

KSIGN (Guangdong) Testing Co., Ltd.

Page 1 of 49 Report No.: KS2206S2696E01

TEST REPORT

Report No. KS2206S2696E01

FCC ID: 2A54U-DT102

Applicant Shenzhen Xinkeying Technology Co., Ltd

8/F,Block C,Han's Innovation Building,Xili Road,Nanshan Address

District, Shenzhen, China

Shenzhen Xinkeying Technology Co., Ltd Manufacturer....:

8/F,Block C,Han's Innovation Building,Xili Road,Nanshan

District, Shenzhen, China

Product Name: Smart Watch

Trade Mark DTNO.I

Model/Type reference : DT102

Listed Model(s): DT102Mini,DT102Max,DT102Pro,DT102ProMax

FCC 15.247 **Standard**

ANSI C63.10: 2013

Date of Receipt: June 22, 2022

Date of Test Date June 22, 2022~June 30, 2022

Date of issue June 30, 2022

Test result Pass

Prepared by:

(Printed Name + Signature)

Sky Dong

Approved by:

(Printed Name + Signature)

Neil Wan

KSIGN(Guangdong) Testing Co., Ltd. **Testing Laboratory Name**

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Address

Industrial Park, Minzhu, Shatou, Shajing, Bao'an District,

Shenzhen, Guangdong, China

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by KSIGN. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to KSIGN within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Tel: +(86) 0755-2985 2678 Fax: +(86) 0755-2985 2397 E-mail: info@gdksign.cn Web: www.gdksign.com

Table Of Contents

1. TE	EST STANDARDS	3
2. SL	UMMARY	4
2.1 2.2 2.3 2.4 2.5 2.6 2.7	Product Description Equipment Under Test Short description of the Equipment under Test (EUT) EUT operation mode Block Diagram of Test Setup Related Submittal(s) / Grant (s) Modifications	
3. TE	EST ENVIRONMENT	6
3.1 3.2 3.3 3.4 3.5 3.6	Address of the test laboratory Test Facility Environmental conditions Summary of measurement results Statement of the measurement uncertainty Equipments Used during the Test	
4. TE	EST CONDITIONS AND RESULTS	11
4.1 4.2 4.3 4.4 4.5 4.6 4.7	AC Power Conducted Emission Radiated Emissions and Band Edge Maximum Peak Output Power Power Spectral Density 6dB Bandwidth Out-of-band Emissions Antenna Requirement	
5. TE	EST SETUP PHOTOS OF THE EUT	47
6. PH	HOTOS OF THE EUT	49

Page 3 of 49

Report No.: KS2206S2696E01

1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

Page 4 of 49 Report No.: KS2206S2696E01

2. SUMMARY

2.1 Product Description

Product Description:	Smart Watch
Model/Type reference:	DT102
Listed Model(s):	DT102Mini,DT102Max,DT102Pro,DT102ProMax
Model Difference:	The difference between the product model is only the color and appearance is not the same, the different model name is for the market demand. Other power supply mode, internal structure, circuit and key components are the same, does not affect the safety and electromagnetic compatibility performance.
Power supply:	DC 3.7V from battery
Adapter information (Auxiliary test supplied by test Lab)	N/A
Testing sample ID:	KS2206S2696E-1# (Engineer sample), KS2206S2696E-2# (Normal sample)
Hardware version:	V1.0
Software version:	V1.0.0
Bluetooth BLE	
Supported type:	Bluetooth low Energy
Modulation:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40
Channel separation:	2 MHz
Antenna type:	Internal Antenna
Antenna gain:	-0.7dBi

2.2 Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	•	120V / 60Hz
		0	12 V DC	0	24 V DC
		0	Other (specified in blank bel	ow	

DC 3.7V From Battery

2.3 Short description of the Equipment under Test (EUT)

This is a Smart Watches.

For more details, refer to the user's manual of the EUT.

TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Tel: +(86) 0755-2985 2678 Fax: +(86) 0755-2985 2397 E-mail: <u>info@gdksign.cn</u> Web: www.gdksign.com

Page 5 of 49

2.4 EUT operation mode

The Applicant provides communication tools software (Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

Report No.: KS2206S2696E01

Operation Frequency:

Channel	Frequency (MHz)
00	2402
01	2404
02	2406
i:	:
19	2440
i i	÷
37	2476
38	2478
39	2480

2.5 Block Diagram of Test Setup

2.6 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.7 Modifications

No modifications were implemented to meet testing criteria.

Page 6 of 49 Report No.: KS2206S2696E01

3. TEST ENVIRONMENT

3.1 Address of the test laboratory

KSIGN(Guangdong) Testing Co., Ltd.

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L13261

KSIGN(Guangdong) Testing Co., Ltd. has been assessed and proved to be in Compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 5457.01

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been accredited by A2LA for technical Competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

ISED#: 25693 CAB identifier.: CN0096

KSIGN(Guangdong) Testing Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

FCC-Registration No.: 294912 Designation Number: CN1328

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:	25 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Main Conducted testing:

Temperature:	25 ° C

TRF No. FCC Part 15.247 R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Humidity:	46 %		
Atmospheric pressure:	950-1050mbar		

Conducted testing:

Temperature:	25 ° C
Humidity:	44 %
Atmospheric pressure:	950-1050mbar

3.4 Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel		ecorded Report	Test result
§15.247(e)	Power spectral density	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs 2 Mpbs		complies
§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs 2 Mpbs		BLE 1Mpbs 2 Mpbs		complies
§15.247(b)(1)	Maximum output power	BLE 1Mpbs 2 Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs 2 Mpbs	 Lowest Middle Highest	complies
§15.247(d)	Band edge compliance conducted	BLE 1Mpbs 2 Mpbs		BLE 1Mpbs 2 Mpbs		complies
§15.205	Band edge compliance radiated	BLE 1Mpbs 2 Mpbs	⊠ Lowest⊠ Highest	BLE 1Mpbs 2 Mpbs		complies
§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs 2 Mpbs		BLE 1Mpbs 2 Mpbs		complies
§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs 2 Mpbs		BLE 1Mpbs 2 Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs 2 Mpbs	-/-	BLE 1Mpbs	-/-	complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs 2 Mpbs	-/-	BLE 1Mpbs	-/-	complies

Remark:

- 1. The measurement uncertainty is not included in the test result.
- 2. We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. is reported:

Test Items	Measurement Uncertainty	Notes
Maximum transmit power	±1.5dB	(1)
Power Spectral Density	±1.5dB	(1)
Duty Cycle, Tx-sequence, Tx-gap	±5%	(1)
Accumulated Transmit Time, Frequency Occupation and	±5%	(1)
Hopping Sequence	1070	(1)
Hopping Frequency Separation	±5%	(1)

TRF No. FCC Part 15.247 R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

Tel: +(86) 0755-2985 2678 Fax: +(86) 0755-2985 2397 E-mail: info@gdksign.cn Web: www.gdksign.com

Medium Utilisation (MU) factor ±5% (1) ±5% Adaptively (1) Occupied Channel Bandwidth ±5% (1) Transmitter unwanted emissions in the out-of-band domain ±2.8dB (1) Transmitter unwanted emissions in the spurious domain ±2.8dB (1) Receiver spurious emissions ±2.8dB (1) Receiver Blocking ±2.8dB (1)

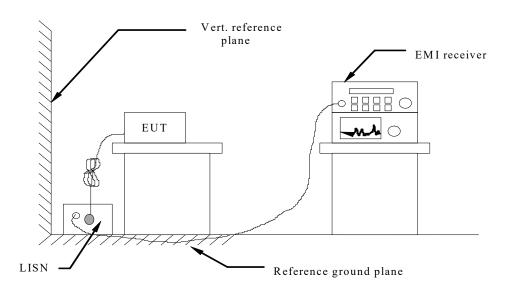
⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

	Tonscend JS0806-2 Test system								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until				
1	Spectrum Analyzer	R&S	FSV40-N	101798	03/04/2023				
2	Vector Signal Generator	Agilent	N5182A	MY50142520	03/04/2023				
3	Analog Signal Generator	HP	83752A	3344A00337	03/04/2023				
4	Power Sensor	Agilent	E9304A	MY50390009	03/04/2023				
5	Power Sensor	Agilent	E9300A	MY41498315	03/04/2023				
6	Wideband Radio Communication Tester	R&S	CMW500	157282	03/04/2023				
7	Climate Chamber	Angul	AGNH80L	1903042120	03/04/2023				
8	Dual Output DC Power Supply	Agilent	E3646A	MY40009992	03/04/2023				
9	RF Control Unit	Tonscend	JS0806-2	1	03/04/2023				

	Transmitter spurious emissions & Receiver spurious emissions								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until				
1	EMI Test Receiver	R&S	ESR	102525	03/04/2023				
2	High Pass Filter	Chengdu E- Microwave	OHF-3-18-S	0E01901038	03/04/2023				
3	High Pass Filter	Chengdu E- Microwave	OHF-6.5-18-S	0E01901039	03/04/2023				
4	Spectrum Analyzer	HP	8593E	3831U02087	03/04/2023				
5	Ultra-Broadband logarithmic period Antenna	Schwarzbeck	VULB 9163	01230	12/04/2023				
6	Loop Antenna	Beijin ZHINAN	ZN30900C	18050	03/04/2023				
7	Spectrum Analyzer	R&S	FSV40-N	101798	03/04/2023				
8	Horn Antenna	Schwarzbeck	BBHA 9120 D	2023	03/29/2023				
9	Pre-Amplifier	Schwarzbeck	BBV 9745	9745#129	03/04/2023				
10	Pre-Amplifier	EMCI	EMC051835SE	980662	03/04/2023				

Note: The Cal.Interval was one year.


Page 11 of 49 Report No.: KS2206S2696E01

4. TEST CONDITIONS AND RESULTS

4.1AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

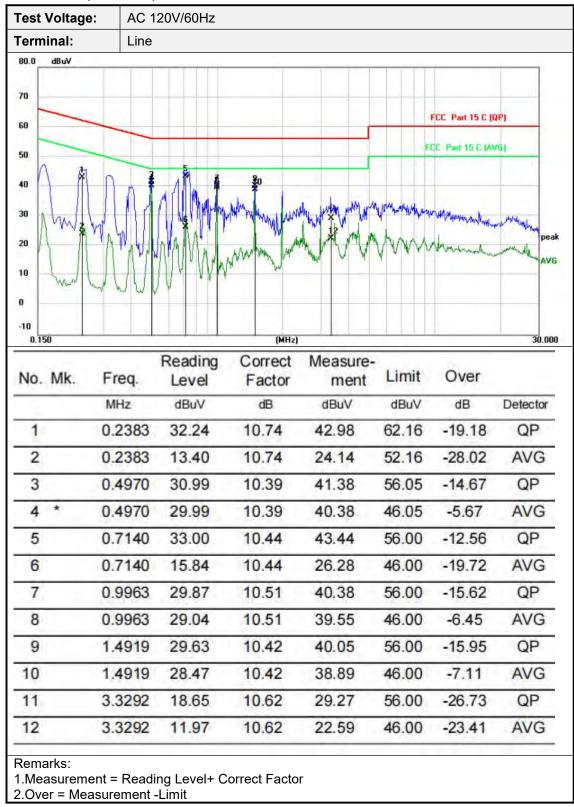
AC Power Conducted Emission Limit

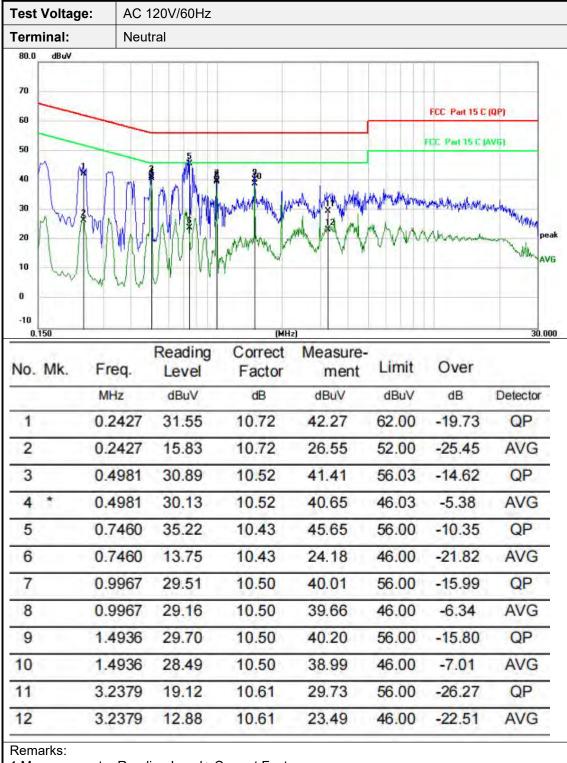
For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (dBuV)			
Frequency range (wiriz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		
* Decreases with the logarithm of the frequency.				

TRF No. FCC Part 15.247 R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China

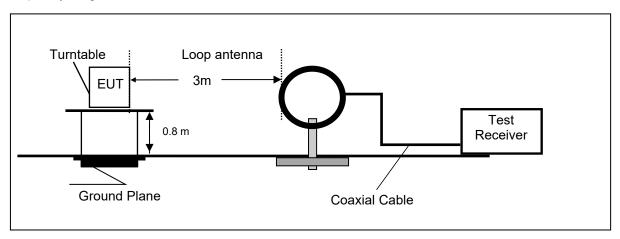

Tel: +(86) 0755-2985 2678 Fax: +(86) 0755-2985 2397 E-mail: info@gdksign.cn Web: www.gdksign.com

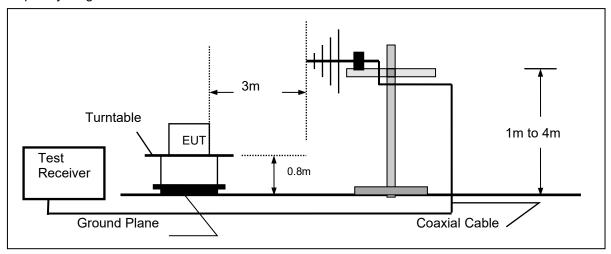

TEST RESULTS

Remark:

1. Both modes of BLE 1Mpbs and 2Mpbs were tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs was reported as below:

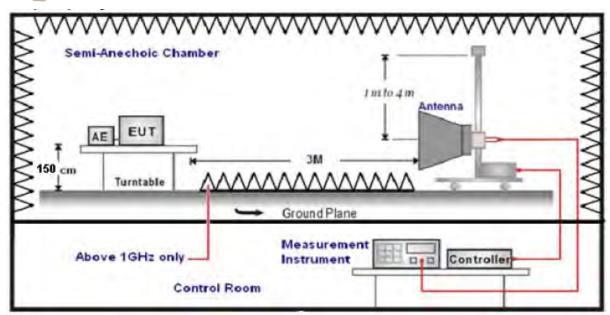
^{1.}Measurement = Reading Level+ Correct Factor


^{2.}Over = Measurement -Limit


4.2 Radiated Emissions and Band Edge

TEST CONFIGURATION

Frequency range 9 KHz - 30MHz



Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.

6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range Test Receiver/Spectrum Setting		Detector
9KHz-150KHz RBW=200Hz/VBW=3KHz,Sweep time=Auto		QP
150KHz-30MHz RBW=9KHz/VBW=100KHz,Sweep time=Auto		QP
30MHz-1GHz RBW=120KHz/VBW=1000KHz,Sweep time=Auto		QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz,	
	Sweep time=Auto	Peak
	Average Value: RBW=1MHz/VBW=10Hz,	
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

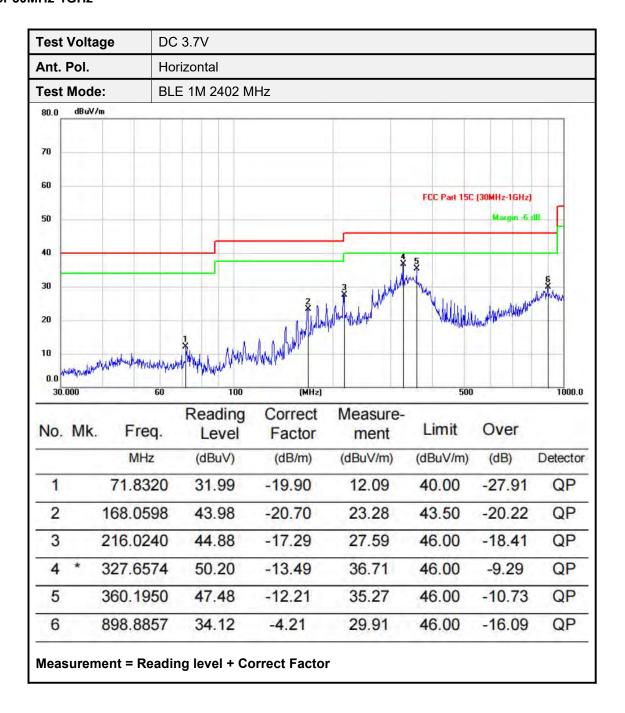
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500


TEST RESULTS

Remark:

- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. Both modes of BLE 1Mpbs and 2Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

Test Voltage DC 3.7V Ant. Pol. Vertical **Test Mode: BLE 1M 2402 MHz** dBuV/m 70 60 FCC Part 15C (30MHz-1GHz) 50 40 30 20 holdfall for their 10 0.0 30.000 100 (MHz) 1000.0 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector 1 70.3118 QP 33.91 -19.7614.15 40.00 -25.852 160.2332 -21.14 46.40 25.26 43.50 -18.24QP 3 -19.98QP 365.7955 38.04 -12.0226.02 46.00 4 499.9503 39.25 -9.9329.32 46.00 -16.68QP 5 37.92 -8.52 QP 565.6297 29.40 46.00 -16.606 899.8318 32.43 -4.1928.24 46.00 -17.76QP

Measurement = Reading level + Correct Factor

Test \		ige	DC:						
Ant. F				zontal					
Test I			BLE	1M 2402MF	Ηz				
80.0	dBu	V/m						FCC Part 15C (PK)	
70									
122									
60								FCC Part 15C (AV)	
50							5		6
40					Kyristerfurselsy-istalyterillus	3	may mente	hodinally have halden	
					3 I American de la plane	M Mary Market Mary Mary			
30	wanterly	the special state of	in the second	man the second of the second o	Chance A.				
20									
10									
0.0									
10000	00.000			1	(MHz)		8000		18000.
No.	Mk	. Fre	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MH	łz	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/n	n) (dB)	Detecto
1		2050.6	600	40.07	-11.05	29.02	74.00	-44.98	peal
2		3007.7	700	42.80	-10.58	32.22	74.00	-41.78	peal
3		4804.6	600	48.95	-5.92	43.03	74.00	-30.97	peal
4		7205.0	000	42.13	-0.09	42.04	74.00	-31.96	peal
		9608.8	300	42.48	3.21	45.69	74.00	-28.31	peak
5		16604.3	V-1-	36.06	13.65	49.71	74.00	-24.29	peak

Test Voltage DC 3.7V Ant. Pol. Vertical **Test Mode:** BLE 1M 2402MHz dBuV/m 80.0 FCC Part 15C (PK) 70 60 FCC Pail 15C (AV) 50 40 20 10 1000.000 (MHz) 8000 18000 Reading Correct Measure-Over Limit No. Mk. Freq. Factor Level ment MHz (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector 2453.500 40.32 -10.9029.42 74.00 -44.581 peak 2 -9.2934.27 3655.400 43.56 74.00 -39.73peak 3 53.67 -5.9247.75 4804.600 74.00 -26.25peak 4 7205.000 43.16 -0.0943.07 74.00 -30.93peak 5 37.18 7.27 11699.800 44.45 74.00 -29.55peak

Measurement = Reading level + Correct Factor

36.28

13.46

49.74

74.00

-24.26

peak

16723.300

6

Test Voltage DC 3.7V Ant. Pol. Horizontal BLE 1M 2440MHz **Test Mode:** dBuV/m FCC Part 15C (PK) 70 60 FCC Part 15C (AV) 50 40 30 20 10 0.0 1000,000 18000. Reading Correct Measure-Over Limit No. Mk. Freq. Level Factor ment Detector MHz (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 2388,900 40.78 -10.9329.85 74.00 -44.151 peak 2 3240,600 42.92 32.76 -41.24-10.1674.00 peak 3 49.86 -5.7144.15 4881,100 74.00 -29.85peak 4 8049.900 40.68 2.06 42.74 74.00 -31.26peak 5 12119.700 38.29 8.13 46.42 74.00 -27.58peak 6 16786.200 36.45 13.36 49.81 74.00 -24.19peak

Measurement = Reading level + Correct Factor

Test Voltage DC 3.7V Ant. Pol. Vertical **Test Mode:** BLE 1M 2440MHz FCC Part 15C (PK) 70 60 FCC Part 15C (AV) 50 40 30 20 10 1000.000 (MHz) 8000 18000 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector 1 3031.500 43.71 -10.5333.18 74.00 -40.82peak 2 4879.400 -5.72-29.5550.17 44.45 74.00 peak 3 39.85 -0.4239.43 7097.900 74.00 -34.57peak 4 41.08 3.21 44.29 -29.719608.800 74.00 peak 5 13121.000 36.96 10.09 47.05 74.00 -26.95peak

Measurement = Reading level + Correct Factor

36.31

13.42

49.73

74.00

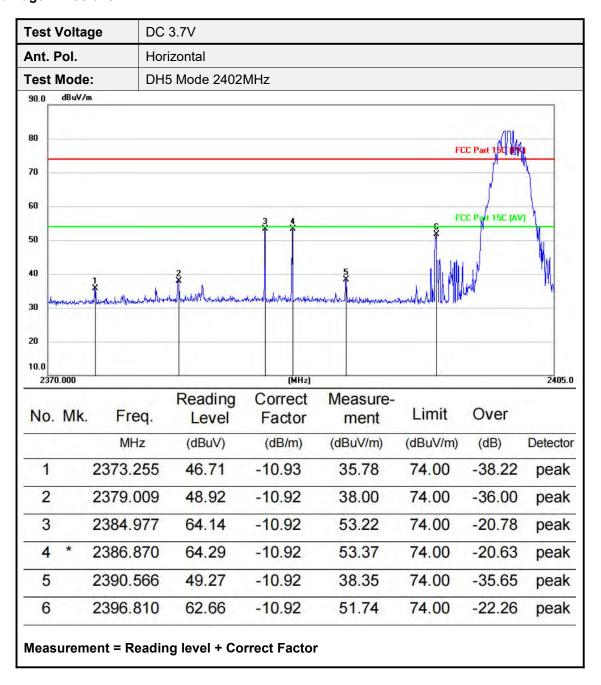
-24.27

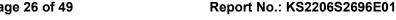
peak

17539.300

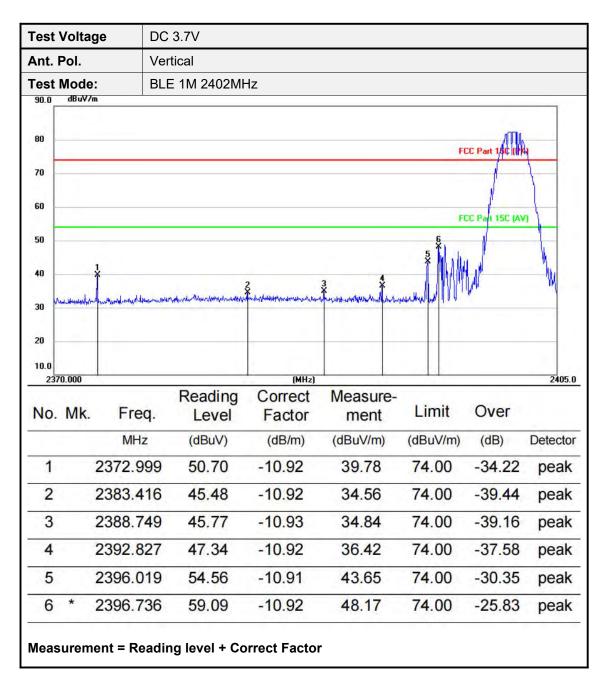
6

Test Voltage DC 3.7V Ant. Pol. Horizontal BLE 1M 2480MHz **Test Mode:** dBuV/m FCC Part 15C (PK) 70 60 FCC Part 15C (AV) 50 40 30 20 10 0.0 1000.000 (MHz) 8000 18000 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector 1 2210,400 41.25 -10.9830.27 74.00 -43.73peak 2 3388.500 43.00 -9.8933.11 74.00 -40.89peak 3 53.69 -5.5048.19 4961.000 74.00 -25.81peak 4 9607.100 42.16 3.20 45.36 74.00 -28.64peak 47.18 5 13092.100 37.13 10.05 74.00 -26.82peak 6 17711.000 36.53 13.50 50.03 74.00 -23.97peak

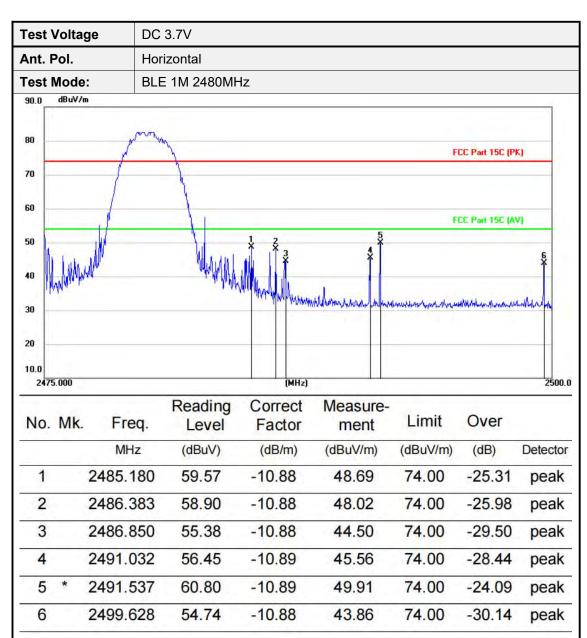

Measurement = Reading level + Correct Factor

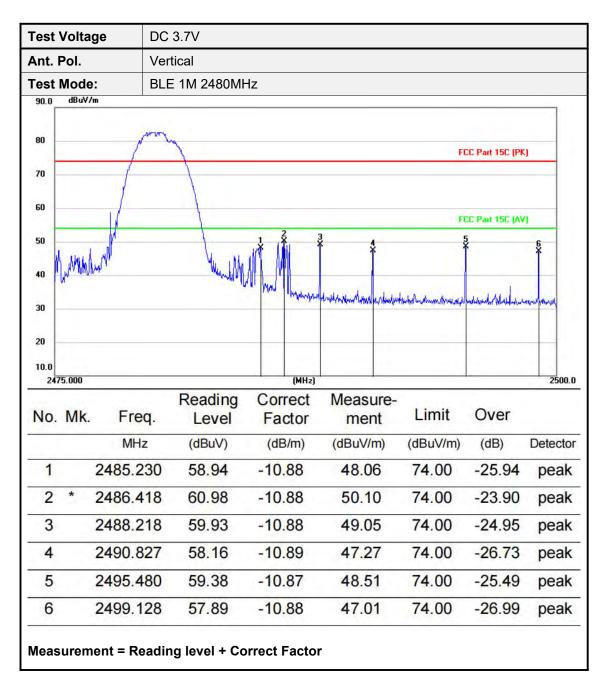


Test Voltage DC 3.7V Ant. Pol. Vertical **Test Mode:** BLE 1M 2480MHz dBuV/m FCC Part 15C (PK) 70 60 FCC Part 15C (AV) 50 40 30 20 10 1000.000 (MHz) 8000 18000. Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz (dBuV) (dBuV/m) (dBuV/m) (dB) (dB/m) Detector 1 2468.800 40.78 -10.9029.88 74.00 -44.12peak 2 -39.823419.100 44.01 -9.8334.18 74.00 peak 3 4804.600 50.03 -5.9244.11 74.00 -29.89peak 4 7653.800 40.72 1.21 41.93 74.00 -32.07peak 5 11946.300 37.27 7.77 45.04 74.00 -28.96peak 6 17093.900 36.39 13.10 -24.5149.49 74.00 peak Measurement = Reading level + Correct Factor



Band Edge Emissions





Measurement = Reading level + Correct Factor

Tel: +(86) 0755-2985 2678 Fax: +(86) 0755-2985 2397 E-mail: <u>info@gdksign.cn</u> Web: www.gdksign.com

4.3 Maximum Peak Output Power

<u>Limit</u>

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

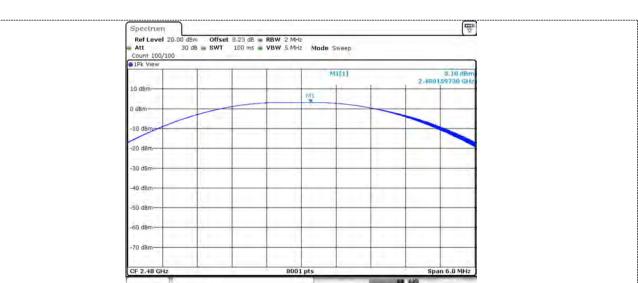
Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

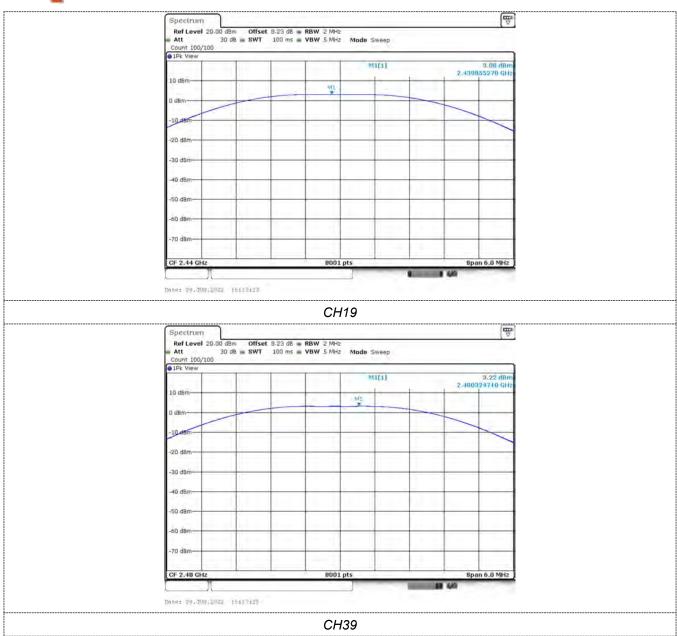
Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	3.47		
GFSK 1Mbps	19	3.08	30.00	Pass
	39	3.18		
	00	3.48		
GFSK 2Mbps	19	3.08	30.00	Pass
	39	3.22		

Note: 1.The test results including the cable lose.



Date: 29.3UN:2022 14:59:13

CH19



Date: 29.300:2022 |5100:64

Page 33 of 49 Report No.: KS2206S2696E01

4.4 Power Spectral Density

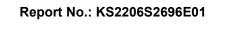
<u>Limit</u>

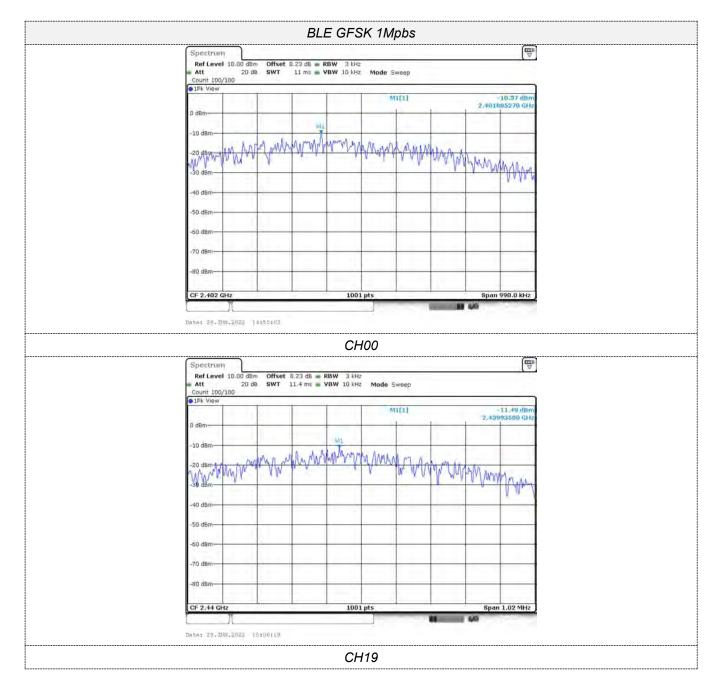
For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- 3. Set the VBW ≥ 3× RBW.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

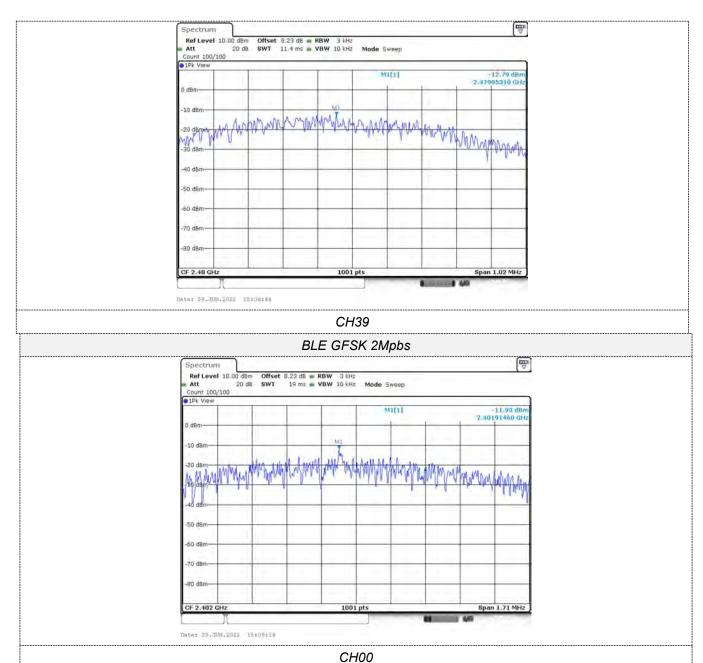
Test Configuration

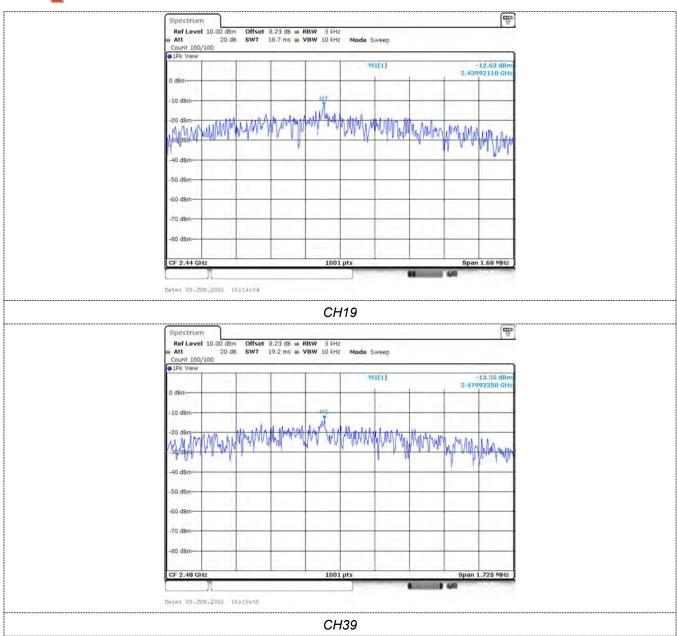

EUT	SPECTRUM
	ANALYZER


Test Results

Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
	00	-10.37		
GFSK 1Mbps	19	-11.49	8.00	Pass
	39	-12.79		
	00	-11.93		
GFSK 2Mbps	19	-12.63	8.00	Pass
	39	-13.35		

Test plot as follows:





4.56dB Bandwidth

<u>Limit</u>

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

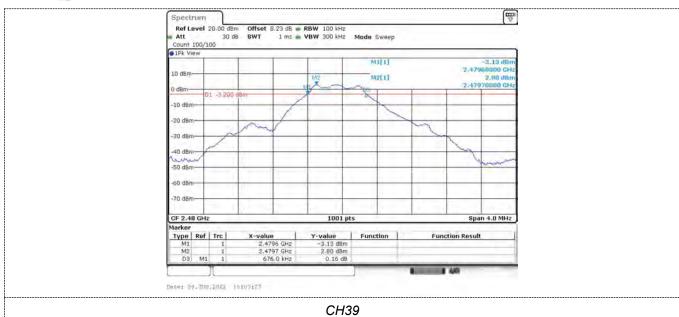
Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
GFSK 1Mbps	00	0.66		
	19	0.68	≥500	Pass
	39	0.68		
GFSK 2Mbps	00	1.14	≥500	Pass
	19	1.12		
	39	1.15		


Test plot as follows:

CH19

Page 41 of 49 Report No.: KS2206S2696E01

4.6 Out-of-band Emissions

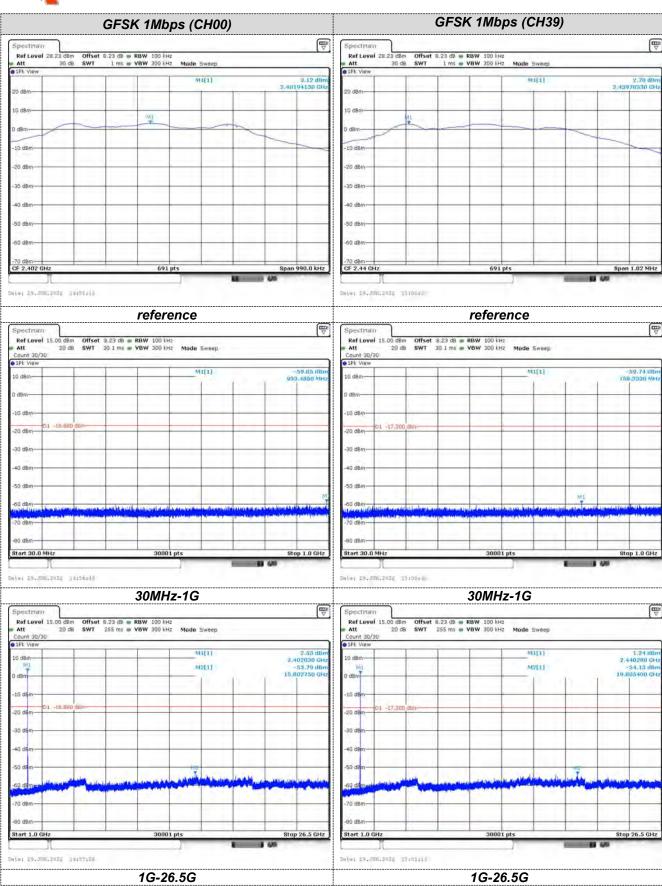

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

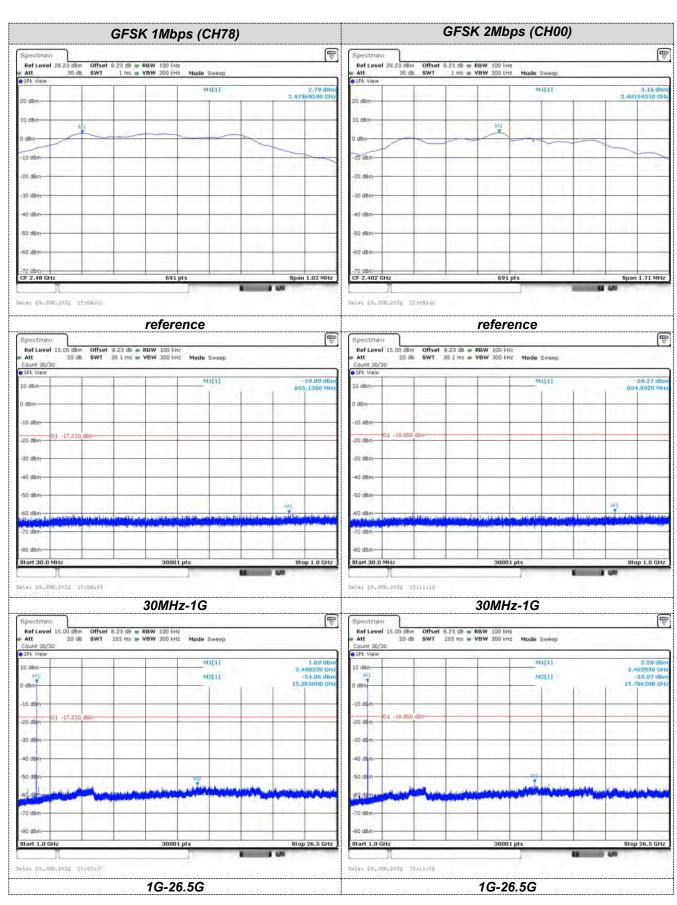
Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

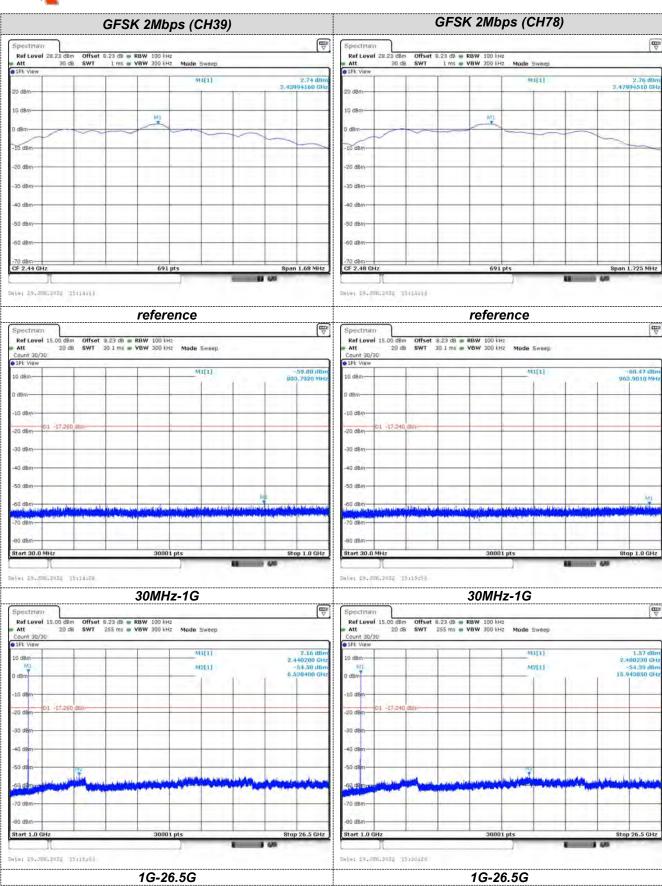


Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

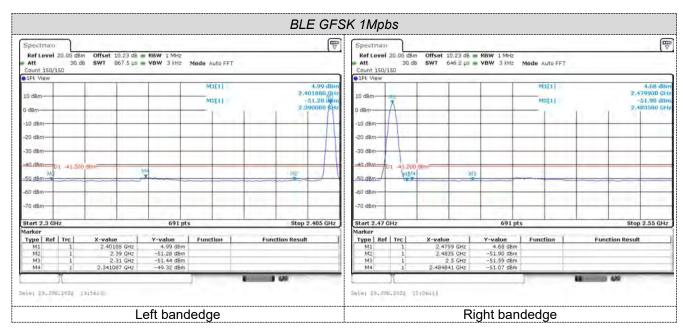

Test plot as follows:

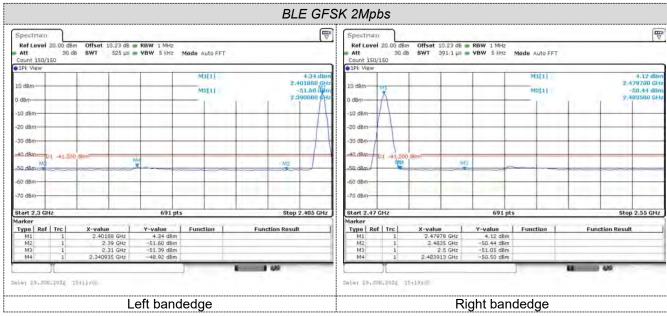
TRF No. FCC Part 15.247_R1



TRF No. FCC Part 15.247_R1

Add: West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, China


TRF No. FCC Part 15.247_R1


Page 45 of 49

Report No.: KS2206S2696E01

Band-edge Measurements for RF Conducted Emissions:

Page 46 of 49 Report No.: KS2206S2696E01

4.7 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

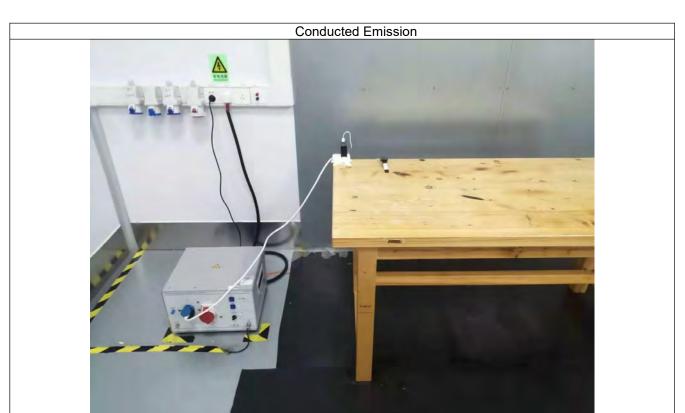
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was -0.7 dBi.

Page 47 of 49

Report No.: KS2206S2696E01


5. Test Setup Photos of the EUT

Radiated Measurement (Above 1GHz)

Page 49 of 49

Report No.: KS2206S2696E01

6. Photos of the EUT