14    | 21.07    | 21.26    |       |
|           |            |            | 13         | 21.50                | 21.20    | 21.24    | 21.16    |       |
|           |            |            | 25         | 21.50                | 21.24    | 21.21    | 21.41    |       |
|           |            | 50         | 0          | 21.50                | 21.20    | 21.22    | 21.22    |       |





Band 12

| Bandwidth | Modulation RB allocation |               | RB     | Maximum Tune-up(dBm)                    | 23060    | 23095    | 23130    |
|-----------|--------------------------|---------------|--------|-----------------------------------------|----------|----------|----------|
| Danuwium  | iviodulation             | ND allocation | offset | * * * * * * * * * * * * * * * * * * * * | 704.0MHz | 707.5MHz | 711.0MHz |
|           |                          | SK 1          | 0      | 23.00                                   | 22.26    | 22.30    | 22.64    |
|           |                          |               | 25     | 23.00                                   | 22.45    | 22.40    | 22.72    |
|           |                          |               | 49     | 23.00                                   | 22.44    | 22.42    | 22.81    |
| 10MHz     | QPSK                     |               | 0      | 22.00                                   | 21.40    | 21.65    | 21.38    |
|           |                          | 25            | 13     | 22.00                                   | 21.38    | 21.36    | 21.51    |
|           |                          | 25            | 22.00  | 21.56                                   | 21.51    | 21.74    |          |
|           |                          | 50            | 0      | 22.00                                   | 21.51    | 21.40    | 21.44    |

Band 17

| ٠. |            |              |               |        |                      |          |          |          |       |       |
|----|------------|--------------|---------------|--------|----------------------|----------|----------|----------|-------|-------|
|    | Bandwidth  | Modulation   | RB allocation | RB     | Maximum Tune-up(dBm) | 23780    | 23790    | 23800    |       |       |
|    | Danuwiutii | IVIOGUIATION | ND allocation | offset | Maximum Tune-up(ubm) | 709.0MHz | 710.0MHz | 711.0MHz |       |       |
|    |            |              | 1             | 0      | 23.00                | 22.35    | 22.33    | 22.61    |       |       |
|    |            |              |               | 1      | 1                    | 25       | 23.00    | 22.38    | 22.47 | 22.73 |
|    |            |              |               | 49     | 23.00                | 22.60    | 22.54    | 22.73    |       |       |
|    | 10MHz      | QPSK         |               | 0      | 22.00                | 21.55    | 21.30    | 21.39    |       |       |
|    |            |              |               | 13     | 22.00                | 21.31    | 21.46    | 21.53    |       |       |
|    |            |              |               | 25     | 22.00                | 21.56    | 21.55    | 21.76    |       |       |
|    |            | 50           | 0             | 21.50  | 21.49                | 21.45    | 21.45    |          |       |       |

Band 30

| ַטכ |           |            |               |           |                      |         |       |
|-----|-----------|------------|---------------|-----------|----------------------|---------|-------|
|     | Bandwidth | Modulation | RB allocation | RB offset | Maximum Tune-up(dBm) | 27710   |       |
|     | Danuwium  | Wodulation | ND allocation | NB offset | Maximum Tune-up(ubm) | 2310MHz |       |
|     |           |            |               | 0         | 22.00                | 21.71   |       |
|     |           |            |               | 1         | 25                   | 22.00   | 21.82 |
|     |           |            |               | 49        | 22.00                | 21.62   |       |
|     | 10MHz     | QPSK       |               | 0         | 21.00                | 20.60   |       |
|     |           |            | 25            | 13        | 21.00                | 20.65   |       |
|     |           |            |               |           | 21.00                | 20.64   |       |
|     |           | 4.00       | 50            | 0         | 21.00                | 20.62   |       |

Band 66

| U         |                         |               |        |                       |           |           |           |
|-----------|-------------------------|---------------|--------|-----------------------|-----------|-----------|-----------|
| Bandwidth | Bandwidth Modulation RI |               | RB     | Maximum Tune-up(dBm)  | 132072    | 132322    | 132572    |
| Danuwium  | iviodulation            | RB allocation | offset | waxiinum rune-up(ubm) | 1720.0MHz | 1745.0MHz | 1770.0MHz |
|           |                         | 1             | 0      | 23.00                 | 22.85     | 22.54     | 22.50     |
|           |                         |               | 50     | 23.00                 | 22.78     | 22.45     | 22.47     |
|           |                         |               | 99     | 23.00                 | 22.73     | 22.42     | 22.11     |
| 20MHz     | QPSK                    |               | 0      | 22.00                 | 21.66     | 21.69     | 21.45     |
|           |                         | 50            | 25     | 22.00                 | 21.69     | 21.67     | 21.49     |
|           |                         | 50            | 22.00  | 21.59                 | 21.53     | 21.27     |           |
|           |                         | 100           | 0      | 22.00                 | 21.73     | 21.59     | 21.51     |

Band 71

|  | Bandwidth | RB RB R    |            | RB offset Maximum Tune-up(dBm) | 133222               | 133322   | 133372   |          |       |       |
|--|-----------|------------|------------|--------------------------------|----------------------|----------|----------|----------|-------|-------|
|  | Danuwidin | Modulation | allocation | RB oliset                      | maximum rune-up(ubm) | 673.0MHz | 683.0MHz | 688.0MHz |       |       |
|  |           |            |            | 0                              | 21.00                | 20.70    | 20.62    | 20.55    |       |       |
|  |           |            | QPSK 50    | 1                              | 1                    | 1        | 50       | 21.50    | 21.07 | 20.99 |
|  |           |            |            |                                | 99                   | 21.00    | 20.69    | 20.75    | 20.78 |       |
|  | 20MHz     | QPSK       |            | 0                              | 20.00                | 19.73    | 19.95    | 19.76    |       |       |
|  |           |            |            | 25                             | 20.00                | 19.96    | 19.90    | 19.89    |       |       |
|  |           |            | 50         | 20.00                          | 19.94                | 19.89    | 19.85    |          |       |       |
|  |           |            | 100        | 0                              | 20.00                | 19.85    | 19.93    | 19.82    |       |       |





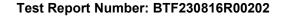
# 8. T-Coil Test Result

| Plot<br>No. | Mode            | Channel/Freq.    | Probe<br>Position | ABM1<br>(dB A/m) | ABM2<br>(dB A/m) | SNR<br>(dB) | T Rating |
|-------------|-----------------|------------------|-------------------|------------------|------------------|-------------|----------|
| 4           | GSM850          | 128/824.2MHz     | Axial(Z)          | -3.77            | -40.00           | 36.23       | T4       |
| 1           | GSIVI850        | 128/824.2IVIHZ   | Transversal(Y)    | -10.91           | -41.65           | 30.74       | T4       |
| 2           | PCS1900         | 540/4050 OMILE   | Axial(Z)          | -3.83            | -39.09           | 35.26       | T4       |
| 2           | PCS 1900        | 512/1850.2MHz    | Transversal(Y)    | -10.29           | -40.75           | 30.46       | T4       |
| 3           | WCDMA Band II   | 9262/1852.4MHz   | Axial(Z)          | -4.25            | -40.01           | 35.76       | T4       |
| 3           | WCDIMA Band II  | 9202/1852.4MHZ   | Transversal(Y)    | -9.86            | -39.82           | 29.96       | T3       |
| 4           | WCDMA Band IV   | 1312/1712.4MHz   | Axial(Z)          | -7.30            | -39.56           | 32.26       | T4       |
| 4           | WCDIMA Band IV  | 1312/1712.4MHZ   | Transversal(Y)    | -10.43           | -39.48           | 29.05       | T3       |
| 5           | WCDMA Band V    | 4222/04C CMI I=  | Axial(Z)          | -9.89            | -38.56           | 28.67       | T3       |
| Э           | WCDMA Band V    | 4233/846.6MHz    | Transversal(Y)    | -11.23           | -38.28           | 27.05       | T3       |
| _           | LTE EDD DLO     | 40700/4000 0041  | Axial(Z)          | -4.11            | -34.54           | 30.43       | T4       |
| 6           | LTE FDD Band 2  | 18700/1860.0MHz  | Transversal(Y)    | -12.49           | -35.08           | 22.59       | T3       |
| 7           | LTE FDD Band 4  | 20050/4720 00415 | Axial(Z)          | -4.25            | -34.54           | 30.29       | T4       |
| /           | LIE FDD Band 4  | 20050/1720.0MHz  | Transversal(Y)    | -12.39           | -35.08           | 22.69       | T3       |
| _           | 1.TE EDD D 1.E  | 00000/044 0041   | Axial(Z)          | -9.31            | -34.54           | 25.23       | T3       |
| 8           | LTE FDD Band 5  | 20600/844.0MHz   | Transversal(Y)    | -10.69           | -35.08           | 24.39       | T3       |
| _           | LTE EDD D L40   | 00400/744 0041   | Axial(Z)          | -9.78            | -39.88           | 30.10       | T4       |
| 9           | LTE FDD Band 12 | 23130/711.0MHz   | Transversal(Y)    | -7.43            | -37.59           | 30.16       | T4       |
| 40          | 1.TE EDD D 1.47 | 00000/744 00411- | Axial(Z)          | -9.33            | -39.53           | 30.20       | T4       |
| 10          | LTE FDD Band 17 | 23800/711.0MHz   | Transversal(Y)    | -7.41            | -39.25           | 31.84       | T4       |
|             | 1 TE EDD D 100  | 07710/0010 01411 | Axial(Z)          | -4.02            | -35.78           | 31.76       | T4       |
| 11          | LTE FDD Band 30 | 27710/2310.0MHz  | Transversal(Y)    | -12.40           | -36.32           | 23.92       | T3       |
| 40          | 1.TE EDD D 1.00 | 400070/4700 0141 | Axial(Z)          | -4.18            | -37.63           | 33.45       | T4       |
| 12          | LTE FDD Band 66 | 132072/1720.0MHz | Transversal(Y)    | -10.60           | -39.32           | 28.72       | T3       |
| 40          | 1.TE EDD D 1.74 | 400000/070 0141  | Axial(Z)          | -3.72            | -37.98           | 34.26       | T4       |
| 13          | LTE FDD Band 71 | 133222/673.0MHz  | Transversal(Y)    | -10.90           | -39.63           | 28.73       | T3       |

# 9. Test Equipment List

| Description                             | Manufacturer         | Model       | Serial No./Version | Cal. Date  | Cal. Due   |
|-----------------------------------------|----------------------|-------------|--------------------|------------|------------|
| PC                                      | Dell                 | N/A         | N/A                | N/A        | N/A        |
| Test Software                           | MVG                  | N/A         | OpenHAC V5.1.3     | N/A        | N/A        |
| 6 1/2 Multimeter                        | Keithley             | DMM6500     | 4527164            | 2022/11/24 | 2023/11/23 |
| Audio Card                              | National Instruments | NI PCI-4461 | 01C4B4EB           | N/A        | N/A        |
| WIDEBAND RADIO COMMUNICATION T<br>ESTER | ROHDE&SCHWARZ        | CMW500      | 161997             | 2022/11/24 | 2023/11/23 |
| COMOHAC T-Coil Probe                    | MVG                  | STCOIL      | 07/17 TCP38        | 2023/02/06 | 2024/02/05 |
| TMFS                                    | MVG                  | STMFS       | SN 13/22 TMFS30    | N/A        | N/A        |
| Antenna network emulator                | MVG                  | ANTA 74     | 07/22 ANTA 74      | 1          | 1          |


There is special HAC mode software on this EUT.
 There is special HAC mode software on this EUT.
 The volume was adjusted to maximum level and the backlight turned off during T-Coil testing.




# **ANNEX A System Validation Result**

| Input Level (mV)                                    | Axial Description | Location | Magnetic Field(dBA/m) |  |  |  |  |
|-----------------------------------------------------|-------------------|----------|-----------------------|--|--|--|--|
|                                                     | Axial             | Max      | -15.22                |  |  |  |  |
|                                                     | Radial H          | Right    | -22.32                |  |  |  |  |
| 500                                                 | Radial FI         | Left     | -20.21                |  |  |  |  |
|                                                     | Radial V          | Upper    | -22.50                |  |  |  |  |
|                                                     | Radiai V          | Lower    | -19.66                |  |  |  |  |
| Note: The tolerance limit of System validation ±25% |                   |          |                       |  |  |  |  |

Note: Target value was referring to the Measurement value in the calibration certificate of reference TMFS.







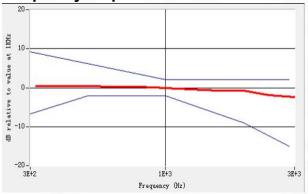
# **ANNEX B Test Data**

#### Measurement at GSM850 Date of measurement: 15/8/2023

**Experimental Conditions** 

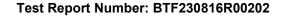
| cital conditions |               |
|------------------|---------------|
| Probe            | SN_0717_TCP38 |
| Signal           | GSM           |
| Band             | GSM850        |
| Channels         | Low           |
| Channels Number  | 128           |
| Frequency (MHz)  | 824.20        |

### Results


| Device compliant   | Yes      |
|--------------------|----------|
| Measurement status | Complete |

| C63.19  | Mode  | Band          | Test<br>Description            | Minimum<br>Limit<br>(dBA/m) | Location                            | Measured<br>(dBA/m)                   | Category | Verdict                               |       |               |                       |     |               |        |   |      |  |  |     |               |        |   |      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |           |       |
|---------|-------|---------------|--------------------------------|-----------------------------|-------------------------------------|---------------------------------------|----------|---------------------------------------|-------|---------------|-----------------------|-----|---------------|--------|---|------|--|--|-----|---------------|--------|---|------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|----|-----------|-------|
| 7.3.1.1 |       | SM GSM<br>850 | Intensity,<br>Axial            | -18                         | Max                                 | -3.77                                 | -        | PASS                                  |       |               |                       |     |               |        |   |      |  |  |     |               |        |   |      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |           |       |
| 7.3.1.2 |       |               | Intensity,<br>RadialH          | -18                         | Right side                          | -10.58                                | -        | PASS                                  |       |               |                       |     |               |        |   |      |  |  |     |               |        |   |      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |           |       |
|         |       |               |                                | -18                         | Left side                           | -10.91                                | _        | PASS                                  |       |               |                       |     |               |        |   |      |  |  |     |               |        |   |      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |           |       |
| 7.3.1.2 |       |               |                                |                             |                                     |                                       |          |                                       |       |               | Intensity,<br>RadialV | -18 | Upper<br>side | -10.35 | - | PASS |  |  |     |               |        |   |      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |           |       |
|         |       |               |                                |                             |                                     |                                       |          |                                       |       |               |                       |     |               |        |   |      |  |  | -18 | Lower<br>side | -11.05 | - | PASS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |           |       |
| 7.3.3   | CSM   |               |                                |                             | Signal to<br>noise/noise<br>, Axial | 20                                    | Max      | 36.23                                 | T4    | PASS          |                       |     |               |        |   |      |  |  |     |               |        |   |      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |           |       |
| 7.3.3   | GSIVI |               |                                |                             | 850                                 | 850                                   | 850      | Signal to<br>noise/noise<br>, RadialH | 20    | Right side    | 31.14                 | Т4  | PASS          |        |   |      |  |  |     |               |        |   |      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |           |       |
|         |       |               |                                |                             |                                     |                                       |          |                                       |       |               |                       |     |               |        |   |      |  |  |     |               |        |   |      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 20 | Left side | 30.74 |
| 7.3.3   |       |               |                                |                             |                                     | Signal to<br>noise/noise<br>, RadialV | 20       | Upper<br>side                         | 31.37 | T4            | PASS                  |     |               |        |   |      |  |  |     |               |        |   |      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |           |       |
|         |       |               |                                |                             |                                     |                                       |          |                                       | 20    | Lower<br>side | 30.31                 | T4  | PASS          |        |   |      |  |  |     |               |        |   |      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |           |       |
| 7.3.2   |       |               | Frequency<br>reponse,<br>Axial | 0                           | -                                   | 2.00                                  | -        | PASS                                  |       |               |                       |     |               |        |   |      |  |  |     |               |        |   |      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |    |           |       |






# Frequency response (field that exceeds -15 dB)



## Raw data result

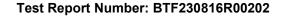
|                                  | Axial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rad    | lial H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rad      | ial V                                                                                                                              |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------|
|                                  | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Left   | Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Up       | Down                                                                                                                               |
| ABM1<br>dB(A/m)                  | -3.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -10.91 | -10.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -10.35   | -11.05                                                                                                                             |
| ABM2<br>dB(A/m)                  | -40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -41.65 | -41.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -41.72   | -41.36                                                                                                                             |
| Ambient<br>noise,<br>dB(A/m)     | -50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -50.00 | -50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -50.00   | -50.00                                                                                                                             |
| Freq<br>Reponse<br>Margin (dB)   | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -        | -                                                                                                                                  |
| S+N/N(dB)                        | 36.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.74  | 31.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31.37    | 30.31                                                                                                                              |
| S+N/N per<br>orientation<br>(dB) | 36.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30     | .74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30       | .31                                                                                                                                |
|                                  | Axial ABM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Radial | H ABM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Radial ' | V ABM1                                                                                                                             |
| Test plots                       | 140 Avec 140 |        | 7 (40 Perc)<br>19 3/2<br>12 22<br>12 22<br>13 23<br>13 24<br>13 24<br>13 24<br>14 24 |          | - 190 Anno<br>- 1914<br>- 1914 |





## **Measurement at GSM1900**

Date of measurement: 15/8/2023


**Experimental Conditions** 

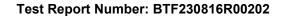
| Probe           | SN_0717_TCP38 |
|-----------------|---------------|
| Signal          | GSM           |
| Band            | GSM1900       |
| Channels        | Low           |
| Channels Number | 512           |
| Frequency (MHz) | 1850.20       |
| Channels Number | 512           |

#### Results

| Device compliant   | Yes      |  |  |
|--------------------|----------|--|--|
| Measurement status | Complete |  |  |

| C63.19  | Mode  | Band | Test<br>Description                   | Minimum<br>Limit<br>(dBA/m) | Location      | Measured<br>(dBA/m) | Category | Verdict |  |     |     |     |                                     |    |     |       |    |      |
|---------|-------|------|---------------------------------------|-----------------------------|---------------|---------------------|----------|---------|--|-----|-----|-----|-------------------------------------|----|-----|-------|----|------|
| 7.3.1.1 |       |      | Intensity,<br>Axial                   | -18                         | Max           | -3.83               | -        | PASS    |  |     |     |     |                                     |    |     |       |    |      |
| 7.3.1.2 |       |      | Intensity,<br>RadialH                 | -18                         | Right side    | -10.29              | -        | PASS    |  |     |     |     |                                     |    |     |       |    |      |
|         |       |      |                                       | -18                         | Left side     | -9.69               | -        | PASS    |  |     |     |     |                                     |    |     |       |    |      |
| 7.3.1.2 |       |      | Intensity,<br>RadialV                 | -18                         | Upper<br>side | -10.13              | -        | PASS    |  |     |     |     |                                     |    |     |       |    |      |
|         |       |      |                                       | -18                         | Lower<br>side | -10.00              | -        | PASS    |  |     |     |     |                                     |    |     |       |    |      |
| 7.3.3   | GSM   | GSM  | GSM                                   | GSM                         | GSM           | GSM                 | GSM      | GSM     |  | GSM | GSM | GSM | Signal to<br>noise/noise<br>, Axial | 20 | Max | 35.26 | T4 | PASS |
| 7.3.3   | GSIVI | 1900 | Signal to<br>noise/noise<br>, RadialH | 20                          | Right side    | 30.46               | Т4       | PASS    |  |     |     |     |                                     |    |     |       |    |      |
|         |       |      |                                       | 20                          | Left side     | 30.97               | T4       | PASS    |  |     |     |     |                                     |    |     |       |    |      |
| 7.3.3   |       |      | Signal to<br>noise/noise<br>, RadialV | 20                          | Upper<br>side | 30.67               | Т4       | PASS    |  |     |     |     |                                     |    |     |       |    |      |
|         |       |      |                                       | 20                          | Lower<br>side | 30.38               | T4       | PASS    |  |     |     |     |                                     |    |     |       |    |      |
| 7.3.2   |       |      | Frequency<br>reponse,<br>Axial        | 0                           | -             | 2.00                | -        | PASS    |  |     |     |     |                                     |    |     |       |    |      |






# Frequency response (field that exceeds -15 dB)



## Raw data result

|                                  | Axial                                                                                               | Rad    | ial H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rad      | ial V                                                                                               |
|----------------------------------|-----------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------|
|                                  | Max                                                                                                 | Left   | Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Up       | Down                                                                                                |
| ABM1<br>dB(A/m)                  | -3.83                                                                                               | -9.69  | -10.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -10.13   | -10.00                                                                                              |
| ABM2<br>dB(A/m)                  | -39.09                                                                                              | -40.66 | -40.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -40.80   | -40.38                                                                                              |
| Ambient<br>noise,<br>dB(A/m)     | -50.00                                                                                              | -50.00 | -50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -50.00   | -50.00                                                                                              |
| Freq<br>Reponse<br>Margin (dB)   | 2.00                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        | • 1                                                                                                 |
| S+N/N(dB)                        | 35.26                                                                                               | 30.97  | 30.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.67    | 30.38                                                                                               |
| S+N/N per<br>orientation<br>(dB) | 35.26                                                                                               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.38    |                                                                                                     |
|                                  | Axial ABM1                                                                                          | Radial | H ABM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Radial \ | √ ABM1                                                                                              |
| Test plots                       | 9-00 (American)<br>1-22 (7)<br>1-22 (7)<br>1-23 (8)<br>1-24 (8)<br>1-24 (8)<br>1-24 (8)<br>1-24 (8) |        | 400 process 400 pr |          | 910 Mess.<br>41271<br>41271<br>41271<br>41271<br>41271<br>41271<br>41271<br>41271<br>41271<br>41271 |



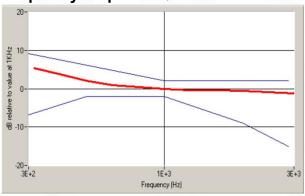


# **Measurement at WCDMA Band 2 (1900)**Date of measurement: 15/8/2023

**Experimental Conditions** 

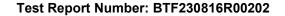
| iontal conditions |               |
|-------------------|---------------|
| Probe             | SN_0717_TCP38 |
| Signal            | W-CDMA        |
| Band              | Band 2 (1900) |
| Channels          | Low           |
| Channels Number   | 9262          |
| Frequency (MHz)   | 1852.40       |
|                   |               |

#### Results


| Device compliant   | Yes      |
|--------------------|----------|
| Measurement status | Complete |

| C63.19  | Mode | Band        | Test<br>Description                   | Minimum<br>Limit<br>(dBA/m) | Location      | Measured<br>(dBA/m) | Category | Verdict |
|---------|------|-------------|---------------------------------------|-----------------------------|---------------|---------------------|----------|---------|
| 7.3.1.1 |      |             | Intensity,<br>Axial                   | -18                         | Max           | -4.25               | -        | PASS    |
| 7.3.1.2 |      |             | Intensity,<br>RadialH                 | -18                         | Right side    | -9.86               | -        | PASS    |
|         |      |             |                                       | -18                         | Left side     | -8.19               | -        | PASS    |
| 7.3.1.2 |      |             | Intensity,<br>RadialV                 | -18                         | Upper<br>side | -9.11               | -        | PASS    |
|         |      |             |                                       | -18                         | Lower<br>side | -8                  | -        | PASS    |
| 7.3.3   | WCD  | Band<br>2_W | Signal to<br>noise/noise<br>, Axial   | 20                          | Max           | 35.76               | T4       | PASS    |
| 7.3.3   | MA   | A190<br>0   | Signal to<br>noise/noise<br>, RadialH | 20                          | Right side    | 29.96               | Т3       | PASS    |
|         |      |             |                                       | 20                          | Left side     | 32.88               | T4       | PASS    |
| 7.3.3   |      |             | Signal to<br>noise/noise<br>, RadialV | 20                          | Upper<br>side | 31.62               | Т4       | PASS    |
|         |      |             |                                       | 20                          | Lower<br>side | 32.38               | T4       | PASS    |
| 7.3.2   |      |             | Frequency<br>reponse,<br>Axial        | 0                           | -             | 2.00                | -        | PASS    |






# Frequency response (field that exceeds -15 dB)



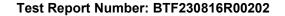
## Raw data result

|                                  | Axial                                                                                                                                                | Axial Radial H |                                                           |        | al V                                                                                               |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------|
|                                  | Max                                                                                                                                                  | Left           | Right                                                     | Up     | Down                                                                                               |
| ABM1<br>dB(A/m)                  | -4.25                                                                                                                                                | -8.19          | -9.86                                                     | -9.11  | -8.00                                                                                              |
| ABM2<br>dB(A/m)                  | -40.01                                                                                                                                               | -41.07         | -39.82                                                    | -40.73 | -40.38                                                                                             |
| Ambient<br>noise,<br>dB(A/m)     | -50.00                                                                                                                                               | -50.00         | -50.00                                                    | -50.00 | -50.00                                                                                             |
| Freq<br>Reponse<br>Margin (dB)   | 2.00                                                                                                                                                 | - 1            | -                                                         | -      | 1                                                                                                  |
| S+N/N(dB)                        | 35.76                                                                                                                                                | 32.88          | 29.96                                                     | 31.62  | 32.38                                                                                              |
| S+N/N per<br>orientation<br>(dB) | 35.76                                                                                                                                                | 29             | .96                                                       | 31.62  |                                                                                                    |
|                                  | Axial ABM1                                                                                                                                           | Radial         | H ABM1                                                    | Radial | / ABM1                                                                                             |
| Test plots                       | 18 (940)<br>- 27 (17 )<br>- 17 (17 ) |                | 600 New J. Media 1 20 20 20 20 20 20 20 20 20 20 20 20 20 |        | \$ 68 (400)<br>- 44835<br>- 44835<br>- 22544<br>- 36413<br>- 36413<br>- 36213<br>- 46135<br>- 4635 |



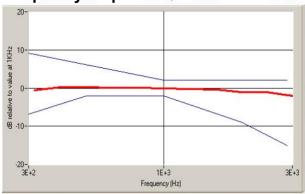


# **Measurement at WCDMA Band 4 (1700)**Date of measurement: 15/8/2023


**Experimental Conditions** 

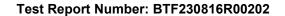
| SN_0717_TCP38 |
|---------------|
| W-CDMA        |
| Band 4 (1700) |
| Low           |
| 1312          |
| 1712.40       |
|               |

#### Results


| Device compliant   | Yes      |  |  |
|--------------------|----------|--|--|
| Measurement status | Complete |  |  |

| C63.19  | Mode | Band        | Test<br>Description                   | Minimum<br>Limit<br>(dBA/m) | Location      | Measured<br>(dBA/m) | Category | Verdict                             |    |     |       |    |      |
|---------|------|-------------|---------------------------------------|-----------------------------|---------------|---------------------|----------|-------------------------------------|----|-----|-------|----|------|
| 7.3.1.1 | 0.4  |             | Intensity,<br>Axial                   | -18                         | Max           | -7.3                | -        | PASS                                |    |     |       |    |      |
| 7.3.1.2 |      |             | Intensity,<br>RadialH                 | -18                         | Right side    | -10.04              | _        | PASS                                |    |     |       |    |      |
|         |      |             |                                       | -18                         | Left side     | -10.43              | -        | PASS                                |    |     |       |    |      |
| 7.3.1.2 |      |             | Intensity,<br>RadialV                 | -18                         | Upper<br>side | -10.65              | -        | PASS                                |    |     |       |    |      |
|         |      |             |                                       | -18                         | Lower<br>side | -10.78              | -        | PASS                                |    |     |       |    |      |
| 7.3.3   | WCD  | Band<br>4_W | 4_W                                   | 4_W                         | 4_W           |                     | 4_W      | Signal to<br>noise/noise<br>, Axial | 20 | Max | 32.26 | T4 | PASS |
| 7.3.3   | MA   | A170<br>0   | Signal to<br>noise/noise<br>, RadialH | 20                          | Right side    | 29.24               | Т3       | PASS                                |    |     |       |    |      |
|         |      |             |                                       | 20                          | Left side     | 29.05               | T3       | PASS                                |    |     |       |    |      |
| 7.3.3   |      |             | Signal to<br>noise/noise<br>, RadialV | 20                          | Upper<br>side | 28.78               | Т3       | PASS                                |    |     |       |    |      |
|         |      |             |                                       | 20                          | Lower<br>side | 28.97               | Т3       | PASS                                |    |     |       |    |      |
| 7.3.2   |      |             | Frequency<br>reponse,<br>Axial        | 0                           | -             | 2.00                | -        | PASS                                |    |     |       |    |      |






# Frequency response (field that exceeds -15 dB)



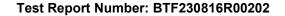
## Raw data result

|                                  | Axial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rad    | lial H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rad    | Radial V                                                          |  |  |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------|--|--|
|                                  | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Left   | Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Up     | Down                                                              |  |  |
| ABM1<br>dB(A/m)                  | -7.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -10.43 | -10.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -10.65 | -10.78                                                            |  |  |
| ABM2<br>dB(A/m)                  | -39.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -39.48 | -39.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -39.43 | -39.75                                                            |  |  |
| Ambient<br>noise,<br>dB(A/m)     | -50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -50.00 | -50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -50.00 | -50.00                                                            |  |  |
| Freq<br>Reponse<br>Margin (dB)   | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -      | -                                                                 |  |  |
| S+N/N(dB)                        | 32.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29.05  | 29.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28.78  | 28.97                                                             |  |  |
| S+N/N per<br>orientation<br>(dB) | 32.26 29.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | .05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.78  |                                                                   |  |  |
|                                  | Axial ABM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Radial | H ABM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Radial | V ABM1                                                            |  |  |
| Test plots                       | 7 (10 PANS)<br>-17 (22 S)<br>-17 (23 S) |        | 4 108 PM 56<br>4 108 PM 56<br>4 107 |        | 7 (0 (page)<br>44.43<br>27.02<br>29.03<br>30.01<br>40.01<br>40.01 |  |  |





# **Measurement at WCDMA Band 5 (850)**Date of measurement: 15/8/2023


**Experimental Conditions** 

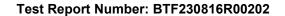
| SN_0717_TCP38 |
|---------------|
| W-CDMA        |
| Band 5 (850)  |
| High          |
| 4233          |
| 846.60        |
|               |

#### Results

| Device compliant   | Yes      |
|--------------------|----------|
| Measurement status | Complete |

| C63.19  | Mode | Band        | Test<br>Description                   | Minimum<br>Limit<br>(dBA/m) | Location      | Measured<br>(dBA/m) | Category | Verdict |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
|---------|------|-------------|---------------------------------------|-----------------------------|---------------|---------------------|----------|---------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|-----|---------------|--------|---|------|
| 7.3.1.1 |      |             | Intensity,<br>Axial                   | -18                         | Max           | -9.89               | -        | PASS    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
| 7.3.1.2 |      |             | Intensity,<br>RadialH                 | -18                         | Right side    | -11.23              | -        | PASS    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
|         |      |             |                                       | -18                         | Left side     | -11.03              | -        | PASS    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
| 7.3.1.2 |      |             | Intensity,<br>RadialV                 | -18                         | Upper<br>side | -12.07              | -        | PASS    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
|         |      | Band<br>5 W |                                       |                             |               |                     |          |         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | -18 | Lower<br>side | -11.29 | - | PASS |
| 7.3.3   | WCD  |             | Signal to<br>noise/noise<br>, Axial   | 20                          | Max           | 28.67               | Т3       | PASS    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
| 7.3.3   | MA   | CDM<br>A850 | Signal to<br>noise/noise<br>, RadialH | 20                          | Right side    | 27.05               | Т3       | PASS    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
|         |      |             |                                       | 20                          | Left side     | 27.45               | T3       | PASS    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
| 7.3.3   |      |             | Signal to<br>noise/noise<br>, RadialV | 20                          | Upper<br>side | 26.36               | Т3       | PASS    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
|         |      |             |                                       | 20                          | Lower<br>side | 27.46               | Т3       | PASS    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
| 7.3.2   |      |             | Frequency reponse, Axial              | 0                           | -             | 2.00                | -        | PASS    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |






# Frequency response (field that exceeds -15 dB)



## Raw data result

|                                  | Axial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rad      | ial H                                                                                          | I H Radial V |        |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------|--------------|--------|--|
|                                  | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Left     | Right                                                                                          | Up           | Down   |  |
| ABM1<br>dB(A/m)                  | -9.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -11.03   | -11.23                                                                                         | -12.07       | -11.29 |  |
| ABM2<br>dB(A/m)                  | -38.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -38.48   | -38.28                                                                                         | -38.43       | -38.75 |  |
| Ambient<br>noise,<br>dB(A/m)     | -50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -50.00   | -50.00                                                                                         | -50.00       | -50.00 |  |
| Freq<br>Reponse<br>largin (dB)   | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -        |                                                                                                | -            | -      |  |
| S+N/N(dB)                        | 28.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.45    | 27.05                                                                                          | 26.36        | 27.46  |  |
| S+N/N per<br>prientation<br>(dB) | 28.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27       | .05                                                                                            | 26           | .36    |  |
|                                  | Axial ABM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Radial I | H ABM1                                                                                         | Radial \     | V ABM1 |  |
| Test plots                       | 76 Page<br>4143<br>- 1334<br>- 2344<br>- 2443<br>- 2 |          | 110 Artic.<br>412 Artic.<br>2017 -<br>2017 -<br>3018 -<br>4017 -<br>4017 -<br>4017 -<br>4017 - |              |        |  |





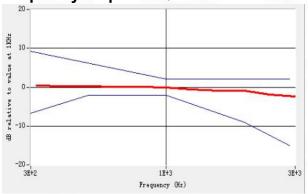
#### **Measurement at LTE Band 2**

Date of measurement: 15/8/2023

**Experimental Conditions** 

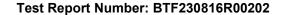
| iontai Gonationo |               |
|------------------|---------------|
| Probe            | SN_0717_TCP38 |
| Signal           | LTE FDD       |
| Band             | LTE band 2    |
| Channels         | Low           |
| Channels Number  | 18700         |
| Frequency (MHz)  | 1860.00       |
|                  |               |

#### Results


| Device compliant   | Yes      |
|--------------------|----------|
| Measurement status | Complete |

| C63.19  | Mode | Band       | Test<br>Description                   | Minimum<br>Limit<br>(dBA/m) | Location      | Measured<br>(dBA/m) | Category | Verdict |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
|---------|------|------------|---------------------------------------|-----------------------------|---------------|---------------------|----------|---------|--|--|--|--|--|--|--|--|--|--|--|-----|---------------|--------|---|------|
| 7.3.1.1 |      |            | Intensity,<br>Axial                   | -18                         | Max           | -4.11               | -        | PASS    |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
| 7.3.1.2 |      |            | Intensity,<br>RadialH                 | -18                         | Right side    | -12.49              | -        | PASS    |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
|         |      |            |                                       | -18                         | Left side     | -10.98              | -        | PASS    |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
| 7.3.1.2 |      |            | Intensity,<br>RadialV                 | -18                         | Upper<br>side | -11.38              | -        | PASS    |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
|         |      | LTE<br>FDD |                                       |                             |               |                     |          |         |  |  |  |  |  |  |  |  |  |  |  | -18 | Lower<br>side | -11.79 | - | PASS |
| 7.3.3   | LTE  |            | Signal to<br>noise/noise<br>, Axial   | 20                          | Max           | 30.43               | T4       | PASS    |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
| 7.3.3   | LIE  | Band<br>2  | Signal to<br>noise/noise<br>, RadialH | 20                          | Right side    | 22.59               | Т3       | PASS    |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
|         |      |            |                                       | 20                          | Left side     | 24.75               | T3       | PASS    |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
| 7.3.3   |      |            | Signal to<br>noise/noise<br>, RadialV | 20                          | Upper<br>side | 24.60               | Т3       | PASS    |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
|         |      |            |                                       | 20                          | Lower<br>side | 25.03               | Т3       | PASS    |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
| 7.3.2   |      |            | Frequency<br>reponse,<br>Axial        | 0                           | -             | 2.00                | -        | PASS    |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |






# Frequency response (field that exceeds -15 dB)



## Raw data result

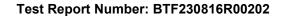
|                                  | Axial                                                                                    | Rad      | ial H                                              | Rad      | ial V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|----------------------------------|------------------------------------------------------------------------------------------|----------|----------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                  | Max                                                                                      | Left     | Right                                              | Up       | Down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| ABM1<br>dB(A/m)                  | -4.11                                                                                    | -10.98   | -12.49                                             | -11.38   | -11.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| ABM2<br>dB(A/m)                  | -34.54                                                                                   | -35.73   | -35.08                                             | -35.98   | -36.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Ambient<br>noise,<br>dB(A/m)     | -50.00                                                                                   | -50.00   | -50.00                                             | -50.00   | -50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Freq<br>Reponse<br>Margin (dB)   | 2.00                                                                                     | - 11     | -                                                  | -1       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| S+N/N(dB)                        | 30.43                                                                                    | 24.75    | 22.59                                              | 24.60    | 25.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| S+N/N per<br>orientation<br>(dB) | 30.43                                                                                    | 22       | .59                                                | 24.60    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                  | Axial ABM1                                                                               | Radial I | H ABM1                                             | Radial \ | V ABM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Test plots                       | 100 PMM0<br>1-27<br>1-27<br>1-28<br>1-28<br>1-28<br>1-28<br>1-28<br>1-28<br>1-28<br>1-28 |          | 9 to PANG<br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          | 9 (40 Ann.)<br>- 10 Ann.<br>- 20 |  |



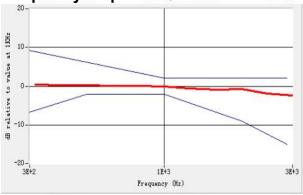


#### **Measurement at LTE Band 4**

Date of measurement: 15/8/2023


**Experimental Conditions** 

| Probe           | SN_0717_TCP38 |
|-----------------|---------------|
| Signal          | LTE FDD       |
| Band            | LTE band 4    |
| Channels        | Low           |
| Channels Number | 20050         |
| Frequency (MHz) | 1720.00       |


#### Results

| Device compliant   | Yes      |
|--------------------|----------|
| Measurement status | Complete |


| C63.19  | Mode | Band       | Test<br>Description                   | Minimum<br>Limit<br>(dBA/m) | Location      | Measured<br>(dBA/m) | Category | Verdict |  |  |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
|---------|------|------------|---------------------------------------|-----------------------------|---------------|---------------------|----------|---------|--|--|--|--|--|--|--|--|--|--|--|--|--|-----|---------------|--------|---|------|
| 7.3.1.1 |      |            | Intensity,<br>Axial                   | -18                         | Max           | -4.25               | -        | PASS    |  |  |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
| 7.3.1.2 |      |            | Intensity,<br>RadialH                 | -18                         | Right side    | -12.39              | -        | PASS    |  |  |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
|         |      |            |                                       | -18                         | Left side     | -10.79              | -        | PASS    |  |  |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
| 7.3.1.2 |      |            | Intensity,<br>RadialV                 | -18                         | Upper<br>side | -11.44              | -        | PASS    |  |  |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
|         |      | LTE<br>FDD |                                       |                             |               |                     |          |         |  |  |  |  |  |  |  |  |  |  |  |  |  | -18 | Lower<br>side | -12.24 | - | PASS |
| 7.3.3   | LTE  |            | Signal to<br>noise/noise<br>, Axial   | 20                          | Max           | 30.29               | T4       | PASS    |  |  |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
| 7.3.3   | LIE  | Band<br>4  | Signal to<br>noise/noise<br>, RadialH | 20                          | Right side    | 22.69               | Т3       | PASS    |  |  |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
|         |      |            |                                       | 20                          | Left side     | 24.94               | T3       | PASS    |  |  |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
| 7.3.3   |      |            | Signal to<br>noise/noise<br>, RadialV | 20                          | Upper<br>side | 24.54               | Т3       | PASS    |  |  |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
|         |      |            |                                       | 20                          | Lower<br>side | 24.58               | Т3       | PASS    |  |  |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |
| 7.3.2   |      |            | Frequency<br>reponse,<br>Axial        | 0                           | -             | 2.00                | -        | PASS    |  |  |  |  |  |  |  |  |  |  |  |  |  |     |               |        |   |      |





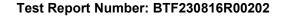


|                                  | Axial                                                                         | Rad    | ial H                                                                  | Radial V |         |  |
|----------------------------------|-------------------------------------------------------------------------------|--------|------------------------------------------------------------------------|----------|---------|--|
|                                  | Max                                                                           | Left   | Right                                                                  | Up       | Down    |  |
| ABM1<br>dB(A/m)                  | -4.25                                                                         | -10.79 | -12.39                                                                 | -11.44   | -12.24  |  |
| ABM2<br>dB(A/m)                  | -34.54                                                                        | -35.73 | -35.08                                                                 | -35.98   | -36.82  |  |
| Ambient<br>noise,<br>dB(A/m)     | -50.00                                                                        | -50.00 | -50.00                                                                 | -50.00   | -50.00  |  |
| Freq<br>Reponse<br>Margin (dB)   | 2.00                                                                          | - 4    |                                                                        | -        | •11     |  |
| S+N/N(dB)                        | 30.29                                                                         | 24.94  | 22.69                                                                  | 24.54    | 24.58   |  |
| S+N/N per<br>orientation<br>(dB) | 30.29                                                                         | 22     | .69                                                                    | 24.      | 54      |  |
|                                  | Axial ABM1                                                                    | Radial | H ABM1                                                                 | Radial \ | / ABM1  |  |
| Test plots                       | 200 PMS<br>1294<br>1314<br>1314<br>1314<br>1314<br>1314<br>1314<br>1314<br>13 |        | 460 /ees<br>41.07<br>41.07<br>41.07<br>41.07<br>42.07<br>42.07<br>44.0 |          | 18 Port |  |

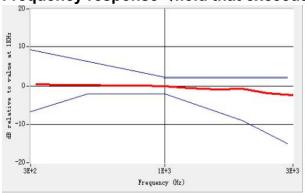




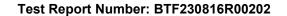
Date of measurement: 15/8/2023


**Experimental Conditions** 

| iontai oonationo |               |
|------------------|---------------|
| Probe            | SN_0717_TCP38 |
| Signal           | LTE FDD       |
| Band             | LTE band 5    |
| Channels         | High          |
| Channels Number  | 20600         |
| Frequency (MHz)  | 844.00        |
|                  |               |


### Results

| Device compliant   | Yes      |
|--------------------|----------|
| Measurement status | Complete |


| C63.19  | Mode | Band       | Test<br>Description                   | Minimum<br>Limit<br>(dBA/m)         | Location      | Measured<br>(dBA/m) | Category | Verdict |      |     |               |        |   |      |
|---------|------|------------|---------------------------------------|-------------------------------------|---------------|---------------------|----------|---------|------|-----|---------------|--------|---|------|
| 7.3.1.1 |      |            | Intensity,<br>Axial                   | -18                                 | Max           | -9.31               | -        | PASS    |      |     |               |        |   |      |
| 7.3.1.2 |      |            | Intensity,<br>RadialH                 | -18                                 | Right side    | -10.69              | -        | PASS    |      |     |               |        |   |      |
|         |      |            |                                       | -18                                 | Left side     | -9.05               | -        | PASS    |      |     |               |        |   |      |
| 7.3.1.2 |      |            | Intensity,<br>RadialV                 | -18                                 | Upper<br>side | -9.06               | -        | PASS    |      |     |               |        |   |      |
|         |      | LTE<br>FDD | LTE<br>FDD                            |                                     |               |                     |          |         |      | -18 | Lower<br>side | -10.08 | - | PASS |
| 7.3.3   | LTE  |            |                                       | Signal to<br>noise/noise<br>, Axial | 20            | Max                 | 25.23    | Т3      | PASS |     |               |        |   |      |
| 7.3.3   | LIE  | Band<br>5  | Signal to<br>noise/noise<br>, RadialH | 20                                  | Right side    | 24.39               | Т3       | PASS    |      |     |               |        |   |      |
|         |      |            |                                       | 20                                  | Left side     | 26.68               | T3       | PASS    |      |     |               |        |   |      |
| 7.3.3   |      |            | Signal to<br>noise/noise<br>, RadialV | 20                                  | Upper<br>side | 26.92               | Т3       | PASS    |      |     |               |        |   |      |
|         |      |            |                                       | 20                                  | Lower<br>side | 26.74               | Т3       | PASS    |      |     |               |        |   |      |
| 7.3.2   |      |            | Frequency<br>reponse,<br>Axial        | 0                                   | -             | 2.00                | -        | PASS    |      |     |               |        |   |      |





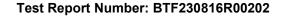


|                                  | Axial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rad    | ial H                                                            | Radial V |         |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------|----------|---------|--|
|                                  | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Left   | Right                                                            | Up       | Down    |  |
| ABM1<br>dB(A/m)                  | -9.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -9.05  | -10.69                                                           | -9.06    | -10.08  |  |
| ABM2<br>dB(A/m)                  | -34.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -35.73 | -35.08                                                           | -35.98   | -36.82  |  |
| Ambient<br>noise,<br>dB(A/m)     | -50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -50.00 | -50.00                                                           | -50.00   | -50.00  |  |
| Freq<br>Reponse<br>Margin (dB)   | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -      |                                                                  | -        | -       |  |
| S+N/N(dB)                        | 25.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.68  | 24.39                                                            | 26.92    | 26.74   |  |
| S+N/N per<br>orientation<br>(dB) | 25.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24     | .39                                                              | 26       | .74     |  |
|                                  | Axial ABM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Radial | H ABM1                                                           | Radial \ | V ABM1  |  |
| Test plots                       | 167 (90%)<br>167 (90%) |        | 210 APPS<br>4477<br>2248<br>2348<br>3351<br>3458<br>4279<br>4271 |          | # 10 PA |  |

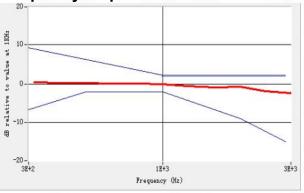




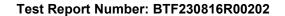
Date of measurement: 16/8/2023


**Experimental Conditions** 

| iontal Conditions |               |
|-------------------|---------------|
| Probe             | SN_0717_TCP38 |
| Signal            | LTE FDD       |
| Band              | LTE band 12   |
| Channels          | High          |
| Channels Number   | 23130         |
| Frequency (MHz)   | 711.00        |
|                   |               |


### Results

| Device compliant   | Yes      |
|--------------------|----------|
| Measurement status | Complete |


| C63.19  | Mode | Band       | Test<br>Description                   | Minimum<br>Limit<br>(dBA/m) | Location      | Measured<br>(dBA/m) | Category | Verdict |  |  |  |  |  |  |     |               |       |   |      |
|---------|------|------------|---------------------------------------|-----------------------------|---------------|---------------------|----------|---------|--|--|--|--|--|--|-----|---------------|-------|---|------|
| 7.3.1.1 |      |            | Intensity,<br>Axial                   | -18                         | Max           | -9.78               | -        | PASS    |  |  |  |  |  |  |     |               |       |   |      |
| 7.3.1.2 |      |            | Intensity,<br>RadialH                 | -18                         | Right side    | -7.43               | -        | PASS    |  |  |  |  |  |  |     |               |       |   |      |
|         |      |            |                                       | -18                         | Left side     | -6.29               | -        | PASS    |  |  |  |  |  |  |     |               |       |   |      |
| 7.3.1.2 |      |            | Intensity,<br>RadialV                 | -18                         | Upper<br>side | -6.06               | -        | PASS    |  |  |  |  |  |  |     |               |       |   |      |
|         |      | LTE<br>FDD |                                       |                             |               |                     |          |         |  |  |  |  |  |  | -18 | Lower<br>side | -7.08 | - | PASS |
| 7.3.3   | LTE  |            | Signal to<br>noise/noise<br>, Axial   | 20                          | Max           | 30.10               | T4       | PASS    |  |  |  |  |  |  |     |               |       |   |      |
| 7.3.3   | LIE  | Band<br>12 | Signal to<br>noise/noise<br>, RadialH | 20                          | Right side    | 30.16               | Т4       | PASS    |  |  |  |  |  |  |     |               |       |   |      |
|         |      |            |                                       | 20                          | Left side     | 31.49               | T4       | PASS    |  |  |  |  |  |  |     |               |       |   |      |
| 7.3.3   |      |            | Signal to<br>noise/noise<br>, RadialV | 20                          | Upper<br>side | 31.70               | Т4       | PASS    |  |  |  |  |  |  |     |               |       |   |      |
|         |      |            |                                       | 20                          | Lower<br>side | 30.97               | T4       | PASS    |  |  |  |  |  |  |     |               |       |   |      |
| 7.3.2   |      |            | Frequency<br>reponse,<br>Axial        | 0                           | -             | 2.00                | -        | PASS    |  |  |  |  |  |  |     |               |       |   |      |







|                                  | Axial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rad    | lial H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rad      | Radial V                                                                                                                                    |  |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                  | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Left   | Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Up       | Down                                                                                                                                        |  |  |
| ABM1<br>dB(A/m)                  | -9.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -6.29  | -7.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -6.06    | -7.08                                                                                                                                       |  |  |
| ABM2<br>dB(A/m)                  | -39.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -37.78 | -37.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -37.76   | -38.05                                                                                                                                      |  |  |
| Ambient<br>noise,<br>dB(A/m)     | -50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -50.00 | -50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -50.00   | -50.00                                                                                                                                      |  |  |
| Freq<br>Reponse<br>Margin (dB)   | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | -                                                                                                                                           |  |  |
| S+N/N(dB)                        | 30.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31.49  | 30.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31.70    | 30.97                                                                                                                                       |  |  |
| S+N/N per<br>orientation<br>(dB) | 30.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30     | .16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30       | .97                                                                                                                                         |  |  |
|                                  | Axial ABM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Radial | H ABM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Radial \ | √ ABM1                                                                                                                                      |  |  |
| Test plots                       | # 69 prings<br># 250<br># 250<br># 242<br># 242<br># 242<br># 242<br># 242<br># 244<br># 244 |        | 2 (0 Mont)<br>1 Mont<br>1 Mont<br>2 J 7 J<br>2 J 7 J 7 J<br>2 J 7 J<br>2 J 7 J 7 J<br>2 J 7 |          | 100 ping.<br>103 ping. |  |  |

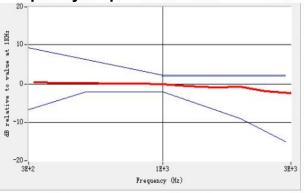




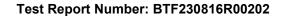
Date of measurement: 16/8/2023

**Experimental Conditions** 

| iontal Conditions |               |
|-------------------|---------------|
| Probe             | SN_0717_TCP38 |
| Signal            | LTE FDD       |
| Band              | LTE band 17   |
| Channels          | High          |
| Channels Number   | 23800         |
| Frequency (MHz)   | 711.00        |
|                   |               |


### Results

| Device compliant   | Yes      |
|--------------------|----------|
| Measurement status | Complete |


| C63.19  | Mode | Band       | Test<br>Description                   | Minimum<br>Limit<br>(dBA/m) | Location      | Measured<br>(dBA/m) | Category | Verdict |  |  |  |  |  |  |     |               |       |   |      |
|---------|------|------------|---------------------------------------|-----------------------------|---------------|---------------------|----------|---------|--|--|--|--|--|--|-----|---------------|-------|---|------|
| 7.3.1.1 |      |            | Intensity,<br>Axial                   | -18                         | Max           | -9.33               | -        | PASS    |  |  |  |  |  |  |     |               |       |   |      |
| 7.3.1.2 |      |            | Intensity,<br>RadialH                 | -18                         | Right side    | -7.41               | -        | PASS    |  |  |  |  |  |  |     |               |       |   |      |
|         |      |            |                                       | -18                         | Left side     | -6.32               | -        | PASS    |  |  |  |  |  |  |     |               |       |   |      |
| 7.3.1.2 |      |            | Intensity,<br>RadialV                 | -18                         | Upper<br>side | -8.09               | -        | PASS    |  |  |  |  |  |  |     |               |       |   |      |
|         |      | LTE<br>FDD |                                       |                             |               |                     |          |         |  |  |  |  |  |  | -18 | Lower<br>side | -8.99 | - | PASS |
| 7.3.3   | LTE  |            | Signal to<br>noise/noise<br>, Axial   | 20                          | Max           | 30.20               | T4       | PASS    |  |  |  |  |  |  |     |               |       |   |      |
| 7.3.3   | LIE  | Band<br>17 | Signal to<br>noise/noise<br>, RadialH | 20                          | Right side    | 31.84               | Т4       | PASS    |  |  |  |  |  |  |     |               |       |   |      |
|         |      |            |                                       | 20                          | Left side     | 32.86               | T4       | PASS    |  |  |  |  |  |  |     |               |       |   |      |
| 7.3.3   |      |            | Signal to<br>noise/noise<br>, RadialV | 20                          | Upper<br>side | 31.11               | Т4       | PASS    |  |  |  |  |  |  |     |               |       |   |      |
|         |      |            |                                       | 20                          | Lower<br>side | 30.00               | T4       | PASS    |  |  |  |  |  |  |     |               |       |   |      |
| 7.3.2   |      |            | Frequency<br>reponse,<br>Axial        | 0                           | -             | 2.00                | -        | PASS    |  |  |  |  |  |  |     |               |       |   |      |





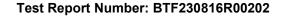


|                                  | Axial      | Rad    | ial H                                                                                        | Radi     | Radial V                                                                                                     |  |  |
|----------------------------------|------------|--------|----------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------|--|--|
|                                  | Max        | Left   | Right                                                                                        | Up       | Down                                                                                                         |  |  |
| ABM1<br>dB(A/m)                  | -9.33      | -6.32  | -7.41                                                                                        | -8.09    | -8.99                                                                                                        |  |  |
| ABM2<br>dB(A/m)                  | -39.53     | -39.18 | -39.25                                                                                       | -39.20   | -38.99                                                                                                       |  |  |
| Ambient<br>noise,<br>dB(A/m)     | -50.00     | -50.00 | -50.00                                                                                       | -50.00   | -50.00                                                                                                       |  |  |
| Freq<br>Reponse<br>Margin (dB)   | 2.00       | - 1    |                                                                                              | = 1 1    | 1                                                                                                            |  |  |
| S+N/N(dB)                        | 30.20      | 32.86  | 31.84                                                                                        | 31.11    | 30.00                                                                                                        |  |  |
| S+N/N per<br>orientation<br>(dB) | 30.20      | 31.84  |                                                                                              |          | 00                                                                                                           |  |  |
|                                  | Axial ABM1 | Radial | H ABM1                                                                                       | Radial \ | / ABM1                                                                                                       |  |  |
| Test plots                       | 1/6 Price  |        | 1180 AVIC<br>11377<br>- 4555<br>1277<br>1278<br>1278<br>1278<br>1278<br>1278<br>1278<br>1278 |          | 100 Anno<br>113.78<br>123.78<br>123.68<br>123.68<br>123.78<br>123.78<br>123.78<br>123.78<br>123.78<br>123.78 |  |  |

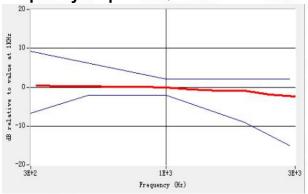




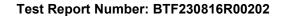
Date of measurement: 16/8/2023


**Experimental Conditions** 

| SN_0717_TCP38 |
|---------------|
| LTE FDD       |
| LTE band 30   |
| Middle        |
| 27710         |
| 2310.00       |
|               |


### Results

| Device compliant   | Yes      |
|--------------------|----------|
| Measurement status | Complete |


| C63.19  | Mode | Band       | Test<br>Description                   | Minimum<br>Limit<br>(dBA/m) | Location      | Measured<br>(dBA/m)                 | Category | Verdict |       |    |      |
|---------|------|------------|---------------------------------------|-----------------------------|---------------|-------------------------------------|----------|---------|-------|----|------|
| 7.3.1.1 |      |            | Intensity,<br>Axial                   | -18                         | Max           | -4.02                               | -        | PASS    |       |    |      |
| 7.3.1.2 |      |            | Intensity,<br>RadialH                 | -18                         | Right side    | -12.40                              | _        | PASS    |       |    |      |
|         |      |            |                                       | -18                         | Left side     | -10.90                              | -        | PASS    |       |    |      |
| 7.3.1.2 |      |            | Intensity,<br>RadialV                 | -18                         | Upper<br>side | -11.39                              | -        | PASS    |       |    |      |
|         |      |            |                                       | -18                         | Lower<br>side | -11.71                              | -        | PASS    |       |    |      |
| 7.3.3   | LTE  | LTE<br>FDD |                                       |                             |               | Signal to<br>noise/noise<br>, Axial | 20       | Max     | 31.76 | T4 | PASS |
| 7.3.3   | LIE  | Band<br>30 | Signal to<br>noise/noise<br>, RadialH | 20                          | Right side    | 23.92                               | Т3       | PASS    |       |    |      |
|         |      |            |                                       | 20                          | Left side     | 26.07                               | T3       | PASS    |       |    |      |
| 7.3.3   |      |            | Signal to<br>noise/noise<br>, RadialV | 20                          | Upper<br>side | 25.83                               | Т3       | PASS    |       |    |      |
|         |      |            |                                       | 20                          | Lower<br>side | 26.35                               | Т3       | PASS    |       |    |      |
| 7.3.2   |      |            | Frequency reponse, Axial              | 0                           | -             | 2.00                                | -        | PASS    |       |    |      |





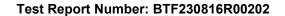


|                                  | Axial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rad      | ial H                                                                                | Rad      | ial V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Left     | Right                                                                                | Up       | Down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ABM1<br>dB(A/m)                  | -4.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -10.90   | -12.40                                                                               | -11.39   | -11.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ABM2<br>dB(A/m)                  | -35.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -36.97   | -36.32                                                                               | -37.22   | -38.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ambient<br>noise,<br>dB(A/m)     | -50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -50.00   | -50.00                                                                               | -50.00   | -50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Freq<br>Reponse<br>Margin (dB)   | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 4      |                                                                                      | -        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| S+N/N(dB)                        | 31.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.07    | 23.92                                                                                | 25.83    | 26.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S+N/N per<br>orientation<br>(dB) | 31.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23       | .92                                                                                  | 25       | .83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                  | Axial ABM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Radial I | H ABM1                                                                               | Radial ' | V ABM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test plots                       | 9 (8 denoted)  - 20 (1 denoted)  - 20 (1 denoted)  - 4 denoted  - 5 de |          | 4 10 per 0<br>4 10 per 0<br>4 10 1<br>4 10 1<br>4 10 1<br>4 10 1<br>4 10 1<br>4 10 1 |          | 100 Mes<br>140 |

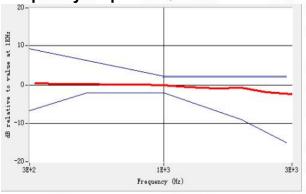




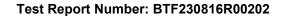
Date of measurement: 16/8/2023


**Experimental Conditions** 

| iontai oonationo |               |
|------------------|---------------|
| Probe            | SN_0717_TCP38 |
| Signal           | LTE FDD       |
| Band             | LTE band 66   |
| Channels         | Low           |
| Channels Number  | 132072        |
| Frequency (MHz)  | 1720.00       |
|                  |               |


### Results

| Device compliant   | Yes      |
|--------------------|----------|
| Measurement status | Complete |


| C63.19  | Mode | Band       | Test<br>Description                   | Minimum<br>Limit<br>(dBA/m) | Location                            | Measured<br>(dBA/m) | Category | Verdict |    |      |  |  |  |  |  |  |  |  |     |               |        |   |      |
|---------|------|------------|---------------------------------------|-----------------------------|-------------------------------------|---------------------|----------|---------|----|------|--|--|--|--|--|--|--|--|-----|---------------|--------|---|------|
| 7.3.1.1 |      |            | Intensity,<br>Axial                   | -18                         | Max                                 | -4.18               | -        | PASS    |    |      |  |  |  |  |  |  |  |  |     |               |        |   |      |
| 7.3.1.2 |      |            | Intensity,<br>RadialH                 | -18                         | Right side                          | -9.98               | -        | PASS    |    |      |  |  |  |  |  |  |  |  |     |               |        |   |      |
|         |      |            |                                       | -18                         | Left side                           | -10.6               | -        | PASS    |    |      |  |  |  |  |  |  |  |  |     |               |        |   |      |
| 7.3.1.2 |      | LTE<br>FDD | Intensity,<br>RadialV                 | -18                         | Upper<br>side                       | -10.18              | -        | PASS    |    |      |  |  |  |  |  |  |  |  |     |               |        |   |      |
|         |      |            | LTE<br>FDD                            |                             |                                     |                     |          |         |    |      |  |  |  |  |  |  |  |  | -18 | Lower<br>side | -10.68 | - | PASS |
| 7.3.3   | LTE  |            |                                       |                             | Signal to<br>noise/noise<br>, Axial | 20                  | Max      | 33.45   | Т4 | PASS |  |  |  |  |  |  |  |  |     |               |        |   |      |
| 7.3.3   | LIE  | Band<br>66 | Signal to<br>noise/noise<br>, RadialH | 20                          | Right side                          | 28.72               | Т3       | PASS    |    |      |  |  |  |  |  |  |  |  |     |               |        |   |      |
|         |      |            |                                       | 20                          | Left side                           | 28.72               | T3       | PASS    |    |      |  |  |  |  |  |  |  |  |     |               |        |   |      |
| 7.3.3   |      |            | Signal to<br>noise/noise<br>, RadialV | 20                          | Upper<br>side                       | 28.97               | Т3       | PASS    |    |      |  |  |  |  |  |  |  |  |     |               |        |   |      |
|         |      |            |                                       | 20                          | Lower<br>side                       | 28.91               | Т3       | PASS    |    |      |  |  |  |  |  |  |  |  |     |               |        |   |      |
| 7.3.2   |      |            | Frequency<br>reponse,<br>Axial        | 0                           | -                                   | 2.00                | -        | PASS    |    |      |  |  |  |  |  |  |  |  |     |               |        |   |      |





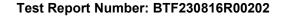


|                                  | Axial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rad      | ial H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rad      | ial V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Left     | Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Up       | Down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ABM1<br>dB(A/m)                  | -4.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -10.60   | -9.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -10.18   | -10.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ABM2<br>dB(A/m)                  | -37.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -39.32   | -38.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -39.15   | -39.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ambient<br>noise,<br>dB(A/m)     | -50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -50.00   | -50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -50.00   | -50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Freq<br>Reponse<br>largin (dB)   | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 11     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| S+N/N(dB)                        | 33.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.72    | 28.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28.97    | 28.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| S+N/N per<br>prientation<br>(dB) | 33.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.72    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28.91    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                  | Axial ABM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Radial I | H ABM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Radial \ | V ABM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test plots                       | 40 No. 44 |          | 2 H9 AVG<br>10 G G G<br>10 |          | - 110 AV<br>- 100 AV<br>- 1 |

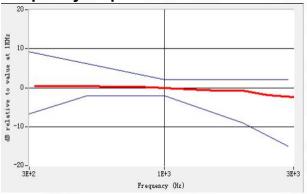




Date of measurement: 16/8/2023


**Experimental Conditions** 

| iontai Gonationo |               |
|------------------|---------------|
| Probe            | SN_0717_TCP38 |
| Signal           | LTE FDD       |
| Band             | LTE band 71   |
| Channels         | Low           |
| Channels Number  | 133222        |
| Frequency (MHz)  | 673.00        |
|                  |               |


### Results

| Device compliant   | Yes      |
|--------------------|----------|
| Measurement status | Complete |

| C63.19  | Mode | Band       | Test<br>Description                   | Minimum<br>Limit<br>(dBA/m) | Location                            | Measured<br>(dBA/m) | Category | Verdict |    |      |
|---------|------|------------|---------------------------------------|-----------------------------|-------------------------------------|---------------------|----------|---------|----|------|
| 7.3.1.1 |      |            | Intensity,<br>Axial                   | -18                         | Max                                 | -3.72               | -        | PASS    |    |      |
| 7.3.1.2 |      |            | Intensity,<br>RadialH                 | -18                         | Right side                          | -10.52              | -        | PASS    |    |      |
|         | 1    |            |                                       | -18                         | Left side                           | -10.90              |          | PASS    |    |      |
| 7.3.1.2 |      |            | Intensity,<br>RadialV                 | -18                         | Upper<br>side                       | -10.36              | 1        | PASS    |    |      |
|         |      |            |                                       | -18                         | Lower<br>side                       | -11.00              | -        | PASS    |    |      |
| 7.3.3   | LTE  | LTE<br>FDD | EDD                                   | FDD                         | Signal to<br>noise/noise<br>, Axial | 20                  | Max      | 34.26   | T4 | PASS |
| 7.3.3   | LIE  | Band<br>71 | Signal to<br>noise/noise<br>, RadialH | 20                          | Right side                          | 29.18               | Т3       | PASS    |    |      |
|         |      |            |                                       | 20                          | Left side                           | 28.73               | T3       | PASS    |    |      |
| 7.3.3   |      |            | Signal to<br>noise/noise<br>, RadialV | 20                          | Upper<br>side                       | 29.34               | Т3       | PASS    |    |      |
|         |      |            |                                       | 20                          | Lower<br>side                       | 28.34               | Т3       | PASS    |    |      |
| 7.3.2   |      |            | Frequency<br>reponse,<br>Axial        | 0                           | -                                   | 2.00                | <u>.</u> | PASS    |    |      |







|                                  | Axial      | Radial H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | Radial V        |        |
|----------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------|--------|
|                                  | Max        | Left                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Right  | Up              | Down   |
| ABM1<br>dB(A/m)                  | -3.72      | -10.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -10.52 | -10.36          | -11.00 |
| ABM2<br>dB(A/m)                  | -37.98     | -39.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -39.70 | -39.70          | -39.34 |
| Ambient<br>noise,<br>dB(A/m)     | -50.00     | -50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -50.00 | -50.00          | -50.00 |
| Freq<br>Reponse<br>Margin (dB)   | 2.00       | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | -               | -      |
| S+N/N(dB)                        | 34.26      | 28.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29.18  | 29.34           | 28.34  |
| S+N/N per<br>orientation<br>(dB) | 34.26      | 28.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 28.34           |        |
|                                  | Axial ABM1 | Radial H ABM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | Radial V ABM1   |        |
| Test plots                       | 148 Ann    | 29 in princi<br>1 0.302<br>1 0.303<br>2 0.304<br>2 |        | - 19 of Portion |        |

Test Report Number: BTF230816R00202



# **ANNEX C Test Setup Photo**



# **ANNEX D EUT External & Internal Photos**

Please refer to RF Report.

# **ANNEX E Calibration Information**

Please refer to the document "Calibration.pdf".



BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

## -- END OF REPORT--