

TEST REPORT

Report No.:	BCTC2203195112-2E
Applicant:	Huizhou Dudu Pet Products Co., Itd
Product Name:	Automatic Pet Feeder
Model/Type Ref.:	DU4L-W
Tested Date:	2022-03-04 to 2022-03-25
Issued Date:	2022-03-25
She	enzhen BCTC TESting Co., Ltd. APPROVED Page: 1 of 73 Edition: A4

FCC ID: 2A55Q-DU4L-W

Product Name:	Automatic Pet Feeder
Trademark:	N/A
Model/Type Ref.:	DU4L-W DU6L-W, DU5L-WH, DU4L-WQ, PLAF101, PLAF102
Prepared For:	Huizhou Dudu Pet Products Co., Itd
Address:	Floor 2/3/4, Building 2 District D Qiaosheng Industrial Park, Lilin Town, Huicheng District, Huizhou, China
Manufacturer:	Huizhou Dudu Pet Products Co., Itd
Address:	Floor 2/3/4, Building 2 District D Qiaosheng Industrial Park, Lilin Town, Huicheng District, Huizhou, China
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2022-03-04
Sample tested Date:	2022-03-04 to 2022-03-25
Issue Date:	2022-03-25
Report No.:	BCTC2203195112-2E
Test Standards:	FCC Part15.247 ANSI C63.10-2013
Test Results:	PASS
Remark:	This is WIFI-2.4GHz band radio test report.

Tested by:

Chen

Lei Chen/Project Handler

Zero Zhou/Reviewer

Approved b

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Page: 2 of 73

Table Of Content

٦	Test Report Declaration	Page
1.	Version	5
2.	Test Summary	
3.	Measurement Uncertainty	
4.	Product Information And Test Setup	
4.1	Product Information	
4.2	Test Setup Configuration	
4.3	Support Equipment	
4.4	Channel List	
4.5	Test Mode	10
4.6	Table Of Parameters Of Text Software Setting	10
5.	Test Facility And Test Instrument Used	
5.1	Test Facility	
5.2	Test Instrument Used	11
6.	Conducted Emissions	13
6.1	Block Diagram Of Test Setup	13
6.2	Limit	
6.3	Test Procedure	
6.4	EUT Operating Conditions	
6.5	Test Result	
7.	Radiated Emissions	
7.1	Block Diagram Of Test Setup	
7.2	Limit	
7.3	Test Procedure	
7.4	EUT Operating Conditions	
7.5		
8.	Radiated Band Emission Measurement And Restricted Bands Of C	\mathcal{P} peration27
8.1	Block Diagram Of Test Setup Limit Test Procedure EUT operating Conditions Test Result Power Spectral Density Test Block Diagram Of Test Setup Limit Test Procedure	
8.2 8.3	LIMIL	
o.s 8.4	FUIT operating Conditions	
8.5	Test Pesult	20
9.	Power Spectral Density Test	∠9 21
9.1	Block Diagram Of Test Setun	
9.2	Limit	31
9.3	Test Procedure	31
9.4	EUT Operating Conditions	31
0 5	Test Result	32
10.	Bandwidth Test	
10.1	Bandwidth Test Block Diagram Of Test Setup Limit Test Procedure EUT Operating Conditions	
10.2	Limit	
10.3	Test Procedure	
10.4	EUT Operating Conditions	

10.5 Test Result	
11. Peak Output Power Test	45
11.1 Block Diagram Of Test Setup	45
11.2 Limit	45
11.3 Test Procedure	45
11.4 EUT Operating Conditions	45
11.5 Test Result	
12. 100 KHz Bandwidth Of Frequency Band Edge	47
12.1 Block Diagram Of Test Setup	47
12.2 Limit	47
12.3 Test Procedure	
12.4 EUT Operating Conditions	47
12.5 Test Result	48
13. Duty Cycle Of Test Signal	63
13.1 Standard Requirement	63
13.2 Formula	63
13.3 Test Procedure	63
13.4 Test Result	
14. Antenna Requirement	69
14.1 Limit	69
14.2 Test Result	69
15. EUT Photographs	70
16. EUT Test Setup Photographs	71

(Note: N/A means not applicable)

Page: 4 of 73

1. Version

Report No.	Issue Date	Description	Approved
BCTC2203195112-2E	2022-03-25	Original	Valid

No.: BCTC/RF-EMC-005

Page: 5 of 73

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No	Results
1	Conducted Emission	15.207	PASS
2	6dB Bandwidth	15.247 (a)(2)	PASS
3	Peak Output Power	15.247 (b)	PASS
4	Radiated Spurious Emission	15.247 (d)	PASS
5	Power Spectral Density	15.247 (e)	PASS
6	Restricted Band of Operation	15.205	PASS
7	Band Edge (Out of Band Emissions)	15.247 (d)	PASS
8	Antenna Requirement	15.203	PASS

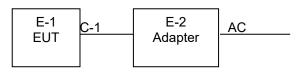
3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty	
1	3m chamber Radiated spurious emission(9kHz-30MHz)	U=3.7dB	
2	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB	
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB	
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB	
5	Conducted Emission(150kHz-30MHz)	U=3.20dB	
6	Conducted Adjacent channel power	U=1.38dB	
7	Conducted output power uncertainty Above 1G	U=1.576dB	
8	Conducted output power uncertainty below 1G	U=1.28dB	
9	humidity uncertainty	U=5.3%	
10	Temperature uncertainty	U=0.59°C	

4. Product Information And Test Setup

4.1 Product Information


Model/Type Ref.:	DU4L-W DU6L-W, DU5L-WH, DU4L-WQ, PLAF101, PLAF102
Model differences:	All the model are the same circuit and RF module, except model names.
Operation Frequency:	802.11b/g/n20MHz:2412~2462 MHz
Bit Rate of Transmitter	802.11b:11/5.5/2/1 Mbps 802.11g:54/48/36/24/18/12/9/6Mbps 802.11n Up to 75Mbps
Type of Modulation:	WIFI: OFDM/DSSS
Number Of Channel	802.11b/g/n20MHz:11 CH
Antenna installation:	PCB antenna
Antenna Gain:	2.54dBi
Ratings:	DC 5V from adapter, DC 4.5V(3*AAA 1.5V) from battery
Adapter:	Model: TPA-98B050100CU01 Input: AC100-240V 50/60Hz Output: DC 5V/1A


4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission:

Radiated Spurious Emission

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	Automatic Pet Feeder	N/A	DU4L-W	N/A	EUT
E-2	Adapter	N/A	TPA-98B050100 CU01	N/A	Auxiliary

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	0.5M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page: 9 of 73

4.4 **Channel List**

	Channel List for 802.11b/g/n(20)					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
01	2412	02	2417	03	2422	
04	2427	05	2432	06	2437	
07	2442	08	2447	09	2452	
10	2457	11	2462			

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description	
Mode 1	802.11b CH1/ CH6/ CH11	
Mode 2	802.11g CH1/ CH6/ CH11	
Mode 3	802.11n20 CH1/ CH6/ CH11	
Mode 4	Link Mode	

Radiated Emission				
Final Test Mode Description				
Mode 4	Link Mode			

For Radiated Emission					
Final Test Mode Description					
Mode 1 802.11b CH1/ CH6/ CH11					
Mode 2	802.11g CH1/ CH6/ CH11				
Mode 3	802.11n20 CH1/ CH6/ CH11				

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

Table Of Parameters Of Text Software Setting 4.6

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version		AmebaZ2_mptool_1V3
Frequency	2412 MHz	2437 MHz 2462 MHz
Parameters	DEF	DEF

5. **Test Facility And Test Instrument Used**

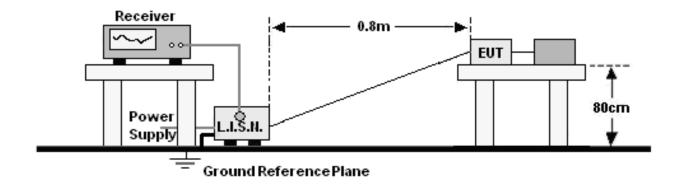
5.1 **Test Facility**

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards. FCC Test Firm Registration Number: 712850 IC Registered No.: 23583

Conducted emissions Test										
Equipment Manufacturer Model# Serial# Last Cal. Next Cal.										
Receiver	R&S	ESR3	102075	May 28, 2021	May 27, 2022					
LISN	R&S	ENV216	101375	May 28, 2021	May 27, 2022					
Software	Software Frad		EMC-CON 3A1	1	1					
Attenuator	1	10dB DC-6GHz	1650	May 28, 2021	May 27, 2022					

5.2 Test Instrument Used

RF Conducted Test								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
Power Metter	Keysight	E4419	/	May 28, 2021	May 27, 2022			
Power Sensor (AV)	Keysight	E9300A	١	May 28, 2021	May 27, 2022			
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 28, 2021	May 27, 2022			
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	\	May 28, 2021	May 27, 2022			



Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
966 chamber	ChengYu	966 Room	966	Jun. 06. 2020	Jun. 05, 2023
Receiver	R&S	ESR3	102075	May 28, 2021	May 27, 2022
Receiver	R&S	ESRP	101154	May 28, 2021	May 27, 2022
Amplifier	SKET	LAPA_01G18 G-45dB	١	May 28, 2021	May 27, 2022
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 28, 2021	May 27, 2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	Jun. 01, 2021	May 31, 2022
Horn Antenna	Schwarzbeck	BBHA9120D	1541	Jun. 02, 2021	Jun. 01, 2022
Horn Antenn(18GHz -40GHz)	Schwarzbeck	BBHA9170	00822	Jun. 15, 2021	Jun. 14, 2022
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 28, 2021	May 27, 2022
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	Jun. 02, 2021	Jun. 01, 2022
RF cables1(9kHz- 30MHz)	Huber+Suhnar	9kHz-30MHz	B1702988-00 08	May 28, 2021	May 27, 2022
RF cables2(30MH z-1GHz)	Huber+Suhnar	30MHz-1GH z	1486150	May 28, 2021	May 27, 2022
RF cables3(1GHz- 40GHz)	Huber+Suhnar	1GHz-40GHz	1607106	May 28, 2021	May 27, 2022
Power Metter	Keysight	E4419	١	May 28, 2021	May 27, 2022
Power Sensor (AV)	Keysight	E9300A	\``·······	May 28, 2021	May 27, 2022
Signal Analyzer20kHz -26.5GHz	Keysight	N9020A	MY49100060	May 28, 2021	May 27, 2022
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	······································	May 28, 2021	May 27, 2022
Software	Frad	EZ-EMC	FA-03A2 RE	· · · · · · · · · · · · · · · · · · ·	

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

	Limit (dBuV)			
FREQUENCY (MHz)	Quas-peak	Average		
0.15 -0.5	66 - 56 *	56 - 46 *		
0.50 -5.0	56.00	46.00		
5.0 -30.0	60.00	50.00		
Notes:	•	· · · · ·		

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

6.3 Test Procedure

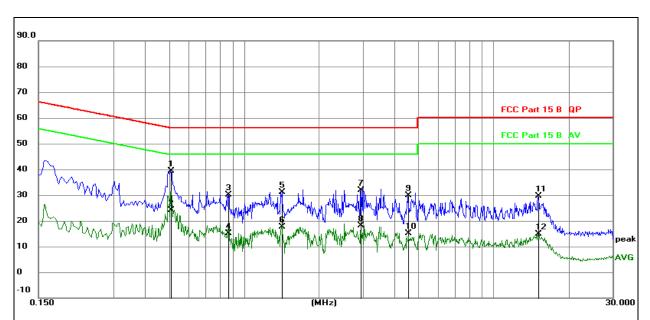
Receiver Parameters	Setting
Attenuation	10 dB////////////////////////////////////
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHż

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

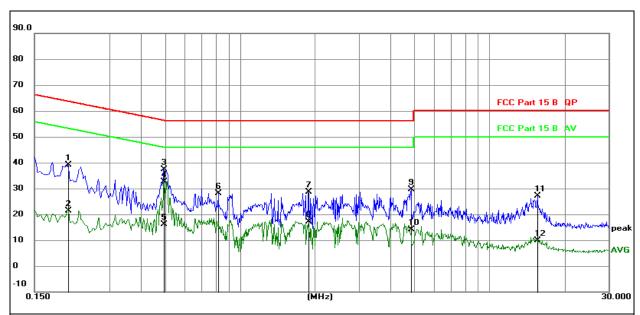
6.4 EUT Operating Conditions


The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	Line
Test Voltage :	AC120V/60Hz	Test Mode:	Mode 4

Remark:


- All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
- 3. Measurement=Reading Level+ Correct Factor
- 4. Over=Measurement-Limit

			<u> </u>				
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1 *	0.5100	19.76	19.61	39.37	56.00	-16.63	QP
2	0.5100	4.57	19.61	24.18	46.00	-21.82	AVG
3	0.8655	10.64	19.61	30.25	56.00	-25.75	QP
4	0.8655	-4.51	19.61	15.10	46.00	-30.90	AVG
5	1.4235	11.59	19.62	31.21	56.00	-24.79	QP
6	1.4235	-2.10	19.62	17.52	46.00	-28.48	AVG
7	2.9400	12.25	19.65	31.90	56.00	-24.10	QP
8	2.9400	-1.42	19.65	18.23	46.00	-27.77	AVG
9	4.5420	10.18	19.69	29.87	56.00	-26.13	QP
10	4.5420	-4.53	19.69	15.16	46.00	-30.84	AVG
11	15.0900	9.77	19.77	29.54	60.00	-30.46	QP
12	15.0900	-4.81	19.77	14.96	50.00	-35.04	AVG

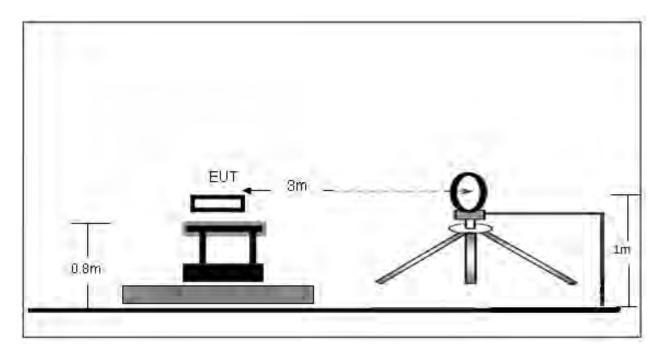
No.: BCTC/RF-EMC-005

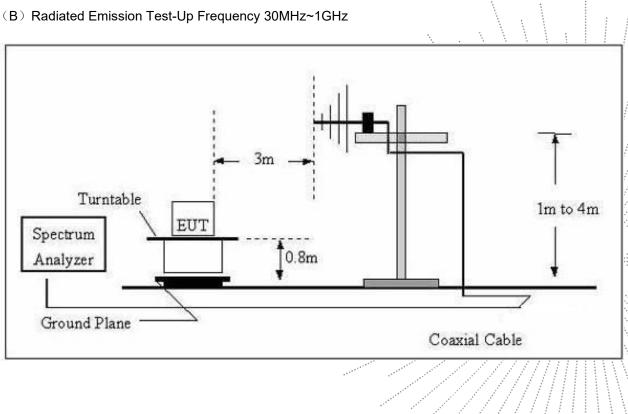
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	Neutral
Test Voltage :	AC120V/60Hz	Test Mode:	Mode 4

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 Measurement=Reading Level+ Correct Factor

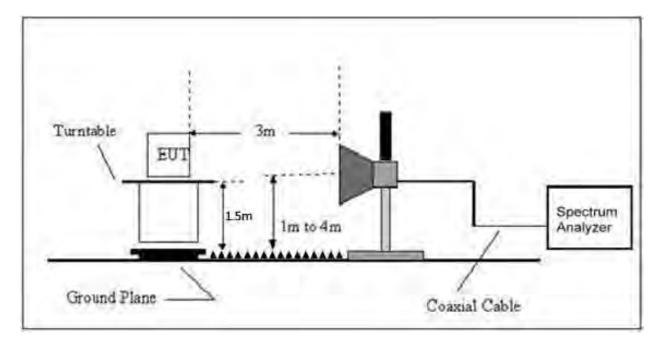
4. Over=Measurement-Limit


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.2040	19.65	19.60	39.25	63.45	-24.20	QP
2		0.2040	1.73	19.60	21.33	53.45	-32.12	AVG
3		0.4965	17.67	19.61	37.28	56.06	-18.78	QP
4	*	0.4965	12.98	19.61	32.59	46.06	-13.47	AVG
5		0.4965	-3.43	19.61	16.18	46.06	-29.88	AVG
6		0.8205	8.52	19.61	28.13	56.00	-27.87	QP
7		1.8780	8.91	19.62	28.53	56.00	-27.47	QP
8		1.8780	-2.49	19.62	17.13	46.00	-28.87	AVG
9		4.8525	9.92	19.70	29.62	56.00	-26.38	QP
10		4.8525	-5.56	19.70	14.14	46.00	-31.86	AVG
11		15.5850	7.39	19.77	27.16	60.00	-32.84	QP
12		15.5850	-9.93	19.77	9.84	50.00	-40.16	AVG



7. Radiated Emissions

7.1 Block Diagram Of Test Setup


(A) Radiated Emission Test-Up Frequency Below 30MHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed

	1		
Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance
(MHz)	uV/m	(m)	uV/m dBuV/m
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz) 20log ^{(2400/F(kHz))} + 80
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz) 20log ^{(24000/F(kHz))} + 40
1.705 ~ 30	30	30	100 * 30 20log ⁽³⁰⁾ + 40
30 ~ 88	100	3	100 20log ^(/b0)
88 ~ 216	150	3	150 20log ⁽¹⁵⁰⁾
216 ~ 960	200	3	200 20log ⁽²⁰⁰⁾
Above 960	500	3	500 20log ⁽⁵⁰⁰⁾

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY	Limit (dBuV/m) (at 3M)		
(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

7.3 Test Procedure

Setting
Auto
RBW 200Hz for QP
RBW 9kHz for QP
RBW 120kHz for QP

Spectrum Parameter	Setting
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak, RBW 1 MHz / VBW 10Hz for Average

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).

h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

Page: 20 of 73

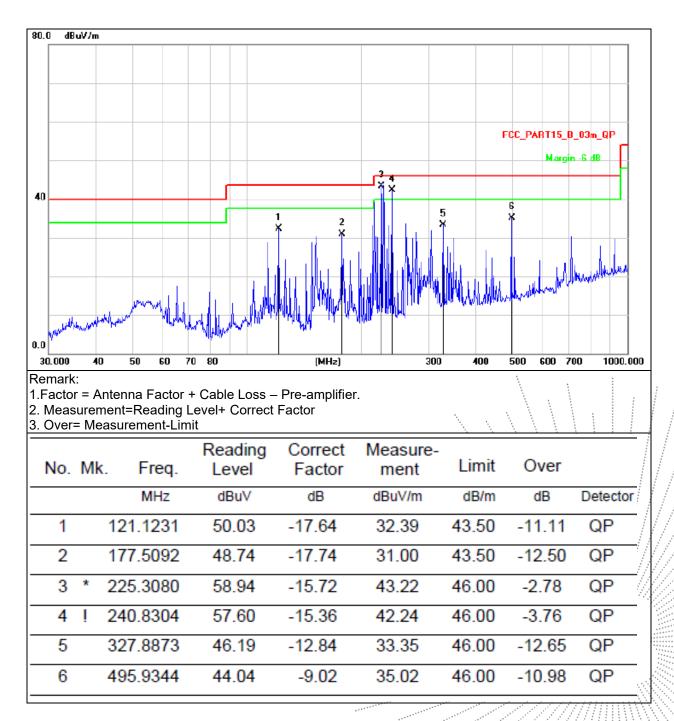
7.5 Test Result

Below 30MHz

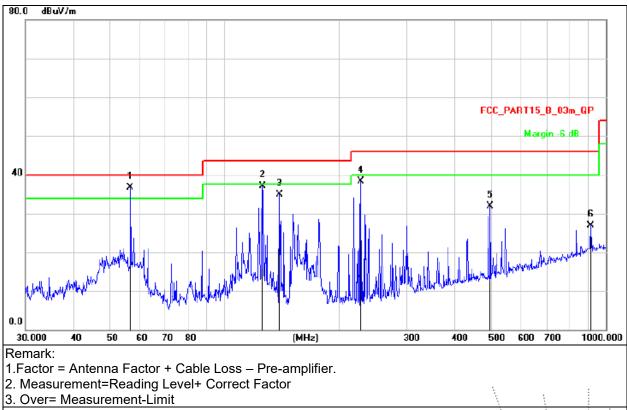
Temperature:	26 ℃	Relative Humidtity:	24%
Pressure:	101 kPa	Test Voltage :	AC120V/60Hz
Test Mode :	Mode 4	Polarization :	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:


The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.


Between 30MHz - 1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Test Voltage :	DC 4.5V
Test Mode:	Mode 4	Polarization :	Horizontal

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kpa	Test Voltage :	DC 4.5V
Test Mode:	Mode 4	Polarization :	Vertical

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	56.5929	52.21	-15.55	36.66	40.00	-3.34	QP
2		125.8864	55.12	-17.95	37.17	43.50	-6.33	QP
3		139.3613	53.73	-18.81	34.92	43.50	-8.58	QP
4		227.6906	53.92	-15.66	38.26	46.00	-7.74	QP
5		497.6765	40.87	-8.99	31.88	46.00	-14.12	QP
6		912.8620	28.30	-1.40	26.90	46.00	-19.10	QP

		Booding	Correct	Maggira			[]	
Polar	Frequency	Reading Level	Factor	Measure- ment	Limits	Over	Detector	
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре	
Low channel:2412MHz								
V	4824.00	53.20	-0.43	52.77	74.00	-21.23	PK	
V	4824.00	44.23	-0.43	43.80	54.00	-10.20	AV	
V	7236.00	43.66	8.31	51.97	74.00	-22.03	PK	
V	7236.00	33.40	8.31	41.71	54.00	-12.29	AV	
Н	4824.00	49.54	-0.43	49.11	74.00	-24.89	PK	
Н	4824.00	39.73	-0.43	39.30	54.00	-14.70	AV	
Н	7236.00	41.61	8.31	49.92	74.00	-24.08	PK	
Н	7236.00	33.21	8.31	41.52	54.00	-12.48	AV	
		Mid	dle channel:2	437MHz				
V	4874.00	51.48	-0.38	51.10	74.00	-22.90	PK	
V	4874.00	43.87	-0.38	43.49	54.00	-10.51	AV	
V	7311.00	42.72	8.83	51.55	74.00	-22.45	PK	
V	7311.00	34.08	8.83	42.91	54.00	-11.09	AV	
Н	4874.00	49.91	-0.38	49.53	74.00	-24.47	PK	
Н	4874.00	39.21	-0.38	38.83	54.00	-15.17	AV	
Н	7311.00	39.89	8.83	48.72	74.00	-25.28	PK	
Н	7311.00	32.55	8.83	41.38	54.00	-12.62	ĄV	
		Hi	gh channel:24	62MHz				
V	4924.00	52.63	-0.32	52.31	74.00	-21.69	PK	
V	4924.00	42.53	-0.32	42.21	54.00	-11.79	AV	
V	7386.00	45.82	9.35	55.17	74.00	-18.83	PK	
V	7386.00	35.79	9.35	45.14	54.00	-8.86	AV	
Н	4924.00	50.91	-0.32	50.59	74.00	-23.41	PK	
Н	4924.00	40.30	-0.32	39.98	54.00	-14.02	AV	
Н	7386.00	44.38	9.35	53.73	74.00	-20.27	PK	
Н	7386.00	36.42	9.35	45.77	54.00	-8.23	AV	

Between 1GHz – 25GHz **802.11b**

Remark:

1.Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit

2.If peak below the average limit, the average emission was no test.

In restricted bands of operation, The spurious emissions below the permissible value more than 20dB
 The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

802.11g

Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
		Lo	ow channel:24	12MHz			
V	4824.00	53.88	-0.43	53.45	74.00	-20.55	PK
V	4824.00	45.84	-0.43	45.41	54.00	-8.59	AV
V	7236.00	44.37	8.31	52.68	74.00	-21.32	PK
V	7236.00	34.56	8.31	42.87	54.00	-11.13	AV
Н	4824.00	51.93	-0.43	51.50	74.00	-22.50	PK
Н	4824.00	42.27	-0.43	41.84	54.00	-12.16	AV
Н	7236.00	42.38	8.31	50.69	74.00	-23.31	PK
Н	7236.00	35.02	8.31	43.33	54.00	-10.67	AV
		Mic	dle channel:2	437MHz			
V	4874.00	52.22	-0.38	51.84	74.00	-22.16	PK
V	4874.00	43.62	-0.38	43.24	54.00	-10.76	AV
V	7311.00	43.29	8.83	52.12	74.00	-21.88	PK
V	7311.00	34.81	8.83	43.64	54.00	-10.36	AV
Н	4874.00	47.80	-0.38	47.42	74.00	-26.58	PK
Н	4874.00	38.29	-0.38	37.91	54.00	-16.09	AV
Н	7311.00	40.74	8.83	49.57	74.00	-24.43	PK
Н	7311.00	32.31	8.83	41.14	54.00	-12.86	AV
		Hi	gh channel:24	462MHz			
V	4924.00	54.10	-0.32	53.78	74.00	-20.22	PK
V	4924.00	44.07	-0.32	43.75	54.00	-10.25	AV
V	7386.00	47.10	9.35	56.45	74.00	-17.55	PK
V	7386.00	37.09	9.35	46.44	54.00	-7.56	AV
Н	4924.00	51.32	-0.32	51.00	74.00	-23.00	PK
Н	4924.00	41.47	-0.32	41.15	54.00	-12.85	AV
Н	7386.00	45.54	9.35	54.89	74.00	-19.11	PK
Н	7386.00	38.48	9.35	47.83	54.00	-6.17	AV

Remark:

1.Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss – Pre-amplifiër.

Over= Emission Level - Limit

2.If peak below the average limit, the average emission was no test.

In restricted bands of operation, The spurious emissions below the permissible value more than 20dB
 The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

802.11n20

Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector				
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре				
	Low channel:2412MHz										
V	4824.00	52.17	-0.43	51.74	74.00	-22.26	PK				
V	4824.00	43.53	-0.43	43.10	54.00	-10.90	AV				
V	7236.00	44.80	8.31	53.11	74.00	-20.89	PK				
V	7236.00	34.74	8.31	43.05	54.00	-10.95	AV				
Н	4824.00	47.88	-0.43	47.45	74.00	-26.55	PK				
Н	4824.00	37.56	-0.43	37.13	54.00	-16.87	AV				
Н	7236.00	43.28	8.31	51.59	74.00	-22.41	PK				
Н	7236.00	35.02	8.31	43.33	54.00	-10.67	AV				
		Mic	dle channel:2	2437MHz							
V	4874.00	48.72	-0.38	48.34	74.00	-25.66	PK				
V	4874.00	40.07	-0.38	39.69	54.00	-14.31	AV				
V	7311.00	39.37	8.83	48.20	74.00	-25.80	PK				
V	7311.00	30.86	8.83	39.69	54.00	-14.31	AV				
Н	4874.00	44.45	-0.38	44.07	74.00	-29.93	PK				
Н	4874.00	35.34	-0.38	34.96	54.00	-19.04	AV				
Н	7311.00	37.07	8.83	45.90	74.00	-28.10	PK				
Н	7311.00	28.85	8.83	37.68	54.00	-16.32	AV				
		Hi	gh channel:24	162MHz	-		6 6 8				
V	4924.00	51.18	-0.32	50.86	74.00	-23.14	PK				
V	4924.00	41.08	-0.32	40.76	54.00	-13.24	AV				
V	7386.00	44.83	9.35	54.18	74.00	-19.82	PK				
V	7386.00	35.02	9.35	44.37	54.00	-9.63	AV				
Н	4924.00	49.58	-0.32	49.26	74.00	-24.74	PK				
Н	4924.00	40.48	-0.32	40.16	54.00	-13.84	AV				
Н	7386.00	43.51	9.35	52.86	74.00	-21.14	РК				
Н	7386.00	35.53	9.35	44.88	54.00	-9.12	AV				

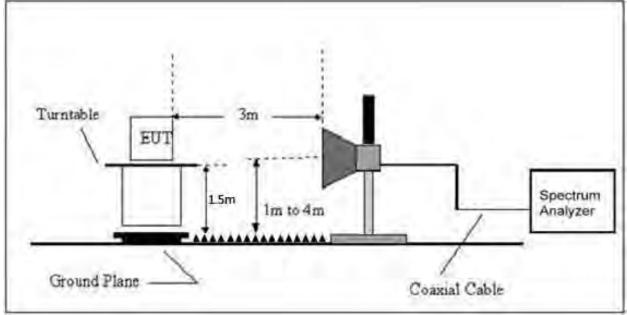
Remark:

1.Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss – Pre-amplifiër.

Over= Emission Level - Limit

2.If peak below the average limit, the average emission was no test.


In restricted bands of operation, The spurious emissions below the permissible value more than 20dB
 The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

8. Radiated Band Emission Measurement And Restricted Bands Of Operation

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY	Limit (dBuV/m) (at 3M)				
(MHz)	PEAK	AVERAGE			
Above 1000	74	54			

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test Procedure

Receiver Parameter	Setting		
Attenuation	Auto		
Start Frequency	2300MHz		
Stop Frequency	2520		
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average		

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top

of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

8.5 Test Result

	Polar (H/V)	Frequency (MHz)	Reading Level	Correct Factor	Measure- ment (dBuV/m)	Lim (dBu		Result	
	(100)	(11112)	(dBuV/m)	(dB)	РК	PK	AV		
	Low Channel 2412MHz								
	Н	2390.00	53.22	-6.70	46.52	74.00	54.00	PASS	
	Н	2400.00	58.01	-6.71	51.30	74.00	54.00	PASS	
	V	2390.00	52.28	-6.70	45.58	74.00	54.00	PASS	
802.11b	V	2400.00	56.84	-6.71	50.13	74.00	54.00	PASS	
002.110	High Channel 2462MHz								
	Н	2483.50	55.56	-6.79	48.77	74.00	54.00	PASS	
	Н	2500.00	51.70	-6.81	44.89	74.00	54.00	PASS	
	V	2483.50	56.56	-6.79	49.77	74.00	54.00	PASS	
	V	2500.00	51.57	-6.81	44.76	74.00	54.00	PASS	
	Low Channel 2412MHz								
	Н	2390.00	53.71	-6.70	47.01	74.00	54.00	PASS	
	Н	2400.00	58.60	-6.71	51.89	74.00	54.00	PASS	
	V	2390.00	54.21	-6.70	47.51	74.00	54.00	PASS	
802.11g	V	2400.00	58.40	-6.71	51.69	74.00	54.00	PASS	
002.11g			Hig	h Channel 24	462MHz				
	Н	2483.50	58.08	-6.79	51.29	74.00	54.00	PASS	
	Н	2500.00	51.59	-6.81	44.78	74.00	54.00	PASS	
	V	2483.50	57.03	-6.79	50.24	74.00	54.00	PASS	
	V	2500.00	53.40	-6.81	46.59	74.00	54.00	PASS	

Remark:

1. Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Over= Emission Level - Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

	Polar (H/V)	Frequency (MHz)	Reading Level	Correct Factor (dB)	Measure- ment (dBuV/m)	Lim (dBu		Result	
	((() V)	(11172)	(dBuV/m)		РК	PK PK AV	AV		
	Low Channel 2412MHz								
	Н	2390.00	53.09	-6.70	46.39	74.00	54.00	PASS	
	Н	2400.00	56.90	-6.71	50.19	74.00	54.00	PASS	
	V	2390.00	53.37	-6.70	46.67	74.00	54.00	PASS	
802.11	V	2400.00	56.78	-6.71	50.07	74.00	54.00	PASS	
n20			Hig	h Channel 24	462MHz				
	Н	2483.50	55.61	-6.79	48.82	74.00	54.00	PASS	
	Н	2500.00	52.12	-6.81	45.31	74.00	54.00	PASS	
	V	2483.50	57.07	-6.79	50.28	74.00	54.00	PASS	
	V	2500.00	53.02	-6.81	46.21	74.00	54.00	PASS	

Remark:

1. Emission Level = Meter Reading + Factor, Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level – Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

No.: BCTC/RF-EMC-005

Page: 30 of 73

9. Power Spectral Density Test

9.1 Block Diagram Of Test Setup

9.2 Limit

FCC Part15 (15.247) , Subpart C								
Section Test Item Limit Frequency Range (MHz) Resul								
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS				

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

9.3 Test Procedure

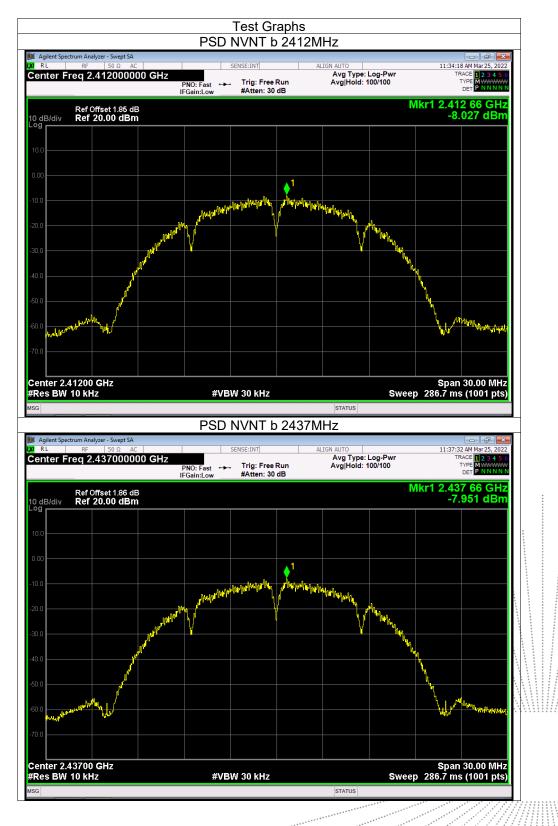
1. Set analyzer center frequency to DTS channel center frequency.

- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.

9. Use the peak marker function to determine the maximum amplitude level within the RBW. 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat

9.4 EUT Operating Conditions

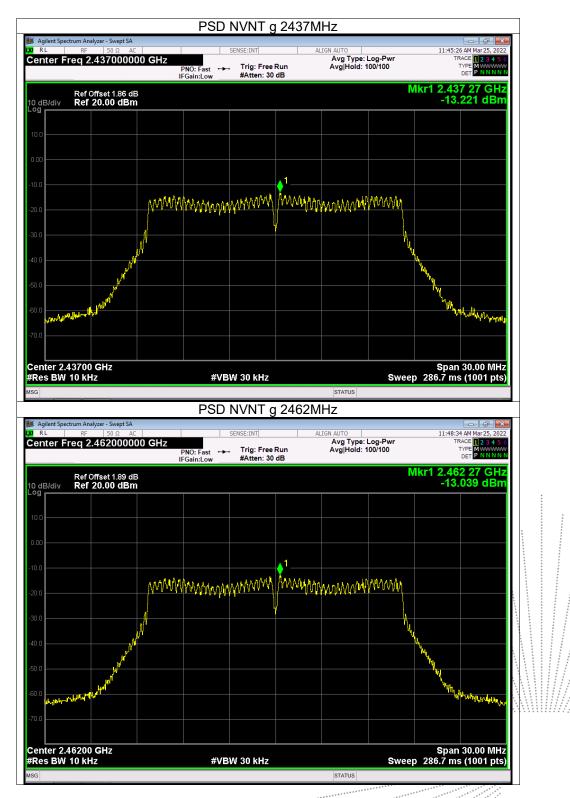
The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

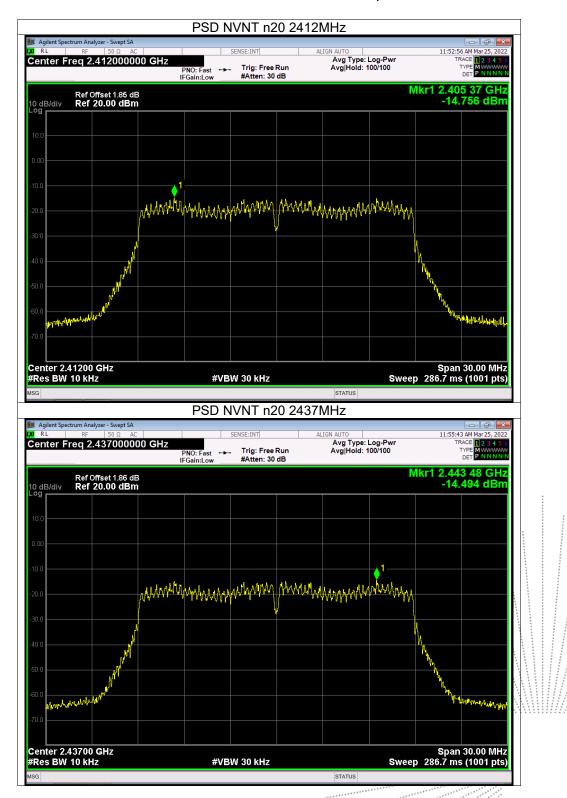

9.5 Test Result

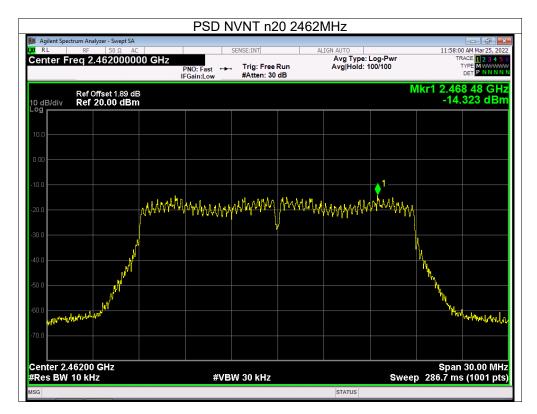
Temperature :	26°C	Relative Humidity :	54%
Pressure :	101kPa	Test Voltage :	AC120V/60Hz

Condition	Mode	Frequency (MHz)	Power Spectral Density(dBm/10kHz)	Power Spectral Density(dBm/3kHz)	Limit (dBm/3kHz)	Verdict			
NVNT	b	2412	-8.03	-13.26	8	Pass			
NVNT	b	2437	-7.95	-13.18	8	Pass			
NVNT	b	2462	-7.79	-13.02	8	Pass			
NVNT	g	2412	-13.52	-18.75	8	Pass			
NVNT	g	2437	-13.22	-18.45	8	Pass			
NVNT	g	2462	-13.04	-18.27	8	Pass			
NVNT	n20	2412	-14.76	-19.99	8	Pass			
NVNT	n20	2437	-14.49	-19.72	8	Pass			
NVNT	n20	2462	-14.32	-19.55	8	Pass			
Note: Corre	Note: Correction Factor = 10log(3KHz/RBW in measurement)=-5.23								

Power Spectral Density(dBm/3kHz)= Power Spectral Density(dBm/10kHz) + Correction Factor







Page: 37 of 73

10. Bandwidth Test

10.1 Block Diagram Of Test Setup

10.2 Limit

	FCC Part15 (15.247) , Subpart C								
Section	Test Item	Limit	Frequency Range (MHz)	Result					
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS					

10.3 Test Procedure

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

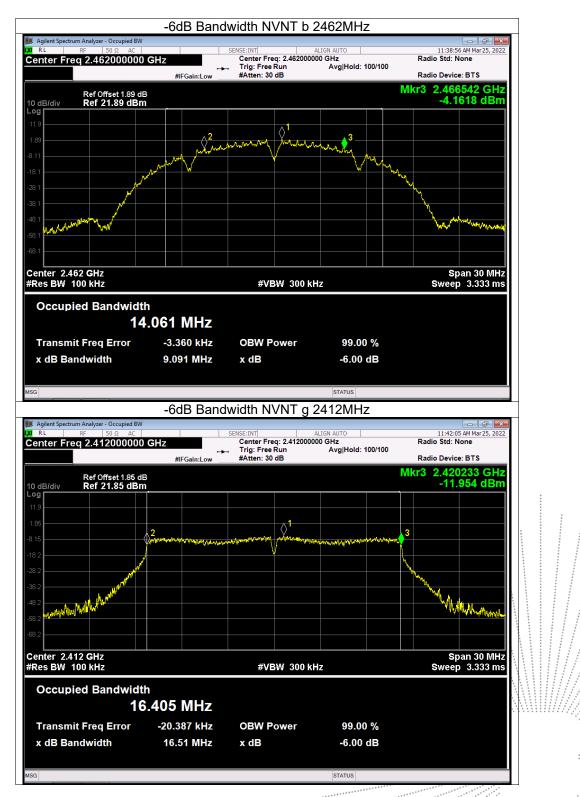
10.4 EUT Operating Conditions

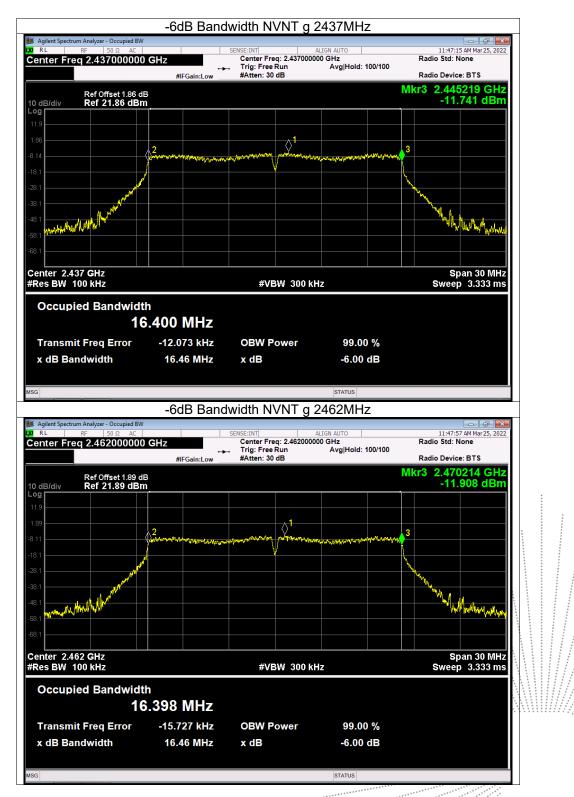
The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

Page: 38 of 73

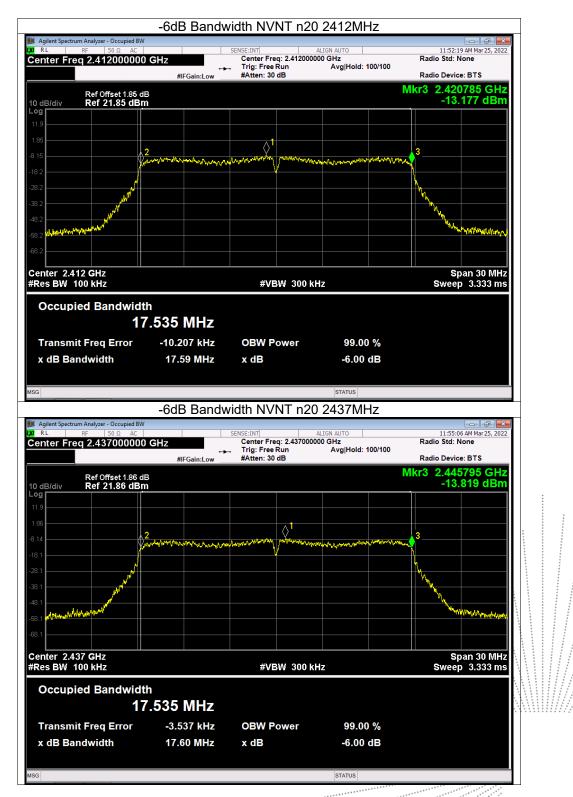
10.5 Test Result

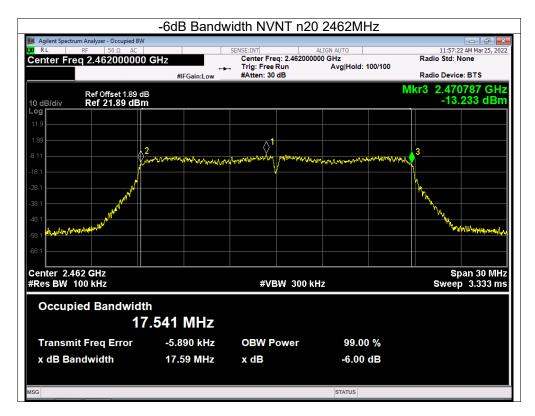
Temperature	; :	26° C		Relative Hu	umidity:	54%	
Pressure :		101kPa Test Voltage : AC120V/60Hz		AC120V/60Hz			
Condition	Mode	Frequency (MHz)	-6 dB Bar (MH		Limit	-6 dB Bandwidth (MHz)	Verdict
NVNT	b	2412	9.08	35		0.5	Pass
NVNT	b	2437	9.0	9.07		0.5	Pass
NVNT	b	2462	9.09	91		0.5	Pass
NVNT	g	2412	9.08	35		0.5	Pass
NVNT	g	2437	9.0	7		0.5	Pass
NVNT	g	2462	9.09	91		0.5	Pass
NVNT	n20	2412	17.5	91		0.5	Pass
NVNT	n20	2437	17.5	97		0.5	Pass
NVNT	n20	2462	17.5	86		0.5	Pass





Page: 40 of 73





No.: BCTC/RF-EMC-005

Page: 44 of 73

11. Peak Output Power Test

11.1 Block Diagram Of Test Setup

11.2 Limit

	FCC Part15 (15.247) , Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result				
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS				

11.3 Test Procedure

a. The EUT was directly connected to the Power meter

11.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

Page: 45 of 73

11.5 Test Result

Temperature :	26°C	Relative Humidity:	54%
Pressure :	101kPa	Test Voltage :	AC120V/60Hz

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	13.43	30	Pass
NVNT	b	2437	13.27	30	Pass
NVNT	b	2462	13.45	30	Pass
NVNT	g	2412	11.97	30	Pass
NVNT	g	2437	12.25	30	Pass
NVNT	g	2462	12.51	30	Pass
NVNT	n20	2412	10.59	30	Pass
NVNT	n20	2437	10.87	30	Pass
NVNT	n20	2462	11.1	30	Pass

12. 100 KHz Bandwidth Of Frequency Band Edge

12.1 Block Diagram Of Test Setup

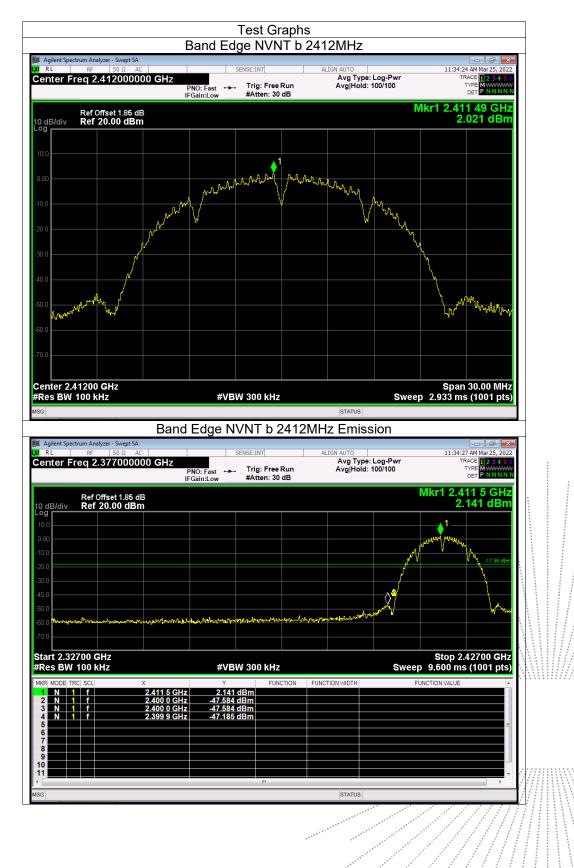
12.2 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

12.3 Test Procedure

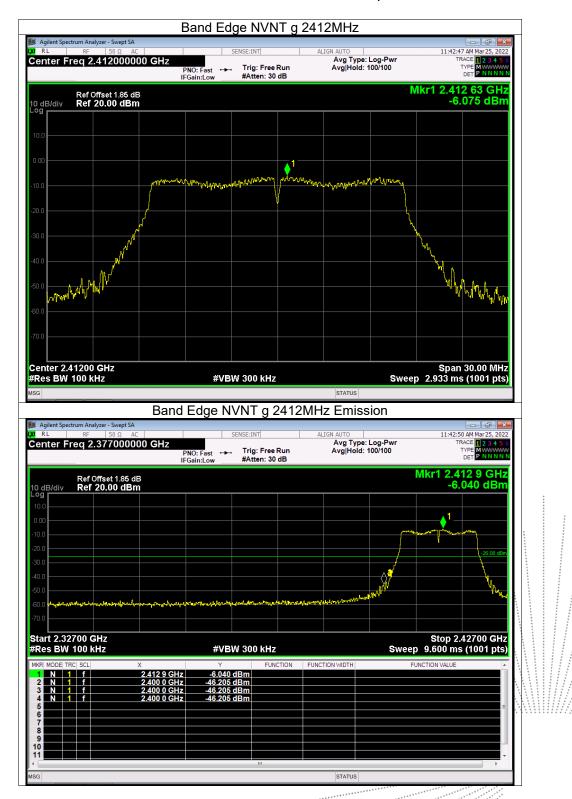
Using the following spectrum analyzer setting:

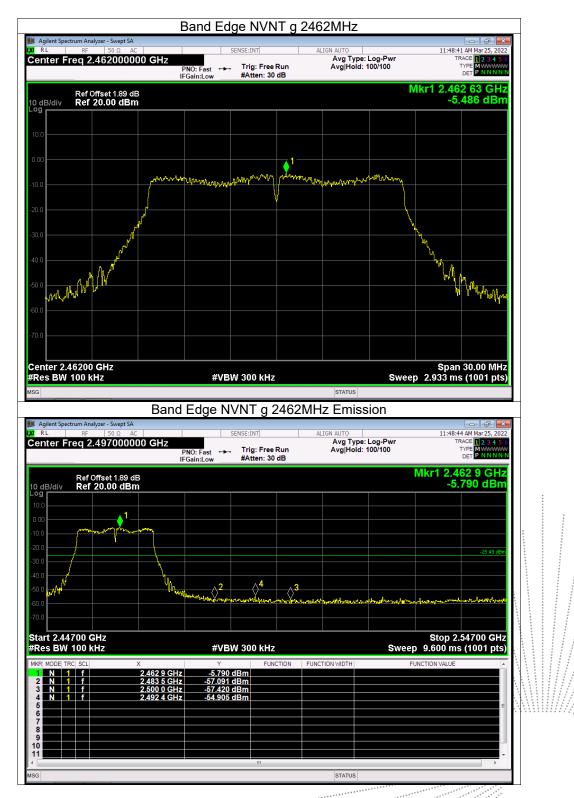
- a) Set the RBW = 100KHz.
- b) Set the VBW = 300KHz.
- c) Sweep time = auto couple.
- d) Detector function = peak.
- e) Trace mode = max hold.
- f) Allow trace to fully stabilize..

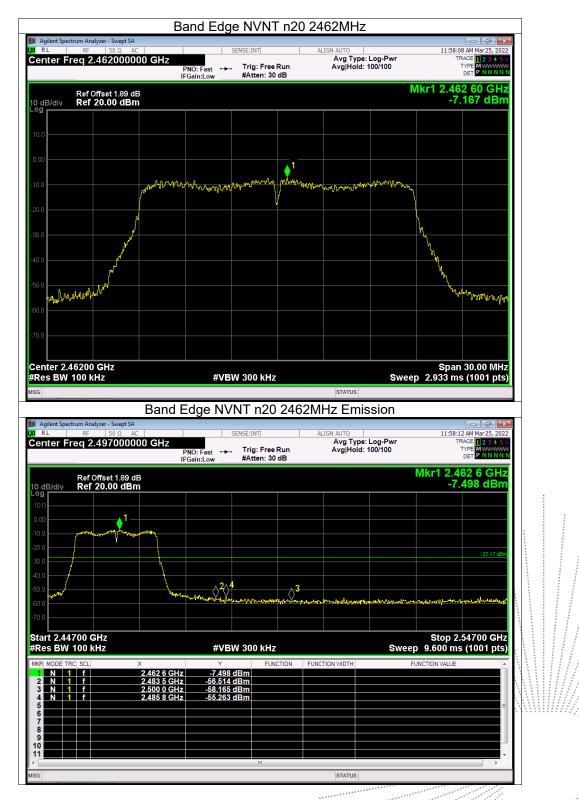

12.4 EUT Operating Conditions

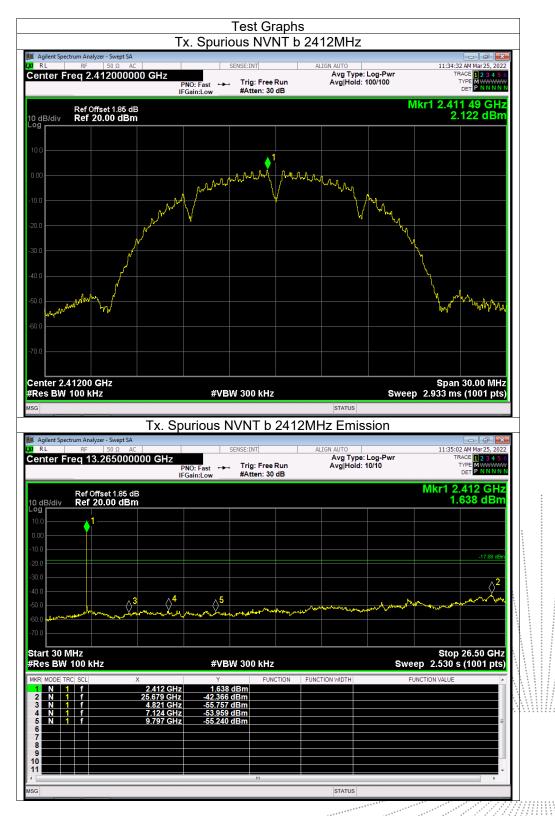
The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

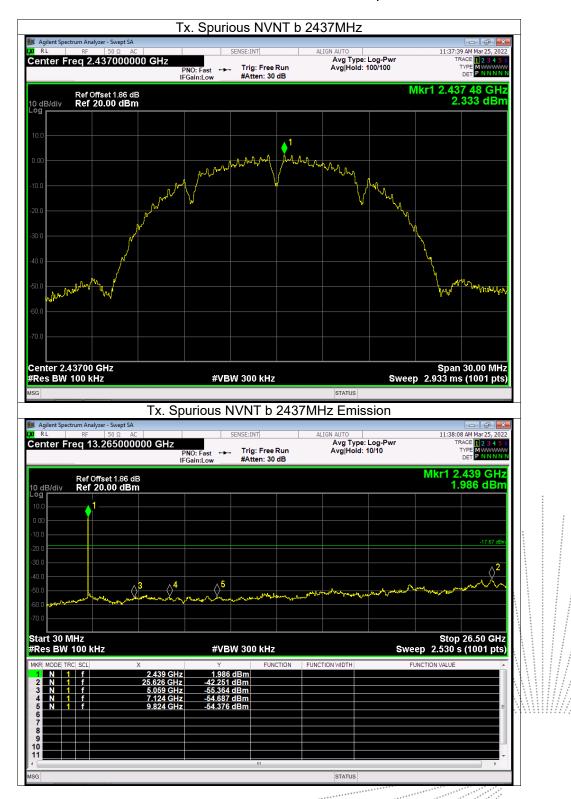

Page: 47 of 73


12.5 Test Result

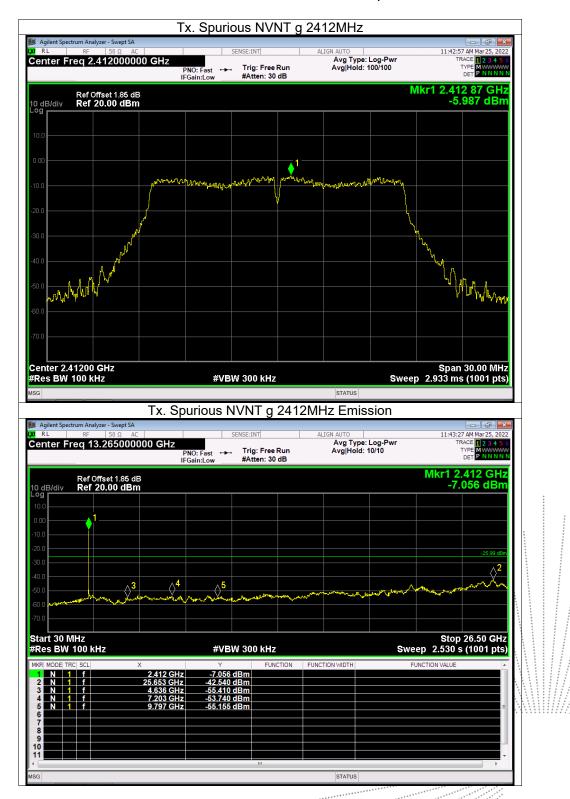


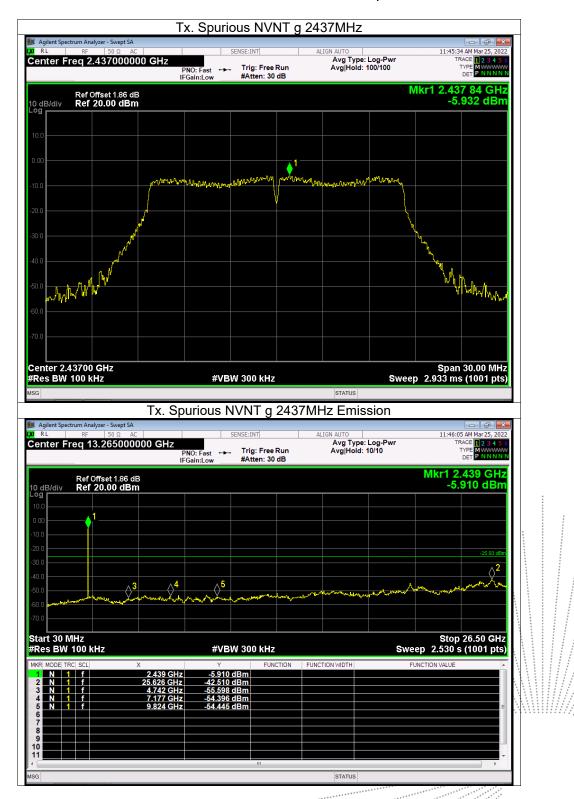


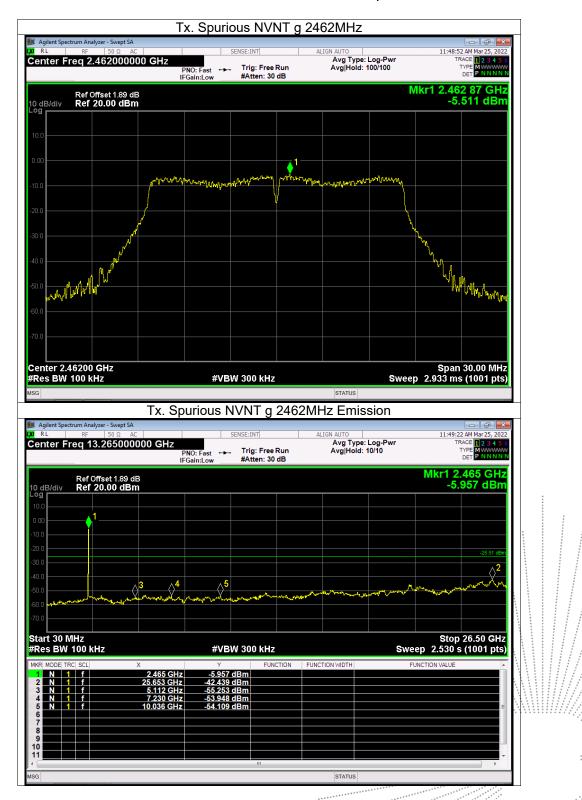


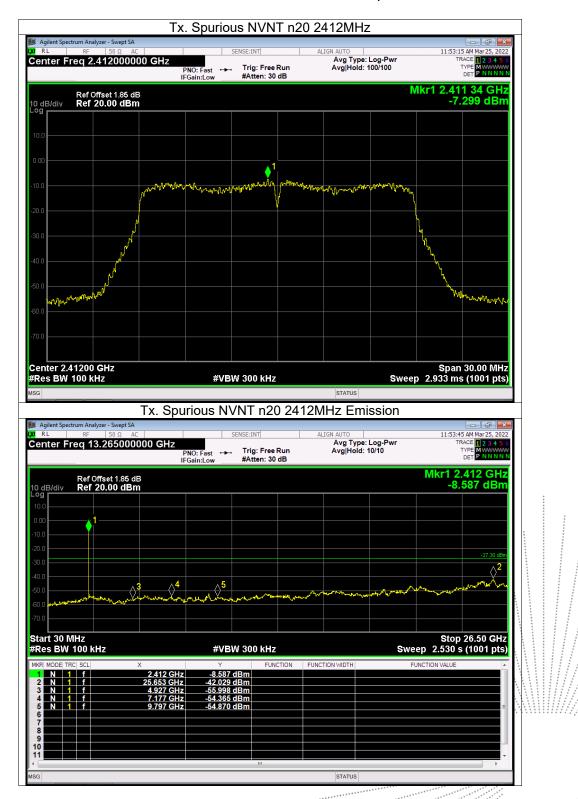


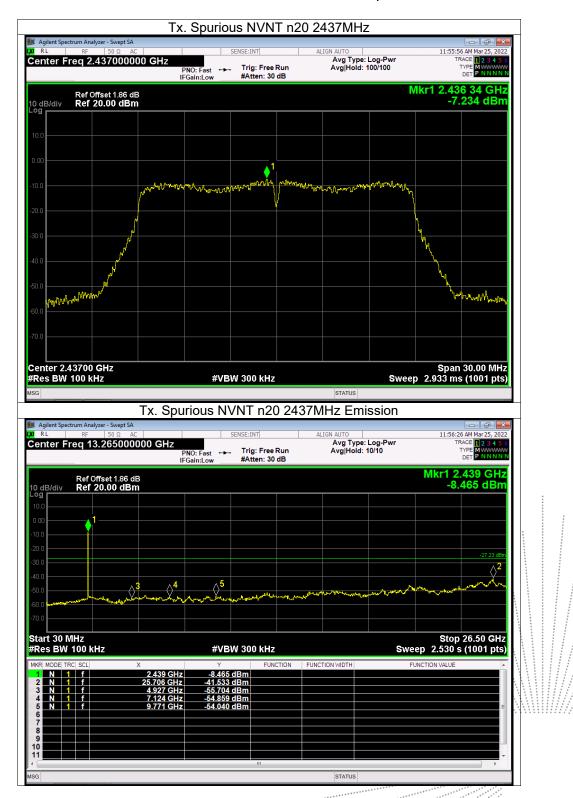


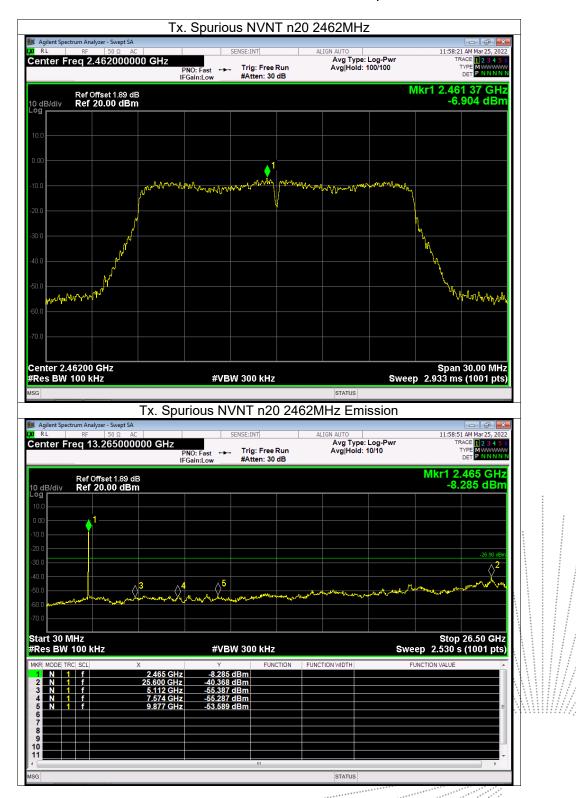












13. Duty Cycle Of Test Signal

13.1 Standard Requirement

Pre-analysis Check: While conducting average power measurement, duty cycle of each mode shall be checked to ensure its duty cycle in order to compensate for the loss due to insufficient ratio of duty cycle. All duty cycle is pre-scanned, and result as obtained below shows only the most representative ones where duty cycle is conducted as the given transmission with given virtual operation that expresses the percentage.

13.2 Formula

Duty Cycle = Ton / (Ton+Toff)

13.3 Test Procedure

1.Set span = Zero

- 2. RBW = 8MHz
- 3. VBW = 8MHz,

4. Detector = Peak

13.4 Test Result

13.4 Test	Result				
Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	b	2412	100	0	0
NVNT	b	2437	100	0	0
NVNT	b	2462	100	0	0
NVNT	g	2412	100	0	0
NVNT	g	2437	100	0	0
NVNT	g	2462	100	0	0
NVNT	n20	2412	100	0	0
NVNT	n20	2437	100	0	0
NVNT	n20	2462		0	0

Spectrum Analyzer - Swept SA	Duty Cycle				- 6 -
RF 50 Ω AC		SE:INT	ALIGN AUTO Avg Type	e: Log-Pwr	11:33:24 AM Mar 25, 2022 TRACE 1 2 3 4 5 6
Freq 2.4 12000000	PNO: Fast +	Trig: Free Run #Atten: 30 dB			TYPE WWWWWW DET P NNNNN
	IFGail.LOw				Mkr1 50.00 ms
Ref Offset 1.85 dB • Ref 20.00 dBm					16.51 dBm
		*1			
2.412000000 GHz					Span 0 Hz
V 8 MHz	#VBW \$	8.0 MHz			0.0 ms (10001 pts)
TRC SCL X	Y 50.00 ms 16.51 dB	FUNCTION m	FUNCTION WIDTH	FUNCTIO	ON VALUE
		III			•
			STATUS		
	Duty Cycle	NVNT b			
	Duty Cycle		2437MHz		
RF 50 Ω AC	GH7 SENS	SE:INT	2437MHz ALIGN AUTO	e: Log-Pwr	11:36:36 AM Mar 25, 2022 TRACE 1 2 3 4 5 6
RF 50 Ω AC	SENS CHZ PNO: Fast		2437MHz ALIGN AUTO	e: Log-Pwr	
RF 50 Ω AC Freq 2.437000000 G C Ref Offset 1.86 dB C	GHz PNO: Fast	SE:INT	2437MHz ALIGN AUTO		11:36:36 AM Mar 25, 2022 TRACE 2 3 4 5 6 TYPE WWWWWW DET P NNNNN Mkr1 50.00 ms
RF 50 Ω AC Freq 2.437000000 G C Ref Offset 1.86 dB C	GHz PNO: Fast	SE:INT Trig: Free Run #Atten: 30 dB	2437MHz ALIGN AUTO		11:36:36 AM Mar 25, 2022 TRACE 1 2 3 4 5 6 TYPE WWWWW DET P N N N N N
RF 50 Ω AC Freq 2.437000000 G C Ref Offset 1.86 dB C	GHz PNO: Fast	SE:INT	2437MHz ALIGN AUTO		11:36:36 AM Mar 25, 2022 TRACE 2 3 4 5 6 TYPE WWWWWW DET P NNNNN Mkr1 50.00 ms
RF 50 Ω AC Freq 2.437000000 G C Ref Offset 1.86 dB C	GHz PNO: Fast	SE:INT Trig: Free Run #Atten: 30 dB	2437MHz ALIGN AUTO		11:36:36 AM Mar 25, 2022 TRACE 2 3 4 5 6 TYPE WWWWWW DET P NNNNN Mkr1 50.00 ms
RF 50 Ω AC Freq 2.437000000 G Ref Offset 1.86 dB Ref Offset 1.86 dB	GHz PNO: Fast	SE:INT Trig: Free Run #Atten: 30 dB	2437MHz ALIGN AUTO		11:36:36 AM Mar 25, 2022 TRACE 2 3 4 5 6 TYPE WWWWWW DET P NNNNN Mkr1 50.00 ms
RF 50 Ω AC Freq 2.437000000 G C Ref Offset 1.86 dB C	GHz PNO: Fast	SE:INT Trig: Free Run #Atten: 30 dB	2437MHz ALIGN AUTO		11:36:36 AM Mar 25, 2022 TRACE 2 3 4 5 6 TYPE WWWWWW DET P NNNNN Mkr1 50.00 ms
Freq 2.437000000 C	GHz PNO: Fast	SE:INT Trig: Free Run #Atten: 30 dB	2437MHz ALIGN AUTO		11:36:36 AM Mar 25, 2022 TRACE 2 3 4 5 6 TYPE WWWWWW DET P NNNNN Mkr1 50.00 ms
RF 50 Ω AC Freq 2.437000000 G C Ref Offset 1.86 dB C	GHz PNO: Fast	SE:INT Trig: Free Run #Atten: 30 dB	2437MHz ALIGN AUTO		11:36:36 AM Mar 25, 2022 TRACE 2 3 4 5 6 TYPE WWWWWW DET P NNNNN Mkr1 50.00 ms
RF 50 Ω AC Freq 2.437000000 G C Ref Offset 1.86 dB C	GHz PNO: Fast	SE:INT Trig: Free Run #Atten: 30 dB	2437MHz ALIGN AUTO		11:36:36 AM Mar 25, 2022 TRACE 2 3 4 5 6 TYPE WWWWWW DET P NNNNN Mkr1 50.00 ms
RF 50 Ω AC Freq 2.437000000 G C Ref Offset 1.86 dB C	GHz PNO: Fast	SE:INT Trig: Free Run #Atten: 30 dB	2437MHz ALIGN AUTO		11:36:36 AM Mar 25, 2022 TRACE 2 3 4 5 6 TYPE WWWWWW DET P NNNNN Mkr1 50.00 ms
Ref 50 Ω AC Freq 2.437000000 G G Ref Offset 1.96 dB G Ref 20.00 dBm G 2.437000000 GHz G	GHz PNO: Fast IFGain:Low ≠	SE:INT Trig: Free Run #Atten: 30 dB	2437MHz ALIGN AUTO		11:36:36 AM Mar 25, 2022 TRACE 12:34:3-6 TYPE 12:34:3-6 TYPE 12:34:3-6 TYPE 12:34:3-6 TYPE 12:34:3-6 TYPE 12:34:3-6 Mkr 1:50:00 ms 14:99 dBm
Ref 50 Ω AC Freq 2.437000000 G G Ref Offset 1.96 dB G Ref 20.00 dBm G 2.437000000 GHz G 8 MHz G	GHz PNO: Fast IFGain:Low	SE:INT Trig: Free Run #Atten: 30 dB	2437MHz Align Auto Avg Type	Sweep 100	11:36:36 AM Mar 25, 2022 TRACE 1 2 3 4 5 6 TYPE 1 2 3 4 5 6 TYPE 1 2 3 4 5 6 TYPE 0 0 ms 14.99 dBm 5 5 5 5 5 5 5 5 5 5 5 5 5
Ref 50 Ω AC Freq 2.437000000 G G Ref Offset 1.86 dB Ref 20.00 dBm V Ref 20.00 dBm 2.437000000 GHz G V 8 MHz TRC SCL X	GHz PNO: Fast IFGain:Low ≠	SE:INT Trig: Free Run #Atten: 30 dB	2437MHz ALIGN AUTO	Sweep 100	11:36:36 AM Mar 25, 2022 TRACE 12:34:3-6 TYPE 12:34:3-6 TYPE 12:34:3-6 TYPE 12:34:3-6 TYPE 12:34:3-6 TYPE 12:34:3-6 Mkr 1:50:00 ms 14:99 dBm
Ref 50 Ω AC Freq 2.437000000 G G Ref Offset 1.86 dB Ref 20.00 dBm V Ref 20.00 dBm 2.437000000 GHz G V 8 MHz TRC SCL X	SHZ PNO: Fast IFGain:Low → 1	SE:INT Trig: Free Run #Atten: 30 dB	2437MHz Align Auto Avg Type	Sweep 100	11:36:36 AM Mar 25, 2022 TRACE 1 2 3 4 5 6 TYPE 1 2 3 4 5 6 TYPE 1 2 3 4 5 6 TYPE 0 0 ms 14.99 dBm 5 5 5 5 5 5 5 5 5 5 5 5 5
Ref 50 Ω AC Freq 2.437000000 G G Ref Offset 1.86 dB Ref 20.00 dBm V Ref 20.00 dBm 2.437000000 GHz G V 8 MHz TRC SCL X	SHZ PNO: Fast IFGain:Low → 1	SE:INT Trig: Free Run #Atten: 30 dB	2437MHz Align Auto Avg Type	Sweep 100	11:36:36 AM Mar 25, 2022 TRACE 1 2 3 4 5 6 TYPE 1 2 3 4 5 6 TYPE 1 2 3 4 5 6 TYPE 0 0 ms 14.99 dBm 5 5 5 5 5 5 5 5 5 5 5 5 5
Ref 50 Ω AC Freq 2.437000000 G G Ref Offset 1.86 dB Ref 20.00 dBm Quarter of the second data of th	SHZ PNO: Fast IFGain:Low → 1	SE:INT Trig: Free Run #Atten: 30 dB	2437MHz Align Auto Avg Type	Sweep 100	11:36:36 AM Mar 25, 2022 TRAGE 1 2 3 4 5 0 TYPE 2 3 4 5 0 T
Ref 50 Ω AC Freq 2.437000000 G G Ref Offset 1.86 dB Ref 20.00 dBm Quarter of the second data of th	SHZ PNO: Fast IFGain:Low → 1	SE:INT Trig: Free Run #Atten: 30 dB	2437MHz Align Auto Avg Type	Sweep 100	11:36:36 AM Mar 25, 2022 TRAGE 1 2 3 4 5 0 TYPE 2 3 4 5 0 T

lent Spectrum Analyzer - Swept SA . RF 50 Ω A		SEN	ISE:INT	ALIGN AUTO			35 AM Mar 25, 2022	
ter Freq 2.4620000	DOD GHZ): Fast 斗	Trig: Free Run #Atten: 30 dB		e: Log-Pwr		RACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N	
Ref Offset 1.89 c		in:Low	#Atten: 30 dB				50.00 ms	
3/div Ref 20.00 dBi	m		V1			1	5.17 dBm	
ter 2.462000000 GHz							Span 0 Hz	
BW 8 MHz	2	#VBW	8.0 MHz		Sweep	o 100.0 ms	(10001 pts)	
NODE TRC SCL	× 50.00 ms	۲ 15.17 dE	FUNCTION	FUNCTION WIDTH		FUNCTION VALUE		
							=	
				STATUS			4	
	Di	utv Cvcl	e NVNT a	2412MHz				┛
lent Spectrum Analyzer - Swept SA RF 50 Ω A			ISE:INT	ALIGN AUTO		11:41:	42 AM Mar 25, 2022	
ter Freq 2.4120000	DOO GHZ):Fast ↔	Trig: Free Run		e: Log-Pwr		TYPE WWWWWW DET PNNNNN	
	IFGa	in:Low	#Atten: 30 dB			Miced		
D = 6 0 ff = + 1 0 5 +	-n					IVIN I	50.00 ms	
	m					1	50.00 ms 2.94 dBm	
3/div Ref 20.00 dBi	dB m	k Januar (a. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Hammen an 191	an a		1		
3/div Ref 20.00 dBi	m		ш <mark>?1</mark> щ.	анадаалаан К.Орунаан		1	2.94 dBm	
3/div Ref 20.00 dBi	m	k Louisennes er det				1	2.94 dBm	
3/div Ref 20.00 dBi	m					1	2.94 dBm	
3/div Ref 20.00 dBi	m					1	2.94 dBm	
3/div Ref 20.00 dBi	m					1	2.94 dBm	
3/div Ref 20.00 dBi						1	2.94 dBm	
Vdiv Ref 20.00 dBi			8.0 MHz				2.94 dBm	
3/div Ref 20.00 dBt 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	m Hijfmannen 1 	#VBW	8.0 MHz	FUNCTION W/DTH	Sweep		Span 0 Hz	
3/div Ref 20.00 dBt 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	m 1997 -	#VBW	8.0 MHz		Sweep	1	Span 0 Hz	
3/div Ref 20.00 dBi	m Hijfmannen 1 	#VBW	8.0 MHz		Sweep	1	Span 0 Hz	
3/div Ref 20.00 dBt 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	m Hijfmannen 1 	#VBW	8.0 MHz		Sweep	1	Span 0 Hz	
3/div Ref 20.00 dBt 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	m Hijfmannen 1 	#VBW	8.0 MHz		Sweep	1	Span 0 Hz	

.

gilent Spectrum Analyzer - Swept SA R L RF 50 Ω AC		SENSE:INT	ALIGN AUTO			Mar 25, 2022	
nter Freq 2.437000000	GHz PNO: Fa	st 🛶 Trig: Free R	Avg Typ Run	e: Log-Pwr	TRACE	123456 WWWWWWW PNNNNN	
	IFGain:Lo		1B		Mkr1 50		
Ref Offset 1.86 dB B/div Ref 20.00 dBm						5 dBm	
				waaanaa ay tiilaana	un an		
)							
nter 2.437000000 GHz						oan 0 Hz	
		#VBW 8.0 MHz	TION FUNCTION WIDTH		100.0 ms (10	001 pts)	
	50.00 ms	10.65 dBm	FONCTION WIDTH	FUI	ICTION VALUE	î	
						=	
						-	
			STATUS			•	
	Duty	Cvcle NVN	T g 2462MHz				-
gilent Spectrum Analyzer - Swept SA RL RF 50 Ω AC		SENSE:INT	ALIGN AUTO			□ @ 🔀	-
nter Freq 2.462000000		st +++ Trig: Free F	Avg Typ	e: Log-Pwr	TRACE	1 2 3 4 5 6 WWWWWW PNNNN	
	IFGain:Lo		JB		Mkr1 50		
Ref Offset 1.89 dB IB/div Ref 20.00 dBm						7 dBm	
	Lingstopping and Ulip			need an and the populated	teenettiil teenetteette	ang at Hill provide	
, 							
b							
						oan 0 Hz	
nter 2.462000000 GHz s BW 8 MHz		#VBW 8.0 MHz			100.0 ms (10		
nter 2.462000000 GHz s BW 8 MHz	50.00 ms	#VBW 8.0 MHz Y FUNC 10.67 dBm	TION FUNCTION WIDTH				
nter 2.462000000 GHz s BW 8 MHz MODE TRC SCL X	50.00 ms	Y FUNC	TION FUNCTION WIDTH		100.0 ms (10		
nter 2.462000000 GHz s BW 8 MHz	50.00 ms	Y FUNC	TION FUNCTION WIDTH		100.0 ms (10		
	50.00 ms	Y FUNC	TION FUNCTION WIDTH		100.0 ms (10		
nter 2.462000000 GHz s BW 8 MHz MODE TRC SCL X	50.00 ms	Y FUNC	TION FUNCTION WIDTH		100.0 ms (10		

.....

ectrum Analyzer - Swept SA RF 50 Ω AC		SENSE:I	σ	ALIGN AUTO			53 AM Mar 25, 2022
req 2.41200000			j: Free Run ten: 30 dB	Аvg Тур	e: Log-Pwr	т	RACE 123456 TYPE WWWWWW DET PNNNN
Ref Offset 1.85 dB	ii odili.					Mkr1	50.00 ms 8.17 dBm
Ref 20.00 dBm			1				
al definited more present, and a set of the set	al an an aire an geard, line aire an a			and a first of the	1. 1. 2		The Manufact Manufacture Million
412000000 GHz							Span 0 Hz
SCL X	1	#VBW 8.0	FUNCTION	FUNCTION WIDTH		100.0 ms	(10001 pts)
t	50.00 ms	8.17 dBm	TONCTION		F1	SHOTION VALUE	
				STATUS			
	Duty	Cycle N	/NT n20) 2437MHz	7		
m Analyzer - Swept SA RF 50 Ω AC		SENSE:II	π	ALIGN AUTO		11:54:3	4 AM Mar 25, 2022
q 2.43700000			: Free Run ten: 30 dB	Avg Typ	e: Log-Pwr	1	RACE 12345 (TYPE WWWWWW DET PNNNN
Ref Offset 1.86 dB							50.00 ms
Ref 20.00 dBm			<u> </u>			1	8.91 dBm
437000000 GHz							Span 0 Hz
MHz		#VBW 8.0					(10001 pts)
RC SCL X	50.00 ms	⊻ 8.91 dBm	FUNCTION	FUNCTION WIDTH	F	JNCTION VALUE	^
							E
							*

	trum Analyzer - S									
RL Center Fi			PNO: Fast ↔ IFGain:Low		: Free Run en: 30 dB	ALIGN /	AUTO Avg Type: L	_og-Pwr	TI	6 AM Mar 25, 202 RACE 1 2 3 4 5 TYPE WWWWWW DET P NNNN
0 dB/div	Ref Offset Ref 20.0								Mkr1	50.00 ms 9.73 dBn
.0g 10.0 magnin	d and data managements	aligned type in the steps in participation	n Town Ingerson of Livers And	a dat posterio e con		ومحددا ومتر والمتح والمعو		determination of a producer of the sec	At type how the estimate by	a là parte a state e più la
0.00	Name House of the search of th	a di Malan Badad ng pantan din partikina dinakari di Ana .	na an mu bila bian bana	du can biyanan	and a state of the second s	in the second	n a desen sin di Liberte (Y	holet in platen, skiho platen)	ويستغر والتكثر والمعلستانا بارامعل	للعل بنائمًا إيا طعيب أما إلا ألماً إلا
10.0										
20.0										
30.0										
40.0										
50.0										
60.0										
70.0										
Center 2.4 Res BW 8	462000000 3 MHz) GHz	#VE	3W 8.0	MHz			Sweep	100.0 ms	Span 0 H; (10001 pts
KR MODE TF		х	Y		FUNCTION	FUNCTION	WIDTH	FU	JNCTION VALUE	
1 N 1 2	<u>t</u>	50.00 ms	s 9.7	3 dBm						
3										
4 5										
6										
8										
10										
11										

Page: 68 of 73

14. Antenna Requirement

14.1 Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

14.2 Test Result

The EUT antenna is PCB antenna, fulfill the requirement of this section.

Page: 69 of 73

15. EUT Photographs

EUT Photo 1

EUT Photo 2



16. EUT Test Setup Photographs

Conducted emissions Photos

Radiated Measurement Photos

STATEMENT

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without stamp of laboratory.

4. The test report is invalid without signature of person(s) testing and authorizing.

5. The test process and test result is only related to the Unit Under Test.

6.The quality system of our laboratory is in accordance with ISO/IEC17025.

7.If there is any objection to report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

E-Mail: bctc@bctc-lab.com.cn

***** END *****

No.: BCTC/RF-EMC-005

Page: 73 of 73