

Report Type:

Prepared By:

FCC PART 15.247

TEST REPORT

For

CHINA ELECTRONICS ZHUHAI CO., LTD.

6/F, CEC BUILDING, NO. 1082 JIUZHOU AVENUE, CENTRAL, JIDA, ZHUHAI, GUANGDONG, CHINA

FCC ID: 2A4LT-VLCO50020X

Product Type:

Original Report

Report Number: SZ1210924-49864E-00B

Report Date: 2021-12-31
Candy Li
Candy Li
EMC Engineer

Thermal Receipt Printer

County: County:

Shenzhen Accurate Technology Co., Ltd.

& Industry Park, Nanshan District, Shenzhen,

1/F., Building A, Changyuan New Material Port, Science

Guangdong, P.R. China Tel: (0755) 26503290 Fax: (0755) 26503396 Http://www.atc-lab.com

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "★".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant.

Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
TEST METHODOLOGY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONSEUT EXERCISE SOFTWARE	
DUTY CYCLE	
SUPPORT EQUIPMENT LIST AND DETAILS	7
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	10
FCC §15.247 (i) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	11
FCC §15.203 - ANTENNA REQUIREMENT	12
APPLICABLE STANDARD	
Antenna Connector Construction	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EMI Test Recented Setting	
EMI TEST RECEIVER SETUP TEST PROCEDURE	
FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	17
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH	24
APPLICABLE STANDARD	24
TEST PROCEDURE	
TEST DATA	24
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	25
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	
APPLICABLE STANDARD	
TEST PROCEDURE	26

TEST DATA	26
FCC §15.247(e) - POWER SPECTRAL DENSITY	27
APPLICABLE STANDARD	27
TEST PROCEDURE	
TEST DATA	27
APPENDIX BLE	28
APPENDIX A: 6DB EMISSION BANDWIDTH	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED PEAK OUTPUT POWER	
APPENDIX D: POWER SPECTRAL DENSITY	34
APPENDIX E: BAND EDGE MEASUREMENTS	36
ADDENDIN E. DUTY CYCLE	27

Product Description for Equipment under Test (EUT)

Product	Thermal Receipt Printer	
Tested Model.	500203	
Multiple Models	500204, 500207, 500208, 500209, 500210, 500211, 500212, 500213, 500214, 500215, 500216, 500217, 500218, 500219, 500220, TPS-80160I, TPS-8020I, TPS-80220I, TPS-80250I	
Model difference*	Please refer to the DoS letter	
Trademark	VOLCORA,TOPSONIC	
Frequency Range	BLE: 2402-2480MHz	
Maximum Conducted Peak Output Power	-3.23dBm	
Modulation Technique	BLE: GFSK	
Antenna Specification*	Internal Antenna: 2.0dBi(provided by the applicant)	
Voltage Range	DC 24V from adapter	
Date of Test	2021-12-13 ~ 2021-12-29	
Sample serial number	SZ1210924-49864E-RF-S1	
Received date	2021-09-24	
Sample/EUT Status	Good condition	
Adapter Information	Model: ABT020240 Input: 100-240V~, 50/60Hz, 1.5A Max Output: DC 24V, 2.0A	

Report No.: SZ1210924-49864E-00B

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.247 Page 4 of 38

Measurement Uncertainty

Parameter		Uncertainty
Occupied Cha	nnel Bandwidth	5%
RF output po	wer, conducted	0.73dB
Unwanted Emi	ssion, conducted	1.6dB
AC Power Lines Conducted Emissions		2.72dB
.	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz - 18GHz	4.98dB
Radiated	18GHz - 26.5GHz	5.06dB
Temperature		1°C
Humidity		6%
Supply	voltages	0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

FCC Part 15.247 Page 5 of 38

Description of Test Configuration

For BLE mode, 40 channels are provided to testing:

Channel	Frequency (MHz) Channel		Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Report No.: SZ1210924-49864E-00B

EUT was tested with Channel 0, 19 and 39.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

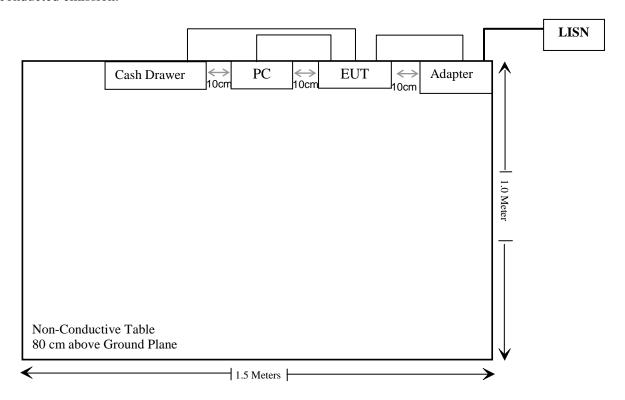
Software "FCC_assist_1.0.2.2"* was used during testing and the power level was 10*.

Duty cycle

Please refer to the Appendix BLE.

FCC Part 15.247 Page 6 of 38

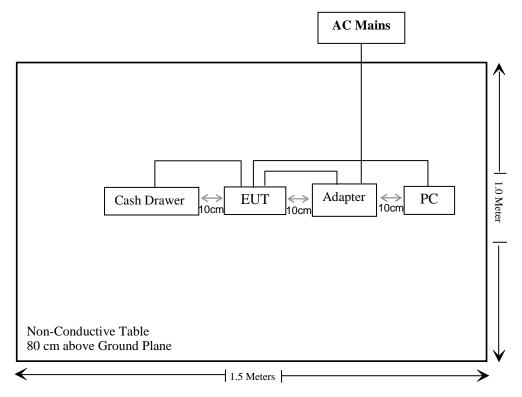
Support Equipment List and Details

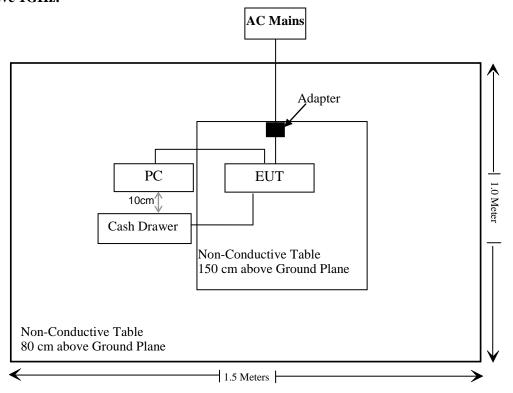

Manufacturer	Description	Model	Serial Number
LENOVO	PC	thinkpadX240	PB-01UAM3 14/05
ZHUHAI ECONOMIC ZONE CET ENTERPRI SE CO., LTD.	Cash Drawer	TOPSONIC	Unknown

External I/O Cable

Cable Description	Length (m)	From Port	То
Unshielded Detachable AC Power Cable	1.5	LISN	Adapter
Unshielded Detachable DC output Cable	1.0	Adapter	EUT
Unshielded Detachable USB Cable	1.5	EUT	PC
Unshielded Detachable RJ11 Cable	2.15	EUT	Cash Drawer

Block Diagram of Test Setup


For conducted emission:


FCC Part 15.247 Page 7 of 38

For radiated emission:

Below 1GHz:

Above 1GHz:

FCC Part 15.247 Page 8 of 38

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §2.1091	MAXIMUM PERMISSIBLE EXPOSURE (MPE)	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth & Occupied Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant

FCC Part 15.247 Page 9 of 38

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Conducted Emissions Test						
Rohde& Schwarz	EMI Test Receiver	ESPI3	100396	2020/12/24	2021/12/23	
R & S	L.I.S.N.	ENV216	101314	2020/12/25	2021/12/24	
Anritsu Corp	50Ω Coaxial Switch	MP59B	6200506474	2020/12/25	2021/12/24	
RF Coaxial Cable	Unknown	N-2m	No.2	2020/12/25	2021/12/24	
			ware: e3 19821b (V9)		
	Г	Radiated Emissi	ons Test			
Rohde&Schwarz	Test Receiver	ESR	101817	2020/12/24	2021/12/23	
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2020/12/24	2021/12/23	
A.H. Systems, inc.	Preamplifier	PAM-0118P	531	2021/07/08	2022/07/07	
SONOMA INSTRUMENT	Amplifier	310 N	186131	2020/12/25	2021/12/24	
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2020/01/04	2023/01/03	
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04	
Schwarzbeck	Horn Antenna	BBHA9170	9170-359	2020/01/05	2023/01/04	
Quinstar	Amplifier	QLW-184055 36-J0	15964001002	2021/11/11	2022/11/10	
RF Coaxial Cable	Unknown	N-5m	No.3	2020/12/25	2021/12/24	
RF Coaxial Cable	Unknown	N-5m	No.4	2020/12/25	2021/12/24	
RF Coaxial Cable	Unknown	N-1m	No.5	2020/12/25	2021/12/24	
RF Coaxial Cable	Unknown	N-1m	No.6	2020/12/25	2021/12/24	
Radiated Emission Test Software: e3 19821b (V9)						
RF Conducted Test						
Rohde&Schwarz	Spectrum Analyzer	FSV40	101495	2021/12/13	2022/12/12	
Rohde & Schwarz	Open Switch and Control Unit	OSP120 +OSP -B157	101244 + 100866	2021/12/13	2022/12/12	
WEINSCHEL	10dB Attenuator	5324	AU 3842	Each	time	
Unknown	RF Coaxial Cable	No.32	RF-02	Each	time	

^{*} Statement of Traceability: Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC Part 15.247 Page 10 of 38

FCC §15.247 (i) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure

Limits for General Population/Uncontrolled Exposure					
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (Minutes)	
0.3-1.34	614	1.63	*(100)	30	
1.34-30	824/f	2.19/f	$*(180/f^2)$	30	
30-300	27.5	0.073	0.2	30	
300-1500	/	/	f/1500	30	
1500-100,000	/	/	1.0	30	

f = frequency in MHz

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Frequency	Antenna Gain			Tune up conducted power		Power Density	MPE Limit
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	(mW/cm ²)
2402-2480	2.0	1.58	-3	0.5	20	0.0002	1

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant.

FCC Part 15.247 Page 11 of 38

^{* =} Plane-wave equivalent power density

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: SZ1210924-49864E-00B

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

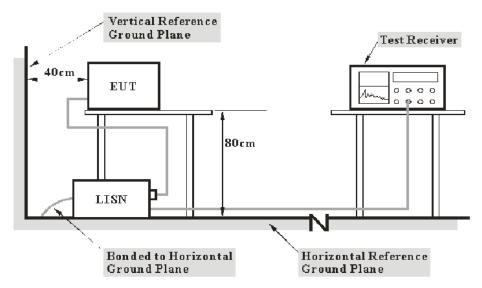
Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has one internal chip antenna arrangement which was permanently attached and the antenna gain is 2.0dBi, fulfill the requirement of this section. Please refer to the product photos.

Result: Compliant.


FCC Part 15.247 Page 12 of 38

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

FCC Part 15.247 Page 13 of 38

Factor & Margin Calculation

The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Factor = LISN VDF + Cable Loss

The "Over limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

Test Data

Environmental Conditions

Temperature:	23 ℃
Relative Humidity:	48 %
ATM Pressure:	101.0 kPa

The testing was performed by Bin Duan on 2021-12-23.

EUT operation mode: Transmitting

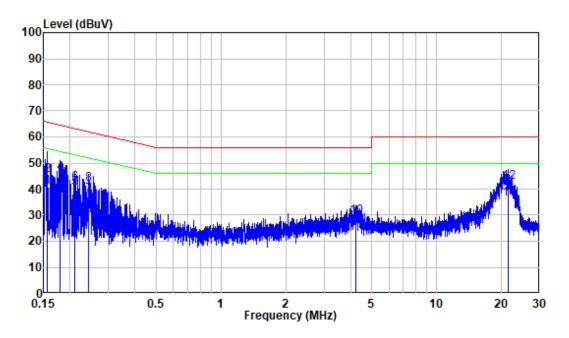
FCC Part 15.247 Page 14 of 38

AC 120V/60 Hz, Line

Site : Shielding Room

Condition: Line

Test Mode: Transmitting


Model : 500203

Power : AC 120V 60Hz

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.158	9.88	33.23	43.11	55.55	-12.44	Average
2	0.158	9.88	37.43	47.31	65.55	-18.24	QP
3	0.169	9.86	30.22	40.08	54.99	-14.91	Average
4	0.169	9.86	35.62	45.48	64.99	-19.51	QP
5	0.206	9.80	27.65	37.45	53.35	-15.90	Average
6	0.206	9.80	33.65	43.45	63.35	-19.90	QP
7	0.266	9.80	17.91	27.71	51.23	-23.52	Average
8	0.266	9.80	25.01	34.81	61.23	-26.42	QP
9	4.210	9.95	12.70	22.65	46.00	-23.35	Average
10	4.210	9.95	18.30	28.25	56.00	-27.75	QP
11	21.458	10.24	31.28	41.52	50.00	-8.48	Average
12	21.458	10.24	35.08	45.32	60.00	-14.68	QP

FCC Part 15.247 Page 15 of 38

AC 120V/60 Hz, Neutral

Site : Shielding Room

Condition: Neutral

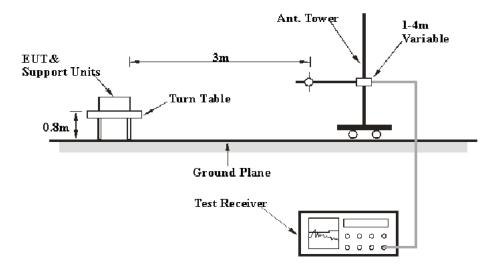
Test Mode: Transmitting

Model : 500203

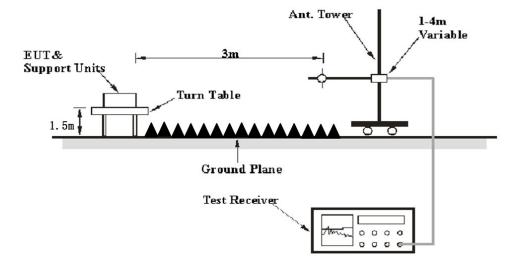
Power : AC 120V 60Hz

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.156	9.91	30.68	40.59	55.66	-15.07	Average
2	0.156	9.91	35.28	45.19	65.66	-20.47	QP
3	0.180	9.96	28.67	38.63	54.49	-15.86	Average
4	0.180	9.96	36.07	46.03	64.49	-18.46	QP
5	0.211	9.99	30.57	40.56	53.18	-12.62	Average
6	0.211	9.99	32.37	42.36	63.18	-20.82	QP
7	0.243	9.98	27.57	37.55	52.00	-14.45	Average
8	0.243	9.98	31.77	41.75	62.00	-20.25	QP
9	4.207	10.04	16.20	26.24	46.00	-19.76	Average
10	4.207	10.04	19.50	29.54	56.00	-26.46	QP
11	21.472	10.23	26.03	36.26	50.00	-13.74	Average
12	21.472	10.23	32.43	42.66	60.00	-17.34	QP

FCC Part 15.247 Page 16 of 38


FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

FCC Part 15.247 Page 17 of 38

EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
	1MHz	3 MHz	/	PK
Above 1 GHz	1MHz	10 Hz Note 1	/	Average
	1MHz	>1/T Note 2	/	Average

Note 1: when duty cycle is no less than 98% Note 2: when duty cycle is less than 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "Over Limit/Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

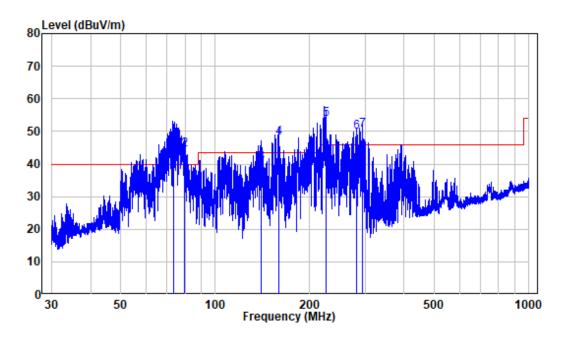
Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

Environmental Conditions

Temperature:	23 ℃
Relative Humidity:	48 %
ATM Pressure:	101.0 kPa

The testing was performed by Ting Lü on 2021-12-23


EUT operation mode: Transmitting

FCC Part 15.247 Page 18 of 38

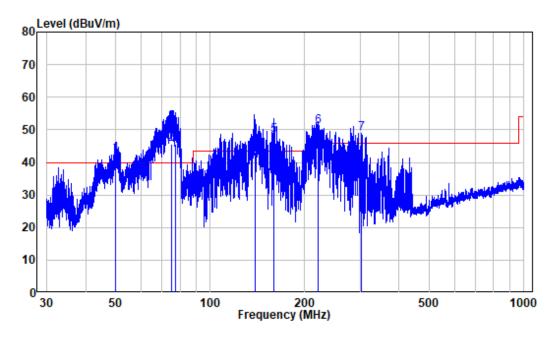
30 MHz ~ 1 GHz:

Low channel was the worst case:

Horizontal

Site : chamber

Condition: 3m HORIZONTAL


Job No. : SZ1210924-49864E-RF

Test Mode: Transmitting

	Freq	Factor	Read Level			Over Limit	Ren	nark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	——dB	_	
1	73.650	-15.98	60.31	44.33	40.00	4.33	QΡ	*
2	79.528	-16.74	61.12	44.38	40.00	4.38	QΡ	*
3	139.545	-15.43	55.93	40.50	43.50	-3.00	QΡ	
4	159.530	-14.26	62.34	48.08	43.50	4.58	QΡ	*
5	225.910	-11.23	65.03	53.80	46.00	7.80	QΡ	*
6	282.000	-9.52	59.35	49.83	46.00	3.83	QΡ	*
7	295.163	-9.27	59.64	50.37	46.00	4.37	QΡ	*

FCC Part 15.247 Page 19 of 38

Vertical

Site : chamber Condition: 3m VERTICAL

Job No. : SZ1210924-49864E-RF

Test Mode: Transmitting

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	49.722	-9.92	52.44	42.52	40.00	2.52	QP *
2	74.959	-16.22	61.69	45.47	40.00	5.47	QP *
3	77.583	-16.57	62.09	45.52	40.00	5.52	QP *
4	138.865	-15.39	58.65	43.26	43.50	-0.24	QP
5	159.744	-14.23	62.38	48.15	43.50	4.65	QP *
6	220.008	-11.41	62.52	51.11	46.00	5.11	QP *
7	302.481	-9.14	58.09	48.95	46.00	2.95	QP *

Note *: The data record above represents the worst case for all supported operating modes, there were no spurious emission in the range 30MHz -1GHz over the limit in §15.209 caused by radio, the emission list at above table was investigated and was not caused by the radio, the emission was present when the radio was not transmitting. Those emissions comply with the FCC Part 15, Subpart B-Unintentional radiators §15.109(b) limit set for Class A digital device as the EUT is a Class A equipment according the user manual.

FCC Part 15.247 Page 20 of 38

Above 1 GHz:

E	Receiver Turntable Rx		Rx An	tenna	E4	Absolute	T !!4	Manada	
Frequency (MHz)	Reading (dBuV)	PK/AV	Angle Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)
BLE 1M, Low Channel									
2310	48.02	PK	254	1.3	Н	-7.23	40.79	74	-33.21
2310	51.58	PK	327	1.8	V	-7.23	44.35	74	-29.65
2390	56.54	PK	301	2.1	Н	-7.21	49.33	74	-24.67
2390	53.32	PK	111	1.6	V	-7.21	46.11	74	-27.89
4804	49.71	PK	345	1.4	Н	-3.52	46.19	74	-27.81
4804	42.55	PK	84	1.8	V	2.81	45.36	74	-28.64
			В	LE 1M, M	iddle Chan	nel			
4880	47.17	PK	293	1.1	Н	-3.37	43.8	74	-30.2
4880	45.85	PK	313	1.1	V	-3.37	42.48	74	-31.52
			.	BLE 1M, H	ligh Chann				
2483.5	60.18	PK	151	1.5	Н	-7.2	52.98	74	-21.02
2483.5	55.79	PK	18	1.1	V	-7.2	48.59	74	-25.41
2500	44.08	PK	154	1.1	Н	-7.18	36.9	74	-37.1
2500	44.47	PK	292	2.2	V	-7.18	37.29	74	-36.71
4960	52.20	PK	318	1.3	Н	-3.01	49.19	49.19 74 -2	
4960	52.50	PK	327	1.3	V	-3.01	49.49	74	-24.51

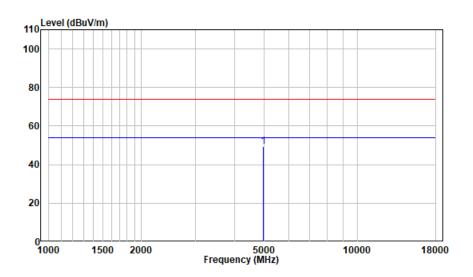
Note:

Factor = Antenna factor (RX) + Cable Loss - Amplifier Factor

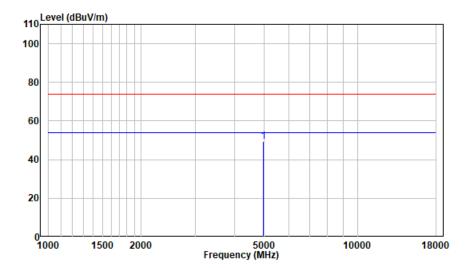
Absolute Level = Factor + Reading

Margin = Absolute Level - Limit

The other spurious emission which is 20dB below to the limit was not recorded.


For above 1GHz, the test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, so just peak value was recorded.

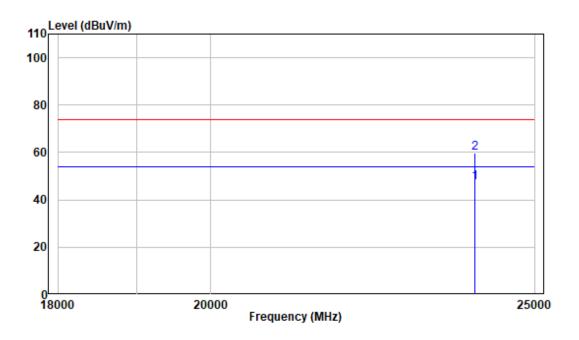
FCC Part 15.247 Page 21 of 38


1-18 GHz:

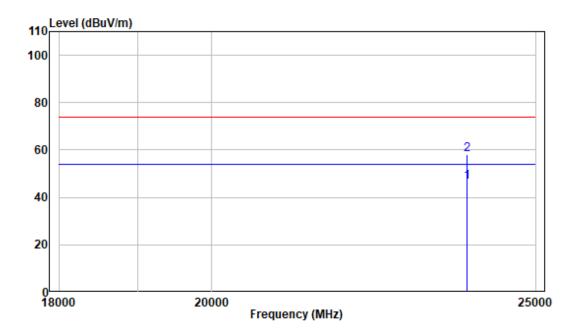
Pre-scan plots:

BLE 1M High Channel Horizontal

Vertical



FCC Part 15.247 Page 22 of 38


18 -25GHz:

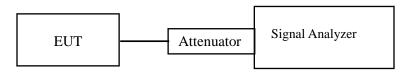
Pre-scan plots:

BLE 1M High Channel Horizontal

Vertical

FCC Part 15.247 Page 23 of 38

Report No.: SZ1210924-49864E-00B


Applicable Standard

BANDWIDTH

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	25.9 ℃
Relative Humidity:	47 %
ATM Pressure:	101.0 kPa

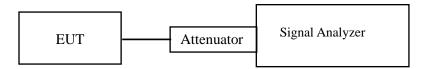
The testing was performed by Ting Lü on 2021-12-29.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix BLE.

FCC Part 15.247 Page 24 of 38

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER


Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: SZ1210924-49864E-00B

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

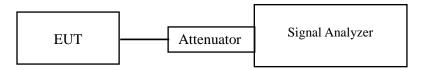
Temperature:	25.9 ℃
Relative Humidity:	47 %
ATM Pressure:	101.0 kPa

The testing was performed by Ting Lü on 2021-12-29.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix BLE.

FCC Part 15.247 Page 25 of 38


FCC §15.247(d) - 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

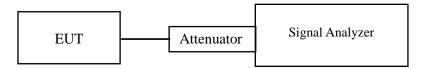
Temperature:	25.9 ℃
Relative Humidity:	47 %
ATM Pressure:	101.0 kPa

The testing was performed by Ting Lü on 2021-12-29.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix BLE.

FCC Part 15.247 Page 26 of 38


Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: SZ1210924-49864E-00B

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: 3kHz< RBW<100 kHz.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

Environmental Conditions

Temperature:	25.9 ℃
Relative Humidity:	47 %
ATM Pressure:	101.0 kPa

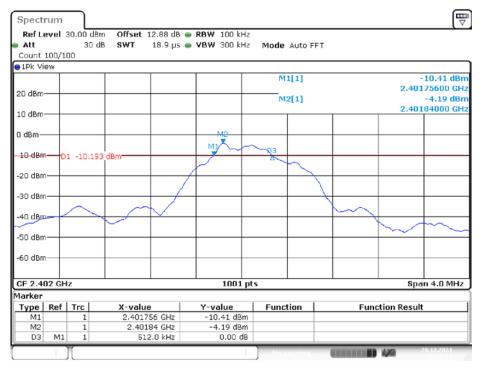
The testing was performed by Ting Lü on 2021-12-29.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix BLE.

FCC Part 15.247 Page 27 of 38

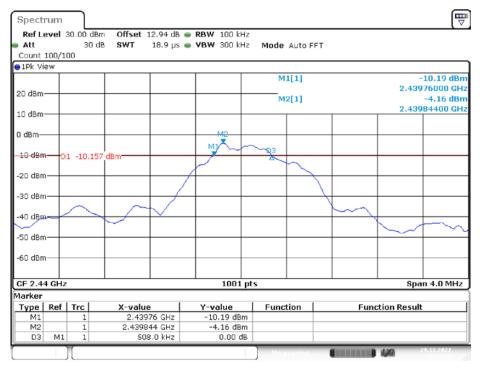
APPENDIX BLE


Appendix A: 6dB Emission Bandwidth

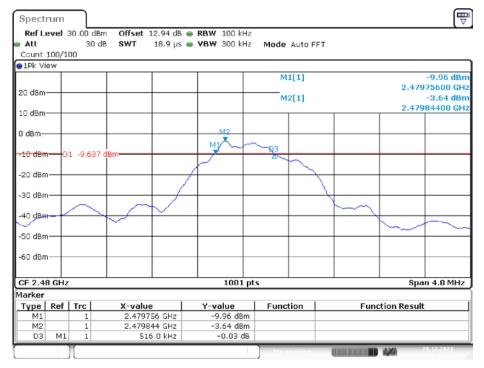
Test Result

TestMode	Antenna	Channel	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.512	2401.756	2402.268	0.5	PASS
BLE_1M	Ant1	2440	0.508	2439.760	2440.268	0.5	PASS
		2480	0.516	2479.756	2480.272	0.5	PASS

Test Graphs


6dB Bandwidth, BLE_1M Low Channel

Date: 29.DEC.2021 10:00:11


FCC Part 15.247 Page 28 of 38

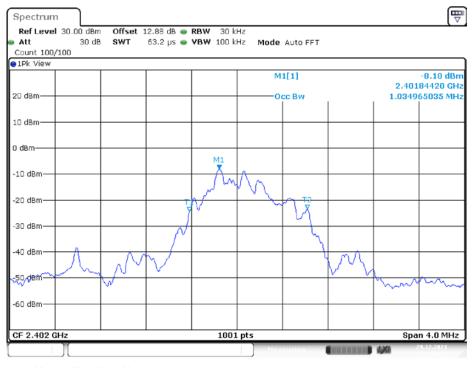
6dB Bandwidth, BLE_1M Middle Channel

Date: 29.DEC.2021 10:02:00

6dB Bandwidth, BLE_1M High Channel

Date: 29.DEC.2021 10:03:34

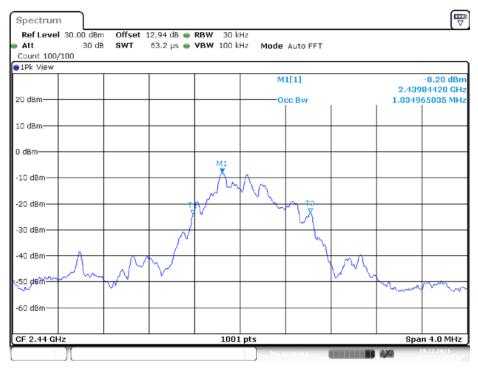
FCC Part 15.247 Page 29 of 38


Test Result

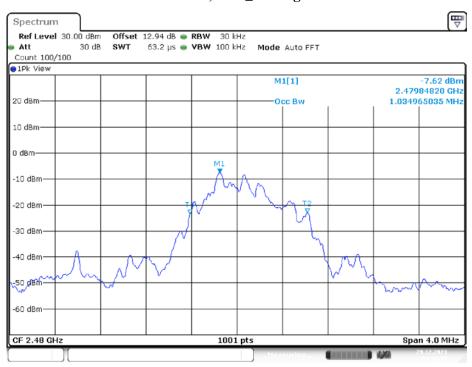
TestMode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
BLE_BLE	Ant1	2402	1.035	2401.580	2402.615		PASS
		2440	1.035	2439.584	2440.619		PASS
		2480	1.035	2479.584	2480.619		PASS

Report No.: SZ1210924-49864E-00B

Test Graphs


99% Bandwidth, BLE_1M Low Channel

Date: 29.DEC.2021 10:00:28


FCC Part 15.247 Page 30 of 38

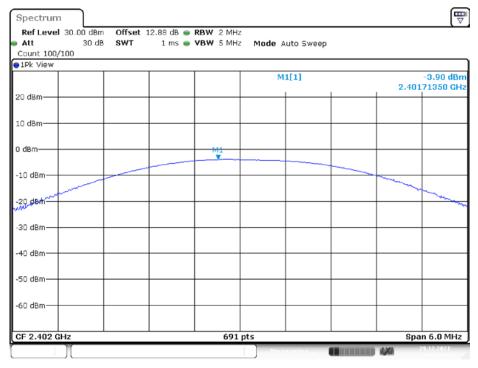
99% Bandwidth, BLE_1M Middle Channel

Date: 29.DEC.2021 10:02:17

99% Bandwidth, BLE_1M High Channel

Date: 29.DEC.2021 10:03:51

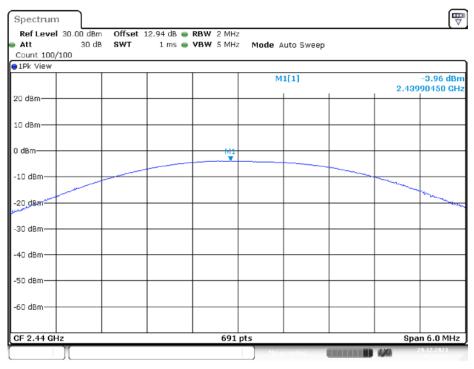
FCC Part 15.247 Page 31 of 38


Appendix C: Maximum conducted Peak output power

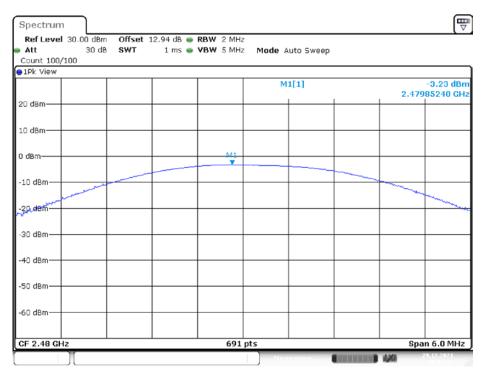
Test Result

TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	-3.9	<=30	PASS
BLE_BLE	Ant1	2440	-3.96	<=30	PASS
		2480	-3.23	<=30	PASS

Test Graphs


BLE_1M Low Channel

Date: 29.DEC.2021 09:54:36


FCC Part 15.247 Page 32 of 38

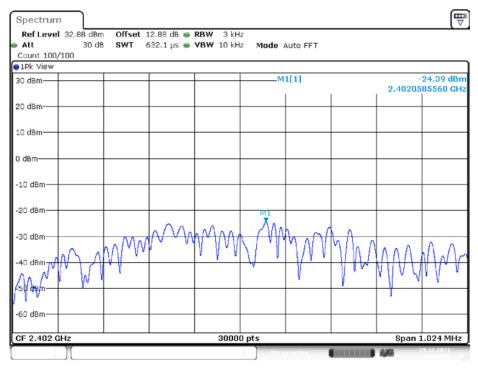
BLE_1M Middle Channel

Date: 29.DEC.2021 09:55:17

BLE_1M High Channel

Date: 29.DEC.2021 09:55:52

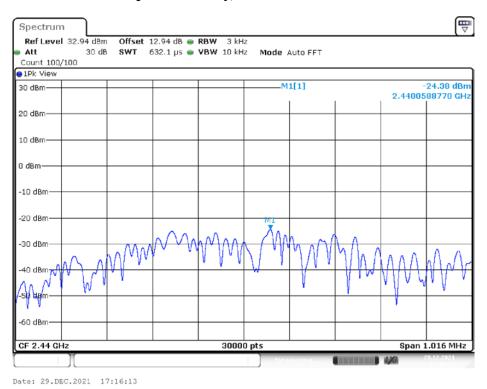
FCC Part 15.247 Page 33 of 38

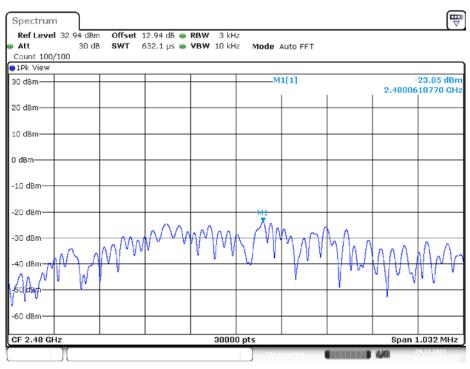

Appendix D: Power spectral density

Test Result

TestMode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2402	-24.39	<=8	PASS
BLE_BLE	Ant1	2440	-24.38	<=8	PASS
		2480	-23.85	<=8	PASS

Test Graphs

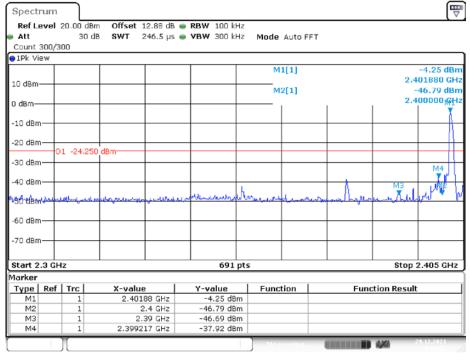

Power Spectral Density, BLE_1M Low Channel


Date: 29.DEC.2021 10:00:40

FCC Part 15.247 Page 34 of 38

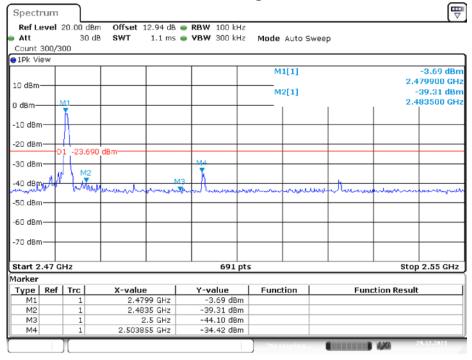
Power Spectral Density, BLE_1M Middle Channel

Power Spectral Density, BLE_1M High Channel


Date: 29.DEC.2021 10:04:03

FCC Part 15.247 Page 35 of 38

Appendix E: Band edge measurements


Test Graphs

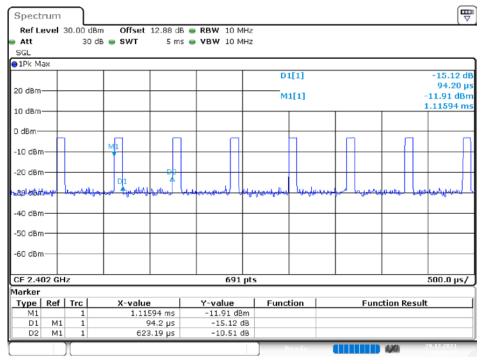
BLE_1M_Ant1_Low_2402MHz

Date: 29.DEC.2021 10:00:58

BLE_1M _Ant1_High_2480MHz

Date: 29.DEC.2021 10:04:18

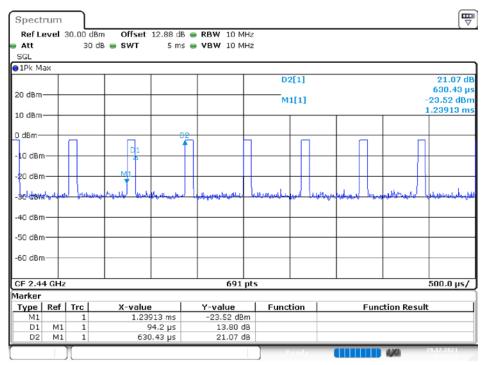
FCC Part 15.247 Page 36 of 38


Appendix F: Duty Cycle

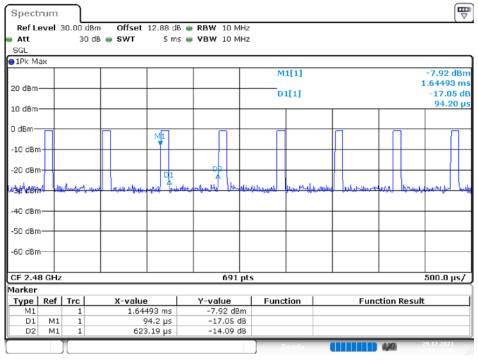
Test Result

TestMode	Antenna	Channel	TransmissionDuration [ms]	Transmission Period [ms]	Duty Cycle [%]
		2402	0.094	0.623	15.09
BLE_BLE	Ant1	2440	0.094	0.630	14.92
		2480	0.094	0.623	15.09

Test Graphs


Duty Cycle, BLE_1M, Low Channel

Date: 29.DEC.2021 09:58:24


FCC Part 15.247 Page 37 of 38

Duty Cycle, BLE_1M, Middle Channel

Date: 29.DEC.2021 10:01:44

Duty Cycle, BLE_1M, High Channel

Date: 29.DEC.2021 10:03:08

***** END OF REPORT *****

FCC Part 15.247 Page 38 of 38