Global United Technology Services Co., Ltd.

Report No.: GTS202202000080F01

TEST REPORT

Applicant: Shenzhen Zechuanghai Electronic Technology Co., Ltd.
Address of Applicant:Room 201, No. 212, Fenghuang East District, FenghuangCommunity, Fuyong Street, Shenzhen, China
Manufacturer/Factory: Shenzhen Zechuanghai Electronic Technology Co., Ltd.
Address of Manufacturer/Factory:Room 201, No. 212, Fenghuang East District, Fenghuang
Equipment Under Test (EUT)
Product Name: wii game controller
Model No.: M20520
FCC ID: 2A4QX-220224
Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt: February 22, 2022
Date of Test: February 22-25, 2022
Date of report issued: February 25, 2022
Test Result : PASS *

[^0]
Laboratory Manager

2 Version

Version No.	Date	Description
00	February 25, 2022	Original

Prepared By:

Date:

Project Engineer

Check By:

Date:

February 25, 2022
February 25, 2022
\qquad
\qquad

3 Contents

Page
1 COVER PAGE 1
2 VERSION 2
3 CONTENTS 3
4 TEST SUMMARY 4
5 GENERAL INFORMATION 5
5.1 General Description of EUT 5
5.2 TEST MODE 7
5.3 Description of Support Units 7
5.4 Deviation from Standards 7
5.5 AbNORMALItiES FROM Standard Conditions 7
5.6 Test FACILITY 7
5.7 TEST LOCATION 7
5.8 ADDITIONAL INSTRUCTIONS 7
6 TEST INSTRUMENTS LIST 8
7 TEST RESULTS AND MEASUREMENT DATA 10
7.1 ANTENNA REQUIREMENT 10
7.2 Conducted Peak Output Power. 11
7.3 20dB Emission Bandwidth 12
7.4 Carrier Frequencies Separation 13
7.5 Hopping Channel Number 14
7.6 DwELL TIME 15
7.7 Spurious Emission in Non-restricted \& restricted Bands 16
7.7.1 Conducted Emission Method 16
7.7.2 Radiated Emission Method 17
8 TEST SETUP PHOTO 32
9 EUT CONSTRUCTIONAL DETAILS 32

[^1]Report No.: GTS202202000080F01

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	$15.203 / 15.247$ (c)	Pass
AC Power Line Conducted Emission	15.207	$\mathrm{~N} / \mathrm{A}$
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	$15.247(\mathrm{a})(1)$	Pass
Carrier Frequencies Separation	$15.247(\mathrm{a})(1)$	Pass
Hopping Channel Number	$15.247(\mathrm{a})(1)(\mathrm{iii})$	Pass
Dwell Time	$15.247(\mathrm{a})(1)(\mathrm{iii})$	Pass
Radiated Emission	$15.205 / 15.209$	Pass
Band Edge	$15.247(\mathrm{~d})$	Pass

Remarks:

1. Pass: The EUT complies with the essential requirements in the standard.
2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	$9 \mathrm{kHz}-30 \mathrm{MHz}$	3.1 dB	(1)
Radiated Emission	$30 \mathrm{MHz}-200 \mathrm{MHz}$	3.8039 dB	(1)
Radiated Emission	$200 \mathrm{MHz}-1 \mathrm{GHz}$	3.9679 dB	(1)
Radiated Emission	$1 \mathrm{GHz}-18 \mathrm{GHz}$	4.29 dB	(1)
Radiated Emission	$18 \mathrm{GHz}-40 \mathrm{GHz}$	3.30 dB	(1)
AC Power Line Conducted Emission	$0.15 \mathrm{MHz} \sim 30 \mathrm{MHz}$	3.44 dB	(1)

Note (1): The measurement uncertainty is for coverage factor of $\mathrm{k}=2$ and a level of confidence of 95%.

[^2]
5 General Information

5.1 General Description of EUT

Product Name:	wii game controller
Model No.:	M20520
Test sample(s) ID:	GTS202202000080-1
Sample(s) Status:	Engineer sample
Serial No.:	00535876198
Operation Frequency:	$2402 \mathrm{MHz} \sim 2480 \mathrm{MHz}$
Channel numbers:	79
Channel separation:	1 MHz
Modulation type:	GFSK
Antenna Type:	PCB Antenna
Antenna gain:	OdBi(declare by applicant)
Power supply:	DC3V(2*1.5V Size"AA" Battery)

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	21	2422 MHz	41	2442 MHz	61	2462 MHz
2	2403 MHz	22	2423 MHz	42	2443 MHz	62	2463 MHz
3	2404 MHz	23	2424 MHz	43	2444 MHz	63	2464 MHz
4	2405 MHz	24	2425 MHz	44	2445 MHz	64	2465 MHz
5	2406 MHz	25	2426 MHz	45	2446 MHz	65	2466 MHz
6	2407 MHz	26	2427 MHz	46	2447 MHz	66	2467 MHz
7	2408 MHz	27	2428 MHz	47	2448 MHz	67	2468 MHz
8	2409 MHz	28	2429 MHz	48	2449 MHz	68	2469 MHz
9	2410 MHz	29	2430 MHz	49	2450 MHz	69	2470 MHz
10	2411 MHz	30	2431 MHz	50	2451 MHz	70	2471 MHz
11	2412 MHz	31	2432 MHz	51	2452 MHz	71	2472 MHz
12	2413 MHz	32	2433 MHz	52	2453 MHz	72	2473 MHz
13	2414 MHz	33	2434 MHz	53	2454 MHz	73	2474 MHz
14	2415 MHz	34	2435 MHz	54	2455 MHz	74	2475 MHz
15	2416 MHz	35	2436 MHz	55	2456 MHz	75	2476 MHz
16	2417 MHz	36	2437 MHz	56	2457 MHz	76	2477 MHz
17	2418 MHz	37	2438 MHz	57	2458 MHz	77	2478 MHz
18	2419 MHz	38	2439 MHz	58	2459 MHz	78	2479 MHz
19	2420 MHz	39	2440 MHz	59	2460 MHz	79	2480 MHz
20	2421 MHz	40	2441 MHz	60	2461 MHz		

Note:
In section $15.31(\mathrm{~m})$, regards to the operating frequency range over 10 MHz , the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402 MHz
The middle channel	2441 MHz
The Highest channel	2480 MHz

[^3]
5.2 Test mode

Transmitting mode \quad Keep the EUT in continuously transmitting mode.
Remark: the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data. New battery is used during all test.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

- FCC-Registration No.: 381383

Designation Number: CN5029
Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

- IC —Registration No.: 9079A

CAB identifier: CN0091
The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing - NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:
Global United Technology Services Co., Ltd.
Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102
Tel: 0755-27798480
Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Special test command provided by manufacturer
Power level setup	Default

[^4]
6 Test Instruments list

Radiated Emission:

Item	Test Equipment	Manufacturer	Model No.	Inventory No.	$\begin{gathered} \text { Cal.Date } \\ \text { (mm-dd-yy) } \end{gathered}$	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 022020	July. 012025
2	Control Room	ZhongYu Electron	$6.2(\mathrm{~L})^{*} 2.5(\mathrm{~W}) * 2.4(\mathrm{H})$	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde \& Schwarz	ESU26	GTS203	June. 242021	June. 232022
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 242021	June. 232022
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 242021	June. 232022
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 242021	June. 232022
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 242021	June. 232022
9	Coaxial Cable	GTS	N/A	GTS211	June. 242021	June. 232022
10	Coaxial cable	GTS	N/A	GTS210	June. 242021	June. 232022
11	Coaxial Cable	GTS	N/A	GTS212	June. 242021	June. 232022
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 242021	June. 232022
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 242021	June. 232022
14	Amplifier (18-26GHz)	Rohde \& Schwarz	$\begin{aligned} & \text { AFS33-18002 } \\ & 650-30-8 \mathrm{P}-44 \\ & \hline \end{aligned}$	GTS218	June. 242021	June. 232022
15	Band filter	Amindeon	82346	GTS219	June. 242021	June. 232022
16	Power Meter	Anritsu	ML2495A	GTS540	June. 242021	June. 232022
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 242021	June. 232022
18	Wideband Radio Communication Tester	Rohde \& Schwarz	CMW500	GTS575	June. 242021	June. 232022
19	Splitter	Agilent	11636B	GTS237	June. 242021	June. 232022
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 242021	June. 232022
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 172021	Oct. 162022
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 172021	Oct. 162022
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 172021	Oct. 162022
24	PSA Series Spectrum Analyzer	Rohde \& Schwarz	FSP	GTS578	June. 242021	June. 232022

RF Conducted Test:						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 242021	June. 232022
2	EMI Test Receiver	R\&S	ESCI 7	GTS552	June. 24 2021	June. 232022
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 242021	June. 232022
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 242021	June. 232022
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 242021	June. 232022
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 242021	June. 232022
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 242021	June. 232022
8	Programmable Constant Temp \& Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 242021	June. 232022

General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 24 2021	June. 23 2022
2	Barometer	ChangChun	DYM3	GTS255	June. 24 2021	June. 232022

[^5]
7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:
 FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.
15.247(c) (1)(i) requirement:
(i) Systems operating in the $2400-2483.5 \mathrm{MHz}$ band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi .

E.U.T Antenna:

The antenna is PCB antenna, the best case gain of the is OdBi, reference to the appendix II for details

[^6]
7.2 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Limit:	30dBm(for GFSK),20.97dBm(for EDR)
Test setup:	
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data: The detailed test data see Appendix for BT BDR.

7.3 20dB Emission Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Limit:	N/A
Test setup:	Spectrum Analyzer Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data: The detailed test data see Appendix for BT BDR.

[^7]
7.4 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW $=100 \mathrm{KHz}, \mathrm{VBW}=300 \mathrm{KHz}$, detector=Peak
Limit:	GFSK: 20dB bandwidth $\pi / 4-$ DQPSK \& 8DSK: 0.025 MHz or $2 / 3$ of the 20 dB bandwidth (whichever is greater)
Test setup:	Spectrum Analyzer Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data: The detailed test data see Appendix for BT BDR.

[^8]
7.5 Hopping Channel Number

Measurement Data: The detailed test data see Appendix for BT BDR.

7.6 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak
Limit:	0.4 Second
Test setup:	
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	

Measurement Data: The detailed test data see Appendix for BT BDR.

7.7 Spurious Emission in Non-restricted \& restricted Bands

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW $=100 \mathrm{kHz}$, VBW=300kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	

Measurement Data: The detailed test data see Appendix for BT BDR.

[^9]
7.7.2 Radiated Emission Method

[^10]Report No.: GTS202202000080F01

	For radiated emissions from 30 MHz to 1 GHz For radiated emissions above 1 GHz
Test Procedure:	1. The EUT was placed on the top of a rotating table (0.8 m for below 1 G and 1.5 m for above 1 G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details

GTS

Report No.: GTS202202000080F01								
Test environment:	Temp.:	$25^{\circ} \mathrm{C}$	Humid.:	52%	Press.:	1012 mbar		
Test voltage:	DC3V	Pass						
Test results:	Pas							

Measurement data:

Remarks:

1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

- $9 \mathrm{kHz} \sim 30 \mathrm{MHz}$

The low frequency, which started from 9 kHz to 30 MHz , was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

- Below 1GHz

Pre-scan all test modes, found worst case at 2480 MHz , and so only show the test result of 2480 MHz

Horizontal:

[^11]No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Vertical:

- Above 1 GHz

- Unwanted Emissions in Restricted Frequency Bands

Test channel:	Lowest	Polarization:	Horizontal

[^12]No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,
Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Test channel:	Lowest	Polarization:	Vertical

Test channel:	Middle	Polarization:	Horizontal

Test channel:	Middle	Polarization:	Vertical

[^13]No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,
Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Test channel:	Highest	Polarization:	Horizontal

Freq MHz	Reading level dBu V	Antenna factor dB / m	Cable loss dB	Preamp factor dB	$\begin{aligned} & \text { level } \\ & \mathrm{dBuV} / \mathrm{m} \end{aligned}$	Limit level dBuV/m	Over limit dB	Remark
4960.000	20.96	31.44	4.79	37.54	19.65	54.00	-34.35	Average
4960.000	29.79	31.44	4. 79	37.54	28. 48	74.00	-45. 52	Peak
7440.000	19.51	36.66	6.77	37.72	25. 22	54.00	-28.78	Average
7440.000	30.05	36.66	6.77	37.72	35. 76	74.00	-38.24	Peak
9920.000	21.69	38. 30	8.09	37.98	30.10	54.00	-23.90	Average
9920.000	29.97	38.30	8.09	37.98	38.38	74.00	-35.62	Peak

[^14]No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,
Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Test channel:	Highest	Polarization:	Vertical

Remarks:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
2. The emission levels of other frequencies are very lower than the limit and not show in test report.
[^15]
Unwanted Emissions in Non-restricted Frequency Bands

Test channel:	Lowest	Polarization:

Lowest
Polarization:
Horizontal

Freq MHz	Reading level dBuV	Antenna factor dB / m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	$\begin{gathered} \text { Over } \\ \text { limit } \\ d B \end{gathered}$	Remark
2310.000	28.66	26.81	2.81	36. 79	21. 49	54.00	-32.51	Average
2310.000	41.90	26.81	2.81	36.79	34.73	74.00	-39.27	Peak
2390.000	29.49	27.01	2.91	36.85	22. 56	54.00	-31.44	Average
2390.000	42.09	27.01	2.91	36.85	35.16	74.00	-38.84	Peak

Test channel:	Lowest	Polarization:	Vertical

Freq MHz	Reading level dBuV	Antenna factor dB / m	$\begin{aligned} & \text { Cable } \\ & \text { loss } \\ & d B \end{aligned}$	Preamp factor dB	level dBuV/m	Limit level $\mathrm{dBu} / \mathrm{m}$	$\begin{aligned} & \text { Over } \\ & \text { limit }_{d B} \end{aligned}$	Remark
2310.000	28.56	26.81	2.81	36.79	21.39	54.00	-32.61	Average
2310.000	43.08	26.81	2.81	36.79	35.91	74.00	-38.09	Peak
2390.000	28.74	27.01	2.91	36.85	21.81	54.00	-32.19	Average
2390.000	42.68	27.01	2.91	36.85	35.75	74.00	-38.25	Peak

[^16]No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,
Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Test channel:	Highest	Polarization:	Horizontal

[^17]No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,
Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Test channel:	Highest	Polarization:	Vertical

Remarks:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,
Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

Global United Technology Services Co., Ltd.
No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

[^0]: * In the configuration tested, the EUT complied with the standards specified above.

[^1]: Global United Technology Services Co., Ltd.
 No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,
 Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102
 Telephone: +86 (0) 75527798480 Fax: +86 (0) 75527798960

[^2]: Global United Technology Services Co., Ltd.
 No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,
 Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102
 Telephone: +86 (0) 75527798480 Fax: +86 (0) 75527798960

[^3]: Global United Technology Services Co., Ltd.
 No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,
 Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102
 Telephone: +86 (0) 75527798480 Fax: +86 (0) 75527798960

[^4]: Global United Technology Services Co., Ltd.
 No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,
 Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102
 Telephone: +86 (0) 75527798480 Fax: +86 (0) 75527798960

[^5]: Global United Technology Services Co., Ltd.
 No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,
 Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102
 Telephone: +86 (0) 75527798480 Fax: +86 (0) 75527798960

[^6]: Global United Technology Services Co., Ltd.
 No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,
 Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102
 Telephone: +86 (0) 75527798480 Fax: +86 (0) 75527798960

[^7]: Global United Technology Services Co., Ltd.
 No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

[^8]: Global United Technology Services Co., Ltd.
 No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,
 Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

[^9]: Global United Technology Services Co., Ltd.
 No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

[^10]: Global United Technology Services Co., Ltd.
 No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,
 Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102
 Telephone: +86 (0) 75527798480 Fax: +86 (0) 75527798960

[^11]: Global United Technology Services Co., Ltd.

[^12]: Global United Technology Services Co., Ltd.

[^13]: Global United Technology Services Co., Ltd.

[^14]: Global United Technology Services Co., Ltd.

[^15]: Global United Technology Services Co., Ltd.
 No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,
 Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

[^16]: Global United Technology Services Co., Ltd.

[^17]: Global United Technology Services Co., Ltd.

