

TEST REPORT

Report No.: KS2206S2710E01

Report No.....: KS2206S2710E01

FCC ID------ 2A54U-DT3PROMAX

Applicant.....: Shenzhen Xinkeying Technology Co.,Ltd

District, Shenzhen, China

Manufacturer...... Shenzhen Xinkeying Technology Co.,Ltd

District, Shenzhen, China

Product Name: Smart watch

Trade Mark.....: DTNO.1

Model/Type reference: DT3Promax

Listed Model(s) DT3Promax+,DT3Pro+,DT3+,DT3max+

Standard.....: FCC 15.247

Date of Receipt: June 22, 2022

Test result: Pass

Prepared by:

(Printed name + Signature) Sky Dong

Approved by:

(Printed name + Signature) Neil Wan

Testing Laboratory Name.....: KSIGN(Guangdong) Testing Co., Ltd.

Address . West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu

Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen,

Guangdong, China

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by KSIGN. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to KSIGN within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

	TABLE OF CONTENTS	Page
1. TEST SUMMARY		3
1.1. Test Standards		2
1.3. Test Description		
1.4. Test Facility		5
1.5. MEASUREMENT UNCERTAINTY		5
1.6. Environmental Conditions		6
2. GENERAL INFORMATION		
2.1. GENERAL DESCRIPTION OF EUT		
2.2. OPERATION STATE		ε
2.3. MEASUREMENT INSTRUMENTS LIST		<u>C</u>
2.4. Test Software		10
2.5. ANCILLARY EQUIPMENT LIST		10
2.6. DESCRIPTION OF SUPPORT UNITS		10
3. TEST ITEM AND RESULTS		11
3.1. Antenna Requirement		11
3.2. CONDUCTED EMISSION		11
3.3. Spurious Emission (Radiated)		15
3.4. BAND EDGE EMISSIONS(RADIATED)		26
3.5. PEAK OUTPUT POWER		31
3.6. POWER SPECTRAL DENSITY		34
	гн	
3.8. DUTY CYCLE		41
3.10. Spurious RF Conducted Emission		46
4. EUT TEST PHOTOS		48
5. PHOTOGRAPHS OF FUT CONSTRUCTION	ΟΝΔΙ	50

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

KDB 558074 D01 15.247 Meas Guidance v05r02: The measurement guidance provided herein is applicable only to Digital Transmission System (DTS) devices operating in the 902-928 MHz. 2400-2483.5 MHz and/or 5725-5850 MHz bands under §15.247 of the FCC rules (Title 47 of the Code of Federal Regulations)

Report No.: KS2206S2710E01

ANSI C63.10-2020: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Date of issue	Description
01	July 05, 2022	Original

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Report No.:KS2206S2710E01

1.3. Test Description

FCC Part 15 Subpart C(15.247)					
Took Hom	Standard Section	Result	T		
Test Item	FCC	Result	Test Engineer		
Antenna Requirement	15.203	Pass	Cyril Cai		
Conducted Emission	15.207	Pass	Cyril Cai		
Radiated Emission	15.205&15.209	Pass	Cyril Cai		
Radiated Band Edge	15.205&15.247(d)	Pass	Cyril Cai		
Peak Output Power	15.247(b)	Pass	Cyril Cai		
Power Spectral Density	15.247(e)	Pass	Cyril Cai		
6dB Bandwidth	15.247(a)(2)	Pass	Cyril Cai		
Duty Cycle	558074 D01 15.247 Meas Guidance v05r02 Chapter 6	Pass	Cyril Cai		
Conducted Band edge	15.247(d)	Pass	Cyril Cai		
Spurious RF Conducted Emission	15.247(d)	Pass	Cyril Cai		

Note:

The measurement uncertainty is not included in the test result.

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Report No.:KS2206S2710E01

1.4. Test Facility

Address of the report laboratory

KSIGN(Guangdong) Testing Co., Ltd.

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L13261

KSIGN(Guangdong) Testing Co., Ltd. has been assessed and proved to be in Compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 5457.01

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been accredited by A2LA for technical Competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

ISED#: 25693 CAB identifier.: CN0096

KSIGN(Guangdong) Testing Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

FCC-Registration No.: 294912 Designation Number: CN1328

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the KSIGN(Guangdong) Testing Co., Ltd. system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Below is the best measurement capability for KSIGN(Guangdong) Testing Co., Ltd.

Report No.:KS2206S2710E01

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth	2.80 dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Report No.:KS2206S2710E01

2. GENERAL INFORMATION

2.1. General Description Of EUT

	,
Test Sample Number 1:	1-1-1(Normal Sample),1-1-2(Engineering Sample)
Product Name:	Smart watch
Trade Mark:	DTNO.I
Model/Type reference:	DT3Promax
Listed Model(s):	DT3Promax+,DT3Pro+,DT3+,DT3max+
Model Difference:	The difference between the product model is only the appearance is not the same, the different model name is for the market demand. Other power supply mode, internal structure, circuit and key components are the same, does not affect the safety and electromagnetic compatibility performance.
Power supply:	DC 3.7V
Hardware Version:	V1.0
Software Version:	V1.0.0
Bluetooth	
Modulation:	GFSK
Operation frequency:	2402MHz~2480MHz
Max Output Power:	0.15dBm
Channel number:	40
Channel separation:	2MHz
Antenna type:	Internal Antenna
Antenna gain:	-0.7dBi

2.2. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BLE, 40 channels are provided to the EUT. Channels 00/19/39 were selected for testing.

Report No.: KS2206S2710E01

Operation Frequency List:

Channel	Frequency (MHz)
00	2402
01	2404
i i	<u> </u>
19	2440
20	2442
21	2444
i i	Ē
38	2478
39	2480

Note: The display in grey were the channel selected for testing.

Test Channel

Channel	Channel	Frequency (MHz)	
Low	00	2402	
Middle	19	2440	
High	39	2480	

Test mode

NO.	TEST MODE DESCRIPTION
1	Low channel TX (2402MHz)
2	Middle channel TX (2440MHz)
3	High channel TX (2480MHz)

Note

- 1. Only the result of the worst case was recorded in the report, if no other cases.
- 2. The test software is the RTLBTAPP Version: 5.2.2.98 which can set the EUT into the individual test modes.

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

2.3. Measurement Instruments List

	Tonscend JS0806-2 Test system					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until	
1	Spectrum Analyzer	R&S	FSV40-N	101798	03/04/2023	
2	Vector Signal Generator	Agilent	N5182A	MY50142520	03/04/2023	
3	Analog Signal Generator	HP	83752A	3344A00337	03/04/2023	
4	Power Sensor	Agilent	E9304A	MY50390009	03/04/2023	
5	Power Sensor	Agilent	E9300A	MY41498315	03/04/2023	
6	Wideband Radio Communication Tester	R&S	CMW500	157282	03/04/2023	
7	Climate Chamber	Angul	AGNH80L	1903042120	03/04/2023	
8	Dual Output DC Power Supply	Agilent	E3646A	MY40009992	03/04/2023	
9	RF Control Unit	Tonscend	JS0806-2	/	03/04/2023	

	Radiated Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until	
1	EMI Test Receiver	R&S	ESR	102525	03/04/2023	
2	High Pass Filter	Chengdu E-Microwave	OHF-3-18-S	0E01901038	03/04/2023	
3	High Pass Filter	Chengdu E-Microwave	OHF-6.5-18-S	0E01901039	03/04/2023	
4	Spectrum Analyzer	HP	8593E	3831U02087	03/04/2023	
5	Ultra-Broadband logarithmic period Antenna	Schwarzbeck	VULB 9163	01230	12/04/2023	
6	Loop Antenna	Beijin ZHINAN	ZN30900C	18050	03/04/2023	
7	Spectrum Analyzer	R&S	FSV40-N	101798	03/04/2023	
8	Horn Antenna	Schwarzbeck	BBHA 9120 D	2023	03/29/2023	
9	Pre-Amplifier	Schwarzbeck	BBV 9745	9745#129	03/04/2023	
10	Pre-Amplifier	EMCI	EMC051835SE	980662	03/04/2023	

	Conducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until	
1	LISN	R&S	ENV432	1326.6105.02	03/04/2023	
2	EMI Test Receiver	R&S	ESR	102524	03/04/2023	
3	Manual RF Switch	JS TOYO	/	MSW-01/002	03/04/2023	

Note:

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

¹⁾The Cal. Interval was one year.

²⁾The cable loss has calculated in test result which connection between each test instruments.

2.4. Test Software

Software name	Model	Version
Conducted emission Measurement Software	EZ-EMC	EMC-Con 3A1.1
Radiated emission Measurement Software	EZ-EMC	FA-03A.2.RE
Bluetooth and WIFI Test System	JS1120-3	2.5.77.0418

Report No.: KS2206S2710E01

2.5. Ancillary Equipment list

Equipment	Model	S/N	Manufacturer	Certificate type	
/	/	/	/	/	

2.6. Description Of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model/Type No.	Series No.	Note
1	Adapter	/	GA-QC810	/	
2	USB Cable	/	/	/	

Note:

- 1. The support equipment was authorized by Declaration of Confirmation.
- 2. For detachable type I/O cable should be specified the length in cm in $^{\mathbb{F}}$ Length $_{\mathbb{F}}$ column.

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Report No.:KS2206S2710E01

3. TEST ITEM AND RESULTS

3.1. Antenna Requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The antenna gain is -0.7dB, the directional gain of the antenna less than 6dBi. It comply with the standard requirement. In case of replacement of broken antenna the same antenna type must be used.

Antenna structure please refer to the EUT internal photographs antenna photo.

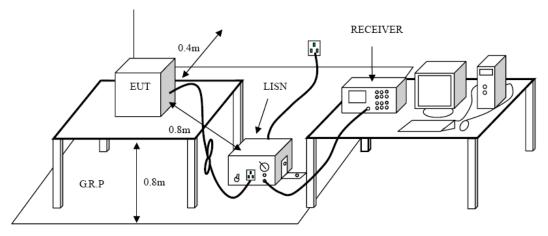
TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

3.2. Conducted Emission

Limit

Conducted Emission Test Limit


Report No.: KS2206S2710E01

Examinancy	Maximum RF Line Voltage (dBμV)				
Frequency	Quasi-peak Level	Average Level			
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Notes:

- 1. *Decreasing linearly with logarithm of the frequency.
- 2. The lower limit shall apply at the transition frequencies.
- 3. The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Test Configuration

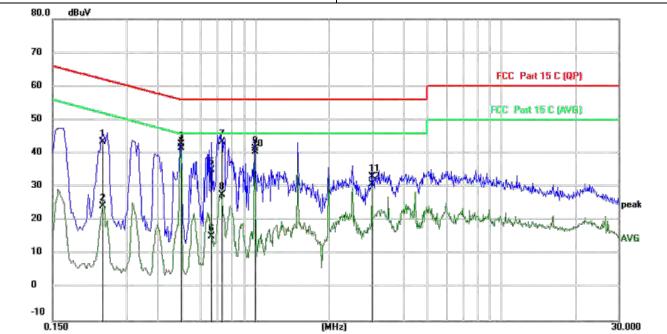
Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2020 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment.

 The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

Test Mode:

Please refer to the clause 2.2.


TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Test Results

Test Voltage:	AC 120V/60Hz
Terminal:	Line
Test Mode:	BLE

	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
-	1	0.2381	32.61	10.74	43.35	62.16	-18.81	QP
-	2	0.2381	13.65	10.74	24.39	52.16	-27.77	AVG
-	3	0.4975	32.37	10.38	42.75	56.04	-13.29	QP
-	4 *	0.4975	31.32	10.38	41.70	46.04	-4.34	AVG
-	5	0.6635	24.71	10.45	35.16	56.00	-20.84	QP
•	6	0.6635	4.96	10.45	15.41	46.00	-30.59	AVG
•	7	0.7300	33.02	10.44	43.46	56.00	-12.54	QP
•	8	0.7300	17.31	10.44	27.75	46.00	-18.25	AVG
•	9	0.9946	30.88	10.51	41.39	56.00	-14.61	QP
•	10	0.9946	30.00	10.51	40.51	46.00	-5.49	AVG
-	11	2.9854	22.36	10.62	32.98	56.00	-23.02	QP
•	12	2.9854	20.27	10.62	30.89	46.00	-15.11	AVG

Remarks:

1.Measurement = Reading Level+ Correct Factor

2.Over = Measurement -Limit

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Neutral BLE
BLE
FCC Part 15 C (QP)
FCC Part 15 C (AVG)
well where the second was the second with the second was the second was the second was the second with the second was the second with the second was the second with the second was the second was the second was the second with the second was the second with the second was the second with the second was the second was the second was the second wi
peak
AVG
z) 30,000
- I

No.	No. Mk. Freq.		Reading Level	Factor Factor	Measure- ment	Limit	Over	
-		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.2425	31.76	10.72	42.48	62.01	-19.53	QP
2		0.2425	16.10	10.72	26.82	52.01	-25.19	AVG
3		0.4996	31.34	10.52	41.86	56.01	-14.15	QP
4	*	0.4996	30.91	10.52	41.43	46.01	-4.58	AVG
5		0.7180	34.06	10.43	44.49	56.00	-11.51	QP
6		0.7180	20.61	10.43	31.04	46.00	-14.96	AVG
7		0.9951	29.97	10.50	40.47	56.00	-15.53	QP
8		0.9951	29.61	10.50	40.11	46.00	-5.89	AVG
9		1.4952	29.74	10.50	40.24	56.00	-15.76	QP
10		1.4952	28.54	10.50	39.04	46.00	-6.96	AVG
11		2.9882	22.75	10.60	33.35	56.00	-22.65	QP
12		2.9882	20.17	10.60	30.77	46.00	-15.23	AVG

Remarks:

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

^{1.}Measurement = Reading Level+ Correct Factor

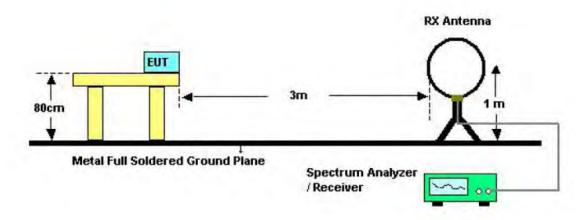
^{2.}Over = Measurement -Limit

3.3. Spurious Emission (Radiated)

<u>Limit</u>

Radiated Emission Limits (9 kHz~1000 MHz)

Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)	
0.009~0.490	2400/F(KHz)	300	
0.490~1.705	24000/F(KHz)	30	
1.705~30.0	30	30	
30~88	100	3	
88~216	150	3	
216~960	200	3	
Above 960	500	3	

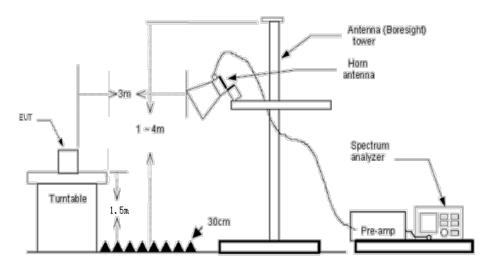

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Meters(at 3m)			
(MHz)	Peak	Average		
Above 1000	74	54		

Note:

- 1. The tighter limit applies at the band edges.
- 2. Emission Level (dBuV/m)=20log Emission Level (uV/m).

Test Configuration


Below 30MHz Test Setup

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Below 1000MHz Test Setup

Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2020
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Report No.: KS2206S2710E01

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=10Hz Peak detector for Peak value.

Test Mode

Please refer to the clause 2.2.

Test Result

9 KHz - 30 MHz

Freq.	Reading	Limit	Margin	State	
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	
				Pass	
				Pass	

Note:

- 1. For 9kHz-30MHz, the amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Distance extrapolation factor =40 log (specific distance/test distance)(dB);
- 3. Limit line = specific limits (dBuV) + distance extrapolation factor.

Note:

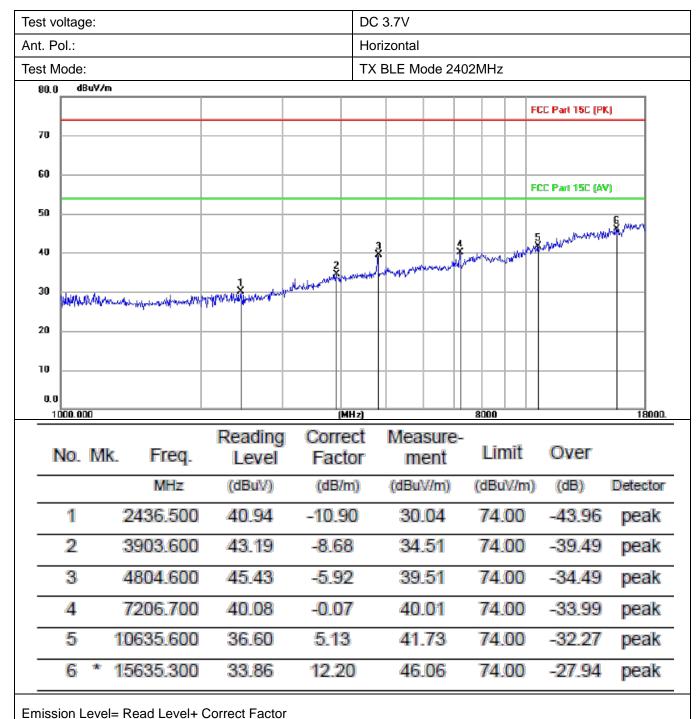
- Measurement = Reading level + Correct Factor
 Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor
- 2) The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.
- 3) The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4) The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

30MHz - 1GHz

Test v	est voltage:					D	DC 3.7V					
Ant. F	nt. Pol.:						Н	Horizontal				
Test I	Mode	e:					Т	X BLE Mo	de 240	02MHz		
80.0	d	BuV/m						7	_			
70	-											
60										FCC Part 15C	(30MHz-1GHz)	
50	_										Margin -6.	
												+
40	\vdash											
30												
30												§
20	-			-					_	n the feel with a second later	Maria Land	Jaio de Laga
			1				Š	ł	أروفاو	HARLAN WILLIAM SANDER	March	
10	La	1al	Mary Mary	1.1		JUNUM,	مارد و ادران	A Buggarde Pales	A Park			
0.0	'L	Marin a s.			Natharlohakan		M. Man. Alles Lan.					
3	0.000		60	,		100	(MHz)			500		1000.0
			_		Rea	-	Correct	Meas		II 2 50	0	
N	10.	Mk.	Free	q .	Le	vel	Factor	me	nt	Limit	Over	
			MHz	<u>P</u>	(dB)	JV)	(dB/m)	(dBuV	/m)	(dBuV/m)	(dB)	Detector
	1		52.46	48	25.	53	-16.15	9.3	8	40.00	-30.62	peak
	2		112.32	72	25.	84	-18.65	7.1	9	43.50	-36.31	peak
	3		193.56	90	31.	01	-18.28	12.7	73	43.50	-30.77	peak
	4		400.01	09	29.	02	-10.91	18.1	11	46.00	-27.89	peak
	5		500.12	57	28.	97	-9.93	19.0)4	46.00	-26.96	peak
	6	*	833.60	94	30.	00	-5.56	24.4	14	46.00	-21.56	peak


Emission Level= Read Level+ Correct Factor

est voltage:			D	C 3.7V				
nt. Pol.:			Ve	Vertical				
est Mode:			T	TX BLE Mode 2402MHz				
80.0 dBuV/m			•					
70								
60					FCC Part 15C (20141-1511-1		
50					rec rait 150 (Margio -6 d		
40								
30						6		
20				3	white wind the forward of the state of the s	Marinia Mil	lastohera	
10		the sicky the favor	hat Mary har was supplied to the	And the state of t	hand the state of			
30.000	60	100	(MHz)	<u> </u>	500		1000.0	
	1	Reading	Correct	Measure-	on on onco	_		
No. Mk.	Freq.	Level	Factor	ment	Limit	Over		
			Factor (dB/m)	ment (dBuV/m)	(dBuV/m)	(dB)	Detector	
	Freq.	Level					Detector peak	
1 39	Freq. MHz	Level (dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1 39 2 67	Freq. MHz).9801	(dBuV) 27.45	(dB/m) -17.12	(dBuV/m) 10.33	(dBuV/m) 40.00	(dB) -29.67	peak	
1 39 2 67 3 300	MHz 0.9801 2.5092	(dBuV) 27.45 31.19	(dB/m) -17.12 -19.18	(dBuV/m) 10.33 12.01	(dBuV/m) 40.00 40.00	(dB) -29.67 -27.99 -28.87 -25.73	peak peak	
1 39 2 67 3 300 4 400	Freq. MHz 9.9801 2.5092 9.0514	(dBuV) 27.45 31.19 31.79	(dB/m) -17.12 -19.18 -14.66	(dBuV/m) 10.33 12.01 17.13	(dBuV/m) 40.00 40.00 46.00	(dB) -29.67 -27.99 -28.87	peak peak	

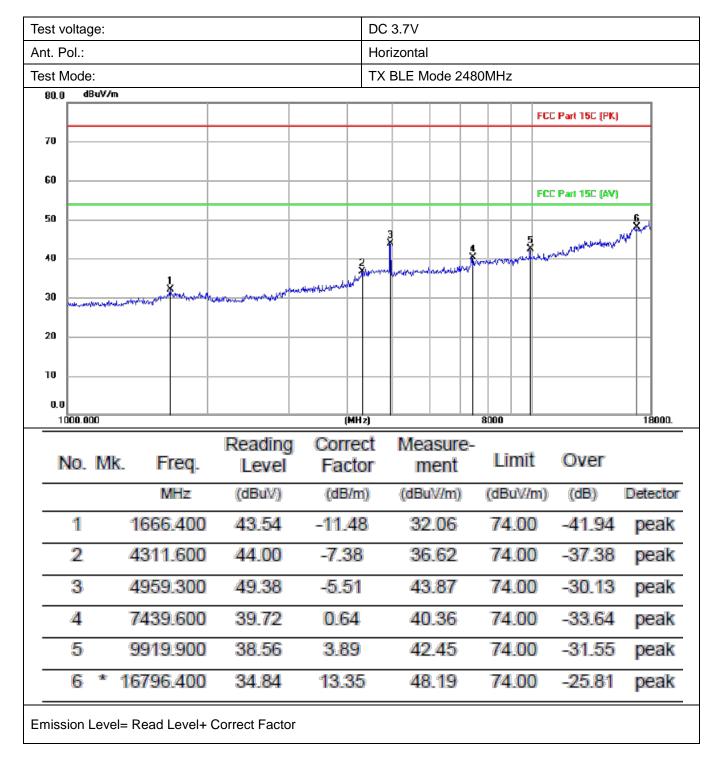
Above 1GHz

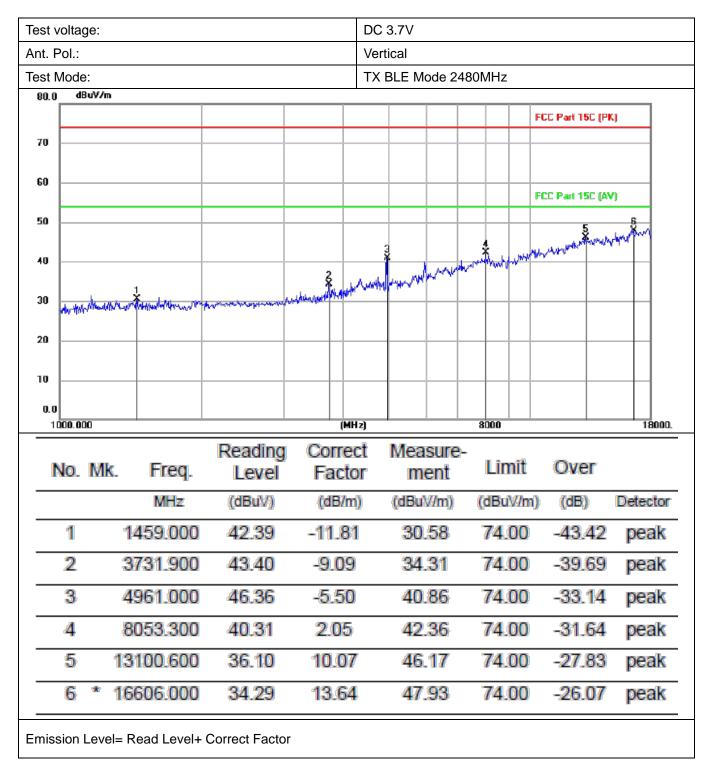
TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Test v	oltag	e:				DC 3.7V				
Ant. P	ol.:					Vertical				
Test M	/lode:					TX BLE N	/lode 240	02MHz		
80.0) di	BuV/m								
									FCC Part 15C (PI	KJ
70										
60									FCC Part 15C (A)	·
50								5	5 5 6 7	wan princip
40					_	3	1 my 1997	AND WAS ASSESSED.	AM TANKAN MANANAN KAN	
30	plajapya	a Marily	hroden habeteet allegan	1 John Mary Land	2 Company was	Talakir Pakalipira		+		
20		dout .	17 - 1 - Squit - 10	7074						
10								+		
0.0										
1	000.00	00			(MH	z)		8000		18000.
1	No.	Mk.	Freq.	Reading Level	Correct Factor		asure- nent	Limii	t Over	
			MHz	(dBuV)	(dB/m) (dBi	uW/m)	(dBuV/	m) (dB)	Detector
	1		2266.500	39.74	-10.97	7 28	3.77	74.00	0 -45.23	peak
	2		3187.900	41.96	-10.25	3	1.71	74.00	0 -42.29	peak

3 4804.600 45.43 -5.9239.51 74.00 -34.49 peak 4 7206.700 41.08 -0.0741.01 74.00-32.99 peak 5 9486.400 39.88 2.94 42.82 74.00 -31.18 peak -27.47 14525.200 35.90 46.53 10.63 74.00peak


Test voltag	ge:			D	C 3.7V			
Ant. Pol.:				Ho	orizontal			
Test Mode):			T	K BLE Mode 244	40MHz		
80.0 d	BuV/m							
<u> </u>						1	CC Part 15C (PI	q
70								-
eo							FCC Part 15C (AV	0
						- '	-cc ran rac (A	''
50					3		per the state of t	A PROPERTY IN SECOND
40			Emmy man Zerber		What white was to have	HATTER SAME AND	16-140	-+
30		Moreover	Churchen 3 mg	and of the ordinary				
HAMPA	and relatively	Markan Maria						
20								-+
10								
0.0	00			4411-3		0000		10000
1000.0	uu		DE	(MHz)		8000		18000
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	(dBuV)	(dB/m)	(dBu\//m)	(dBuV/m)	(dB)	Detector
1		1997.900	43.85	-11.06	32.79	74.00	-41.21	peak
2		2813.900	43.18	-10.70	32.48	74.00	-41.52	peak
3		4882.800	50.39	-5.71	44.68	74.00	-29.32	peak
4		5994.600	44.83	-3.81	41.02	74.00	-32.98	peak
5	é	11098.000	37.51	5.93	43.44	74.00	-30.56	peak
				13.21	47.90	74.00	-26.10	peak

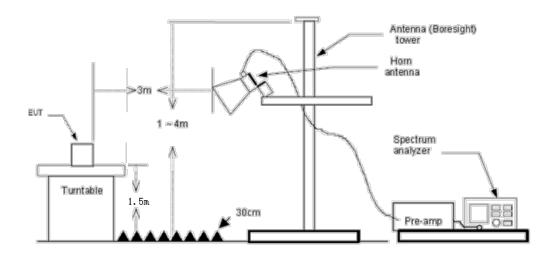

DC 3.7	DC 3.7V				
Vertica	I				
TX BL	Mode 2440MHz				
		FCC Part 15C (PK)			
		FCC Part 15C (AV)			
		S Control of			
3	, James	way have been been been been been been been be			
	Maryanan				
and marriage was not be form					
	Vertica TX BLE	DC 3.7V Vertical TX BLE Mode 2440MHz			

-	No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
_			MH≥	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
-	1		2332.800	39.91	-10.93	28.98	74.00	-45.02	peak
-	2		3339.200	42.11	-9.98	32.13	74.00	-41.87	peak
_	3		4882.800	48.89	-5.71	43.18	74.00	-30.82	peak
	4		5994.600	43.33	-3.81	39.52	74.00	-34.48	peak
	5		10973.900	38.97	5.66	44.63	74.00	-29.37	peak
_	6	***	17833.400	35.38	13.55	48.93	74.00	-25.07	peak

Note:

1.18GHz-26.5GHz is the background of the site, there is no radiated spurious.

Report No.: KS2206S2710E01


3.4. Band Edge Emissions(Radiated)

Limit

(dBuV/n	n)(at 3m)
Peak	Average
74	54
74	54
	Peak 74

Note: All restriction bands have been tested, only the worst case is reported.

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2020 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2020 on radiated measurement.
- 5. The receiver set as follow:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=10Hz with Peak detector for Average value.

Test Mode

Please refer to the clause 2.2.

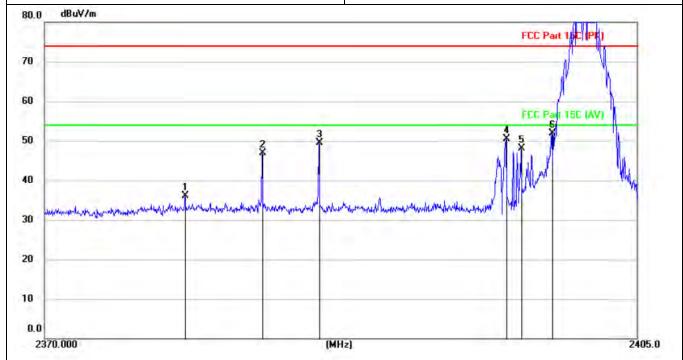
Test Results

Note:

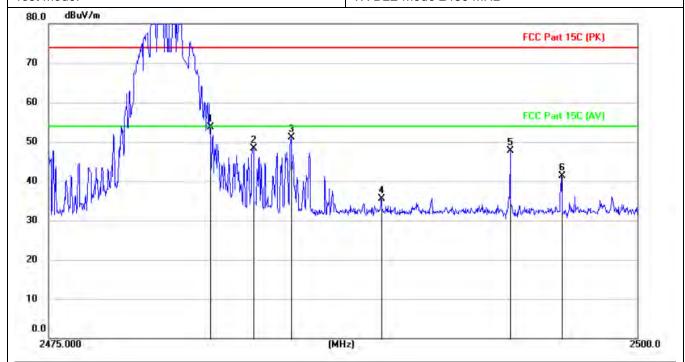
- Measurement = Reading level + Correct Factor
- Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor

TRF No. FCC Part 15.247_R1

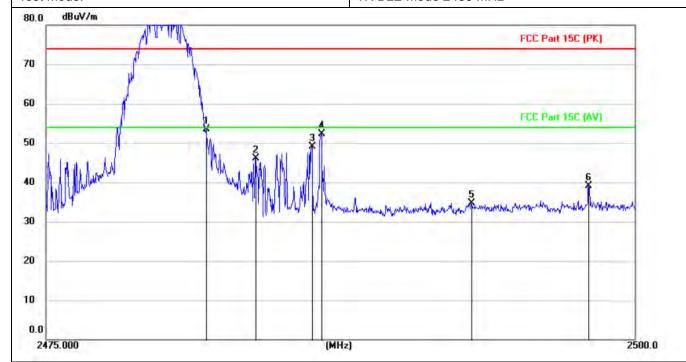
Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China


Test Voltage	DC 3.3V
Ant. Pol.:	Horizontal
Test Mode:	TX BLE Mode 2402MHz
80.0 dBuV/m	
	ECC Part 150 (PM)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1		2380.129	47.13	-10.92	36.21	74.00	-37.79	peak
2		2385.361	43.64	-10.92	32.72	74.00	-41.28	peak
3		2392.354	44.56	-10.92	33.64	74.00	-40.36	peak
4		2396.765	61.70	-10.92	50.78	74.00	-23.22	peak
5		2398.112	59.66	-10.92	48.74	74.00	-25.26	peak
6	*	2400.383	71.31	-10.92	60.39	74.00	-13.61	peak


Test Voltage	DC 3.3V
Ant. Pol.	Vertical
Test Mode:	TX BLE Mode 2402MHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1		2378.274	46.98	-10.92	36.06	74.00	-37.94	peak
2	i d	2382.814	57.79	-10.92	46.87	74.00	-27.13	peak
3		2386.166	60.43	-10.92	49.51	74.00	-24.49	peak
4	3	2397.223	61.36	-10.92	50.44	74.00	-23.56	peak
5	ř.	2398.144	59.03	-10.92	48.11	74.00	-25.89	peak
6	*	2399.985	62.74	-10.92	51.82	74.00	-22.18	peak


Test Voltage	DC 3.3V
Ant. Pol.	Horizontal
Test Mode:	TX BLE Mode 2480 MHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1	*	2481.845	64.65	-10.89	53.76	74.00	-20.24	peak
2		2483.665	59.27	-10.88	48.39	74.00	-25.61	peak
3		2485.270	61.90	-10.88	51.02	74.00	-22.98	peak
4		2489.105	46.46	-10.89	35.57	74.00	-38.43	peak
5		2494.580	58.61	-10.87	47.74	74.00	-26.26	peak
6		2496.767	52.23	-10.88	41.35	74.00	-32.65	peak

Test Voltage	DC 3.3V
Ant. Pol.	Vertical
Test Mode:	TX BLE Mode 2480 MHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1	*	2481.800	64.44	-10.89	53.55	74.00	-20.45	peak
2	T	2483.863	57.06	-10.88	46.18	74.00	-27.82	peak
3		2486.260	60.00	-10.88	49.12	74.00	-24.88	peak
4		2486.657	63.15	-10.88	52.27	74.00	-21.73	peak
5		2493.032	45.63	-10.89	34.74	74.00	-39.26	peak
6		2498.025	50.06	-10.88	39.18	74.00	-34.82	peak

3.5. Peak Output Power

Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	1 Watt or 30 dBm	2400~2483.5

Report No.: KS2206S2710E01

Test Configuration

Test Procedure

- 1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator.
- 2. Spectrum Setting:

Peak Detector: RBW ≥DTS Bandwidth, VBW ≥3*RBW.

Sweep time=Auto.
Detector= Peak.

Trace mode= Maxhold.

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

Please refer to the clause 2.2.

Test Result

Test Channel	Frequency (MHz)	Maximum Conducted Output Power(PK) (dBm)	Limit (dBm)	Result
CH00	2402	0.15	30	Pass
CH19	2440	-1.17	30	Pass
CH39	2480	-1.73	30	Pass

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing,

Bao'an District, Shenzhen, Guangdong, China



TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

3.6. Power Spectral Density

Limit

FCC Part 15 Subpart C(15.247)				
Test Item	Limit	Frequency Range(MHz)		
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5		

Report No.: KS2206S2710E01

Test Configuration

Test Procedure

- 1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator.
- The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.b-6.ii of KDB 558074 D01 DTS Meas Guidance v05r02.
- 3. Spectrum Setting:

Set analyzer center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

Set the RBW ≥ 3 kHz

Set the VBW ≥ 3 x RBW

Detector: peak

Sweep time: auto couple Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

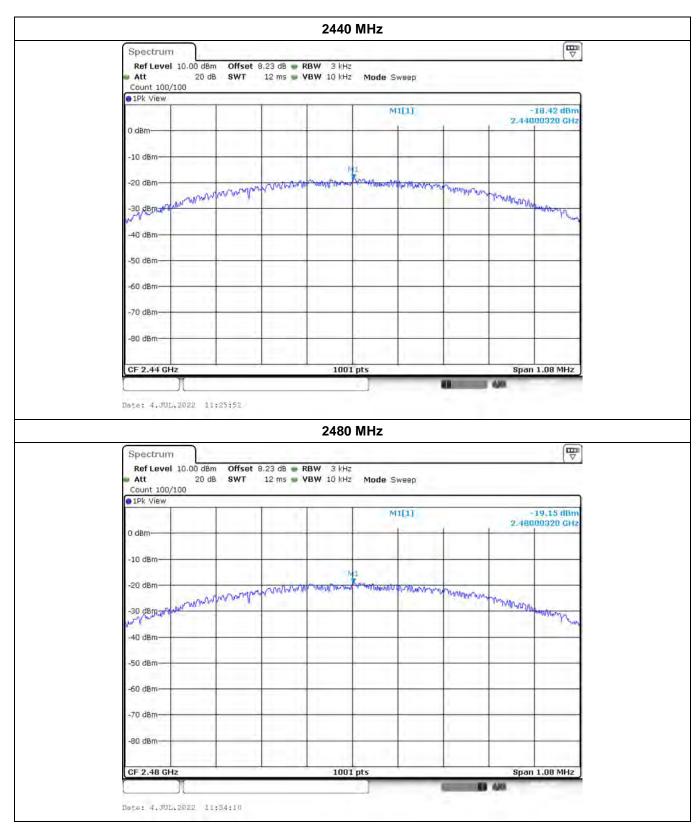
Test Mode

Please refer to the clause 2.2.

Test Result

TRF No. FCC Part 15.247_R1

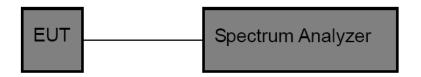
Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China



Frequency	Power Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
2402 MHz	-16.83	8	Pass
2440 MHz	-18.42	8	Pass
2480 MHz	-19.15	8	Pass

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China



3.7. 6dB Bandwidth and 99% Bandwidth

Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5

Test Configuration

Test Procedure

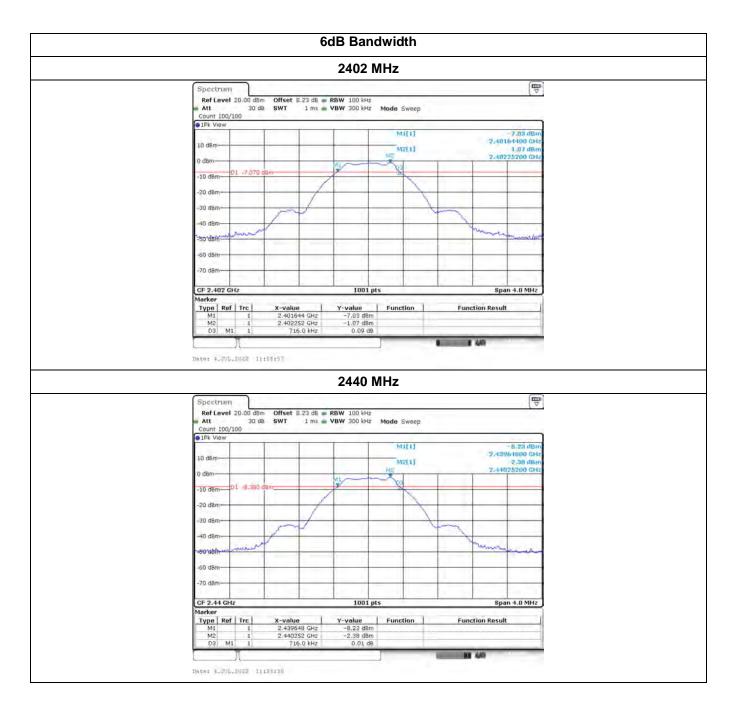
- Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator.
- 2. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.
- 3. The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.
- Spectrum Setting:

6dB bandwidth:

- (1) Set RBW = 100 kHz.
- (2) Set the video bandwidth (VBW) ≥ 3 RBW.
- (3) Detector = Peak.
- (4) Trace mode = Max hold.
- (5) Sweep = Auto couple.
- (6) Allow the trace to stabilize.
- (7) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
- (8) The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100KHz RBW and 300 KHz VBW record the 99% bandwidth.

Test Mode

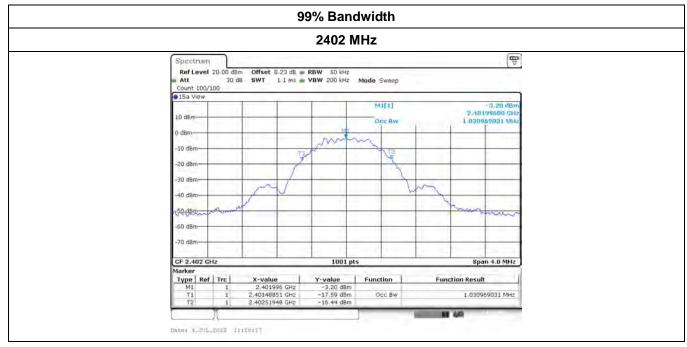
Please refer to the clause 2.2.


TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

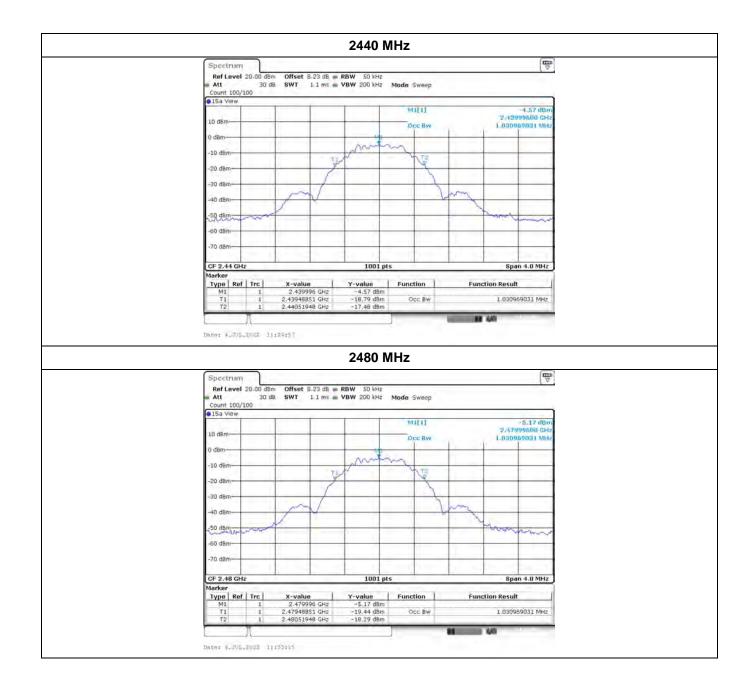
Test Results


Channel	Frequency (MHz)	6dB bandwidth (kHz)	99% Bandwidth (MHz)	Limit (kHz)	Result
Low	2402	716	1.031	500	Pass
Middle	2440	716	1.031	500	Pass
High	2480	716	1.031	500	Pass

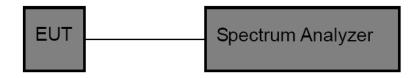


TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China



Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China


3.8. Duty Cycle

Limit

Test Item	Limit	Frequency Range(MHz)
Duty Cycle	No limit requirement	2400~2483.5

Report No.: KS2206S2710E01

Test Configuration

Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested according to the zero-span measurement method, 6.0(b) in KDB 558074 D01 DTS Meas Guidance v05r02.

The largest availble value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Zero Span

RBW = 8MHz (the largest available value)

 $VBW = 8MHz (\ge RBW)$

Number of points in Sweep >100

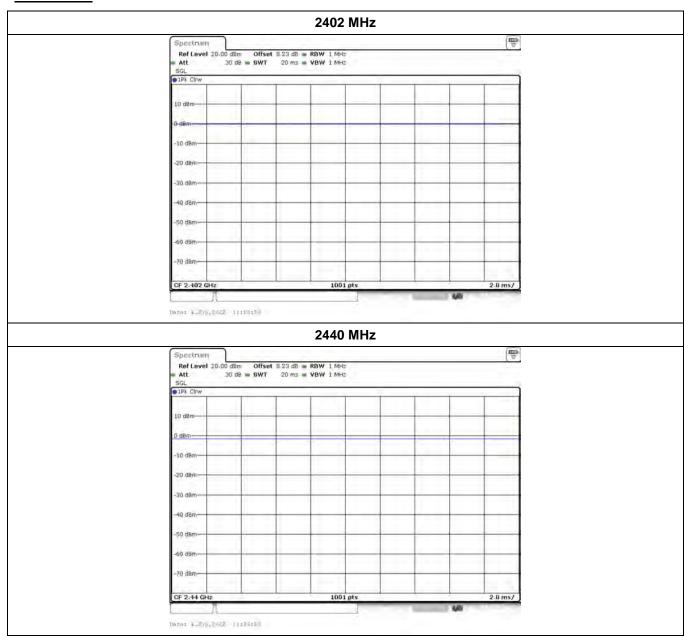
Detector function = peak

Trace = Clear write

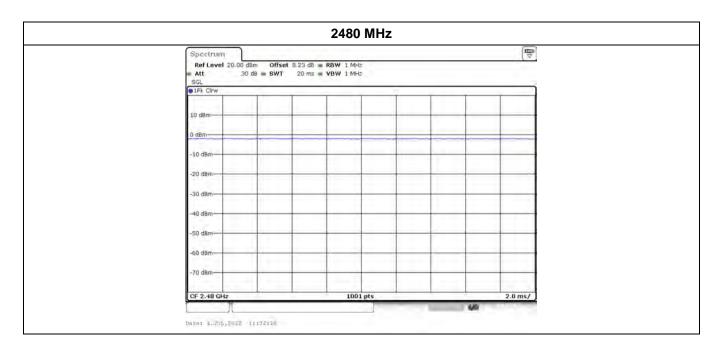
Measure Total and Ton

Calculate Duty Cycle = Ton / Total

TRF No. FCC Part 15.247_R1


Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

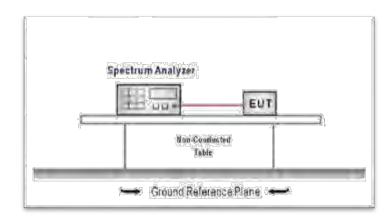
Test Mode


Please refer to the clause 2.2.

Test Results

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

3.9. Conducted Band Edge


Limit

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Report No.: KS2206S2710E01

Test Configuration

Test Procedure

- 1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator.
- 2. Spectrum Setting:

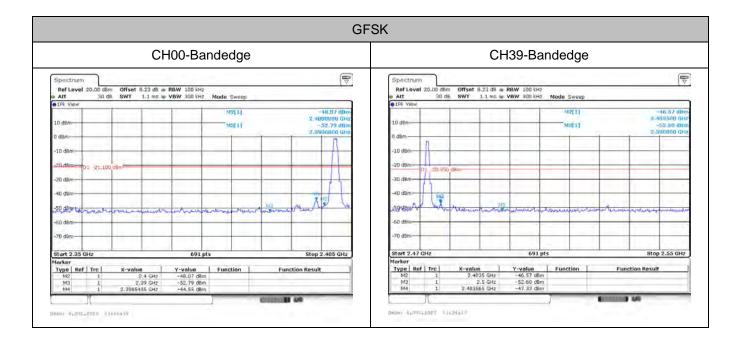
RBW=100KHz

VBW=300KHz.

Detector function: Peak.

Trace: Max hold.

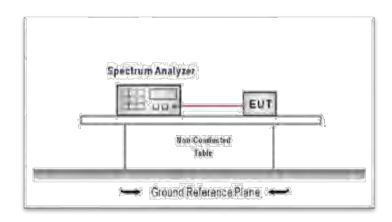
Sweep = Auto couple.


Allow the trace to stabilize.

Test Mode

Please refer to the clause 2.2.

Test Results

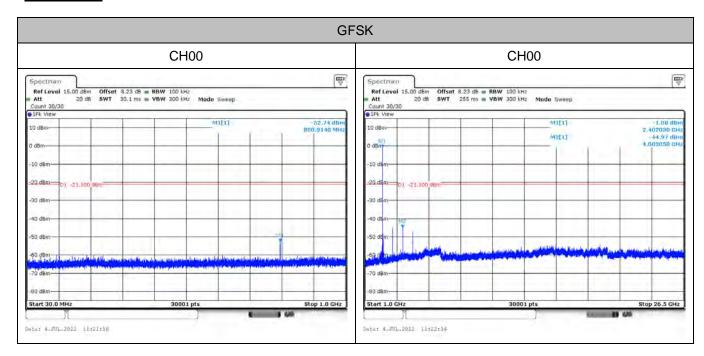


3.10. Spurious RF Conducted Emission

Limit

Below -20dB of the highest emission level in operating band.

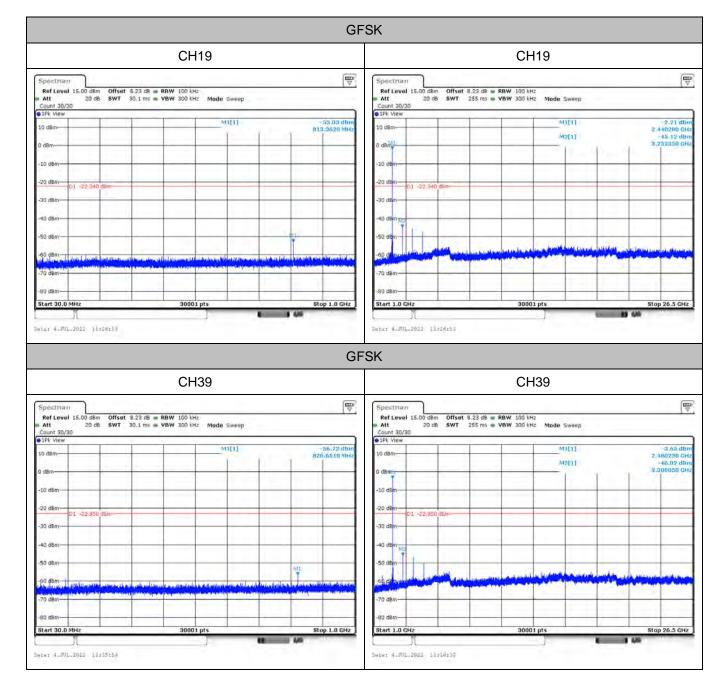
Test Configuration


Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300kHz to measure the peak field strength, and measure frequency range from 9kHz to 26.5GHz.

Test Mode

Please refer to the clause 2.2.

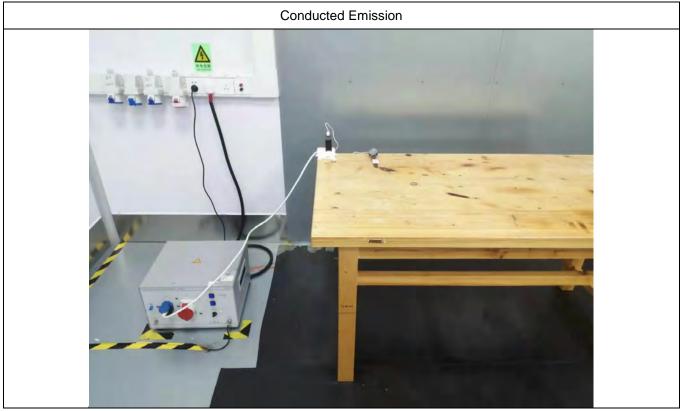

Test Results

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

4.EUT TEST PHOTOS



TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Page 50 of 50

Report No.: KS2206S2710E01

5.PHOTOGRAPHS OF EUT CONSTRUCTIONAL

Please refer to the report Report No.: KS2206S2710E02

--THE END--

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China