

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202202264F01

TEST Report

Applicant: Dongguan Tuoying Photoelectricity Technology Co.,Ltd.

Address of Applicant: Room 301, Building 1, No. 6 YuCheng Road, Changan

Distrist, Dongguan, Guangdong, China

Manufacturer: Dongguan Tuoying Photoelectricity Technology Co.,Ltd.

Address of Room 301, Building 1, No. 6 YuCheng Road, Changan

Manufacturer: Distrist, Dongguan, Guangdong, China

Equipment Under Test (EUT)

Product Name: String Light

Model No.: E12SL25

Series model: E12SL1, E12SL100, E14SL1, E14SL100, E17SL1, E17SL100,

E26SL1, E26SL100, E27SL1, E27SL100

Trade Mark: N/A

FCC ID: 2A4VV-E12SL25

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Dec.10,2021

Date of Test: Dec.10,2021~Feb.25,2022

Date of report issued: Feb.25,2022

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Feb.25,2022	Original

Tested/ Prepared By	Ervin Xu	Date:	Feb.25,2022
	Project Engineer		
Check By:	Bruce 2hu	Date:	Feb.25,2022
	Reviewer		
Approved By :	Kerin Yang	Date:	Feb.25,2022
	Authorized Signature	_	

2. Contents

	Page
1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	4
4. GENERAL INFORMATION	5
4.1. GENERAL DESCRIPTION OF EUT 4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS. 4.6. TEST FACILITY 4.7. TEST LOCATION 4.8. ADDITIONAL INSTRUCTIONS	
5. TEST INSTRUMENTS LIST	
6. TEST RESULTS AND MEASUREMENT DATA	9
6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED OUTPUT POWER 6.3. CHANNEL BANDWIDTH 6.4. POWER SPECTRAL DENSITY 6.5. BAND EDGES 6.5.1. Conducted Emission Method 6.5.2. Radiated Emission Method 6.6. SPURIOUS EMISSION 6.6.1. Conducted Emission Method 6.6.2. Radiated Emission Method 6.6.2. Radiated Emission Method	
7. TEST SETUP PHOTO	30
8. EUT CONSTRUCTIONAL DETAILS	30

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
6dB Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	30~1000MHz	3.45 dB	(1)		
Radiated Emission	1~6GHz	3.54 dB	(1)		
Radiated Emission	6~40GHz	5.38 dB	(1)		
Conducted Disturbance	0.15~30MHz	2.66 dB	(1)		
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

4. General Information

4.1. General Description of EUT

Product Name:	String Light
Model No.:	E12SL25
Series model:	E12SL1, E12SL100, E14SL1, E14SL100 ,E17SL1, E17SL100, E26SL1, E26SL100, E27SL1, E27SL100
Test sample(s) ID:	HTT202202264-1(Engineer sample)
	HTT202202264-2(Normal sample)
Operation frequency	2402~2480 MHz
Number of Channels	40
Modulation Type	GFSK
Channel separation	2MHz
Antenna Type:	PCB Antenna
Antenna Gain:	0dBi
Power Supply:	DC 3.7V/1800mAh Form Battery and DC 5V From External Circuit
Adapter Information	Mode: CD122
(Auxiliary test provided by the lab):	Input: AC100-240V, 50/60Hz, 500mA
	Output: DC 5V, 2A

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

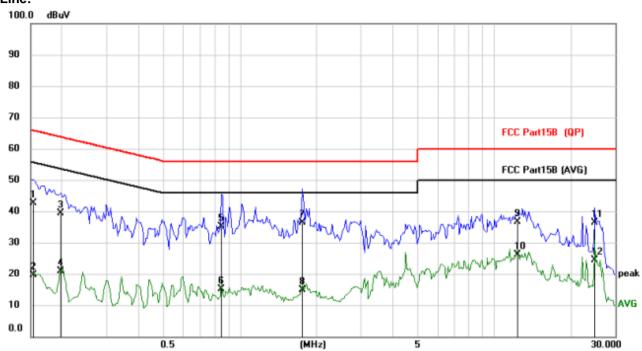
Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2020	Aug. 09 2024
2	Control Room Shenzhen C.R.T technology co., LTD 4.8*3.5*3.0		4.8*3.5*3.0	HTT-E030	Aug. 10 2020	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	May 21 2021	May 20 2022
4	Spectrum Analyzer	Rohde&Schwar			May 21 2021	May 20 2022
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	May 21 2021	May 20 2022
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	May 21 2021	May 20 2022
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	May 21 2021	May 20 2022
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	May 21 2021	May 20 2022
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	Aug. 22 2021	Aug. 21 2022
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	Aug. 22 2021	Aug. 21 2022
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Aug. 22 2021	Aug. 21 2022
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Aug. 22 2021	Aug. 21 2022
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	May 21 2021	May 20 2022
14	high-frequency Amplifier	HP	8449B	HTT-E014	May 21 2021	May 20 2022
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	May 21 2021	May 20 2022
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	May 21 2021	May 20 2022
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May 21 2021	May 20 2022
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May 21 2021	May 20 2022
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	May 21 2021	May 20 2022
20	Attenuator	Robinson	6810.17A	HTT-E007	May 21 2021	May 20 2022
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	May 21 2021	May 20 2022
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	May 21 2021	May 20 2022
23	DC power supply	Agilent	E3632A	HTT-E023	May 21 2021	May 20 2022
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	May 21 2021	May 20 2022
25	Analog signal generator	Agilent	N5181A	HTT-E025	May 21 2021	May 20 2022
26	Vector signal generator	Agilent	N5182A	HTT-E026	May 21 2021	May 20 2022
27	Power sensor	Keysight	U2021XA	HTT-E027	May 21 2021	May 20 2022
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	May 21 2021	May 20 2022
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

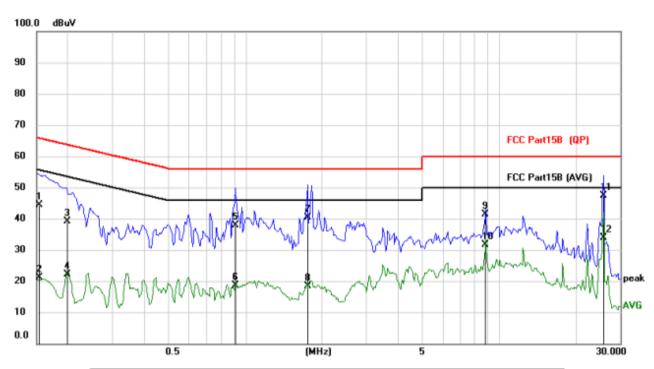
6. Test results and Measurement Data

6.1. Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207	,				
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, St	weep time=auto				
Limit:	Fragues av ronge (MILIT)	Limit	(dBuV)			
	Frequency range (MHz) Quasi-peak Av					
	0.15-0.5	66 to 56*	56 to			
	0.5-5	56	46			
	* Decreases with the logarithm	60	50	J		
Test setup:	Reference Plane	•				
Test procedure:	Remark E.U.T Test table/Insulation plane Receiver Receiver Receiver Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment.					
	 The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 					
Test Instruments:	Refer to section 6.0 for details	3				
Test mode:	Refer to section 5.2 for details					
Test environment:	Temp.: 25 °C Hun	nid.: 52%	Press.:	1012mbar		
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					

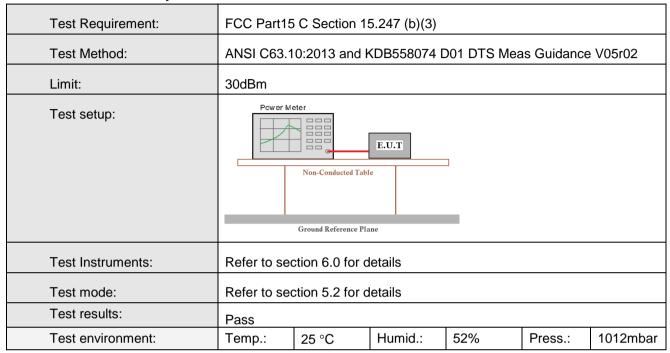
Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1539	32.15	10.37	42.52	65.79	-23.27	QP
2		0.1539	9.33	10.37	19.70	55.79	-36.09	AVG
3		0.1968	28.94	10.39	39.33	63.74	-24.41	QP
4		0.1968	10.51	10.39	20.90	53.74	-32.84	AVG
5		0.8481	24.33	10.82	35.15	56.00	-20.85	QP
6		0.8481	4.23	10.82	15.05	46.00	-30.95	AVG
7	*	1.7607	25.57	10.84	36.41	56.00	-19.59	QP
8		1.7607	4.11	10.84	14.95	46.00	-31.05	AVG
9		12.2531	24.91	11.77	36.68	60.00	-23.32	QP
10		12.2531	14.40	11.77	26.17	50.00	-23.83	AVG
11		24.9648	23.86	12.60	36.46	60.00	-23.54	QP
12		24.9648	11.69	12.60	24.29	50.00	-25.71	AVG

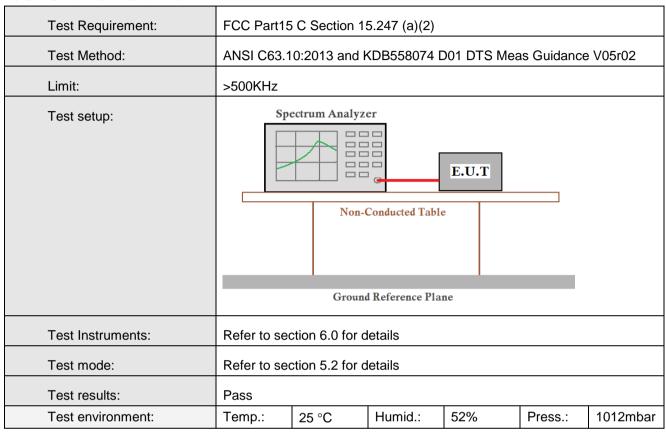
Neutral:


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1539	34.21	10.26	44.47	65.79	-21.32	QP
2	0.1539	10.88	10.26	21.14	55.79	-34.65	AVG
3	0.1986	29.02	10.20	39.22	63.67	-24.45	QP
4	0.1986	11.87	10.20	22.07	53.67	-31.60	AVG
5	0.9105	27.19	10.75	37.94	56.00	-18.06	QP
6	0.9105	7.83	10.75	18.58	46.00	-27.42	AVG
7	1.7607	29.54	10.82	40.36	56.00	-15.64	QP
8	1.7607	7.56	10.82	18.38	46.00	-27.62	AVG
9	8.8461	30.00	11.28	41.28	60.00	-18.72	QP
10	8.8461	20.31	11.28	31.59	50.00	-18.41	AVG
11 *	25.7526	34.75	12.61	47.36	60.00	-12.64	QP
12	25.7526	21.15	12.61	33.76	50.00	-16.24	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

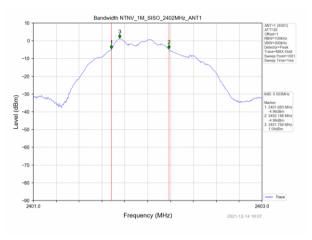
6.2. Conducted Output Power



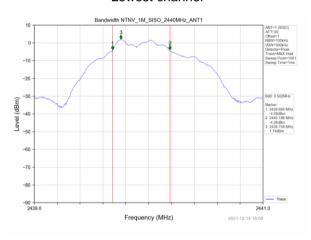
Measurement Data

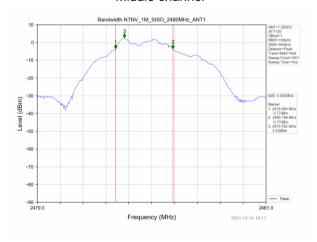
Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	1.05		
Middle	1.74	30.00	Pass
Highest	2.22		

6.3. Channel Bandwidth

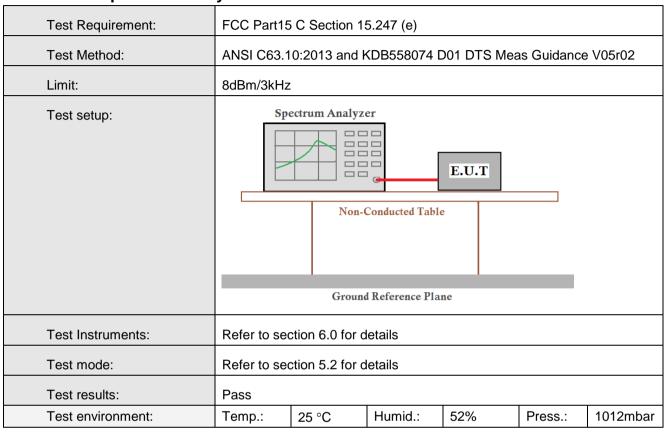


Measurement Data


Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result	
Lowest	0.503			
Middle	0.502	>500	Pass	
Highest	0.502			

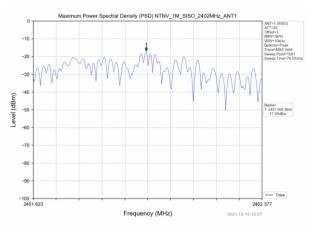

Test plot as follows:

Lowest channel

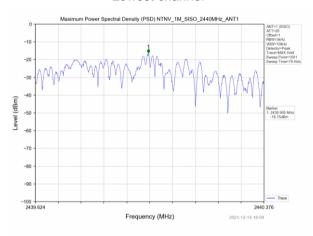

Middle channel

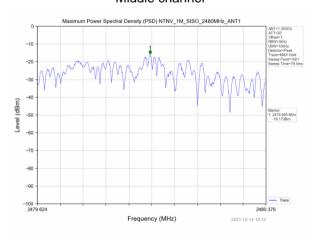
Highest channel

6.4. Power Spectral Density



Measurement Data

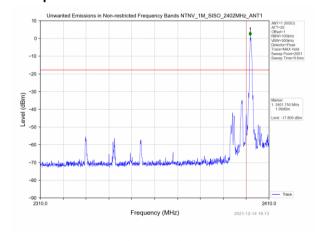

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result		
Lowest	-17.29				
Middle	-16.75	8.00	Pass		
Highest	-16.17				

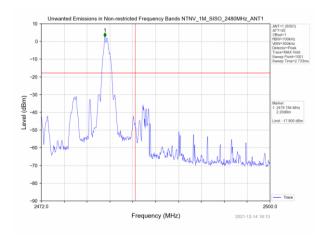

Test plot as follows:

Lowest channel

Middle channel

Highest channel




6.5. Band edges

6.5.1 Conducted Emission Method

	0.3.1 Conducted Linission Method						
Test Requirement:	FCC Part15	C Section 1	5.247 (d)				
Test Method:	ANSI C63.1	0:2013 and k	KDB558074 I	D01 DTS Mea	as Guidance	v05r02	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spo						
Test Instruments:	Refer to sec	ction 6.0 for d	letails				
Test mode:	Refer to sec	ction 5.2 for d	letails				
Test results:	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	

Test plot as follows:

Lowest channel

Highest channel

¹F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

6.5.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10):2013						
Test Frequency Range:	All of the res 2500MHz) da			l, only the v	worst band's	(2310MHz to		
Test site:	Measuremen							
Receiver setup:	Frequency	Detec	ctor R	BW V	BW	Value		
·	Above 1GH	Pos	k 1	MHz 3N	ИНz	Peak		
	Above 1GH	RM	S 1	MHz 3N	MHz A	verage		
Limit:	Fred	quency	Limit	(dBuV/m @	23m)	Value		
	Ahov	e 1GHz		54.00	Α	verage		
Test setup:	71001	O TOTIZ		74.00		Peak		
	Tum Table (150cm)							
Test Procedure:	1 The FLIT	was nlaced	Receive		table 1.5 met	are above		
	determine 2. The EUT vantenna, vantenna, vantenna, vantenna, vanten ground to horizontal measurem 4. For each sand then tand the routhe maxim 5. The test-rouse Specified 6. If the emissimit specified 6. If the emissimit specified 7. The radiat And found	the position was set 3 m which was man height is determine the and vertical nent. Suspected eithe antennata table was num reading eceiver systems and width was ion level of fied, then te would be repgin would be nethod as spition measure.	of the high eters away nounted on varied from ne maximum polarization mission, the was tuned turned from turned from the EUT in sting could orted. Other ere-tested of pecified and ements are positioning	est radiation from the intended in the top of a cone meter in value of the analysis of the analysis from 0 degrees to Peak Deam Hold Moon peak mode be stopped rwise the errone by one of then report performed in which it is well and the intended in the stopped the stoppe	erference-rec variable-heig to four meter he field streng tenna are set arranged to its om 1 meter to s to 360 degre	eiving nt antenna s above the oth. Both to make the s worst case of 4 meters ees to find and ower than the values of did not have uasi-peak or heet. positioning.		
Test Instruments:	Refer to sect							
Test mode:	Refer to sect	ion 5.2 for d	etails					
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

Measurement Data

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	
2390	59.24	26.20	5.72	33.30	57.86	74	-16.14	peak	
2390	45.37	26.20	5.72	33.30	43.99	54	-10.01	AVG	

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m) (dB)		Туре
2390	59.68	26.20	5.72	33.30	58.30	74	-15.70	peak
2390	45.21	26.20	5.72	33.30	43.83	54	-10.17	AVG

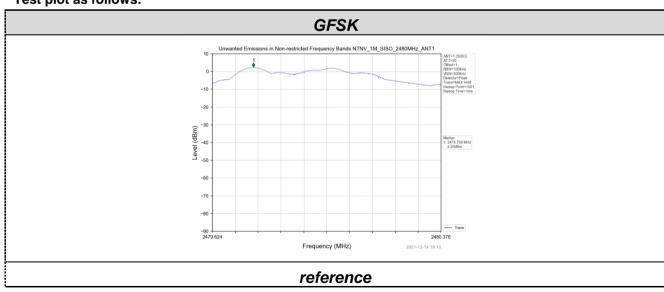
Operation Mode: GFSK TX High channel (2480MHz)

Horizontal (Worst case)

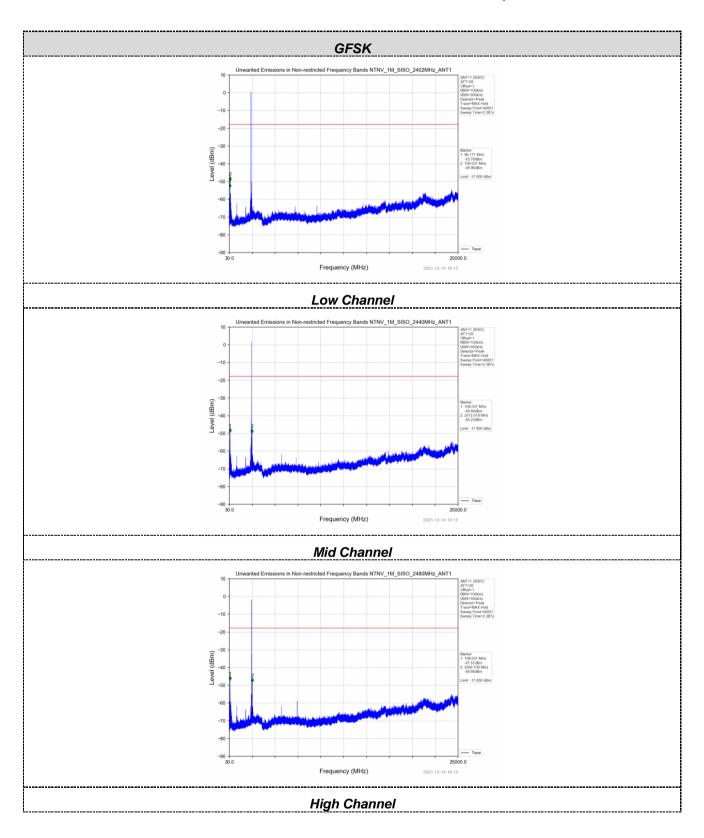
Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	54.98	28.60	6.97	32.70	57.85	74	-16.15	peak
2483.5	40.35	28.60	6.97	32.70	43.22	54	-10.78	AVG

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2483.5	56.48	28.60	6.97	32.70	59.35	74	-14.65	peak	
2483.5	41.20	28.60	6.97	32.70	44.07	54	-9.93	AVG	

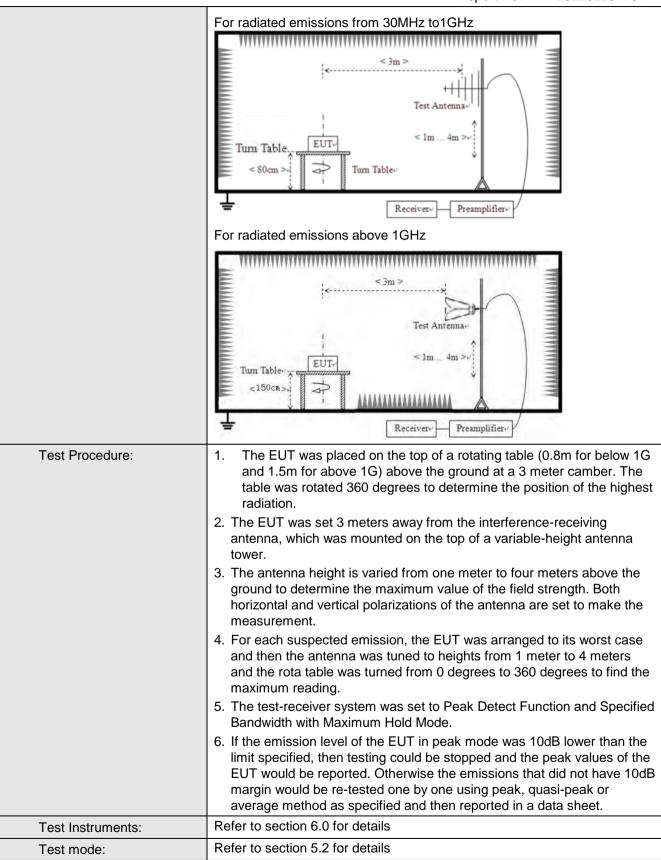


6.6. Spurious Emission


6.6.1 Conducted Emission Method

	nou .						
Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02	2					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details	_					
Test results:	Pass						
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012m	nbar					

Test plot as follows:



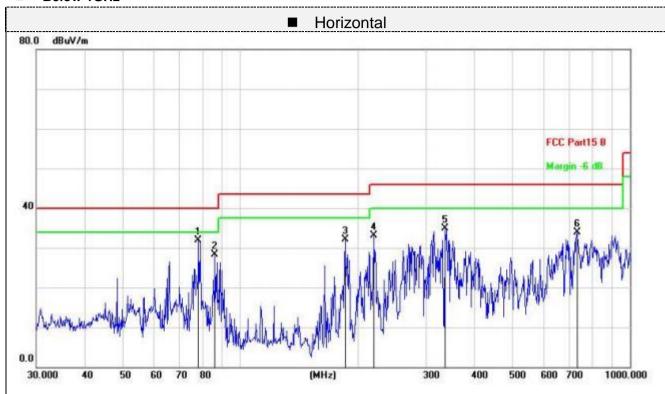
6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section	on 15	5.209				
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement Distar	ice: 3	3m				
Receiver setup:	Frequency		Detector	RB\	W	VBW	Value
	9KHz-150KHz	Qi	ıasi-peak	200	Hz	600Hz	z Quasi-peak
	150KHz-30MHz	Qı	ıasi-peak	9Kł	KHz 30KH		z Quasi-peak
	30MHz-1GHz Quasi-peak 12		120k	Ήz	300KH	Iz Quasi-peak	
	Above 1GHz Peak 1		1MI	Ηz	3MHz	z Peak	
	Above 10112		Peak	1MI	Ηz	10Hz	Average
Limit:	Frequency		Limit (u\	//m)	V	/alue	Measurement Distance
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP	300m
	0.490MHz-1.705M	Hz	24000/F(KHz)	(Hz)		30m
	1.705MHz-30MHz 30MHz-88MHz		30			QP	30m
			100 150		QP		
	88MHz-216MHz					QP	
	216MHz-960MH	Z	200			QP	3m
	960MHz-1GHz		500			QP	
	Above 1GHz		500		Average		
			5000) Pe		Peak	
Test setup:	For radiated emissio	ns fr	om 9kHz to	30MH	z		
	Turn Table E		< 3m > Tes	t Antenna 1m			

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 6	0Hz				
Test results:	Pass					

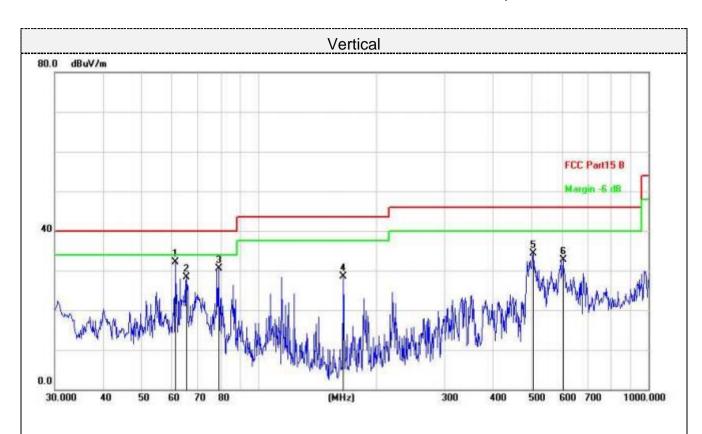
Measurement data:

Remark:


Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.



■ Below 1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	78.1389	53.47	-21.63	31.84	40.00	-8.16	QP
2		86.2001	50.24	-21.95	28.29	40.00	-11.71	QP
3		185.7882	52.19	-20.00	32.19	43.50	-11.31	QP
4		220.6171	52.90	-19.79	33.11	46.00	-12.89	QP
5		334.8589	51.87	-16.88	34.99	46.00	-11.01	QP
6		731.9203	42.36	-8.41	33.95	46.00	-12.05	QP

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	61.1316	50.50	-18.35	32.15	40.00	-7.85	QP
2		65.3432	47.33	-19.12	28.21	40.00	-11.79	QP
3		78.9652	52.36	-21.79	30.57	40.00	-9.43	QP
4		164.9075	47.04	-18.55	28.49	43.50	-15.01	QP
5		506.4791	47.03	-12.77	34.26	46.00	-11.74	QP
6		603.5392	42.78	-10.14	32.64	46.00	-13.36	QP

Final Level = Receiver Read level + Correct Factor

Above 1GHz

CH Low (2402MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	50.19	31.40	8.18	32.10	57.67	74.00	-16.33	peak
4804	35.88	31.40	8.18	32.10	43.36	54.00	-10.64	AVG
7206	43.96	35.80	10.83	31.40	59.19	74.00	-14.81	peak
7206	29.14	35.80	10.83	31.40	44.37	54.00	-9.63	AVG

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4804	51.24	31.40	8.18	32.10	58.72	74.00	-15.28	peak
4804	35.97	31.40	8.18	32.10	43.45	54.00	-10.55	AVG
7206	43.22	35.80	10.83	31.40	58.45	74.00	-15.55	peak
7206	29.25	35.80	10.83	31.40	44.48	54.00	-9.52	AVG
7200	25.25	33.00	10.03	31.70	77.70	J 4 .00	-3.02	7,10
			D 115					
Remark: Facto	or = Antenna Fac	tor + Cable Los	<u>s – Pre-amplifier</u>	•				

CH Middle (2440MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4880	50.48	31.40	9.17	32.10	58.95	74.00	-15.05	peak
4880	35.12	31.40	9.17	32.10	43.59	54.00	-10.41	AVG
7320	43.29	35.80	10.83	31.40	58.52	74.00	-15.48	peak
7320	29.11	35.80	10.83	31.40	44.34	54.00	-9.66	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4880	49.68	31.40	9.17	32.10	58.15	74.00	-15.85	peak
4880	35.03	31.40	9.17	32.10	43.50	54.00	-10.50	AVG
7320	43.51	35.80	10.83	31.40	58.74	74.00	-15.26	peak
7000	00.00	05.00	40.00	04.40	44.04	54.00	0.70	1)/0
7320	28.98	35.80	10.83	31.40	44.21	54.00	-9.79	AVG
								
Domarki Foots		tar i Cabla I aa	o Dro omnlifio					
Remark: Facto	or = Antenna Fac	tor + Cable Los	s – Pre-amplifier	•				

CH High (2480MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4960	49.98	31.40	9.17	32.10	58.45	74.00	-15.55	peak
4960	36.47	31.40	9.17	32.10	44.94	54.00	-9.06	AVG
7440	43.97	35.80	10.83	31.40	59.20	74.00	-14.80	peak
7440	28.58	35.80	10.83	31.40	43.81	54.00	-10.19	AVG

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4960	51.01	31.40	9.17	32.10	59.48	74.00	-14.52	peak
4960	35.31	31.40	9.17	32.10	43.78	54.00	-10.22	AVG
7440	42.78	35.80	10.83	31.40	58.01	74.00	-15.99	peak
7440	29.54	35.80	10.83	31.40	44.77	54.00	-9.23	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

-----End-----