

FCC TEST REPORT

FCC ID: 2A4U9-Q35

On Behalf of

DETECTMAX INC

Metal Detector

Model No.:Q35

Prepared for : DETECTMAX INC

Address : 3943 Irvine Blvd Ste527 Irvine, CA 92602 USA

Prepared By : Shenzhen Alpha Product Testing Co., Ltd.

Address : Building i, No.2, Lixin Road, Fuyong Street, Bao'an District,

518103, Shenzhen, Guangdong, China

Report Number : A2306162-C01-R04

Date of Receipt : July 4, 2023

Date of Test : July 4, 2023- August 29, 2023

Date of Report : August 30, 2023

Version Number : V0

TABLE OF CONTENTS

De	escri	ption	<u>Page</u>
1.	Sumi	nary of Standards and Results	6
	1.1.	Description of Standards and Results	6
2.	Gene	ral Information	7
	2.1.	Description of Device (EUT)	7
	2.2.	Accessories of Device (EUT)	8
	2.3.	Tested Supporting System Details	8
	2.4.	Block Diagram of Connection Between EUT and Simulators	8
	2.5.	Test Mode Description	8
	2.6.	Test Conditions	9
	2.7.	Test Facility	9
	2.8.	Measurement Uncertainty	10
	2.9.	Test Equipment List	11
3.	Powe	er Line Conducted Emission Test	13
	3.1.	Block Diagram of Test Setup	13
	3.2.	Test Limits	13
	3.3.	Configuration of EUT on Test	14
	3.4.	Operating Condition of EUT	14
	3.5.	Test Procedure	14
	3.6.	Test Results	14
4.	Radia	ated Emission Test	17
	4.1.	Block Diagram of Test Setup	17
	4.2.	Test Limit	18
	4.3.	Configuration of EUT on Test	19
	4.4.	Operating Condition of EUT	19
	4.5.	Test Procedure	19
	4.6.	Test Results	20
5.	Band	Edge Test	26
	5.1.	Block Diagram of Test Setup	26
	5.2.	Test Limit	26
	5.3.	Configuration of EUT on Test	27
	5.4.	Operating Condition of EUT	27
	5.5.	Test Procedure	27
	5.6.	Test Results	29
6.	Occu	pied Bandwidth Test	30
	6.1.	Block Diagram of Test Setup	30
	6.2.	Test Limit	30
	6.3.	Test Procedure	30
	6.4.	Test Results	30
7.	Ante	nna Requirement	34
	7.1.	Standard Requirement	34
	7.2.	Antenna Connected Construction	34

		Page 3 of 50	Report No.: A2306162-C01-R04
	7.3.	Results	34
8.	Photo	ograph	35
	8.1.	Photos of Radiated Emission Test	35
	8.2.	Photos of Power Line Conducted Emission Test	
9.	Photo	os of The EUT	37

TEST REPORT DECLARATION

Applicant : DETECTMAX INC

Address : 3943 Irvine Blvd Ste527 Irvine, CA 92602 USA

Manufacturer : Dongguan Quest Detection Technology Co., LIMITED

Address Room 501, Building 1, No. 2, Pulong North 1st Street, Tangxia Town, Dongguan City,

Guangdong Province, China

EUT Description : Metal Detector

(A) Model No. : Q35

(B) Trademark : QUESI metal detectors

quest metal detectors

Measurement Standard Used:

Date of issue.....

FCC Rules and Regulations Part 15 Subpart C Section 15.249 ANSI C63.10:2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed full responsibility for the accuracy and completeness of test. Also, this report shows that the EUT is technically compliant with the FCC Part 15 requirements.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature).......

Project Engineer

Reak Yang
Project Manager

August 30, 2023

Revision History

Revision	Issue Date	Revisions	Revised By
V0	August 30, 2023	Initial released Issue	Yannis Wen

1. Summary of Standards and Results

1.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

EMISSION					
Description of Test Item	Test Requirement	Standard Paragraph	Results		
Power Line Conducted Emission Test	FCC Part 15	Section 15.207	Р		
Spurious Emission Test	FCC Part 15	Section 15.249&15.209	Р		
Occupied bandwidth	FCC Part 15	Section 15. 249	Р		
Band edge Requirement	FCC Part 15	Section 15.249	Р		
Antenna Requirement	FCC Part 15	Section 15.203	Р		
Field strength of Fundamental	FCC Part 15	Section 15.249(a)	Р		

Note:

- 1. P is an abbreviation for Pass.
- 2. F is an abbreviation for Fail.
- 3. N/A is an abbreviation for Not Applicable.

2. General Information

2.1. Description of Device (EUT)

EUT Name : Metal Detector

Trademark : QUEST

quest metal detectors

Model No. : Q35 DIFF. : N/A

Power supply : DC 3.7V from battery, DC 5V from adapter

2.4G Technology

Operation frequency : 2406MHz-2470MHz

Channel No. : 19 Channel Modulation type : GFSK

Antenna Type : PCB Antenna, Maximum Gain is 3.73dBi

Hardware version : V2.0 Software version : V1.0

2.2. Accessories of Device (EUT)

Accessories1 : /
Manufacturer : /
Model : /
Power supply : /

2.3. Tested Supporting System Details

No.	Description	Manufacturer	Model	Serial Number	Certification or SDOC
1.					

2.4. Block Diagram of Connection Between EUT and Simulators

EUT

2.5. Test Mode Description

Test mode:

Mode	Channel	Frequency (MHz)
GFSK	Low :CH0	2406
GFSK	Middle: CH9	2442
GFSK	High: CH18	2478

Note:

- 1. The test was used to control EUT work in Continuous TX mode, and select test channel, wireless mode
- 2. The EUT has been tested as an independent unit. And Continual Transmitting in maximum power.
- 3. New battery is used during all tests.
- 4. For the relevant Conducted Measurement, the temporary antenna connector is used during the measurement. Antenna Connector Impedance: 50Ω , Cable Loss: 1.0 dB

Channel list						
CH0	2406MHz	CH7	2434MHz			
CH1	2410MHz	CH8	2438MHz	CH16	2470MHz	
CH2	2414MHz	CH9	2442MHz	CH17	2474MHz	
				CH18	2478MHz	

2.6. Test Conditions

Temperature range	21-25°C
Humidity range	40-75%
Pressure range	86-106kPa

2.7. Test Facility

Shenzhen Alpha Product Testing Co., Ltd.
Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission

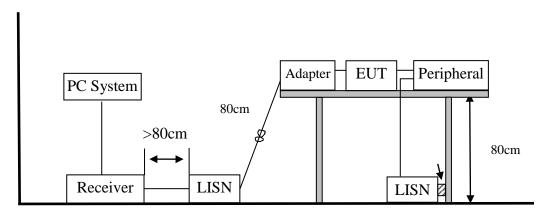
Registration Number: 293961

July 15, 2019 Certificated by IC Registration Number: CN0085

2.8. Measurement Uncertainty

(95% confidence levels, k=2)

Item	Uncertainty
Uncertainty for Power point Conducted Emissions Test	1.63dB
Uncertainty for Radiation Emission test in 3m chamber (below 30MHz)	3.5dB
Uncertainty for Radiation Emission test in 3m chamber	3.74dB(Polarize: V)
(30MHz to 1GHz)	3.76dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	3.77dB(Polarize: V)
(1GHz to 25GHz)	3.80dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	4.31 dB(Polarize: V)
(18GHz to 40GHz)	4.30 dB(Polarize: H)
Uncertainty for radio frequency	5.06×10 ⁻⁸ GHz
Uncertainty for conducted RF Power	0.40dB
Uncertainty for temperature	0.2℃
Uncertainty for humidity	1%
Uncertainty for DC and low frequency voltages	0.06%


2.9. Test Equipment List

Equipment	Manufacture	Model No.	Firmware version	Serial No.	Last cal.	Cal Interval
9*6*6 anechoic chamber	CHENYU	9*6*6	/	N/A	2022.05.17	3Year
Spectrum analyzer	ROHDE&SCHWARZ	FSV40-N	2.3	102137	2023.08.16	1Year
Spectrum analyzer	Agilent	N9020A	A.14.16	MY499100060	2023.08.16	1Year
Receiver	ROHDE&SCHWARZ	ESR	2.28 SP1	1316.3003K03-10 2082-Wa	2023.08.16	1Year
Receiver	R&S	ESCI	4.42 SP1	101165	2023.08.16	1Year
Bilog Antenna	Schwarzbeck	VULB 9168	/	VULB 9168#627	2023.08.28	1Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	/	2106	2023.08.19	1Year
Loop Antenna	SCHWARZBECK	FMZB 1519B	/	00128	2023.08.19	1Year
RF Cable	Resenberger	Cable 1	/	RE1	2023.08.16	1Year
RF Cable	Resenberger	Cable 2	/	RE2	2023.08.16	1Year
RF Cable	Resenberger	Cable 3	/	CE1	2023.08.16	1Year
Pre-amplifier	HP	HP8347A	/	2834A00455	2023.08.16	1Year
Pre-amplifier	Agilent	8449B	/	3008A02664	2023.08.16	1Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	/	8126-466	2023.08.16	1Year
L.I.S.N.#2	ROHDE&SCHWARZ	ENV216	/	101043	2023.08.16	1Year
Horn Antenna	SCHWARZBECK	BBHA 9170	/	00946	2023.08.19	1Year
Preamplifier	SKET	LNPA_1840 -50	/	SK2018101801	2023.08.16	1 Year
Power Meter	Agilent	E9300A	/	MY41496628	2023.08.16	1 Year
Power Sensor	DARE	RPR3006W	/	15100041SNO91	2023.08.16	1 Year
Temp. & Humid. Chamber	Teelong	TL-HW408S	/	TL-20191205-01	2023.07.25	1 Year
Switching Mode Power Supply	JUNKE	JK12010S	/	20140927-6	2023.08.16	1 Year
Adjustable attenuator	MWRFtest	N/A	/	N/A	N/A	N/A
10dB Attenuator	Mini-Circuits	DC-6G	/	N/A	N/A	N/A

Software Information						
Test Item	Software Name	Manufacturer	Version			
RE	EZ-EMC	farad	Alpha-3A1			
CE	EZ-EMC	farad	Alpha-3A1			
RF-CE	MTS 8310	MWRFtest	2.0.0.0			

3. Power Line Conducted Emission Test

3.1. Block Diagram of Test Setup

3.2. Test Limits

	Maximum RF Line Voltage			
Frequency	Quasi-Peak Level	Average Level		
	dB(μV)	dB(μV)		
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*		
500kHz ~ 5MHz	56	46		
5MHz ~ 30MHz	60	50		

Notes:

- 1. Emission level=Read level + LISN factor-Preamp factor + Cable loss
- 2. * Decreasing linearly with logarithm of frequency.
- 3. The lower limit shall apply at the transition frequencies.

3.3. Configuration of EUT on Test

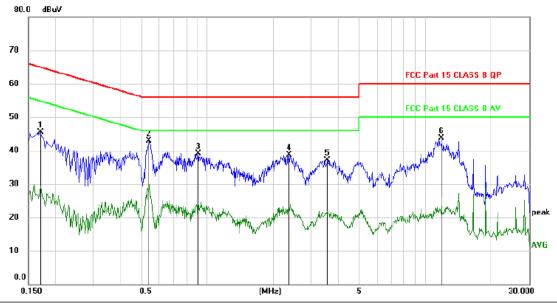
The following equipment are installed on Power Line Conducted Emission Test to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 3.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode taking the test.

3.5. Test Procedure

- The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT Power connected to the power mains through a line impedance stabilization network (L.I.S.N. 1#). This provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N.#2). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10:2013 on conducted Emission test.
- The frequency range from 150kHz to 30MHz is checked, the bandwidth of test receiver is set at 9kHz.
- The frequency range from 30MHz to 1000MHz was pre-scanned with a Peak detector and all final readings of measurement from Test Receiver are Quasi-Peak and Average values.
- (4) The test results are reported on Section 3.6.

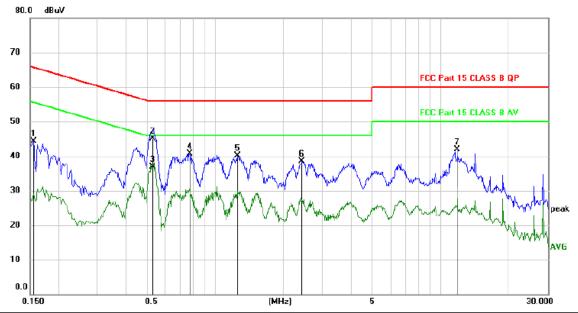

3.6. Test Results

Frequency Range	0.15MHz~30MHz Test Date : 2023.08.9	
Test Mode	TX 2406MHz Temperature : 24°C	
Test Results	PASS Humidity : 56%	

Note: 1. The test results are listed in next pages.

- 2. This mode is worst case mode, and this report only reflected the worst mode.
- 3. If the limits for the measurement with the quasi-peak detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the quasi-peak detector need not be carried out.

L:


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	1	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1710	35.67	9.83	45.50	64.91	-19.41	peak	
2	×	0.5400	33.01	9.83	42.84	56.00	-13.16	peak	
3		0.9060	29.26	9.84	39.10	56.00	-16.90	peak	
4		2.3640	28.87	9.77	38.64	56.00	-17.36	peak	
5		3.5490	27.18	9.83	37.01	56.00	-18.99	peak	
6		11.8800	33.60	10.06	43.66	60.00	-16.34	peak	

*:Maximum data x:Over limit !:over margin

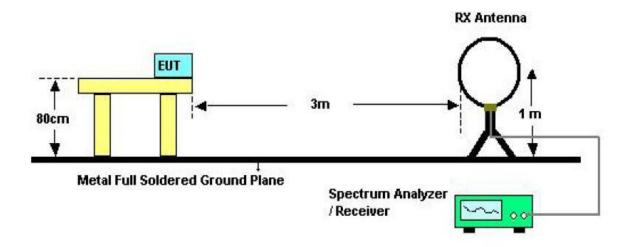
 $\langle \text{Reference Only}$

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

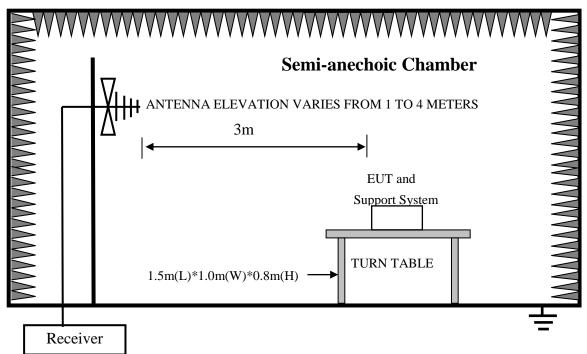
N:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	n	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1560	34.45	9.83	44.28	65.67	-21.39	peak	
2	0.5250	35.28	9.83	45.11	56.00	-10.89	QP	
3 *	0.5250	27.00	9.83	36.83	46.00	-9.17	AVG	
4	0.7710	30.92	9.84	40.76	56.00	-15.24	peak	
5	1.2600	30.24	9.82	40.06	56.00	-15.94	peak	
6	2.4329	28.69	9.77	38.46	56.00	-17.54	peak	
7	11.8710	31.80	10.05	41.85	60.00	-18.15	peak	

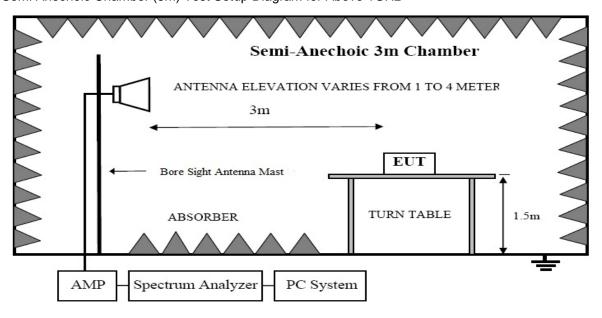
Reference Only


Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

^{*:}Maximum data x:Over limit !:over margin


4. Radiated Emission Test

4.1. Block Diagram of Test Setup


In Semi Anechoic Chamber (3m) Test Setup Diagram for 9KHz~30MHz

In Semi Anechoic Chamber (3m) Test Setup Diagram for 30MHz~1000MHz

In Semi Anechoic Chamber (3m) Test Setup Diagram for Above 1GHz

4.2. Test Limit

Frequ	iency	Distance	Field Strengths Limits			
MI	Нz	(Meters)	uV/m	dB uV/m		
0.009	~ 0.490	300	2400/F(kHz)			
0.490	1.705	30	24000/F(kHz)			
1.705	30	30	30	29.5		
30	88	3	100(3nW)	40		
88	216	3	150(6.8nW)	43.5		
216	960	3	200(12nW)	46		
Above	960	3	500(75nW)	54		
Carrier fr	equency	3	50000(avg)	113.97(peak) 93.97(avg)		

Notes:

- 1. Emission level = Read level + Antenna Factor Preamp Factor + Cable Loss
- 2. The smaller limit shall apply at the cross point between two frequency bands.
- 3. Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.
- 4. For frequencies above 1000 MHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

4.3. Configuration of EUT on Test

The following equipment are installed on Radiated Emission Test to meet the commission requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

4.4. Operating Condition of EUT

- (1) Setup the EUT as shown as Section 4.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode taking the test.

4.5. Test Procedure

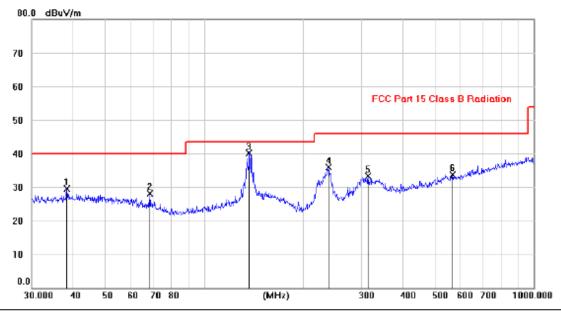
- The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber for below 1GHz and 150 cm above the ground plane inside a semi-anechoic chamber for above 1GHz. An antenna was located 3m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10: 2013 on Radiated Emission test.
- (2) For the radiated emission test above 1GHz:
 - Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- (3) Test antenna was located 4m from the EUT on an adjustable mast. Below pre-scan procedure was first performed in order to find prominent radiated emissions.
 - (a) Change work frequency or channel of device if practicable.
 - (b) Change modulation type of device if practicable.
 - (c) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions
- (4) For harmonic emissions test a appropriate high pass filter was inserted in the input port of AMP
- (5) The frequency range from 9KHz to 150KHz is checked, the bandwidth of test receiver is set at 200Hz.
 - The frequency range from 150KHz to 30MHz is checked, the bandwidth of test receiver is set at 9KHz.

The frequency range from 30MHz to 1000MHz is checked, the bandwidth of test receiver is set at 120kHz.

- The frequency range from above 1GHz is checked, the bandwidth of Signal Analyzer is set at 1MHz.
- **(6)** The frequency range from 30MHz to 1000MHz was pre-scanned with a peak detector and all final readings of measurement from Test Receiver are Quasi-Peak values, the frequency range from 1GHz to 6GHz was pre-scanned with a peak detector and all final readings of measurement from Spectrum Analyzer are peak and average values checked, all measurement distance is 3m in 3m semi anechoic chamber.
- Test for all x, y, z axes is performed and only the worst case of X xes was recorded in the test **(7)** report.
- (8) The test results are reported on Section 4.6.

4.6. Test Results

Freque	ncy Range	:	9kHz~30MHz	Test Date	:	2023.08.29
Test Mo	ode	:	TX 2406MHz	Temperature	:	24 °C
Test Re	esults	:	PASS	Humidity	:	56%
Note:	1. The amplit	ude	e of spurious emissions which are	attenuated by r	nore	e than 20dB below the
Note:	permissible v	alu	e has no need to be reported.			

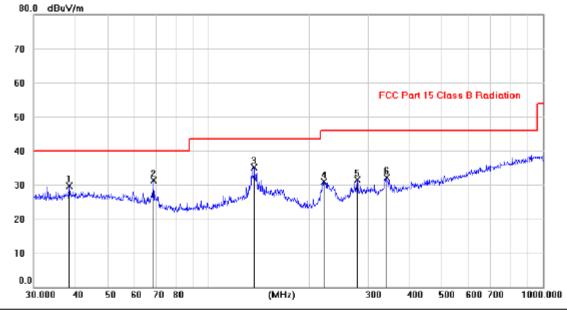

- 2. This mode is worst case mode, and this report only reflected the worst mode.

Frequency Range	:	30MHz~1000MHz	Test Date	:	2023.08.29
Test Mode	:	TX 2406MHz	Temperature	:	24°C
Test Results	:	PASS	Humidity	:	56%

Note: 1. The test results are listed in next pages.

- 2. This mode is worst case mode, and this report only reflected the worst mode.
- 3. If the limits for the measurement with the quasi-peak detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the quasi-peak detector need not be carried out.

Vertical:



No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		38.3967	15.15	14.26	29.41	40.00	-10.59	peak			
2		68.5107	16.58	11.55	28.13	40.00	-11.87	peak			
3	*	137.0158	26.00	14.08	40.08	43.50	-3.42	QP	100	0	
4		238.6238	23.44	12.50	35.94	46.00	-10.06	peak			
5		314.9281	18.76	14.46	33.22	46.00	-12.78	peak			
6		567.8654	14.25	19.53	33.78	46.00	-12.22	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.

^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Horizontal:

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		38.3967	15.42	14.26	29.68	40.00	-10.32	peak			
2		68.4808	19.65	11.56	31.21	40.00	-8.79	peak			
3	*	137.0593	21.09	14.08	35.17	43.50	-8.33	peak			
4		222.0724	19.04	11.80	30.84	46.00	-15.16	peak			
5		278.7991	17.97	13.53	31.50	46.00	-14.50	peak			_
6		340.3338	17.01	15.01	32.02	46.00	-13.98	peak			

Note:1. *: Maximum data; x: Over limit; !: over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Note: This report only shall the worst case mode for TX 2406MHz.

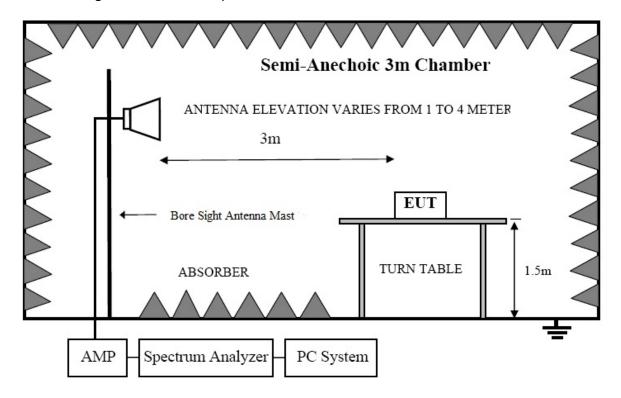
Frequency Range	:	1GHz~25GHz			
EUT	:	Metal Detector	Test Date	:	2023.08.29
M/N	:	V80	Temperature	:	24°C
Test Engineer	:	Yannis Wen	Humidity	:	56%
Test Mode	:	TX 2406MHz,TX2442MHz, TX2478MHz			

Test Results : PASS

Note:

- 1. Means other frequency and mode comply with standard requirements and at least have 20dB margin.
- 2. Correct Factor=Cable Loss+ Antenna Factor-Amplifier Gain.

Result=Reading + Correct Factor.


Margin= Result-Limit.

- 3. Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK.
- 4. Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: Avg.
- 5. If the limits for the measurement with the average detector are met when using a receiver with a peak detector, the test unit shall be deemed to meet both limits and the measurement with the average detector need not be carried out.

	TX 2406MHz											
No.	Freq	Polarity	Reading	Correct	Result	Limit	Margin	Remark				
	MHz		(dBuV/m)	Factor	(dBuV/m)	(dBuV/m)						
1	2406	Н	95.72	-3.41	92.31	113.97	-21.66	Peak				
2	2406	Н		-3.41		93.97		Avg				
3	4812	Н	36.72	3.23	39.95	74	-34.05	Peak				
4	4812	Н		3.23		54		Avg				
	•	•						•				
1	2406	V	91.51	-3.38	88.13	113.97	-25.84	Peak				
2	2406	V		-3.38		93.97		Avg				
3	4812	V	37.65	3.23	40.88	74	-33.12	Peak				
4	4812	V		3.23		54		Avg				
	TX2442MHz											
1	2442	Н	92.41	-3.41	89.00	113.97	-24.97	Peak				
2	2442	Н		-3.41		93.97		Avg				
3	4884	Н	37.70	3.23	40.93	74	-33.07	Peak				
4	4884	Н		3.23		54		Avg				
1	2442	V	89.83	-3.38	89.83	113.97	-27.52	Peak				
2	2442	V		-3.38		93.97		Avg				
3	4884	V	38.57	3.23	38.57	74	-32.20	Peak				
4	4884	V		3.23		54		Avg				
				TX2478MH	z							
1	2478	Н	95.01	-3.41	91.60	113.97	-22.37	Peak				
2	2478	Н		-3.41		93.97		Avg				
3	4946	Н	36.31	3.23	39.54	74	-34.46	Peak				
4	4946	Н		3.23		54		Avg				
							_					
1	2478	V	90.87	-3.38	87.49	113.97	-26.48	Peak				
2	2478	V		-3.38		93.97		Avg				
3	4946	V	39.74	3.23	42.97	74	-31.03	Peak				
4	4946	V		3.23		54	-	Avg				

5. Band Edge Test

5.1. Block Diagram of Test Setup

5.2. Test Limit

Please refer section 15.249 and section 15.205.

249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in section 15.209, whichever is the lesser attenuation.

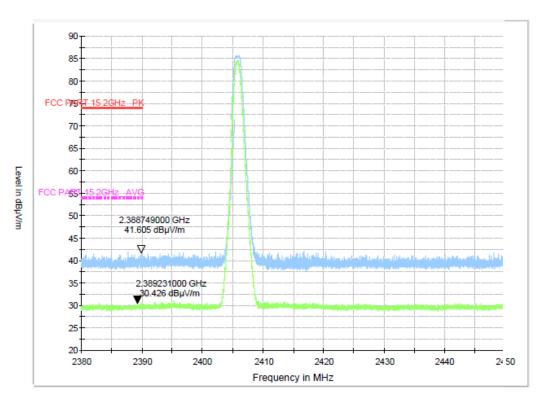
249(e) As show in section 15.35(b), for frequencies above 1000MHz, the above field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak filed strength shall not exceed 2500 millivolts/meter at 3meters along the antenna azimuth.

5.3. Configuration of EUT on Test

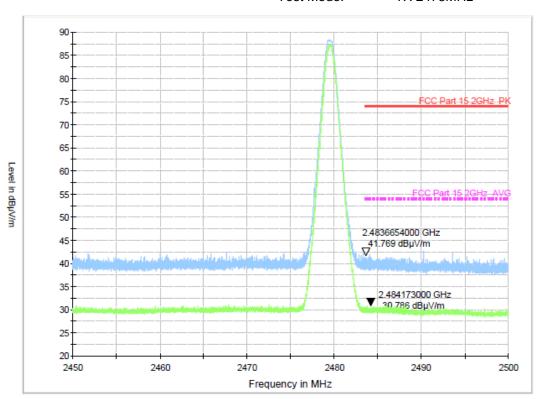
The following equipment are installed on Radiated Emission Test to meet the commission requirements and operating regulations in a manner that tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

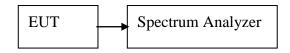
- (1) Setup the EUT as shown as Section 5.1.
- (2) Turn on the power of all equipment.
- (3) Let the EUT work in test mode taking the test.


5.5. Test Procedure

- The EUT was placed on a non-metallic table, 150 cm above the ground plane inside a semi-anechoic chamber. An antenna was located 3m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10: 2013 on Radiated Emission test.
- (2) For the radiated emission test above 1GHz:
 - Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- (3) Test antenna was located 4m from the EUT on an adjustable mast. Below pre-scan procedure was first performed in order to find prominent radiated emissions.
 - (a) Change work frequency or channel of device if practicable.
 - (b) Change modulation type of device if practicable.
 - (c) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions


- The frequency range from above 1GHz is checked, the bandwidth of Signal Analyzer is set at 1MHz.
- (6) The frequency range from 1GHz to 6GHz was pre-scanned with a peak detector and all final readings of measurement from Spectrum Analyzer are peak and average values checked, all measurement distance is 3m in 3m semi anechoic chamber.
- (7) Test for all x, y, z axes is performed and only the worst case of X xes was recorded in the test report.
- (8) The test results are reported on Section 5.6.

5.6. Test Results

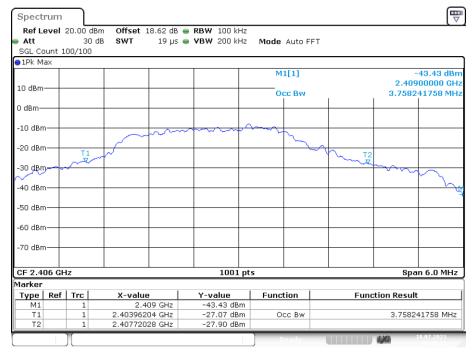


6. Occupied Bandwidth Test

6.1. Block Diagram of Test Setup

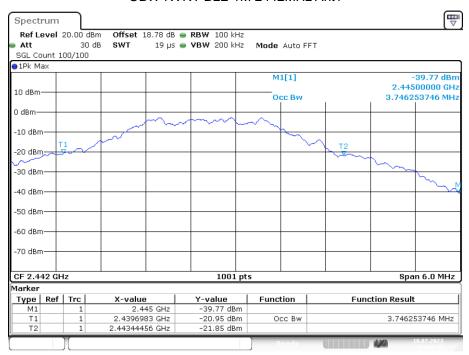
6.2. Test Limit

Please refer section 15.249 and section 15.205.

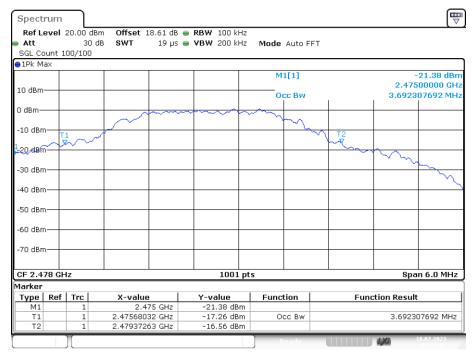

6.3. Test Procedure

- **(1)** The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.
- (2) The test receiver RBW set 30KHz,VBW set 100KHz,Sweep time set auto.

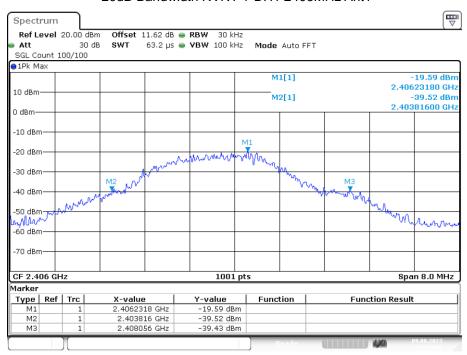
6.4. Test Results


Mode		Frequency	20dB Bandwidth	99% Bandwidth	Limit						
		MHz (MHz) (MHz)		(kHz)							
		2406	4.24	3.758	/						
GFSK	ANT1	2442	4.104	3.746	/						
		2478	4.328	3.692	/						
Note: 1	Note: 1 The test results are listed in next pages										

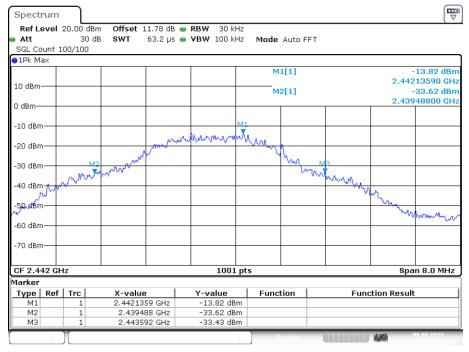
OBW NVNT BLE 1M 2406MHz Ant1


Date: 18.JUL.2023 04:40:32

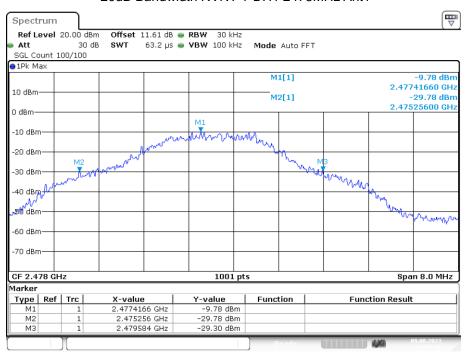
OBW NVNT BLE 1M 2442MHz Ant1


Date: 18.JUL.2023 04:47:15

OBW NVNT BLE 1M 2478MHz Ant1


Date: 18.JUL.2023 04:55:07

-20dB Bandwidth NVNT 1-DH1 2406MHz Ant1


Date: 9.AUG.2023 11:59:05

-20dB Bandwidth NVNT 1-DH1 2442MHz Ant1

Date: 9.AUG.2023 11:59:21

-20dB Bandwidth NVNT 1-DH1 2478MHz Ant1

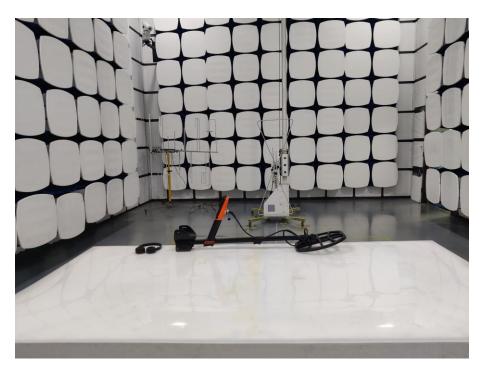
Date: 9.AUG.2023 11:58:37

7. Antenna Requirement

7.1. Standard Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

7.2. Antenna Connected Construction

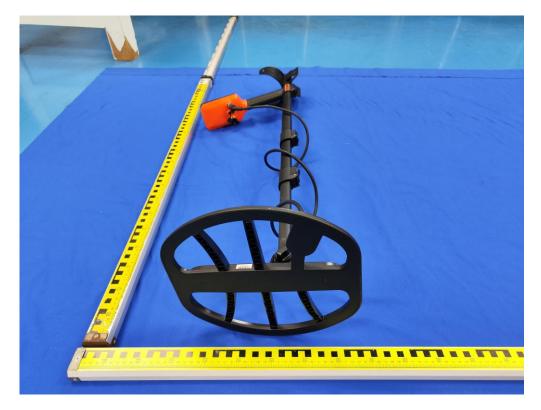

The directional gains of antenna used for transmitting is -0.46dBi, and the antenna is fixed antenna no consideration of replacement. Please see EUT photo for details.

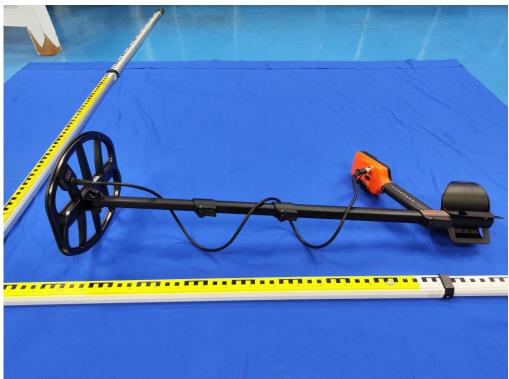
7.3. Results

The EUT antenna is PCB Antenna. It complies with the standard requirement.

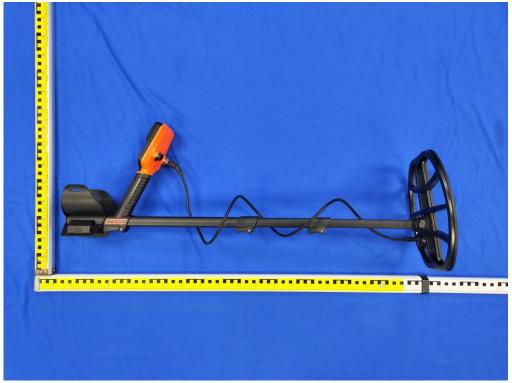
8. Photograph

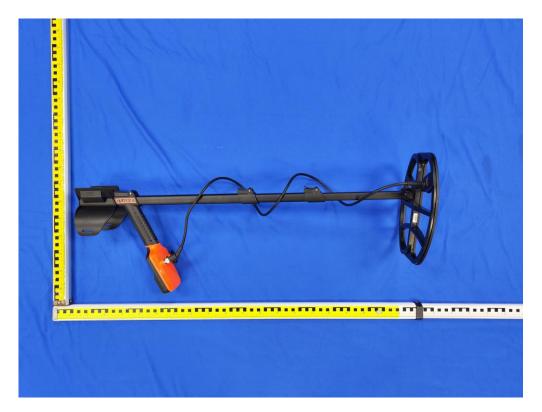
8.1. Photos of Radiated Emission Test

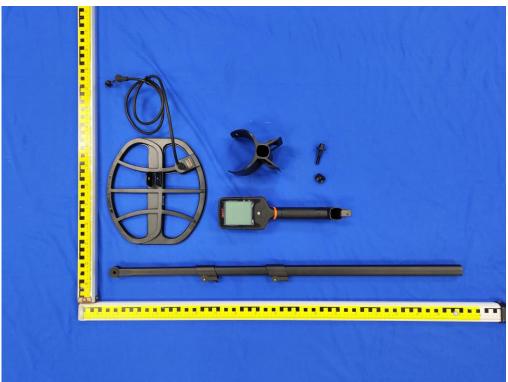

8.2. Photos of Power Line Conducted Emission Test

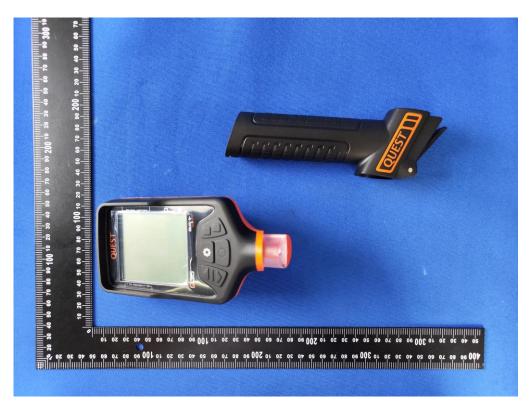


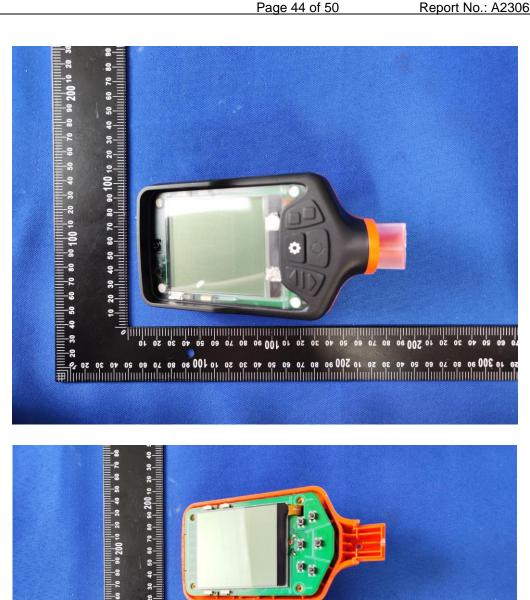
9. Photos of The EUT

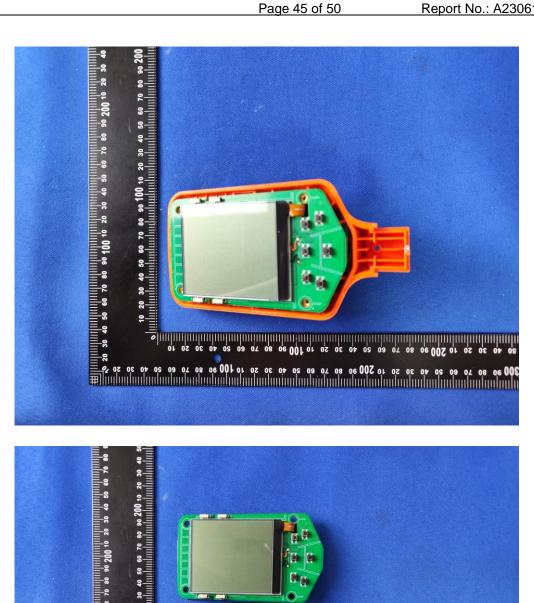


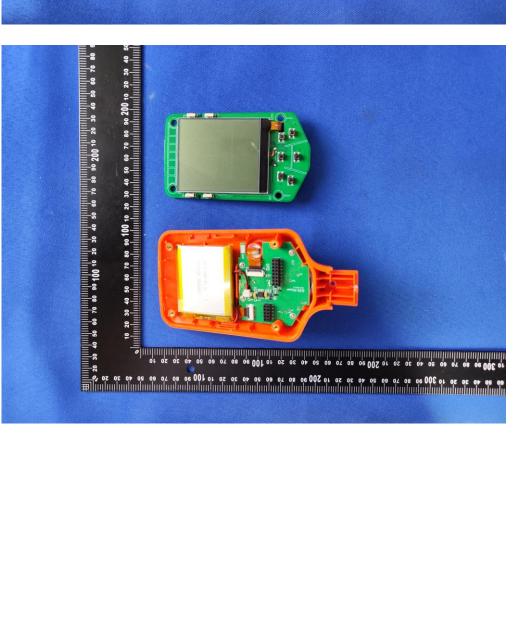


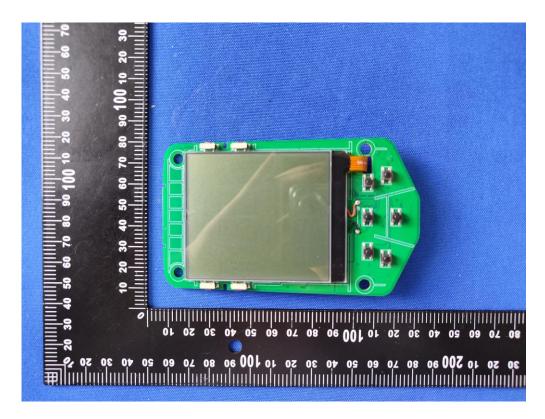


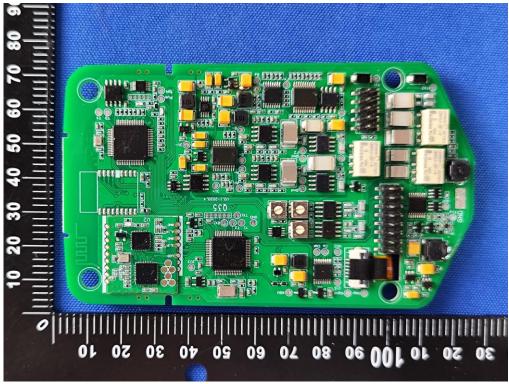




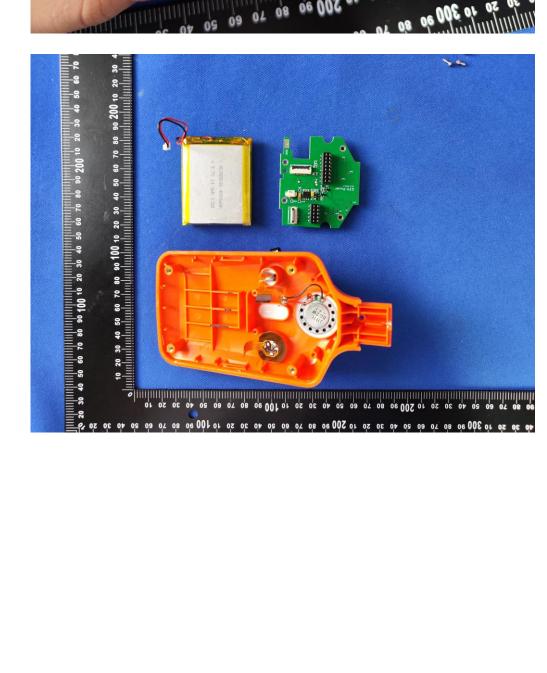


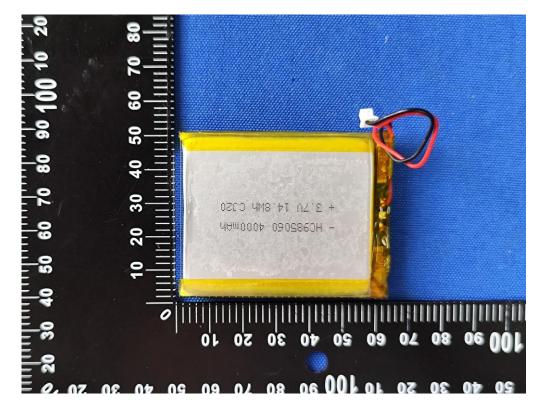


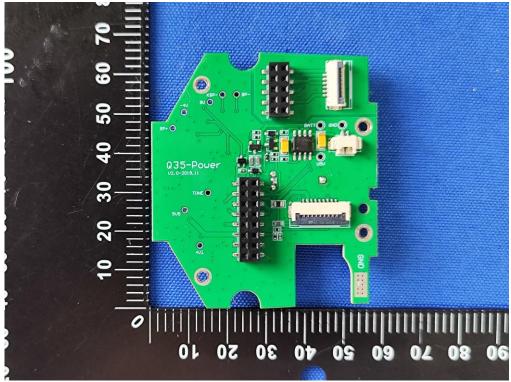


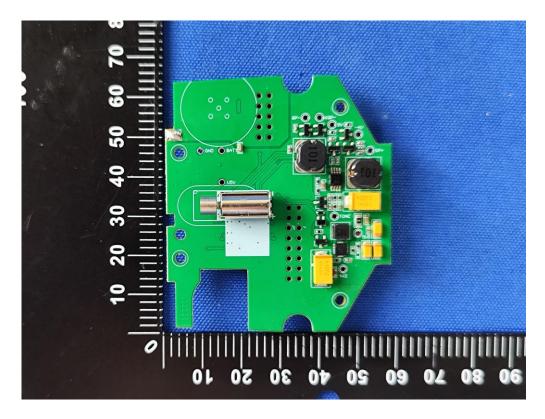












-----THE END OF REPORT-----