

Project No.: ZKT-220218L0837E-3 Page 1 of 71

# FCC TEST REPORT FCC ID:2A4J2-SER3

| Report Number                                                                                                | : ZKT-220218L0837E-3                                                                                                                                                                                                                     |                            |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Date of Test                                                                                                 | . Feb. 17, 2022 to Feb. 25, 2022                                                                                                                                                                                                         |                            |
| Date of issue                                                                                                | : Feb. 28, 2022                                                                                                                                                                                                                          |                            |
| Total number of pages                                                                                        | 71                                                                                                                                                                                                                                       |                            |
| Test Result                                                                                                  | : PASS                                                                                                                                                                                                                                   |                            |
| Testing Laboratory                                                                                           | : Shenzhen ZKT Technology Co., Ltd.                                                                                                                                                                                                      |                            |
| Address                                                                                                      | 1/F, No. 101, Building B, No. 6, Tangwei Community<br>Avenue, Fuhai Street, Bao'an District, Shenzhen, C                                                                                                                                 | / Industrial<br>hina       |
| Applicant's name                                                                                             | ShenZhen AZW Technology CO.,LTD.                                                                                                                                                                                                         |                            |
| Address                                                                                                      | 3th Floor,Building 11,4th Floor, Building 18,Iongjun I<br>Longhua New District,ShenZhen                                                                                                                                                  | ndustrial park,            |
| Manufacturer's name                                                                                          | ShenZhen AZW Technology CO.,LTD.                                                                                                                                                                                                         |                            |
| Address                                                                                                      | 3th Floor,Building 11,4th Floor, Building 18,Iongjun I<br>Longhua New District,ShenZhen                                                                                                                                                  | ndustrial park,            |
| Test specification:                                                                                          |                                                                                                                                                                                                                                          |                            |
| Standard                                                                                                     | : FCC CFR Title 47 Part 15 Subpart C Section 15.40                                                                                                                                                                                       | 7                          |
| Test procedure                                                                                               | ANSI C63.10:2013<br>KDB 789033 D02 General U-NII Test Procedures No                                                                                                                                                                      | ew Rules v02r01.           |
| Non-standard test method                                                                                     | : N/A                                                                                                                                                                                                                                    | 100                        |
| Test Report Form No                                                                                          | TRF-EL-113_V0                                                                                                                                                                                                                            |                            |
| Test Report Form(s) Originator                                                                               | ZKT Testing                                                                                                                                                                                                                              |                            |
| Master TRF                                                                                                   | Dated: 2020-01-06                                                                                                                                                                                                                        |                            |
| test (EUT) is in compliance with the F<br>identified in the report.<br>This report shall not be reproduced e | en tested by ZKT, and the test results show that the e<br>FCC requirements. And it is applicable only to the tes<br>except in full, without the written approval of ZKT, this<br>al only, and shall be noted in the revision of the docu | ted sample<br>document may |
| Product name                                                                                                 | : Mini PC                                                                                                                                                                                                                                |                            |
| Trademark                                                                                                    | Beelink                                                                                                                                                                                                                                  | D                          |
| Model/Type reference                                                                                         | SER3,SEi,SEi8,SEi10, SEi11,SEi12,SER,SER4,SE                                                                                                                                                                                             | R5,SER6                    |
| Ratings                                                                                                      | : Input: DC 19V From adapter with AC 100-240V                                                                                                                                                                                            |                            |
|                                                                                                              |                                                                                                                                                                                                                                          |                            |

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China









Project No.: ZKT-220218L0837E-3 Page 3 of 71

| Table of Contents                                                                | Р        | age |
|----------------------------------------------------------------------------------|----------|-----|
| 1. VERSION                                                                       | 5        |     |
| 2.SUMMARY OF TEST RESULTS                                                        | 6        |     |
| 2.1 1TEST FACILITY                                                               | 7        |     |
| 2.2 MEASUREMENT UNCERTAINTY                                                      | 7        |     |
| 3. GENERAL INFORMATION                                                           | 8        |     |
| 3.1 GENERAL DESCRIPTION OF EUT                                                   | 8        |     |
| 3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED                      | ) 11     |     |
| 3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)                                 | 11       |     |
| 3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS                                           | 12       |     |
| 4.EMC EMISSION TEST                                                              | 13       |     |
| 4.1 CONDUCTED EMISSION MEASUREMENT                                               | 13       |     |
| 4.1 CONDUCTED EMISSION MEASUREMENT<br>4.1.1 POWER LINE CONDUCTED EMISSION LIMITS | 13       |     |
| 4.1.2 TEST PROCEDURE                                                             | 13       |     |
| 4.1.3 DEVIATION FROM TEST STANDARD                                               | 13       |     |
| 4.1.4 TEST SETUP                                                                 | 14       |     |
| 4.1.5 EUT OPERATING CONDITIONS<br>4.1.6 2TEST RESULTS                            | 14<br>15 |     |
| 4.2 RADIATED EMISSION MEASUREMENT                                                | 17       |     |
| 4.2 RADIATED EMISSION MEASUREMENT<br>4.2.1 APPLICABLE STANDARD                   | 17       |     |
| 4.2.2 CONFORMANCE LIMIT                                                          | 17       |     |
| 4.2.3 MEASURING INSTRUMENTS                                                      | 17       |     |
| 4.2.4 TEST CONFIGURATION                                                         | 18       |     |
| 4.2.5 TEST PROCEDURE                                                             | 19       |     |
| 4.2.6 TEST RESULT                                                                | 20       |     |
| 5.POWER SPECTRAL DENSITY TEST                                                    | 27       |     |
| 5.1 APPLIED PROCEDURES / LIMIT                                                   | 27       |     |
| 5.2 TEST PROCEDURE<br>5.3 DEVIATION FROM STANDARD                                | 28<br>28 |     |
| 5.4 TEST SETUP                                                                   | 28       |     |
| 5.5 EUT OPERATION CONDITIONS                                                     | 28       |     |
| 5.6 TEST RESULTS                                                                 | 29       |     |
| 6. 26DB & 6DB & 99% EMISSION BANDWIDTH                                           | 37       |     |
| 6.1 APPLIED PROCEDURES / LIMIT                                                   | 37       |     |
| 6.2 TEST PROCEDURE                                                               | 37       |     |
| 6.3 EUT OPERATION CONDITIONS                                                     | 38       |     |
| 6.4 TEST RESULTS                                                                 | 38       |     |
|                                                                                  |          |     |

Project No.: ZKT-220218L0837E-3 Page 4 of 71



| Table of Contents                             | Page     |
|-----------------------------------------------|----------|
| 7.MAXIMUM CONDUCTED OUTPUT POWER              | 46       |
| 7.1 PPLIED PROCEDURES / LIMIT                 | 46       |
| 7.2 TEST PROCEDURE                            | 46       |
| 7.3 DEVIATION FROM STANDARD                   | 47       |
| 7.4 TEST SETUP                                | 47       |
| 7.5 EUT OPERATION CONDITIONS                  | 47       |
| 7.6 TEST RESULTS                              | 48       |
| 8.OUT OF BAND EMISSIONS                       | 49       |
| 8.1 APPLICABLE STANDARD                       | 49       |
| 8.2 TEST PROCEDURE                            | 49       |
| 8.3 DEVIATION FROM STANDARD<br>8.4 TEST SETUP | 49<br>49 |
| 8.5 EUT OPERATION CONDITIONS                  | 49<br>50 |
| 8.6 TEST RESULTS                              | 50       |
| 9.SPURIOUS RF CONDUCTED EMISSIONS             | 56       |
| 9.1 CONFORMANCE LIMIT                         | 56       |
| 9.2 MEASURING INSTRUMENTS                     | 56       |
| 9.3 TEST SETUP                                | 56       |
| 9.4 TEST PROCEDURE                            | 56       |
| 9.5 TEST RESULTS                              | 56       |
| 10.FREQUENCY STABILITY MEASUREMENT            | 63       |
| 10.1 LIMIT                                    | 63       |
| 10.2 TEST PROCEDURES                          | 63       |
| 10.3 TEST SETUP LAYOUT                        | 63       |
| 10.4 EUT OPERATION DURING TEST                | 63       |
| 10.5 TEST RESULTS                             | 63       |
| 11.ANTENNA REQUIREMENT                        | 70       |
| 12. TEST SETUP PHOTO                          | 71       |
| 13. EUT CONSTRUCTIONAL DETAILS                | 71       |
|                                               |          |

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

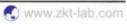
www.zkt-lab.com



# Ð

# Project No.: ZKT-220218L0837E-3 Page 5 of 71

# 1. VERSION


|   | Report No.         | Version | Description             | Approved      |
|---|--------------------|---------|-------------------------|---------------|
| ſ | ZKT-220218L0837E-3 | Rev.01  | Initial issue of report | Feb. 28, 2022 |
| ſ |                    |         | S.                      | 1             |
| - |                    |         |                         |               |













# 2.SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

| Standard<br>Section                                           | Test Item                               | Judgment | Remar |
|---------------------------------------------------------------|-----------------------------------------|----------|-------|
| 15.209(a),<br>15.407 (b)(1)<br>15.407 (b)(4)<br>15.407 (b)(8) | Spurious Radiated Emissions             | PASS     |       |
| 15.207                                                        | Conducted Emission                      | PASS     |       |
| 15.407 (a)(12)<br>15.1049                                     | 26 dB and 99% Emission Bandwidth        | PASS     |       |
| 15.407(e)                                                     | 6 dB bandwidth                          | N/A      |       |
| 15.407 (a)(1)<br>15.407 (a)(3)                                | Maximum Conducted Output Power          | PASS     | S.    |
| 2.1051,<br>15.407(b)(1)<br>15.407(b)(4)                       | Band Edge                               | PASS     |       |
| 15.407 (a)(1)<br>15.407 (a)(3)                                | Power Spectral Density                  | PASS     |       |
| 2.1051,<br>15.407(b)                                          | Spurious Emissions at Antenna Terminals | PASS     |       |
| 15.203                                                        | Antenna Requirement                     | PASS     |       |

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report





#### 2.1 1TEST FACILITY



Shenzhen ZKT Technology Co., Ltd. Add. : 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District Shenzhen, China

FCC Test Firm Registration Number: 692225 Designation Number: CN1299 IC Registered No.: 27033

# 2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

| No. | Item                                              | Uncertainty     |
|-----|---------------------------------------------------|-----------------|
| 1   | 3m camber Radiated spurious emission(30MHz-1GHz)  | U=4.3dB         |
| 2   | 3m chamber Radiated spurious emission(1GHz-18GHz) | U=4.5dB         |
| 3   | 3m cha ber Radiated spurious emission(18GHz-40GH) | U=3.34dB        |
| 4   | Conducted Adjacent channel power                  | U=1.38dB        |
| 5   | Conducted output power<br>uncertainty Above 1G    | U=1.576dB       |
| 6   | Conducted output power<br>uncertainty below 1G    | U=1.28dB        |
| 7   | humidity uncertainty                              | U=5.3%          |
| 8   | Temperature uncertainty                           | <b>U=0.59</b> ℃ |
| 9   | Radiated disturbance(30MHz-<br>1000MHz)           | U=4.8dB         |
| 10  | Radiated disturbance(1GHz-<br>6GHz)               | U=4.9dB         |
| 11  | Radiated disturbance(1GHz-<br>18GHz)              | U=5.0dB         |









# **3. GENERAL INFORMATION**

#### 3.1 GENERAL DESCRIPTION OF EUT

| 107 J 107 A                 |                                                    |                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|-----------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Product Name:               | Mini PC                                            |                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Model No.:                  | SER3,SEi,SEi8,SE                                   | SER3,SEi,SEi8,SEi10,SEi11,SEi12,SER,SER4,SER5,SER6                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Model Different .:          | All models differen                                |                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Sample ID                   | ZKT-220218L0837                                    | 7-1                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Sample(s) Status:           | Engineer sample                                    | 212                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|                             | IEEE 802.11<br>WLAN<br>Mode Supported<br>Data Rate | <ul> <li>         ⊠802.11a/ac/n (20MHz channel bandwidth)         ∑802.11n/ac (40MHz channel bandwidth)         ∑802.11ac(80MHz channel bandwidth)         802.11a: 6,9,12,18,24,36,48,54Mbps;         802.11n(HT20/HT40):MCS0-MCS15;         802.11ac(VHT/20/40/80):NSS1, MCS0-MCS9         OFDM with         </li> </ul>                                           |  |  |  |  |  |  |
| Product Description         | Modulation                                         | BPSK/QPSK/16QAM/64QAM/256QAM<br>for 802.11a/n/ac;<br>5180-5240MHz for 802.11a/n(HT20)/ac20;                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                             | Operating<br>Frequency<br>Range                    | 5190-5230MHz for 802.11n(HT40)/ac40;<br>5210MHz for 802.11 ac80;<br>∑5745-5825 MHz for 802.11a/n(HT20)/ac20;<br>5755-5795 MHz for 802.11a/n(HT40)/ac40;<br>5775MHz for 802.11 ac80;                                                                                                                                                                                  |  |  |  |  |  |  |
|                             | Number of<br>Channels                              | □ 4 channels for 802.11a/n20/ac20 in the<br>5180-5240MHz band ;<br>2 channels for 802.11 n40/ac40 in the 5190-523<br>MHz band ;<br>1 channels for 802.11 ac80 in the 5210MHz ban<br>□ 5 channels for 802.11a/n20/ac20 in the<br>5745-5825MHz band ;<br>2 channels for 802.11 n40/ac40 in the 5755-579<br>MHz band ;<br>1 channels for 802.11 ac80 in the 5775MHz ban |  |  |  |  |  |  |
| Channel List                | Please refer to the                                | Note 2.                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| Antenna Type:               | Integral Antenna       4.22dBi Max                 |                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Antenna gain:               |                                                    |                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Power supply:               | Input: DC 19V Fro                                  | m adapter                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| SWITCHING POWER<br>ADAPTER: |                                                    | MODEL:TDX-1903000U<br>Input: AC 100-240V 50/60Hz<br>Output: DC 19V/3A                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |

Note:

For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.





| 802.11a/n/ac( 20MHz) Frequency Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |    |      |    |   |         |                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|------|----|---|---------|---------------------|
| Channel         Frequenc<br>y (MHz)         Channel         Frequenc<br>y (MHz)         Channel         Frequenc<br>y (MHz)         Frequenc<br>y |      |    |      |    |   | Channel | Frequenc<br>y (MHz) |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5180 | 44 | 5220 | 10 | - | - 1     | -                   |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5200 | 48 | 5240 |    | - | -       | -                   |

802.11n(40MHz) Frequency Channel

|                                                   | 802.11n /ac(40MHz) Frequency Channel |   |   |   |   |   |                     |  |
|---------------------------------------------------|--------------------------------------|---|---|---|---|---|---------------------|--|
| Channol ' Channol ' Channol ' Channol ' Channol ' |                                      |   |   |   |   |   | Frequenc<br>y (MHz) |  |
| 38                                                | 5190                                 | 1 | - | - | - | - | -                   |  |
| 46                                                | 5230                                 | - | - | - | - | - | -                   |  |

| 802.11ac (80N | 802.11ac (80MHz) Frequency Channel |  |  |  |  |  |
|---------------|------------------------------------|--|--|--|--|--|
| Channel       | Frequency (MHz)                    |  |  |  |  |  |
| 42 5210       |                                    |  |  |  |  |  |



|         | 802.11a/n/ac( 20 MHz) Frequency Channel |         |                     |         |                     |         |                     |
|---------|-----------------------------------------|---------|---------------------|---------|---------------------|---------|---------------------|
| Channel | Frequenc<br>y (MHz)                     | Channel | Frequenc<br>y (MHz) | Channel | Frequenc<br>y (MHz) | Channel | Frequenc<br>y (MHz) |
| 149     | 5745                                    | 153     | 5765                | 157     | 5785                | 161     | 5805                |
| 165     | 5825                                    | -       | -                   | -       | -                   | -       | -                   |

| 802.11n/ac 40MHz Frequency Channel                                   |      |     |      |   |       |  |  |
|----------------------------------------------------------------------|------|-----|------|---|-------|--|--|
| ChannelFrequency<br>(MHz)ChannelFrequency<br>(MHz)Frequency<br>(MHz) |      |     |      |   |       |  |  |
| 151                                                                  | 5755 | 159 | 5795 | - | - < < |  |  |

| 802.11ac 80MHz Frequency Channel |  |  |  |  |
|----------------------------------|--|--|--|--|
| Channel Frequency (MHz)          |  |  |  |  |
| 155 5775                         |  |  |  |  |
|                                  |  |  |  |  |



Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

-





# 3.2 DESCRIPTION OF TEST MODES

| Transmitting mode | Keep the EUT in continuously transmitting mode |
|-------------------|------------------------------------------------|
|-------------------|------------------------------------------------|

Remark: During the test, the duty cycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

| Description                                                            |                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 802.11a / n 20 CH36/ CH40/ CH 48<br>802.11a /n 20 CH149/ CH157/ CH 165 |                                                                                                                                                                                                                                      |
| 802.11n 40 CH38/ CH 46<br>802.11n 40 CH 151 / CH 159                   |                                                                                                                                                                                                                                      |
| 802.11 ac80 CH 42/CH 155                                               |                                                                                                                                                                                                                                      |
| 802.11a / n 20 CH36/ CH40/ CH 48<br>802.11a /n 20 CH149/ CH157/ CH 165 |                                                                                                                                                                                                                                      |
| Link Mode                                                              | - 3                                                                                                                                                                                                                                  |
|                                                                        | 802.11a / n 20 CH36/ CH40/ CH 48<br>802.11a /n 20 CH149/ CH157/ CH 165<br>802.11n 40 CH38/ CH 46<br>802.11n 40 CH 151 / CH 159<br>802.11 ac80 CH 42/CH 155<br>802.11a / n 20 CH36/ CH40/ CH 48<br>802.11a /n 20 CH149/ CH157/ CH 165 |

| Conducted Emission          |           |  |  |
|-----------------------------|-----------|--|--|
| Final Test Mode Description |           |  |  |
| Mode 5                      | Link Mode |  |  |

| For Radiated Emission       |                                                                        |  |  |  |
|-----------------------------|------------------------------------------------------------------------|--|--|--|
| Final Test Mode Description |                                                                        |  |  |  |
| Mode 1                      | 802.11a / n 20 CH36/ CH40/ CH 48<br>802.11a /n 20 CH149/ CH157/ CH 165 |  |  |  |
| Mode 2                      | 802.11n 40 CH38/ CH 46<br>802.11n 40 CH 151 / CH 159                   |  |  |  |
| Mode 3                      | 802.11 ac80 CH 42/CH 155                                               |  |  |  |
| Mode 4                      | 802.11a / n 20 CH36/ CH40/ CH 48<br>802.11a /n 20 CH149/ CH157/ CH 165 |  |  |  |

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.





| Test Software     | MT Test Tool |
|-------------------|--------------|
| Power level setup | <13dBm       |

# 3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

**Conducted Emission** 

| DC | Line |  |
|----|------|--|
|    |      |  |



Radiated Emission

|   |   | Т |  |
|---|---|---|--|
| - | U |   |  |
| _ | - |   |  |
|   |   |   |  |

**Conducted Spurious** 

EUT

# 3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment | nent Mfr/Brand Model/Type N |   | Series No. | Note |
|------|-----------|-----------------------------|---|------------|------|
| E-1  | Mini PC   | lini PC N/A SER3            |   | N/A        | EUT  |
|      |           |                             |   |            |      |
| - 6  |           |                             | - |            |      |

| Item | Shielded Type | Ferrite Core | Length | Note       |
|------|---------------|--------------|--------|------------|
| E-3  | N/A           | N/A          | 1m     | HDMI Cable |
|      |               |              |        |            |
|      |               |              |        |            |

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <sup>r</sup>Length<sub>1</sub> column.





# 3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

# Radiation Test equipment

| Itom | Fauinment                           | Manufacturer    | Tuno No            | Serial No. | Last calibration | Calibrated until     |
|------|-------------------------------------|-----------------|--------------------|------------|------------------|----------------------|
| Item | Equipment                           | Manufacturer    | Type No.           | Senai No.  | Last calibration | Calibrated until     |
| 1    | Spectrum Analyzer<br>(9kHz-26.5GHz) | KEYSIGHT        | 9020A              | MY45109572 | Sep. 22, 2021    | Sep. 21, 2022        |
| 2    | Spectrum Analyzer<br>(1GHz-40GHz)   | Agilent         | E4446A             | 100363     | Sep. 22, 2021    | Sep. 21, 2022        |
| 3    | Test Receiver<br>(9kHz-7GHz)        | R&S             | ESCI7              | 101169     | Sep. 22, 2021    | Sep. 21, 2022        |
| 4    | Bilog Antenna<br>(30MHz-1400MHz)    | Schwarzbeck     | VULB9168           | 00877      | Sep. 22, 2021    | Sep. 21, 2022        |
| 5    | Horn Antenna<br>(1GHz-18GHz)        | SCHWARZBEC<br>K | BBHA9120D          | 1541       | Sep. 22, 2021    | Sep. 21, 2022        |
| 6    | Horn Antenna<br>(18GHz-40GHz)       | A.H. System     | SAS-574            | 588        | Sep. 22, 2021    | Sep. 21, 2022        |
| 7    | Amplifier<br>(30-1000MHz)           | EM Electronics  | EM330<br>Amplifier | N/A        | Sep. 22, 2021    | Sep. 21, 2022        |
| 8    | Amplifier<br>(1GHz-40GHz)           | 全聚达             | DLE-161            | 097        | Sep. 22, 2021    | Sep. 21, 2022        |
| 9    | Loop Antenna<br>(9KHz-30MHz)        | SCHWARZBEC<br>K | FMZB1519B          | 014        | Sep. 22, 2021    | Sep. 21, 2022        |
| 10   | RF cables1<br>(9kHz-30MHz)          | N/A             | 9kHz-30MHz         | N/A        | Sep. 22, 2021    | Sep. 21, 2022        |
| 11   | RF cables2<br>(30MHz-1GHz)          | N/A             | 30MHz-1GHz         | N/A        | Sep. 22, 2021    | Sep. 21, 2022        |
| 12   | RF cables3<br>(1GHz-40GHz)          | N/A             | 1GHz-40GHz         | N/A        | Sep. 22, 2021    | Sep. 21, 2022        |
| 13   | CMW500 Test                         | R&S             | CMW500             | 106504     | Sep. 22, 2021    | Sep. 21, 2022        |
| 14   | ESG Signal<br>Generator             | Agilent         | E4421B             | GB40051203 | Sep. 22, 2021    | Sep. 21, 2022        |
| 15   | Signal Generator                    | Agilent         | N5182A             | MY47420215 | Sep. 22, 2021    | Sep. 21, 2022        |
| 16   | D.C. Power Supply                   | LongWei         | TPR-6405D          | ١          | \                | $\sim$ $\sim$ $\sim$ |
| 17   | Software                            | Frad            | EZ-EMC             | FA-03A2 RE | ١                |                      |

# **Conduction Test equipment**

| Item | Kind of<br>Equipment | Manufacturer | Type No. | Serial No.      | Last calibration | Calibrated until |
|------|----------------------|--------------|----------|-----------------|------------------|------------------|
| 1    | LISN                 | R&S          | ENV216   | 101471          | Sep. 22, 2021    | Sep. 21, 2022    |
| 2    | LISN                 | CYBERTEK     | EM5040A  | E185040014<br>9 | Sep. 22, 2021    | Sep. 21, 2022    |
| 3    | Test Cable           | N/A          | C01      | N/A             | Sep. 22, 2021    | Sep. 21, 2022    |
| 4    | Test Cable           | N/A          | C02      | N/A             | Sep. 22, 2021    | Sep. 21, 2022    |
| 5    | EMI Test<br>Receiver | R&S          | ESRP3    | 101946          | Sep. 22, 2021    | Sep. 21, 2022    |
| 6    | Absorbing Clamp      | DZ           | ZN23201  | N/A             | Sep. 22, 2021    | Sep. 21, 2022    |





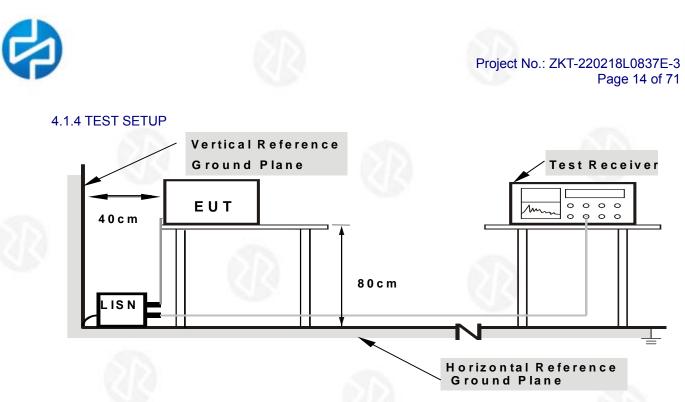
#### **4.EMC EMISSION TEST**

# 4.1 CONDUCTED EMISSION MEASUREMENT

|   | Test Requirement:     | FCC Part15 C Section 15.207          |  |
|---|-----------------------|--------------------------------------|--|
| 6 | Test Method:          | ANSI C63.10:2013                     |  |
|   | Test Frequency Range: | 150KHz to 30MHz                      |  |
| 2 | Receiver setup:       | RBW=9KHz, VBW=30KHz, Sweep time=auto |  |

#### 4.1.1 POWER LINE CONDUCTED EMISSION Limits

| FREQUENCY (MHz) | Limit (    | Standard  |          |
|-----------------|------------|-----------|----------|
|                 | Quasi-peak | Average   | Stanuaru |
| 0.15 -0.5       | 66 - 56 *  | 56 - 46 * | FCC      |
| 0.50 -5.0       | 56.00      | 46.00     | FCC      |
| 5.0 -30.0       | 60.00      | 50.00     | FCC      |


Note:

(1) \*Decreases with the logarithm of the frequency.

#### 4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

# 4.1.3 DEVIATION FROM TEST STANDARD No deviation



Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

# **4.1.5 EUT OPERATING CONDITIONS**

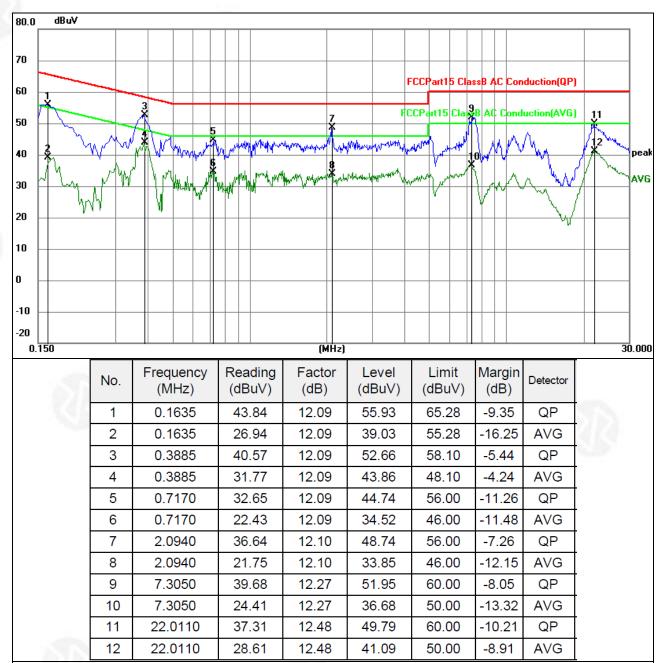
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

We pretest AC 120V and AC 230V, the worst voltage was AC 120V and the data recording in the report.

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

+86-755-2233 6688



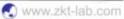






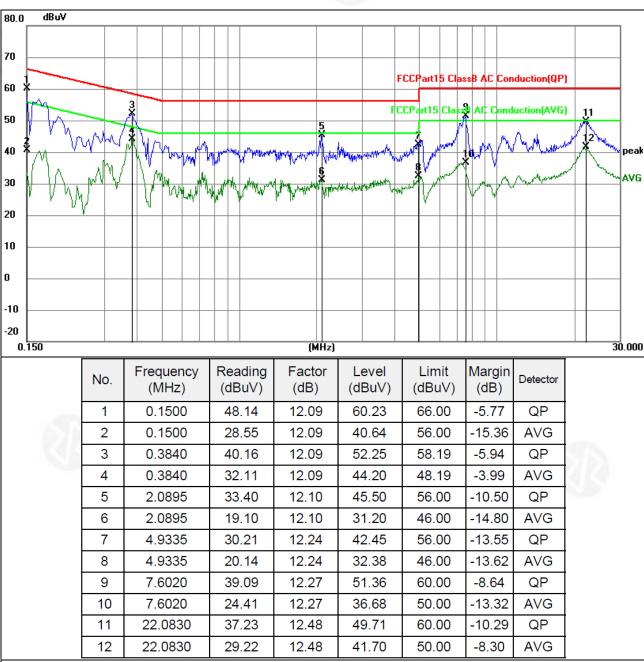

# 4.1.6 2TEST RESULTS

| Temperature :  | <b>26</b> ℃  | Relative Humidity: | 54% |
|----------------|--------------|--------------------|-----|
| Pressure :     | 101kPa       | Phase :            | L   |
| Test Voltage : | AC 120V/60Hz |                    |     |




#### Notes:

An initial pre-scan was performed on the line and neutral lines with peak detector.
 Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
 Mesurement Level = Reading level + Correct Factor


Shenzhen ZKT Technology Co., Ltd

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China





| Temperature :  | <b>26</b> ℃  | Relative Humidity: | 54% |
|----------------|--------------|--------------------|-----|
| Pressure :     | 101kPa       | Phase :            | Ν   |
| Test Voltage : | AC 120V/60Hz |                    |     |



#### Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.3.Mesurement Level = Reading level + Correct Factor

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

www.zkt-lab.com



#### 4.2 RADIATED EMISSION MEASUREMENT

#### 4.2.1 APPLICABLE STANDARD

According to FCC Part 15.407(d) and 15.209

#### 4.2.2 CONFORMANCE LIMIT

According to FCC Part 15.407(b)(7): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

| MHz                 | MHz                                                                                                                                                                                                                              | GHz                                                                                                                                                                                                                                                                                                              |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 16.42-16.423        | 399.9-410                                                                                                                                                                                                                        | 4.5-5.15                                                                                                                                                                                                                                                                                                         |  |  |
| 16.69475-16.69525   | 608-614                                                                                                                                                                                                                          | 5.35-5.46                                                                                                                                                                                                                                                                                                        |  |  |
| 16.80425-16.80475   | 960-1240                                                                                                                                                                                                                         | 7.25-7.75                                                                                                                                                                                                                                                                                                        |  |  |
| 25.5-25.67          | 1300-1427                                                                                                                                                                                                                        | 8.025-8.5                                                                                                                                                                                                                                                                                                        |  |  |
| 37.5-38.25          | 1435-1626.5                                                                                                                                                                                                                      | 9.0-9.2                                                                                                                                                                                                                                                                                                          |  |  |
| 73-74.6             | 1645.5-1646.5                                                                                                                                                                                                                    | 9.3-9.5                                                                                                                                                                                                                                                                                                          |  |  |
| 74.8-75.2           | 1660-1710                                                                                                                                                                                                                        | 10.6-12.7                                                                                                                                                                                                                                                                                                        |  |  |
| 123-138             | 2200-2300                                                                                                                                                                                                                        | 14.47-14.5                                                                                                                                                                                                                                                                                                       |  |  |
| 149.9-150.05        | 2310-2390                                                                                                                                                                                                                        | 15.35-16.2                                                                                                                                                                                                                                                                                                       |  |  |
| 156.52475-156.52525 | 2483.5-2500                                                                                                                                                                                                                      | 17.7-21.4                                                                                                                                                                                                                                                                                                        |  |  |
| 156.7-156.9         | 2690-2900                                                                                                                                                                                                                        | 22.01-23.12                                                                                                                                                                                                                                                                                                      |  |  |
| 162.0125-167.17     | 3260-3267                                                                                                                                                                                                                        | 23.6-24.0                                                                                                                                                                                                                                                                                                        |  |  |
| 167.72-173.2        | 3332-3339                                                                                                                                                                                                                        | 31.2-31.8                                                                                                                                                                                                                                                                                                        |  |  |
| 240-285             | 3345.8-3358                                                                                                                                                                                                                      | 36.43-36.5                                                                                                                                                                                                                                                                                                       |  |  |
| 322-335.4           | 3600-4400                                                                                                                                                                                                                        | (2)                                                                                                                                                                                                                                                                                                              |  |  |
|                     |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                  |  |  |
|                     | MHz<br>16.42-16.423<br>16.69475-16.69525<br>16.80425-16.80475<br>25.5-25.67<br>37.5-38.25<br>73-74.6<br>74.8-75.2<br>123-138<br>149.9-150.05<br>156.52475-156.52525<br>156.7-156.9<br>162.0125-167.17<br>167.72-173.2<br>240-285 | MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358 |  |  |

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Restricted<br>Frequency(MHz) | Field Strength (µV/m) | Field Strength (dBµV/m) | Measurement Distance |
|------------------------------|-----------------------|-------------------------|----------------------|
| 0.009~0.490                  | 2400/F(KHz)           | 20 log (uV/m)           | 300                  |
| 0.490~1.705                  | 2400/F(KHz)           | 20 log (uV/m)           | 30                   |
| 1.705~30.0                   | 30                    | 29.5                    | 30                   |
| 30-88                        | 100                   | 40                      | 3                    |
| 88-216                       | 150                   | 43.5                    | 3                    |
| 216-960                      | 200                   | 46                      | 3                    |
| Above 960                    | 500                   | 54                      | 3                    |

#### Limits of Radiated Emission Measurement(Above 1000MHz)

|                | Class B (dBuV/m) (at 3M) |         |  |
|----------------|--------------------------|---------|--|
| Frequency(MHz) | PEAK                     | AVERAGE |  |
| Above 1000     | 74                       | 54      |  |

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

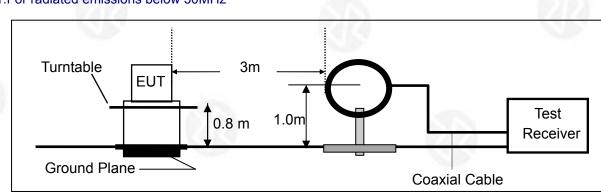
- 3. Distance extrapolation factor =40log(Specific distance/ test distance)( dB);
- Limit line=Specific limits(dBuV) + distance extrapolation factor.

# 4.2.3 MEASURING INSTRUMENTS

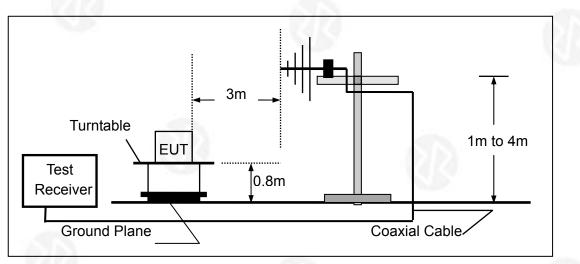
The Measuring equipment is listed in the section 6.3 of this test report.



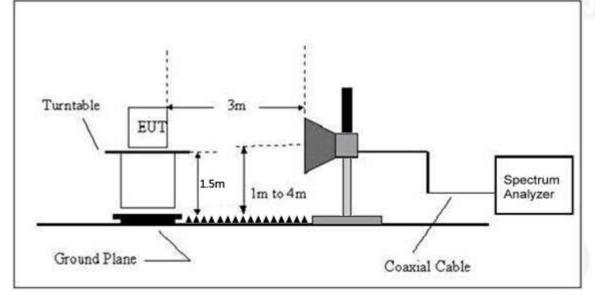
Shenzhen ZKT Technology Co., Ltd.


1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China






# 4.2.4 TEST CONFIGURATION






# 2.For radiated emissions from 30MHz to 1000MHz



# 3. Radiated Emission Test-Up Frequency Above 1GHz





#### 4.2.5 TEST PROCEDURE

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

| Spectrum Parameter                    | Setting                                          |
|---------------------------------------|--------------------------------------------------|
| Attenuation                           | Auto                                             |
| Start Frequency                       | 1000 MHz                                         |
| Stop Frequency                        | 10th carrier harmonic                            |
| RB / VB (emission in restricted band) | 1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average |

| Receiver Parameter     | Setting                          |
|------------------------|----------------------------------|
| Attenuation            | Auto                             |
| Start ~ Stop Frequency | 9kHz~150kHz / RB 200Hz for QP    |
| Start ~ Stop Frequency | 150kHz~30MHz / RB 9kHz for QP    |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP |

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.
  - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

| Frequency Band (MHz) | Function | Resolution bandwidth | Video Bandwidth |
|----------------------|----------|----------------------|-----------------|
| 30 to 1000           | QP       | 120 kHz              | 300 kHz         |
| Above 1000           | Peak     | 1 MHz                | 1 MHz           |
| Above 1000           | Average  | 1 MHz                | 10 Hz           |

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10\*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.





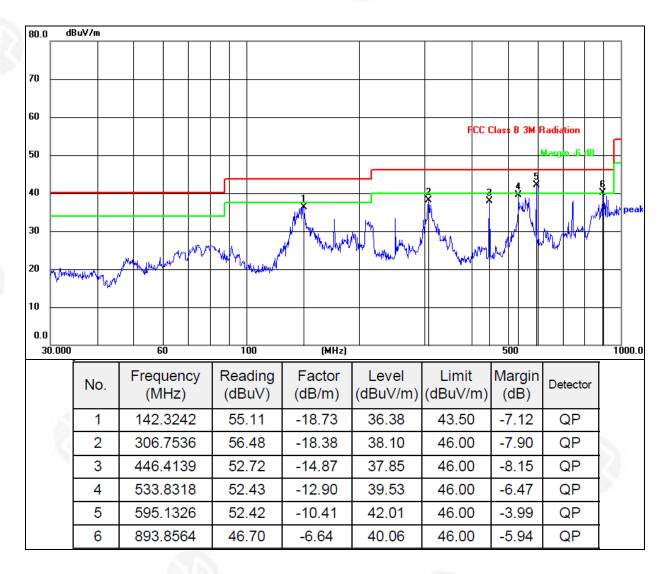


Project No.: ZKT-220218L0837E-3 Page 20 of 71

#### 4.2.6 TEST RESULT

# Between 9KHz – 30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.



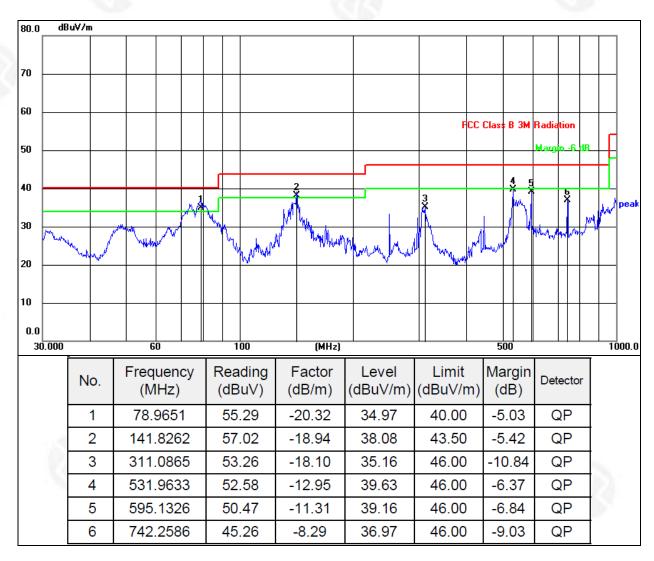





# Between 30MHz - 1GHz

| Temperature:  | <b>26</b> ℃  | Relative Humidity: | 54%        |
|---------------|--------------|--------------------|------------|
| Pressure:     | 101 kPa      | Polarization:      | Horizontal |
| Test Voltage: | AC 120V/60Hz |                    |            |












| Temperature:  | <b>26</b> ℃  | Relative Humidity: | 54%      |
|---------------|--------------|--------------------|----------|
| Pressure:     | 101kPa       | Polarization:      | Vertical |
| Test Voltage: | AC 120V/60Hz |                    | 222      |



#### Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

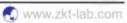
2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. The test data shows only the worst case 802.11a mode










# Between 1GHz – 40GHz

| Temperature : | <b>26</b> ℃      | Relative Humidity : | 54%    |
|---------------|------------------|---------------------|--------|
| Pressure :    | 1010 hPa         | Test Voltage :      | DC 19V |
| Test Mode :   | 5.2G TX- 802.11a |                     |        |

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   | 80            | 2.11a             |                   |              |        |        |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|---------------|-------------------|-------------------|--------------|--------|--------|--|
| Polar               | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Meter<br>Reading | Pre-ampl<br>ifier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits       | Margin | Detect |  |
| (H/V)               | (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (dBuV            | (dB)              | (dB)          | (dB)              | (dBuV/m)          | (dBuV/<br>m) | (dB)   | Туре   |  |
| Low Channel:5180MHz |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |               |                   |                   |              |        |        |  |
| V                   | 10360.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39.45            | 30.45             | 8.77          | 38.66             | 56.43             | 74.00        | -17.57 | PK     |  |
| V                   | 10360.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.41            | 30.45             | 8.77          | 38.66             | 45.39             | 54.00        | -8.61  | AV     |  |
| V                   | 15540.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39.06            | 30.44             | 9.31          | 38.55             | 56.48             | 74.00        | -17.52 | PK     |  |
| V                   | 15540.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.39            | 30.44             | 9.31          | 38.55             | 45.81             | 54.00        | -8.19  | AV     |  |
| V                   | 20720.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.83            | 30.72             | 9.45          | 38.69             | 56.25             | 74.00        | -17.75 | PK     |  |
| V                   | 20720.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.90            | 30.72             | 9.45          | 38.69             | 45.32             | 54.00        | -8.68  | AV     |  |
| V                   | 25900.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37.44            | 30.65             | 9.99          | 38.57             | 55.35             | 74.00        | -18.65 | PK     |  |
| V                   | 25900.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.76            | 30.65             | 9.99          | 38.57             | 45.67             | 54.00        | -8.33  | AV     |  |
| Н                   | 10360.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.29            | 30.45             | 8.77          | 38.66             | 55.27             | 74.00        | -18.73 | PK     |  |
| Н                   | 10360.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.63            | 30.45             | 8.77          | 38.66             | 44.61             | 54.00        | -9.39  | AV     |  |
| Н                   | 15540.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.8             | 30.44             | 9.31          | 38.55             | 56.22             | 74.00        | -17.78 | PK     |  |
| Н                   | 15540.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26.84            | 30.44             | 9.31          | 38.55             | 44.26             | 54.00        | -9.74  | AV     |  |
| Н                   | 20720.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37.88            | 30.72             | 9.45          | 38.69             | 55.30             | 74.00        | -18.7  | PK     |  |
| Н                   | 20720.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29.40            | 30.72             | 9.45          | 38.69             | 46.82             | 54.00        | -7.18  | AV     |  |
| Н                   | 25900.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.58            | 30.65             | 9.99          | 38.57             | 56.49             | 74.00        | -17.51 | PK     |  |
| Н                   | 25900.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.72            | 30.65             | 9.99          | 38.57             | 45.63             | 54.00        | -8.37  | AV     |  |
|                     | and the second s |                  |                   |               |                   |                   |              |        |        |  |

| Polar | Frequency              | Meter<br>Reading | Pre-ampl<br>ifier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits       | Margin | Detect |
|-------|------------------------|------------------|-------------------|---------------|-------------------|-------------------|--------------|--------|--------|
| (H/V) | (MHz)                  | (dBuV)           | (dB)              | (dB)          | (dB)              | (dBuV/m)          | (dBuV/<br>m) | (dB)   | Туре   |
|       | Middle Channel:5200MHz |                  |                   |               |                   |                   |              |        |        |
| V     | 10400.00               | 38.34            | 30.45             | 8.77          | 38.66             | 55.32             | 74.00        | -18.68 | PK     |
| V     | 10400.00               | 28.70            | 30.45             | 8.77          | 38.66             | 45.68             | 54.00        | -8.32  | AV     |
| V     | 15600.00               | 36.95            | 30.44             | 9.31          | 38.55             | 54.37             | 74.00        | -19.63 | PK     |
| V     | 15600.00               | 27.20            | 30.44             | 9.31          | 38.55             | 44.62             | 54.00        | -9.38  | AV     |
| V     | 20800.00               | 38.19            | 30.72             | 9.45          | 38.69             | 55.61             | 74.00        | -18.39 | PK     |
| V     | 20800.00               | 27.87            | 30.72             | 9.45          | 38.69             | 45.29             | 54.00        | -8.71  | AV     |
| V     | 26000.00               | 38.97            | 30.65             | 9.99          | 38.57             | 56.88             | 74.00        | -17.12 | PK     |
| V     | 26000.00               | 28.43            | 30.65             | 9.99          | 38.57             | 46.34             | 54.00        | -7.66  | AV     |
| Н     | 10400.00               | 38.93            | 30.45             | 8.77          | 38.66             | 55.91             | 74.00        | -18.09 | PK     |
| Н     | 10400.00               | 28.34            | 30.45             | 8.77          | 38.66             | 45.32             | 54.00        | -8.68  | AV     |
| Н     | 15600.00               | 38.21            | 30.44             | 9.31          | 38.55             | 55.63             | 74.00        | -18.37 | PK     |
| Н     | 15600.00               | 27.96            | 30.44             | 9.31          | 38.55             | 45.38             | 54.00        | -8.62  | AV     |
| Н     | 20800.00               | 38.27            | 30.72             | 9.45          | 38.69             | 55.69             | 74.00        | -18.31 | PK     |
| Н     | 20800.00               | 27.20            | 30.72             | 9.45          | 38.69             | 44.62             | 54.00        | -9.38  | AV     |
| Н     | 26000.00               | 37.48            | 30.65             | 9.99          | 38.57             | 55.39             | 74.00        | -18.61 | PK     |
| Н     | 26000.00               | 28.30            | 30.65             | 9.99          | 38.57             | 46.21             | 54.00        | -7.79  | AV     |





| Polar | Frequency | Meter<br>Reading | Pre-ampli<br>fier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits       | Margin | Detect |
|-------|-----------|------------------|-------------------|---------------|-------------------|-------------------|--------------|--------|--------|
| (H/V) | (MHz)     | (dBuV)           | (dB)              | (dB)          | (dB)              | (dBuV/m)          | (dBuV/<br>m) | (dB)   | Туре   |
|       |           |                  | H                 | ligh Chan     | nel:5240MH        | z                 |              |        |        |
| V     | 10480.00  | 38.34            | 30.45             | 8.77          | 38.66             | 55.32             | 74.00        | -18.68 | PK     |
| V     | 10480.00  | 28.3             | 30.45             | 8.77          | 38.66             | 45.28             | 54.00        | -8.72  | AV     |
| V     | 15720.00  | 38.2             | 30.44             | 9.31          | 38.55             | 55.62             | 74.00        | -18.38 | PK     |
| V     | 15720.00  | 28.51            | 30.44             | 9.31          | 38.55             | 45.93             | 54.00        | -8.07  | AV     |
| V     | 20960.00  | 37.27            | 30.72             | 9.45          | 38.69             | 54.69             | 74.00        | -19.31 | PK     |
| V     | 20960.00  | 27.89            | 30.72             | 9.45          | 38.69             | 45.31             | 54.00        | -8.69  | AV     |
| V     | 26200.00  | 37.37            | 30.65             | 9.99          | 38.57             | 55.28             | 74.00        | -18.72 | PK     |
| V     | 26200.00  | 26.76            | 30.65             | 9.99          | 38.57             | 44.67             | 54.00        | -9.33  | AV     |
| Н     | 10480.00  | 37.95            | 30.45             | 8.77          | 38.66             | 54.93             | 74.00        | -19.07 | PK     |
| Н     | 10480.00  | 28.21            | 30.45             | 8.77          | 38.66             | 45.19             | 54.00        | -8.81  | AV     |
| Н     | 15720.00  | 37.89            | 30.44             | 9.31          | 38.55             | 55.31             | 74.00        | -18.69 | PK     |
| Н     | 15720.00  | 27.49            | 30.44             | 9.31          | 38.55             | 44.91             | 54.00        | -9.09  | AV     |
| Н     | 20960.00  | 37.9             | 30.72             | 9.45          | 38.69             | 55.32             | 74.00        | -18.68 | PK     |
| Н     | 20960.00  | 27.75            | 30.72             | 9.45          | 38.69             | 45.17             | 54.00        | -8.83  | AV     |
| Н     | 26200.00  | 37.48            | 30.65             | 9.99          | 38.57             | 55.39             | 74.00        | -18.61 | PK     |
| Н     | 26200.00  | 25.92            | 30.65             | 9.99          | 38.57             | 43.83             | 54.00        | -10.17 | AV     |

# Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss - Pre-amplifier,

Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

4. The worst mode is 802.11a, only the worst data is recorded.







| Temperature : | <b>26</b> ℃      | Relative Humidity : | 54%   |
|---------------|------------------|---------------------|-------|
| Pressure :    | 1010 hPa         | Test Voltage :      | DC19V |
| Test Mode :   | 5.8G TX- 802.11a | 22                  |       |

| 10011110 |           |                  |                   |               |                   |                   |              |        |        |  |
|----------|-----------|------------------|-------------------|---------------|-------------------|-------------------|--------------|--------|--------|--|
| 802.11a  |           |                  |                   |               |                   |                   |              |        |        |  |
| Polar    | Frequency | Meter<br>Reading | Pre-ampl<br>ifier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits       | Margin | Detect |  |
| (H/V)    | (MHz)     | (dBuV)           | (dB)              | (dB)          | (dB)              | (dBuV/m)          | (dBuV/<br>m) | (dB)   | Туре   |  |
|          |           |                  |                   | ow Chan       | nel:5745MH        | z                 |              |        |        |  |
| V        | 11490.00  | 37.46            | 30.45             | 8.77          | 38.66             | 54.44             | 74.00        | -19.56 | PK     |  |
| V        | 11490.00  | 28.95            | 30.45             | 8.77          | 38.66             | 45.93             | 54.00        | -8.07  | AV     |  |
| V        | 17235.00  | 36.25            | 30.44             | 9.31          | 38.55             | 53.67             | 74.00        | -20.33 | PK     |  |
| V        | 17235.00  | 27.10            | 30.44             | 9.31          | 38.55             | 44.52             | 54.00        | -9.48  | AV     |  |
| V        | 22980.00  | 37.19            | 30.72             | 9.45          | 38.69             | 54.61             | 74.00        | -19.39 | PK     |  |
| V        | 22980.00  | 26.41            | 30.72             | 9.45          | 38.69             | 43.83             | 54.00        | -10.17 | AV     |  |
| V        | 28725.00  | 38.00            | 30.65             | 9.99          | 38.57             | 55.91             | 74.00        | -18.09 | PK     |  |
| V        | 28725.00  | 26.76            | 30.65             | 9.99          | 38.57             | 44.67             | 54.00        | -9.33  | AV     |  |
| Н        | 11490.00  | 37.23            | 30.45             | 8.77          | 38.66             | 54.21             | 74.00        | -19.79 | PK     |  |
| Н        | 11490.00  | 26.61            | 30.45             | 8.77          | 38.66             | 43.59             | 54.00        | -10.41 | AV     |  |
| Н        | 17235.00  | 38.50            | 30.44             | 9.31          | 38.55             | 55.92             | 74.00        | -18.08 | PK     |  |
| Н        | 17235.00  | 27.92            | 30.44             | 9.31          | 38.55             | 45.34             | 54.00        | -8.66  | AV     |  |
| Н        | 22980.00  | 37.41            | 30.72             | 9.45          | 38.69             | 54.83             | 74.00        | -19.17 | PK     |  |
| Н        | 22980.00  | 27.59            | 30.72             | 9.45          | 38.69             | 45.01             | 54.00        | -8.99  | AV     |  |
| Н        | 28725.00  | 36.31            | 30.65             | 9.99          | 38.57             | 54.22             | 74.00        | -19.78 | PK     |  |
| Н        | 28725.00  | 25.78            | 30.65             | 9.99          | 38.57             | 43.69             | 54.00        | -10.31 | AV     |  |

| Polar                  | Frequency | Meter<br>Reading | Pre-ampl<br>ifier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits       | Margin | Detect<br>or |  |
|------------------------|-----------|------------------|-------------------|---------------|-------------------|-------------------|--------------|--------|--------------|--|
| (H/V)                  | (MHz)     | (dBuV)           | (dB)              | (dB)          | (dB)              | (dBuV/m)          | (dBuV/<br>m) | (dB)   | Туре         |  |
| Middle Channel:5785MHz |           |                  |                   |               |                   |                   |              |        |              |  |
| V                      | 11570.00  | 37.93            | 30.45             | 8.77          | 38.66             | 54.91             | 74.00        | -19.09 | PK           |  |
| V                      | 11570.00  | 26.70            | 30.45             | 8.77          | 38.66             | 43.68             | 54.00        | -10.32 | AV           |  |
| V                      | 17355.00  | 36.85            | 30.44             | 9.31          | 38.55             | 54.27             | 74.00        | -19.73 | PK           |  |
| V                      | 17355.00  | 28.31            | 30.44             | 9.31          | 38.55             | 45.73             | 54.00        | -8.27  | AV           |  |
| V                      | 23140.00  | 37.79            | 30.72             | 9.45          | 38.69             | 55.21             | 74.00        | -18.79 | PK           |  |
| V                      | 23140.00  | 27.51            | 30.72             | 9.45          | 38.69             | 44.93             | 54.00        | -9.07  | AV           |  |
| V                      | 28925.00  | 37.38            | 30.65             | 9.99          | 38.57             | 55.29             | 74.00        | -18.71 | PK           |  |
| V                      | 28925.00  | 27.26            | 30.65             | 9.99          | 38.57             | 45.17             | 54.00        | -8.83  | AV           |  |
| Н                      | 11570.00  | 37.34            | 30.45             | 8.77          | 38.66             | 54.32             | 74.00        | -19.68 | PK           |  |
| Н                      | 11570.00  | 27.85            | 30.45             | 8.77          | 38.66             | 44.83             | 54.00        | -9.17  | AV           |  |
| Н                      | 17355.00  | 37.95            | 30.44             | 9.31          | 38.55             | 55.37             | 74.00        | -18.63 | PK           |  |
| Н                      | 17355.00  | 27.61            | 30.44             | 9.31          | 38.55             | 45.03             | 54.00        | -8.97  | AV           |  |
| H                      | 23140.00  | 37.52            | 30.72             | 9.45          | 38.69             | 54.94             | 74.00        | -19.06 | PK           |  |
| Н                      | 23140.00  | 27.67            | 30.72             | 9.45          | 38.69             | 45.09             | 54.00        | -8.91  | AV           |  |
| Н                      | 28925.00  | 37.19            | 30.65             | 9.99          | 38.57             | 55.10             | 74.00        | -18.90 | PK           |  |
| Н                      | 28925.00  | 28.17            | 30.65             | 9.99          | 38.57             | 46.08             | 54.00        | -7.92  | AV           |  |







| Polar | Frequency | Meter<br>Reading | Pre-ampli<br>fier | Cable<br>Loss | Antenna<br>Factor | Emission<br>Level | Limits       | Margin | Detect |
|-------|-----------|------------------|-------------------|---------------|-------------------|-------------------|--------------|--------|--------|
| (H/V) | (MHz)     | (dBuV)           | (dB)              | (dB)          | (dB)              | (dBuV/m)          | (dBuV/<br>m) | (dB)   | Туре   |
|       |           |                  | Н                 | ligh Chan     | nel:5825MH        | z                 |              |        |        |
| V     | 11650.00  | 36.98            | 30.45             | 8.77          | 38.66             | 53.96             | 74.00        | -20.04 | PK     |
| V     | 11650.00  | 27.23            | 30.45             | 8.77          | 38.66             | 44.21             | 54.00        | -9.79  | AV     |
| V     | 17475.00  | 36.91            | 30.44             | 9.31          | 38.55             | 54.33             | 74.00        | -19.67 | PK     |
| V     | 17475.00  | 27.67            | 30.44             | 9.31          | 38.55             | 45.09             | 54.00        | -8.91  | AV     |
| V     | 23300.00  | 38.87            | 30.72             | 9.45          | 38.69             | 56.29             | 74.00        | -17.71 | PK     |
| V     | 23300.00  | 28.49            | 30.72             | 9.45          | 38.69             | 45.91             | 54.00        | -8.09  | AV     |
| V     | 29125.00  | 39.35            | 30.65             | 9.99          | 38.57             | 57.26             | 74.00        | -16.74 | PK     |
| V     | 29125.00  | 28.42            | 30.65             | 9.99          | 38.57             | 46.33             | 54.00        | -7.67  | AV     |
| Н     | 11650.00  | 38.3             | 30.45             | 8.77          | 38.66             | 55.28             | 74.00        | -18.72 | PK     |
| Н     | 11650.00  | 29.10            | 30.45             | 8.77          | 38.66             | 46.08             | 54.00        | -7.92  | AV     |
| Н     | 17475.00  | 38.69            | 30.44             | 9.31          | 38.55             | 56.11             | 74.00        | -17.89 | PK     |
| Н     | 17475.00  | 29.67            | 30.44             | 9.31          | 38.55             | 47.09             | 54.00        | -6.91  | AV     |
| Н     | 23300.00  | 37.52            | 30.72             | 9.45          | 38.69             | 54.94             | 74.00        | -19.06 | PK     |
| Н     | 23300.00  | 27.97            | 30.72             | 9.45          | 38.69             | 45.39             | 54.00        | -8.61  | AV     |
| Н     | 29125.00  | 37.30            | 30.65             | 9.99          | 38.57             | 55.21             | 74.00        | -18.79 | PK     |
| Н     | 29125.00  | 27.13            | 30.65             | 9.99          | 38.57             | 45.04             | 54.00        | -8.96  | AV     |

# Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss - Pre-amplifier,

Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

4. The worst mode is 802.11a, only the worst data is recorded.







#### 5. POWER SPECTRAL DENSITY TEST

#### 5.1 APPLIED PROCEDURES / LIMIT

According to FCC §15.407(3) Power limits:

(1) For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.



(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

www.zkt-lab.com



#### 5.2 TEST PROCEDURE

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

a) Set RBW  $\geq$  1/T, where T is defined in section II.B.I.a).

b) Set VBW  $\geq$  3 RBW.

c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.

e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

# 5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT

Ð

SPECTRUM ANALYZER

www.zkt-lab.com

#### 5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.



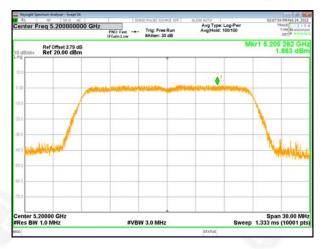


# 5.6 TEST RESULTS

| Temperature : | <b>26</b> ℃ | Relative Humidity : | 54%   |
|---------------|-------------|---------------------|-------|
| Pressure :    | 1015 hPa    | Test Voltage :      | DC19V |
| Test Mode :   | ТХ          |                     |       |

|   | Mode        | Frequency | Measured Power<br>Density<br>(dBm/MHz) | Limit<br>(dBm/MHz) |
|---|-------------|-----------|----------------------------------------|--------------------|
|   | 5           | 5180 MHz  | 2.567                                  | 11                 |
| 6 | 802.11 a    | 5200 MHz  | 2.270                                  | 11                 |
| 1 |             | 5240 MHz  | 3.769                                  | 11                 |
|   |             | 5180 MHz  | 1.562                                  | 11                 |
|   | 802.11 n20  | 5200 MHz  | 1.863                                  | 11                 |
|   |             | 5240 MHz  | 2.965                                  | 11                 |
|   |             | 5180 MHz  | 1.883                                  | 11                 |
|   | 802.11 ac20 | 5200 MHz  | 2.205                                  | 11                 |
|   |             | 5240 MHz  | 3.063                                  | 11                 |
|   |             | 5190 MHz  | -2.555                                 | 11                 |
|   | 802.11 n40  | 5230 MHz  | -1.292                                 | 11                 |
|   |             | 5190 MHz  | -2.658                                 | 11                 |
|   | 802.11 ac40 | 5230 MHz  | -1.277                                 | 11                 |
|   | 802.11 ac80 | 5210 MHz  | -8.363                                 | 11                 |

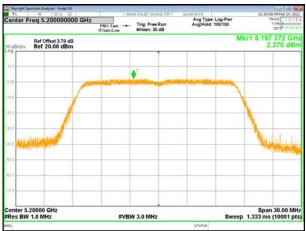







# (802.11n20) PSD plot on channel 36




# (802.11n20) PSD plot on channel 40






(802.11a) PSD plot on channel 36

# (802.11a) PSD plot on channel 40



#### (802.11a) PSD plot on channel 48

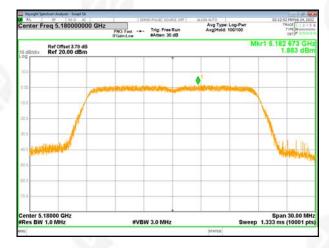


# (802.11n20) PSD plot on channel 48

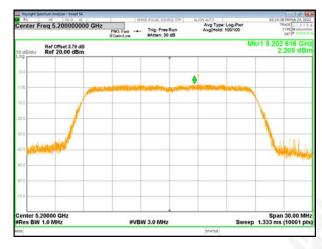




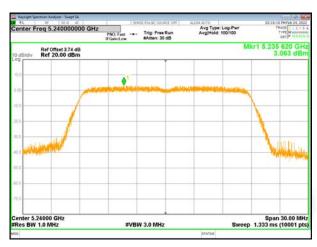
Shenzhen ZKT Technology Co., Ltd.


+86-400-000-9970









(802.11ac20) PSD plot on channel 36



# (802.11ac20) PSD plot on channel 40



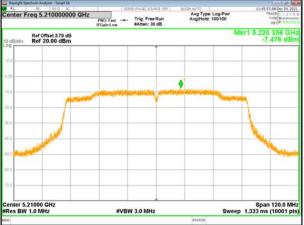
# (802.11ac20) PSD plot on channel 48



# (802.11n40) PSD plot on channel 38



# (802.11n40) PSD plot on channel 46








(802.11ac40) PSD plot on channel 38





(802.11ac80) PSD plot on channel 42

# (802.11ac40) PSD plot on channel 46











| Mode        | Frequency | Measured Power<br>Density<br>(dBm/510kHz) | Measured Power<br>Density<br>(dBm/500kHz) | Limit<br>(dBm/500kHz) |
|-------------|-----------|-------------------------------------------|-------------------------------------------|-----------------------|
|             | 5745 MHz  | -1.143                                    | -1.229                                    | 30                    |
| 802.11 a    | 5785 MHz  | 0.412                                     | 0.326                                     | 30                    |
|             | 5825 MHz  | -0.452                                    | -0.538                                    | 30                    |
|             | 5745 MHz  | -2.196                                    | -2.282                                    | 30                    |
| 802.11 n20  | 5785 MHz  | -0.370                                    | -0.456                                    | 30                    |
|             | 5825 MHz  | -1.450                                    | -1.536                                    | 30                    |
|             | 5745 MHz  | -2.122                                    | -2.208                                    | 30                    |
| 802.11 ac20 | 5785 MHz  | -0.866                                    | -0.952                                    | 30                    |
|             | 5825 MHz  | -1.434                                    | -1.52                                     | 30                    |
|             | 5755 MHz  | -5.810                                    | -5.896                                    | 30                    |
| 802.11 n40  | 5795 MHz  | -5.638                                    | -5.724                                    | 30                    |
|             | 5755 MHz  | -6.012                                    | -6.098                                    | 30                    |
| 802.11 ac40 | 5795 MHz  | -5.388                                    | -5.474                                    | 30                    |
| 802.11 AC80 | 5775 MHz  | -12.127                                   | -12.213                                   | 30                    |
| Pomark:     |           |                                           |                                           |                       |

#### Remark:

If the measurement is X dBm/510kHz, thus X dBm/510kHz =  $(10^{X/10})^*(500 / 510) dBm/500kHz$ 





Avg Type: Log-Pwr Avg[Hold: 100/100

Mkr1 5.743 962 GF -1.143 dB

dil. 11

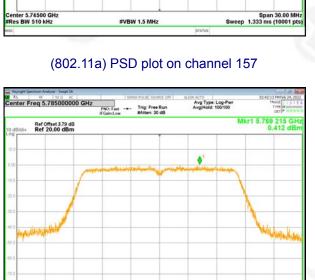
30.00 M

Span 30.00 MHz Sweep 1.333 ms (10001 pts



er Freq 5.745000000 GHz

Ref Offset 3.83 dB Ref 20.00 dBm


nter 5.78500 GHz es BW 510 kHz

# (802.11n20) PSD plot on channel 149

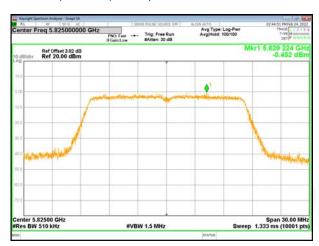


# (802.11n20) PSD plot on channel 157





(802.11a) PSD plot on channel 149


Trig: Free

٥

PNO: Fast -+-

# (802.11a) PSD plot on channel 165

#VBW 1.5 MHz



# (802.11n20) PSD plot on channel 165



Zkt@zkt-lab.com

Shenzhen ZKT Technology Co., Ltd.

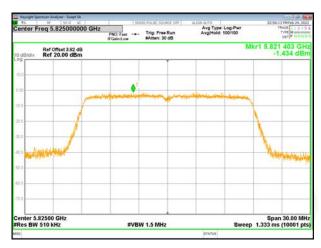
1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China



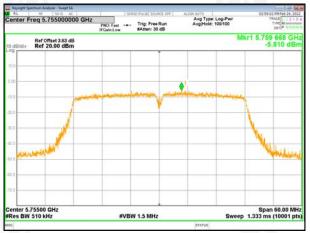




# (802.11ac20) PSD plot on channel 149




## (802.11ac20) PSD plot on channel 157



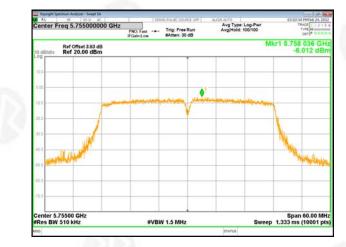

 Bit Center Freq 5.785000000 GHz
 Processor
 Pro


#### (802.11ac20) PSD plot on channel 165

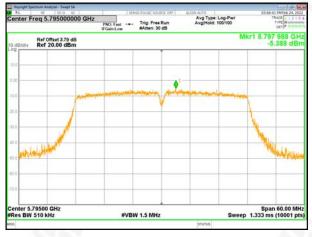


# (802.11n40) PSD plot on channel 151




# (802.11n40) PSD plot on channel 159








(802.11ac40) PSD plot on channel 151



(802.11ac40) PSD plot on channel 159



# (802.11ac80) PSD plot on channel 155

















### 6. 26DB & 6DB & 99% EMISSION BANDWIDTH

# 6.1 APPLIED PROCEDURES / LIMIT

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band, the minimum bandwidth 6 dB bandwidth of U-NII devices shall be at least 500KHz. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

### 6.2 TEST PROCEDURE

- a) Set RBW = 100KHz.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.

e) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

The following procedure shall be used for measuring (99 %) power bandwidth:

1. Set center frequency to the nominal EUT channel center frequency.

- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW
- 4. Set VBW  $\geq$  3  $\cdot$  RBW

+86-400-000-9970

5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
6. Use the 99 % power bandwidth function of the instrument (if available).

7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

| EUT | SPECTRUM<br>ANALYZER |  |
|-----|----------------------|--|
|     |                      |  |
|     |                      |  |

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

+86-755-2233 6688

X zkt@zkt-lab.com





Project No.: ZKT-220218L0837E-3

Page 37 of 71

🔊 www.zkt-lab.com



# 6.3 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

# 6.4 TEST RESULTS

| Temperature : | <b>26</b> ℃ | Relative Humidity : | 54%   |
|---------------|-------------|---------------------|-------|
| Pressure :    | 101kPa      | Test Voltage :      | DC19V |
| Test Mode :   | ТХ          |                     |       |

# 5180-5240MHz


|         | -26dB Channel Bandwidth (MHz) |                   |                    |                   |                    |                    | Limit |        |
|---------|-------------------------------|-------------------|--------------------|-------------------|--------------------|--------------------|-------|--------|
| Test CH | 802.11a                       | 802.11n<br>(HT20) | 802.11ac<br>(HT20) | 802.11n<br>(HT40) | 802.11ac<br>(HT40) | 802.11ac<br>(HT80) | (KHz) | Result |
| Lowest  | 18.37                         | 19.20             | 19.16              | 40.39             | 40.83              |                    | 1     |        |
| Middle  | 18.39                         | 19.21             | 19.24              | - N               |                    | 80.15              | >500  | Pass   |
| Highest | 18.27                         | 19.21             | 19.20              | 40.46             | 40.48              |                    |       |        |

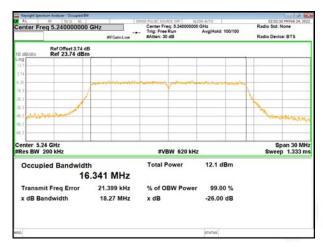
|         | 99% Occupy Bandwidth (MHz) |                   |                    |                   |                    |                    |        |
|---------|----------------------------|-------------------|--------------------|-------------------|--------------------|--------------------|--------|
| Test CH | 802.11a                    | 802.11n<br>(HT20) | 802.11ac<br>(HT20) | 802.11n<br>(HT40) | 802.11ac<br>(HT40) | 802.11ac<br>(HT80) | Result |
| Lowest  | 16.349                     | 17.534            | 17.537             | 36.025            | 36.061             |                    |        |
| Middle  | 16.352                     | 17.540            | 17.538             |                   |                    | 74.627             | Pass   |
| Highest | 16.341                     | 17.527            | 17.529             | 36.012            | 36.057             |                    |        |

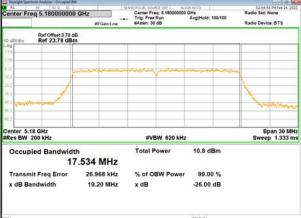




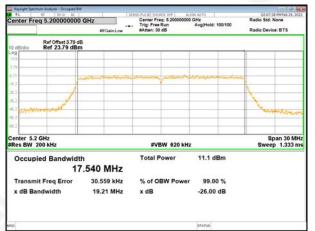







# (802.11a) plot on channel 40




# (802.11a) plot on channel 48





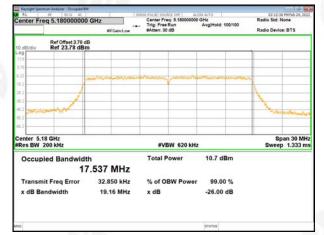
# (802.11 n20) plot on channel 40



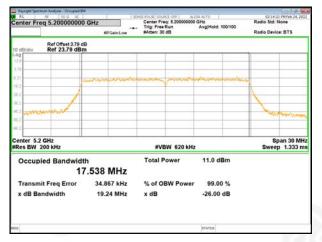
# (802.11 n20) plot on channel 48



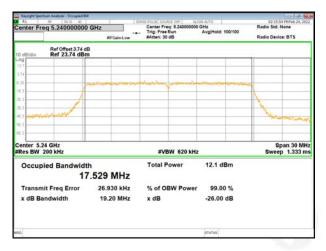
Ð


# ED.

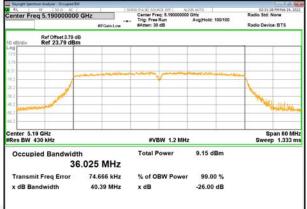










# (802.11ac20) plot on channel 40




# (802.11ac20) plot on channel 48



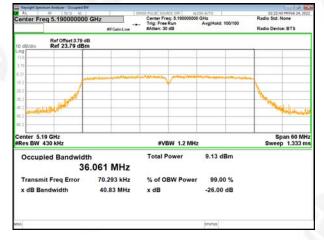
# (802.11 n40) plot on channel 38



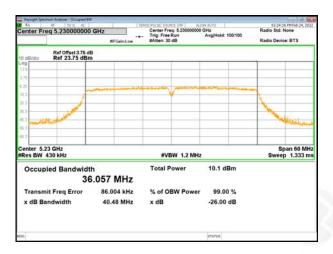
# (802.11 n40) plot on channel 46












(802.11ac40) plot on channel 38



# (802.11ac40) plot on channel 46





(802.11ac80) plot on channel 42















# 5745-5825MHz

|         | -6dB Channel Bandwidth (MHz) |                   |                    |                   |                    |                    | Limit |        |  |  |
|---------|------------------------------|-------------------|--------------------|-------------------|--------------------|--------------------|-------|--------|--|--|
| Test CH | 802.11a                      | 802.11n<br>(HT20) | 802.11ac<br>(HT20) | 802.11n<br>(HT40) | 802.11ac<br>(HT40) | 802.11ac<br>(HT80) | (KHz) | Result |  |  |
| Lowest  | 16.30                        | 17.53             | 17.32              | 34.27             | 35.10              |                    |       |        |  |  |
| Middle  | 16.32                        | 17.29             | 17.21              |                   |                    | 73. 85             | >500  | Pass   |  |  |
| Highest | 16.32                        | 17.55             | 17.54              | 35.10             | 32.66              |                    |       |        |  |  |

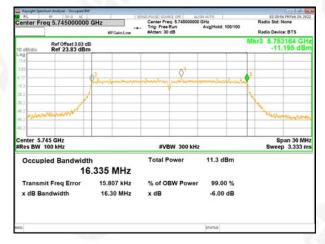

















(802.11a) plot on channel 149








# (802.11a) plot on channel 157



# (802.11a) plot on channel 165



# (802.11 n20) plot on channel 157



# (802.11 n20) plot on channel 165



Ð









# (802.11ac20) plot on channel 149



### (802.11ac20) plot on channel 157



# (802.11ac20) plot on channel 165



# (802.11 n40) plot on channel 151



### E3:00:51 PMFeb 24, 20 Radio Std: None nter Freq 5.795000000 GHz Center Freq: 5.3 Trig: Free Run #Atten: 30 dB Radio Device: BTS -17.711 di Ref Offset 3.79 dB Ref 23.79 dBm 0 enter 5.795 GHz Res BW 100 kHz Span 60 Mi Sweep 6 r #VBW 300 kHz 10.1 dBm **Occupied Bandwidth Total Power** 35.904 MHz 29.656 kHz 99.00 % **Transmit Freg Error** % of OBW Por x dB Bandwidth 35.10 MHz -6.00 dB x dB

(802.11 n40) plot on channel 159

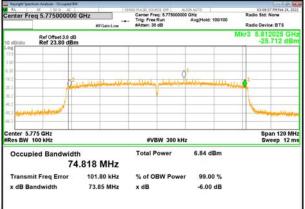
Ð

Ð








# (802.11 ac40) plot on channel 151

# (802.11 ac80) plot on channel 155



# (802.11 ac40) plot on channel 159

| Keysight Spectrum Analyse - Occupied IW<br>AL 81 55 0 40<br>enter Freq 5.795000000 |                                     | Center Freq: 5.795000000 | NAUTO<br>SHz<br>Avg(Hold: 100/100 | Radio Device: BTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------|-------------------------------------|--------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ref Offset 3.79 dB                                                                 |                                     | anten: 30 GD             |                                   | Mkr3 5.81134 GHz<br>-13.964 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18                                                                                 |                                     |                          |                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 79                                                                                 |                                     | 01                       |                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2                                                                                  | 2 mary mary and and an an an and so | helselvery produced      | alademan and a second             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                                                                                  |                                     | *                        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 Junio Lord and any Martington and                                                |                                     |                          |                                   | The state of the s |
| 12                                                                                 |                                     |                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| enter 5.795 GHz<br>Res BW 100 kHz                                                  |                                     | #VBW 300 kHz             |                                   | Span 60 MH<br>Sweep 6 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Occupied Bandwidti<br>35                                                           | .915 MHz                            | Total Power              | 10.1 dBm                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Transmit Freq Error                                                                | 10.251 kHz                          | % of OBW Power           | 99.00 %                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| x dB Bandwidth                                                                     | 32.66 MHz                           | x dB                     | -6.00 dB                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0                                                                                  |                                     |                          | STATUS                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |















### 7.MAXIMUM CONDUCTED OUTPUT POWER



# 7.1 PPLIED PROCEDURES / LIMIT

# According to FCC §15.407

# The maximum conduced output power should not exceed:

| Frequency Band(MHz) | Limit |
|---------------------|-------|
| 5150~5250           | 250mW |
| 5725~5850           | 1W    |

### 7.2 TEST PROCEDURE

The EUT was directly connected to the Power meter

### 1. Device Configuration

If possible, configure or modify the operation of the EUT so that it transmits continuously at its maximum power control level (see section II.B.).

a) The intent is to test at 100 percent duty cycle; however a small reduction in duty cycle (to no lower than 98 percent) is permitted if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation.

b) If continuous transmission (or at least 98 percent duty cycle) cannot be achieved due to hardware limitations (e.g., overheating), the EUT shall be operated at its maximum power control level with the transmit duration as long as possible and the duty cycle as high as possible.

### 2. Measurement using a Spectrum Analyzer or EMI Receiver (SA)

Measurement of maximum conducted output power using a spectrum analyzer requires integrating the spectrum across a frequency span that encompasses, at a minimum, either the EBW or the 99-percent occupied bandwidth of the signal.1 However, the EBW must be used to determine bandwidth dependent limits on maximum conducted output power in accordance with § 15.407(a).

a) The test method shall be selected as follows: (i) Method SA-1 or SA-1 Alternative (averaging with the EUT transmitting at full power throughout each sweep) shall be applied if either of the following conditions can be satisfied:

The EUT transmits continuously (or with a duty cycle ≥ 98 percent).

• Sweep triggering or gating can be implemented in a way that the device transmits at the maximum power control level throughout the duration of each of the instrument sweeps to be averaged. This condition can generally be achieved by triggering the instrument's sweep if the duration of the sweep (with the analyzer configured as in Method SA-1, below) is equal to or shorter than the duration T of each transmission from the EUT and if those transmissions exhibit full power throughout their durations.

(ii) Method SA-2 or SA-2 Alternative (averaging across on and off times of the EUT transmissions, followed by duty cycle correction) shall be applied if the conditions of (i) cannot be achieved and the transmissions exhibit a constant duty cycle during the measurement duration. Duty cycle will be considered to be constant if variations are less than  $\pm 2$  percent.

(iii) Method SA-3 (RMS detection with max hold) or SA-3 Alternative (reduced VBW with max hold) shall be applied if the conditions of (i) and (ii) cannot be achieved.

b) Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep): (i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.

(ii) Set RBW = 1 MHz.

(iii) Set VBW  $\geq$  3 MHz.

(iv) Number of points in sweep  $\geq$  2 Span / RBW. (This ensures that bin-to-bin spacing is  $\leq$  RBW/2, so that narrowband signals are not lost between frequency bins.)

(v) Sweep time = auto.

(vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode. (vii) If transmit duty cycle < 98 percent, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle  $\geq$  98 percent, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".

(viii) Trace average at least 100 traces in power averaging (i.e., RMS) mode.

### Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China





### Project No.: ZKT-220218L0837E-3 Page 47 of 71

(ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum

### 7.3 DEVIATION FROM STANDARD

No deviation.

# 7.4 TEST SETUP



# 7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.











# 7.6 TEST RESULTS


| Temperature : | <b>26</b> ℃ | Relative Humidity : | 54%   |
|---------------|-------------|---------------------|-------|
| Pressure :    | 1012 hPa    | Test Voltage :      | DC19V |
| Test Mode :   | ТХ          | 9                   |       |

| Test Channel | Frequency | Maximum output power | LIMIT | Desult |
|--------------|-----------|----------------------|-------|--------|
| Test Channel | (MHz)     | (dBm)                | dBm   | Result |
|              |           | TX 802.11a Mode      |       |        |
| CH36         | 5180      | 9.80                 | 23.98 | Pass   |
| CH40         | 5200      | 9.96                 | 23.98 | Pass   |
| CH48         | 5240      | 11.16                | 23.98 | Pass   |
|              |           | TX 802.11 n20 Mode   |       |        |
| CH36         | 5180      | 9.81                 | 23.98 | Pass   |
| CH40         | 5200      | 10.06                | 23.98 | Pass   |
| CH48         | 5240      | 11.10                | 23.98 | Pass   |
|              |           | TX 802.11 ac20 Mode  |       | 0.0    |
| CH36         | 5180      | 9.74                 | 23.98 | Pass   |
| CH40         | 5200      | 9.99                 | 23.98 | Pass   |
| CH48         | 5240      | 11.18                | 23.98 | Pass   |
|              |           | TX 802.11 n40 Mode   |       |        |
| CH38         | 5190      | 8.17                 | 23.98 | Pass   |
| CH46         | 5230      | 9.10                 | 23.98 | Pass   |
| <u>.</u>     |           | TX 802.11 ac40 Mode  |       |        |
| CH38         | 5190      | 8.09                 | 23.98 | Pass   |
| CH46         | 5230      | 9.19                 | 23.98 | Pass   |
|              |           | TX 802.11 ac80 Mode  |       |        |
| CH42         | 5210      | 4.37                 | 23.98 | Pass   |

| Test Channel | Frequency | Maximum output power. | LIMIT | Result |  |
|--------------|-----------|-----------------------|-------|--------|--|
| (MHz)        |           | (dBm)                 |       | Result |  |
|              |           | TX 802.11a Mode       |       |        |  |
| CH149        | 5745      | 10.15                 | 30    | Pass   |  |
| CH157        | 5785      | 10.82                 | 30    | Pass   |  |
| CH165        | 5825      | 10.18                 | 30    | Pass   |  |
| <u>.</u>     |           | TX 802.11 n20M Mode   |       |        |  |
| CH149        | 5745      | 9.60                  | 30    | Pass   |  |
| CH157        | 5785      | 10.81                 | 30    | Pass   |  |
| CH165        | 5825      | 9.99                  | 30    | Pass   |  |
|              | ·         | TX 802.11 ac20 Mode   |       |        |  |
| CH149        | 5745      | 7.98                  | 30    | Pass   |  |
| CH157        | 5785      | 8.53                  | 30    | Pass   |  |
| CH165        | 5825      | 7.98                  | 30    | Pass   |  |
|              |           | TX 802.11 n40 Mode    |       |        |  |
| CH151        | 5755      | 7.98                  | 30    | Pass   |  |
| CH159        | 5795      | 8.53                  | 30    | Pass   |  |
|              |           | TX 802.11 ac40 Mode   |       |        |  |
| CH151        | 5755      | 8.13                  | 30    | Pass   |  |
| CH159        | 5795      | 8.47                  | 30    | Pass   |  |
|              |           | TX 802.11 ac80 Mode   |       | •      |  |
| CH155        | 5775      | 4.83                  | 30    | Pass   |  |

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China





# 8. OUT OF BAND EMISSIONS

# 8.1 APPLICABLE STANDARD

According to FCC §15.407(b)

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

# 8.2 TEST PROCEDURE

8.3 DEVIATION FROM STANDARD

+86-400-000-9970

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

4

+86-755-2233 6688

| No deviation.                 |                                                            |
|-------------------------------|------------------------------------------------------------|
| 8.4 TEST SETUP                |                                                            |
|                               |                                                            |
| EUT                           | POWER METER                                                |
|                               |                                                            |
|                               |                                                            |
|                               |                                                            |
| zhen ZKT Technology Co., Ltd. | / Industrial Avenue, Fuhai Street, Bao'an District, Shenzh |

www.zkt-lab.com



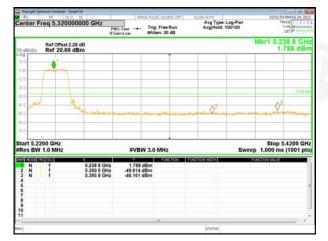
# 8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

# 8.6 TEST RESULTS

| Temperature : | <b>26</b> ℃ | Relative Humidity : | 54%   |
|---------------|-------------|---------------------|-------|
| Pressure :    | 1012 hPa    | Test Voltage :      | DC19V |

# 5.180~5.240 GHz


### (802.11a) Band Edge, Left Side

### (802.11n20) Band Edge, Left Side



# Bit L Will Bit L Bit L

# (802.11a) Band Edge, Right Side



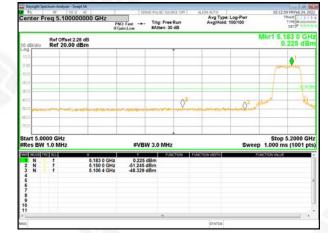
# (802.11n20) Band Edge, Right Side



Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

具



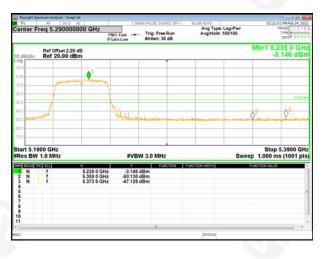





# 5.180~5.240 GHz

(802.11ac20) Band Edge, Left Side

# (802.11n40) Band Edge, Left Side



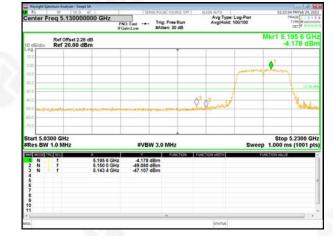

# (802.11ac20) Band Edge, Right Side

| Center Fr       |                       |                            | O: Fast Trig: Fr<br>ainLow #Atten:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | we Run  | Avg Type: L<br>Avg Hold: 10 | og-Pwr<br>101100 | E2:16:17 PMFeb 24, 2022<br>TRACE 1: 2:3:4:5<br>TYPE M WWWWWW<br>DET P TRYCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------|-----------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 dB/div        | Ref Offse<br>Ref 20.0 | t 2.28 dB<br>00 dBm        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                             | N                | lkr1 5.243 4 GHz<br>1.439 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10.0            | A1                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.00            | -                     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -       | -                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10.0            |                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 00              | _                     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _       | _                           |                  | 410100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 100 100         |                       | the                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -       | 02                          | 03               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50.0            | -                     | and the second second      | and the second sec | and     | - War                       | and a star       | and the second s |
| 70.0            |                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| tart 5.22       | 00 GHz                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                             |                  | Stop 5.4200 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Res BW          | 1.0 MHz               |                            | #VBW 3.0 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hz      |                             | Sweep            | 1.000 ms (1001 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| I N             |                       | 5.243 4 GHz                | 1,439 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UNCTION | INCTION WOLF                | 100              | HONWAUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2 N<br>3 N<br>4 | 1                     | 5.350 0 GHz<br>5.372 4 GHz | -49.658 dBm<br>-46.758 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 67              |                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8               |                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10              |                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                       |                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | STATUS                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Keysight Spectrum Analyzer - Swept SA   |                                                      |                                 | 04                                         |
|-----------------------------------------|------------------------------------------------------|---------------------------------|--------------------------------------------|
| enter Freg 5.130000000 GHz              | SENSE-PULSE SOURCE OFF                               | ALISN AUTO<br>Avg Type: Log-Pwr | 82-32-01 PMFeb 24, 202<br>TRACE 1, 2 3 4 5 |
| enter Freq 5.13000000 GHz               | PNO: Fest Trig: Free Run<br>IFGain:Low #Atten: 30 dB | Avg(Hold: 100/100               | DET P INVIOU                               |
| AB/div Ref 20.00 dB/                    |                                                      |                                 | Mkr1 5.195 6 GH<br>-4.097 dBn              |
| 0.0                                     |                                                      |                                 |                                            |
| 00                                      |                                                      |                                 | 1                                          |
| 0.0                                     |                                                      |                                 |                                            |
| 0.0                                     |                                                      |                                 | -21 m 40                                   |
| 00                                      |                                                      | 03 12 1                         |                                            |
| 0.0                                     |                                                      | have been and and a             | Martine !!                                 |
| 00                                      |                                                      |                                 |                                            |
|                                         |                                                      |                                 |                                            |
| tart 5.0300 GHz<br>Res BW 1.0 MHz       | #VBW 3.0 MHz                                         | Swee                            | Stop 5.2300 GH<br>1.000 ms (1001 pts       |
| N 1 5.195 6 C                           |                                                      | FUNCTION WIGHT                  | UNCHON WALVE                               |
| 2 N f 6.150 0 C<br>3 N f 5.143 6 C<br>4 | GHz -49.427 dBm                                      |                                 |                                            |
| 6<br>7<br>8<br>9                        |                                                      |                                 |                                            |
| 0                                       |                                                      |                                 |                                            |
|                                         |                                                      | STATUS                          |                                            |

# (802.11n40) Band Edge, Right Side








# 5.180~5.240 GHz

# (802.11ac40) Band Edge, Left Side

# (802.11ac80) Band Edge



(802.11ac40) Band Edge, Right Side

| R RL    |       | . 10   | 5.290000                | DOO GHz                                   | NO: Fast                              | Trig: Free Ru<br>#Atten: 30 dE | m        | Avg Type:<br>Avg[Hold: 1 |     | 12-24             | 59 PMFeb 24, 2022<br>TRACE |
|---------|-------|--------|-------------------------|-------------------------------------------|---------------------------------------|--------------------------------|----------|--------------------------|-----|-------------------|----------------------------|
|         | Bldiv | Ref    | Offset 2.28<br>20.00 dB | dB                                        | unit of                               |                                |          |                          |     |                   | 236 2 GHz<br>2.864 dBm     |
| 10.0    |       |        |                         |                                           |                                       | 1                              |          |                          |     |                   |                            |
| 0.00    | _     |        | and the second          |                                           |                                       | -                              |          |                          |     |                   |                            |
| 10.01   | -     |        | 1 martin                | 1 and                                     |                                       |                                |          |                          | -   | -                 |                            |
| 0.00    |       |        | 1                       |                                           |                                       | _                              |          |                          |     |                   | 41.00.000                  |
| 00      |       | 1      |                         |                                           | No. 1                                 |                                |          |                          |     | 4                 | A3                         |
| 50.0    | all a | here   | -                       |                                           | Williams                              | upe mande                      | -        |                          | -   | 0-                | - Same                     |
| 60 O    | _     |        |                         | -                                         |                                       |                                |          |                          | -   |                   |                            |
| 70.0    |       |        | -                       | -                                         |                                       | -                              |          |                          | -   |                   |                            |
|         |       | 900 G  |                         |                                           | #VBW                                  | 3.0 MHz                        |          |                          | Swe | Stop<br>p 1.000 n | 5.3900 GHz<br>ns (1001 pts |
|         |       | 60 S.C |                         | x                                         | Y.                                    |                                | ON FUNCT | ONWOTH                   |     | FUNCTION VIEW     | -                          |
| 23      | NNN   | 1      |                         | 5.236 2 GHz<br>5.350 0 GHz<br>5.376 2 GHz | -2.864 de<br>-50.177 de<br>-47.282 de | 3m                             |          |                          |     |                   |                            |
| 4 5     |       |        |                         |                                           |                                       |                                |          |                          |     |                   |                            |
| 78      |       |        |                         |                                           |                                       |                                |          |                          |     |                   |                            |
| 9 10 11 |       |        |                         |                                           |                                       |                                |          |                          |     |                   |                            |
| 11      | _     |        | 1                       |                                           |                                       | -                              |          |                          |     |                   | · · · ·                    |
| 10      |       |        |                         |                                           |                                       |                                |          | STATUS                   |     |                   |                            |















# 5.745~5.825 GHz

(802.11a) Band Edge, Left Side

# (802.11n20) Band Edge, Left Side



# (802.11a) Band Edge, Right Side

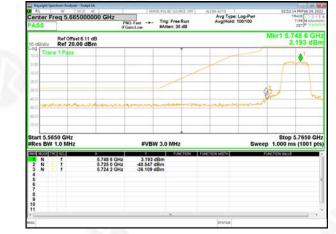
| Keybight Spectru<br>R.L. | m Analyzer - Swept | 40                                        | SENSE PULSE SOURCE                      | OTTA ALLAN ALLAN               | 124          | 4 58 PMFeb 24, 2022                               |
|--------------------------|--------------------|-------------------------------------------|-----------------------------------------|--------------------------------|--------------|---------------------------------------------------|
| enter Fred               | 5.905000           | 000 GHz                                   | D: Fast Trig: Free Ru                   | Avg Type: Log<br>Avg/Hold: 100 | -Pwr         | TRACE 1 2 3 4 5 0<br>TYPE N WWWWW<br>DET P 16 WWW |
| 0 dB/div                 | tef Offset 6.1 d   | B                                         |                                         |                                | Mkr1 5       | .822 2 GHz<br>4.802 dBm                           |
| 10.0 Trace 1             | §1:0               |                                           | ~                                       |                                |              |                                                   |
| 10.00                    | and made           |                                           |                                         |                                |              |                                                   |
| 0.0                      |                    |                                           |                                         |                                |              |                                                   |
| no and                   | ten                | 02                                        |                                         | A3                             |              |                                                   |
| 50.0                     |                    | Ma Darman                                 | when the second of the                  | mannewstores                   | manophan     | - tothe work                                      |
| 0.0                      |                    |                                           |                                         |                                |              |                                                   |
| 10.0                     |                    |                                           |                                         |                                |              |                                                   |
| Res BW 1.0               |                    |                                           | #VBW 3.0 MHz                            |                                | Sweep 1.000  | p 6.0050 GHz<br>ms (1001 pts)                     |
| I N<br>2 N<br>3 N        | t<br>f             | 5.822 2 GHz<br>5.850 0 GHz<br>5.941 2 GHz | 4.802 dBm<br>-46.823 dBm<br>-42.875 dBm | SM FUNCTION WROTH              | FUNCTION VAL | JE -                                              |
| 4                        |                    |                                           |                                         |                                |              |                                                   |
| 7 8                      |                    |                                           |                                         |                                |              |                                                   |
| 9                        |                    |                                           |                                         |                                |              |                                                   |
| L                        |                    |                                           | 10                                      | 1.0.01                         |              | •                                                 |
| 90                       |                    |                                           |                                         | STATUS                         |              |                                                   |



# (802.11n20) Band Edge, Right Side










# 5.745~5.825 GHz

(802.11ac20) Band Edge, Left Side

# (802.11n40) Band Edge, Left Side



(802.11ac20) Band Edge, Right Side

| RL NL                 |               | 00000 GHz                                 | SENSE PULSE SOUR                             | ALISN AUTO AVE TYPE:          | Log-Pwr    |                    | PHIFeb 24, 2022  |
|-----------------------|---------------|-------------------------------------------|----------------------------------------------|-------------------------------|------------|--------------------|------------------|
| PASS                  | 64 5.5050     | PN                                        | D: Fest Trig: Free F<br>sin:Low #Atten: 30 c | Run Avg/Hold: 1               | 100/100    | 1                  | PERMIT           |
| 10 dB/div             | Ref Offset 6. |                                           |                                              |                               | N          | lkr1 5.82<br>4.3   | 1 2 GH<br>38 dBn |
| 10.0 Trace            | 141==         | -                                         |                                              |                               |            | -                  |                  |
| 0.00                  | man           |                                           |                                              |                               |            |                    |                  |
| 10.07                 |               |                                           |                                              |                               |            |                    |                  |
| 30.0                  |               |                                           |                                              |                               |            |                    |                  |
| 40.0                  |               | Vind D2                                   | 03                                           |                               |            |                    |                  |
| 50.0                  | -             | Warenes                                   | mentionenterme                               | - to an and the second second | endralanda | plante             | -                |
| 60.0                  |               | _                                         |                                              |                               |            |                    |                  |
| 70.0                  | _             |                                           |                                              |                               |            |                    |                  |
| Start 5.805           |               |                                           | #VBW 3.0 MHz                                 | 5                             | Sweep      | Stop 6<br>1.000 ms | .0050 GH         |
| THE REAL PROPERTY AND | 120           | ×                                         |                                              | TION FUNCTION WIDTH           |            | CTION VALUE        |                  |
| 1 N<br>2 N<br>3 N     | 1             | 6.821 2 GHz<br>6.850 0 GHz<br>5.879 4 GHz | 4.338 dBm<br>-45.559 dBm<br>-43.222 dBm      |                               |            |                    |                  |
| 5                     |               |                                           |                                              |                               |            |                    | -                |
| 7 8 9                 |               |                                           |                                              |                               |            |                    |                  |
| 10                    |               |                                           |                                              |                               |            |                    |                  |
| 11                    |               |                                           |                                              |                               |            |                    |                  |
| 80                    |               |                                           |                                              | STATUS                        |            |                    |                  |

# Important <t

# (802.11n40) Band Edge, Right Side







# 5.745~5.825 GHz

# (802.11ac40) Band Edge, Left Side

# (802.11ac80) Band Edge



(802.11ac40) Band Edge, Right Side











95





### 9.SPURIOUS RF CONDUCTED EMISSIONS

### 9.1 CONFORMANCE LIMIT

- 1. Below -20dB of the highest emission level in operating band.
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

# 9.2 MEASURING INSTRUMENTS

The Measuring equipment is listed in the section 6.3 of this test report.

### 9.3 TEST SETUP



### 9.4 TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength, and measure frequency range from 30MHz to 26.5GHz.

### 9.5 TEST RESULTS

Remark: The measurement frequency range is from 30MHz to the 5th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and band edge measurement data.





# 802.11a on channel 36



# 802.11a on channel 48

| Keycight Spec | thum Analyzer - Swept                                                                                           |                        |                         | INT PULSE SOURCE OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ALIEN AUTO                  |                  | 12:01:2          | PHFeb 24, 202     |
|---------------|-----------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|------------------|-------------------|
| enter Fr      | eq 13.51500                                                                                                     | 0000 GHz               | NO: Fast                | Trig: Free Run<br>#Atten: 30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg Type: L<br>Avg Hold: 10 | og-Pwr<br>10/100 | 71               | DET               |
| 0 dB/div      | Ref Offset 3.74<br>Ref 20.00 dB                                                                                 | dB<br>Im               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | Mk               | 1 24.563<br>-30. | 710 GH<br>772 dBn |
| 10.0          |                                                                                                                 |                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                  |                  |                   |
| 0.00          |                                                                                                                 | -                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                  |                  |                   |
| 10.01         |                                                                                                                 |                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                  |                  |                   |
| 0.0           |                                                                                                                 |                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                  |                  | 1                 |
| 0.0           | _                                                                                                               |                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                           |                  |                  | 9                 |
| 00            |                                                                                                                 |                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | -                | -                | ~~~~              |
| 0.0           | - All and a second s | A Design of the second | No. of Concession, Name | and a local division of the local division o |                             |                  | -                | -                 |
| 0.0           |                                                                                                                 |                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                  |                  |                   |
| 10.0          |                                                                                                                 | -                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                  |                  |                   |
| tart 0.03     |                                                                                                                 |                        |                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                  |                  | 27.00 GH          |
| Res BW        | 1.0 MHz                                                                                                         |                        | #VB                     | V 3.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | Sweep            | 68.00 ms         | (30001 pts        |
| N N           |                                                                                                                 | 4.563 710 GHz          | -30,772                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FUNCTIONWOOT                |                  | UNCTION VALUE    | _                 |
| 2 3           |                                                                                                                 | 4.000 / 10 0/12        | -30.7721                | 2Dm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                  |                  |                   |
| 4             |                                                                                                                 |                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                  |                  |                   |
| 5             |                                                                                                                 |                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                  |                  |                   |
| 7             |                                                                                                                 |                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                  |                  |                   |
| 9             |                                                                                                                 |                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                  |                  |                   |
| 11            |                                                                                                                 |                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                  |                  |                   |
| 1             |                                                                                                                 |                        |                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STATUS                      |                  |                  |                   |
|               |                                                                                                                 |                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                  |                  |                   |

# 802.11n20 on channel 40



# 802.11a on channel 40



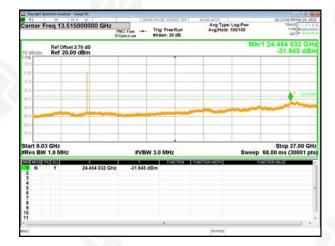
# 802.11n20 on channel 36



# 802.11n20 on channel 48



Zkt@zkt-lab.com


Shenzhen ZKT Technology Co., Ltd. 1/F. No. 101, Building B. No. 6, Tangwei C.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

**\*** +86-400-000-9970




# 802.11ac20 on channel 36



# 802.11ac20 on channel 48

| enter Freq 13.51500000                                                                                          |                                                                                                                 | NSEPULSE SOURCE OFF<br>Trig: Free Run<br>#Atten: 30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Avg Type: Log-Pwr<br>Avg(Hold: 100/100  | 82:16:44 PMFeb 24, 2022<br>TRACE 1:2:3:4:5<br>TVPE M WWWWW<br>DET P 18 W 18 |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------|
| Ref Offset 3.74 dB                                                                                              |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mkr                                     | 1 25.050 968 GH:<br>-31.624 dBn                                             |
| 10.0                                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                             |
| 0.00                                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                             |
| 0.0                                                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                             |
| 0.0                                                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                             |
| 0.0                                                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 1 1 10 10                                                                   |
| 00                                                                                                              |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                             |
| no sector sec | AND DESCRIPTION OF THE OWNER OF T | and successive success |                                         |                                                                             |
| 0.0                                                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                             |
| 0.0                                                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                             |
| tart 0.03 GHz                                                                                                   |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | Stop 27.00 GH                                                               |
| Res BW 1.0 MHz                                                                                                  | #VB                                                                                                             | W 3.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sweep                                   | 68.00 ms (30001 pts                                                         |
| S 1008 168 150                                                                                                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000000000000000000000000000000000000000 | DE DORVEUS                                                                  |
| 2                                                                                                               | 0 968 GHz -31.624                                                                                               | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                                                             |
| 3                                                                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                             |
| 5                                                                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                             |
| 7                                                                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                             |
| 8                                                                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                             |
| 0                                                                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                             |
|                                                                                                                 |                                                                                                                 | 10 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                                                             |
| 0                                                                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATUS                                  |                                                                             |

# 802.11n40 on channel 38



# 802.11ac20 on channel 40







# 802.11n40 on channel 46






+86-400-000-9970



# 802.11ac40 on channel 38



# 802.11ac80 on channel 42

| Center Freq 13.51500000          | 0 GHz<br>PNO: Fast<br>IFGainLow                                                                                | Trig: Free Run<br>#Atten: 30 dB | Avg Type: Log-Pwr<br>Avg Hold: 100/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRACE 2 3 4 5<br>TYPE M WWWWW<br>DET P NYN N |
|----------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| to dB/div Ref 20.00 dBm          |                                                                                                                |                                 | Mkr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 25.050 069 GHz<br>-31.789 dBm              |
| 10.0                             |                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 0.00                             |                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 10.01                            |                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 30.0                             |                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1100                                        |
| 0.00                             |                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                            |
| 41) []                           |                                                                                                                | - Local and a second            | and the second designed to the second designe |                                              |
| 50.0                             |                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 10.0                             |                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
|                                  |                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| Start 0.03 GHz<br>Res BW 1.0 MHz | #VB                                                                                                            | W 3.0 MHz                       | Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stop 27.00 GHz<br>68.00 ms (30001 pts)       |
| x 1000 160 500 x                 | The second s | FUNCTION                        | INCIGN WOIR 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ACTION VALUE                                 |
| 2                                | 0 069 GHz -31.789                                                                                              | dBm                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 3                                |                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 5                                |                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                            |
| 7 8                              |                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 8<br>9<br>10                     |                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 11                               |                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
|                                  |                                                                                                                |                                 | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |

# 802.11ac40 on channel 46







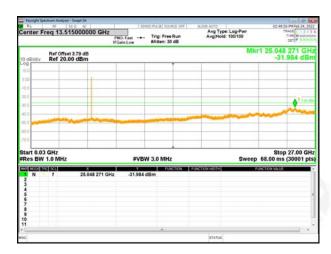











# 802.11a on channel 149

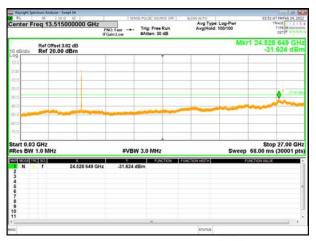


# 802.11a on channel 157

| Keysight Spe | ectrum Analyzer - Swe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |               | 5 FMFeb 24, 2021 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|---------------|------------------|
|              | reg 13.5150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00000 GHz      | 1 SEN        | SE-PULSE SOURCE OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Auto Auto     | -Pwr  | 5             | RACE 1 2 3 4 5   |
| - cinci i i  | 104 10.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | PNO: Fest    | Trig: Free Run<br>#Atten: 30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg Hold: 100 | 100   |               | DET P N NN N     |
| 0 dB/div     | Ref Offset 3.8<br>Ref 20.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 dB           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Mkr   |               | 710 GH           |
| 10.0         | Rel 20.00 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |       |               |                  |
| 0.00         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |               |                  |
| 10.0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |               |                  |
| 0.0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |               | 10               |
| 0.0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |               | Al at mon        |
| 10 0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | -     | -             | m                |
| 0.0          | and the second division of the second divisio | and the second | Section Pro- | and the second designed to the second designe |               | -     |               | -                |
| 60 O         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |               |                  |
| 70.0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |               |                  |
| tart 0.03    | GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       | Stop          | 27.00 GH         |
| Res BW       | 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | #VBV         | V 3.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | Sweep | 68.00 ms      | (30001 pts       |
|              | 2 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24,563 710 GHz | -31,850 d    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FUNCTION WOTH | R     | INCTION VALUE |                  |
| 2            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.663 /10 GHz | -31.850 0    | ism.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |       |               |                  |
| 3 4          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |               |                  |
| 5            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |               |                  |
| 7 8          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |               |                  |
| 9            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |               |                  |
| 11           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |               |                  |
| 10           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATUS        |       |               |                  |
| 1.1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10000         |       |               |                  |

# 802.11n20 on channel 165




# 802.11a on channel 165



# 802.11n20 on channel 149



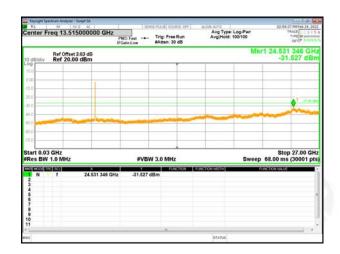
# 802.11n20 on channel 165



Shenzhen ZKT Technology Co., Ltd. 1/F. No. 101, Building B. No. 6, Tangwei (






# 802.11ac20 on channel 149



# 802.11ac20 on channel 157

| enter              | Freq 13.51             | 5000000 GHz   | PND: Fest Trig:<br>IFGainLow #Atte | Free Run<br>n: 30 dB | Avg Type: Log-Pwr<br>Avg Hold: 100/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRACE                                |
|--------------------|------------------------|---------------|------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 0 dB/div           | Ref Offset<br>Ref 20.0 |               |                                    |                      | Mk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r1 24.562 811 GH:<br>-31.549 dBn     |
| 10.0               | -                      | _             |                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| 1.00               |                        |               |                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| 0.0                |                        |               |                                    | _                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| 0.0                |                        |               |                                    | -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                    |
| 0.0                |                        |               |                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| 00                 |                        |               |                                    |                      | and the second division of the second divisio |                                      |
| 0.0                |                        |               |                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| 0.0                |                        |               |                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
|                    |                        |               |                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| tart 0.0<br>Res BV | 03 GHz<br>N 1.0 MHz    |               | #VBW 3.0 M                         | AHz                  | Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stop 27.00 GH<br>68.00 ms (30001 pts |
| 2 E. 200           | 160 500                | X             |                                    | FUNCTION             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SUPHON VIEW                          |
| 1 N<br>2           | 1                      | 24.562 811 GH | iz -31.549 dBm                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| 3 4                |                        |               |                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| 5                  |                        |               |                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| 7                  |                        |               |                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| 9                  |                        |               |                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| 1                  |                        |               |                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| -                  |                        |               | ,                                  | U                    | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |

# 802.11n40 on channel 151



# 802.11ac20 on channel 165



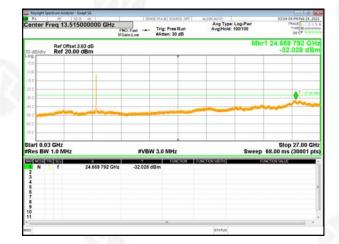




# 802.11n40 on channel 159

 Registration
 State
 State

20






Page 62 of 71

# **Test Plot**

# 802.11ac40 on channel 151



# 802.11ac80 on channel 155

| Center   | Freq 13.5           | 515000000            | PNO     | Fast    | Trig: Free<br>#Atten: 30 | Run<br>IdB | Avg Type: L<br>Avg(Hold: 10 | 07100   | TY<br>D              | PE P IN IN IN        |
|----------|---------------------|----------------------|---------|---------|--------------------------|------------|-----------------------------|---------|----------------------|----------------------|
| 0 dB/div |                     | et 3.8 dB<br>.00 dBm |         |         |                          |            |                             | Mkr1    | 25.040 1             | 80 GHz<br>89 dBm     |
| 10.0     |                     |                      | -       |         |                          | -          |                             |         |                      |                      |
| .00      |                     |                      |         |         |                          |            |                             |         |                      |                      |
| 10.01    |                     | 1                    |         |         |                          |            |                             |         |                      | -                    |
| 0.0      |                     |                      |         |         |                          |            |                             |         |                      | A12000               |
| 0.0      |                     |                      |         |         |                          |            |                             |         |                      | 2                    |
| 10 0     |                     |                      | -       |         |                          | -          | and the second designed     | -       |                      |                      |
| 0.0      |                     |                      |         |         |                          |            |                             |         |                      |                      |
| 10 C     |                     |                      |         |         |                          |            |                             |         |                      |                      |
| 70.0     |                     |                      |         |         |                          |            |                             |         |                      |                      |
|          | 03 GHz<br>N 1.0 MHz |                      |         | #VB     | V 3.0 MH                 |            |                             | Sweep ( | Stop 2<br>8.00 ms (3 | 7.00 GHz<br>0001 pts |
|          | 102 120             | 25.040               | 180 GHz | -31,689 |                          | CTON FO    | ACTION WOTH                 | 600     | TONVAUE              | 1                    |
| 2        |                     |                      |         |         | 30 C                     |            |                             |         |                      |                      |
| 4        |                     |                      |         |         |                          |            |                             |         |                      | _                    |
| 67       |                     |                      |         |         |                          |            |                             |         |                      |                      |
| 8 9      |                     |                      |         |         |                          |            |                             |         |                      |                      |
| 10       |                     |                      |         |         |                          |            |                             |         |                      | -                    |
| 11       |                     |                      |         |         | 10                       |            |                             |         |                      |                      |
| 0        |                     |                      |         |         |                          |            | STATUS                      |         |                      |                      |

# 802.11ac40 on channel 159

|                                 |                | SENSE-PULSE SOU                         | ACT OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Avg Type: Log-Pwr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 83:06:36 PMFeb 24, 20<br>TRACE  |
|---------------------------------|----------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Center Freq 13.515              | PN             | D: Fast Trig: Free<br>In Low #Atten: 30 | Run<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AvgiHold: 100/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TYPE M WWWM                     |
| Ref Offset 3<br>Ref 20.00       |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | kr1 24.623 943 GH<br>-31.191 dB |
| 10.0                            |                |                                         | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
|                                 |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| 0.00                            | 1              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| 10.01                           |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| 0.0                             |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1 .21 m                        |
| 0.00                            |                |                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                               |
| 11 (1)                          |                | and the second second                   | and the second division of the second divisio | and the second division of the second divisio |                                 |
| 6.0                             |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| 0.0                             |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| 70.07                           |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| tart 0.03 GHz<br>Res BW 1.0 MHz |                | #VBW 3.0 MHz                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Swee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stop 27.00 G                    |
| NEXCHAPED                       |                |                                         | STON FUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | providential (Second            |
| N f<br>2<br>3<br>4<br>5         | 24.623 943 GHz | -31.191 dBm                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| 7<br>8<br>9<br>10               |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
|                                 |                | 10                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |
| - Ch                            |                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |













# **10.Frequency Stability Measurement**

### 10.1 LIMIT

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

The transmitter center frequency tolerance shall be  $\pm$  20 ppm maximum for the 5 GHz band (IEEE 802.11n specification).

### **10.2 TEST PROCEDURES**

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. Record the operating frequency at startup, and at 2 minutes, 5 minutes, and 10 minutes after the EUT is energized.
- fc is declaring of channel frequency. Then the frequency error formula is (f- fc)/fc × 106 ppm and the limit is less than ±20ppm (IEEE 802.11nspecification).
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature is -20°C~70°C.

# **10.3 TEST SETUP LAYOUT**

| EUT |  |
|-----|--|
|     |  |

SPECTRUM ANALYZER

# **10.4 EUT OPERATION DURING TEST**

The EUT was programmed to be in continuously un-modulation transmitting mode.

### **10.5 TEST RESULTS**

Remark: only the result for 10minutes was shown in this report.









|                     | Reference Frequency( | Middle Channel): 5200 MHz        |             |
|---------------------|----------------------|----------------------------------|-------------|
| Environment         | Power Supplied       | Frequency Measure with 10minutes |             |
| Temperature<br>(°C) | (VDC)                | Frequency Error(KHz)             | Error (ppm) |
| 50                  | 19                   | 48                               | 9.23        |
| 40                  | 19                   | 62                               | 11.92       |
| 30                  | 19                   | 65                               | 12.50       |
| 20                  | 19                   | 33                               | 6.35        |
| 10                  | 19                   | 46                               | 8.85        |
| 0                   | 19                   | 47                               | 9.04        |
| -10                 | 19                   | 39                               | 7.50        |
| -20                 | 19                   | 42                               | 8.08        |
| -30                 | 19                   | 45                               | 8.65        |

# 80<u>2.11n\_HT20</u>

|                     | Reference Frequency( | Middle Channel): 5200MHz         |             |
|---------------------|----------------------|----------------------------------|-------------|
| Environment         | Power Supplied       | Frequency Measure with 10minutes |             |
| Temperature<br>(°C) | (VDC)                | Frequency Error(KHz)             | Error (ppm) |
| 50                  | 19                   | 48                               | 9.23        |
| 40                  | 19                   | 36                               | 6.92        |
| 30                  | 19                   | 45                               | 8.65        |
| 20                  | 19                   | 62                               | 11.92       |
| 10                  | 19                   | 68                               | 13.08       |
| 0                   | 19                   | 42                               | 8.08        |
| -10                 | 19                   | 39                               | 7.50        |
| -20                 | 19                   | 65                               | 12.50       |
| -30                 | 19                   | 47                               | 9.04        |





|                            | Reference Frequency | y(Middle Channel): 5190MHz       |             |
|----------------------------|---------------------|----------------------------------|-------------|
| Environment<br>Temperature | Power Supplied      | Frequency Measure with 10minutes |             |
| (°C)                       | (VDC)               | Frequency Error(KHz)             | Error (ppm) |
| 50                         | 19                  | 46                               | 8.86        |
| 40                         | 19                  | 63                               | 12.14       |
| 30                         | 19                  | 45                               | 8.67        |
| 20                         | 19                  | 34                               | 6.55        |
| 10                         | 19                  | 69                               | 13.29       |
| 0                          | 19                  | 52                               | 10.02       |
| -10                        | 19                  | 62                               | 11.95       |
| -20                        | 19                  | 43                               | 8.29        |
| -30                        | 19                  | 44                               | 8.48        |

# 80<u>2.11ac80</u>

|                     | Reference Frequency( | Middle Channel): 5210MHz         |             |
|---------------------|----------------------|----------------------------------|-------------|
| Environment         | Power Supplied       | Frequency Measure with 10minutes |             |
| Temperature<br>(°C) | (VDC)                | Frequency Error(KHz)             | Error (ppm) |
| 50                  | 19                   | 42                               | 8.06        |
| 40                  | 19                   | 39                               | 7.49        |
| 30                  | 19                   | 51                               | 9.79        |
| 20                  | 19                   | 39                               | 7.49        |
| 10                  | 19                   | 45                               | 8.64        |
| 0                   | 19                   | 46                               | 8.83        |
| -10                 | 19                   | 53                               | 10.17       |
| -20                 | 19                   | 47                               | 9.02        |
| -30                 | 19                   | 44                               | 8.45        |





# Frequency Stability Versus Input Voltage is:



|                     | Reference Frequency(I | Viddle Channel): 5200 MHz                                                          |                                                                           |
|---------------------|-----------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Environment         | Power Supplied        | Frequency Measure with 10minutes                                                   |                                                                           |
| lemperature<br>(°C) | (VDC)                 | Frequency Error(KHz)                                                               | Error (ppm)                                                               |
|                     | 19                    | 43                                                                                 | 8.27                                                                      |
| 20                  | 16.15                 | 49                                                                                 | 9.42                                                                      |
|                     | 21.85                 | 42                                                                                 | 8.08                                                                      |
|                     | Temperature<br>(°C)   | Environment<br>Temperature<br>(°C)<br>20<br>Power Supplied<br>(VDC)<br>19<br>16.15 | Temperature<br>(°C)Power Supplied<br>(VDC)Proquency Meddel2019432016.1549 |

# 802.11n\_HT20

|                     | Reference Frequency( | Middle Channel): 5200 MHz        |             |
|---------------------|----------------------|----------------------------------|-------------|
| Environment         | Power Supplied       | Frequency Measure with 10minutes |             |
| Temperature<br>(°C) | (VDC)                | Frequency Error(KHz)             | Error (ppm) |
|                     | 19                   | 46                               | 8.85        |
| 20                  | 16.15                | 39                               | 7.50        |
|                     | 21.85                | 52                               | 10.00       |

# 80<u>2.11n\_HT40</u>

|                     | Reference Frequency( | Middle Channel): 5190 MHz |                   |
|---------------------|----------------------|---------------------------|-------------------|
| Environment         | Power Supplied       | Frequency Measur          | re with 10minutes |
| Temperature<br>(°C) | (VDC)                | Frequency Error(KHz)      | Error (ppm)       |
|                     | 19                   | 53                        | 10.21             |
| 20                  | 16.15                | 47                        | 9.06              |
|                     | 21.85                | 51                        | 9.83              |

# 80<u>2.11ac80</u>

|                     | Reference Frequency( | Viddle Channel): 5210 MHz    |             |
|---------------------|----------------------|------------------------------|-------------|
| Environment         | Power Supplied       | Frequency Measure with 10mir |             |
| Temperature<br>(°C) | (VDC)                | Frequency Error(KHz)         | Error (ppm) |
|                     | 19                   | 38                           | 7.29        |
| 20                  | 16.15                | 47                           | 9.02        |
|                     | 21.85                | 62                           | 11.90       |








### 5.8G 802.11a

|                  | Refe | rence Frequency | (Middle Channel): 5785 MHz       |             |
|------------------|------|-----------------|----------------------------------|-------------|
| Environm         |      | Power Supplied  | Frequency Measure with 10minutes |             |
| Temperat<br>(°C) | ure  | (VDC)           | Frequency Error(KHz)             | Error (ppm) |
| 50               |      | 19              | 43                               | 7.43        |
| 40               |      | 19              | 51                               | 8.82        |
| 30               |      | 19              | 23                               | 3.98        |
| 20               |      | 19              | 65                               | 11.24       |
| 10               |      | 19              | 35                               | 6.05        |
| 0                | ÷    | 19              | 26                               | 4.49        |
| -10              | 2)   | 19              | 39                               | 6.74        |
| -20              | 2    | 19              | 45                               | 7.78        |
| -30              |      | 19              | 41                               | 7.09        |

# 802.11n\_HT20

|                     | Reference Frequency( | Middle Channel): 5785MHz         |             |
|---------------------|----------------------|----------------------------------|-------------|
| Environment         | Power Supplied       | Frequency Measure with 10minutes |             |
| Temperature<br>(°C) | (VDC)                | Frequency Error(KHz)             | Error (ppm) |
| 50                  | 19                   | 46                               | 7.95        |
| 40                  | 19                   | 39                               | 6.74        |
| 30                  | 19                   | 38                               | 6.57        |
| 20                  | 19                   | 52                               | 8.99        |
| 10                  | 19                   | 63                               | 10.89       |
| 0                   | 19                   | 46                               | 7.95        |
| -10                 | 19                   | 44                               | 7.61        |
| -20                 | 19                   | 53                               | 9.16        |
| -30                 | 19                   | 47                               | 8.12        |





| Environment         | Power Supplied | Frequency Measure    | with 10minutes |
|---------------------|----------------|----------------------|----------------|
| Temperature<br>(°C) | (VDC)          | Frequency Error(KHz) | Error (ppm)    |
| 50                  | 19             | 56                   | 9.66           |
| 40                  | 19             | 52                   | 8.97           |
| 30                  | 19             | 49                   | 8.46           |
| 20                  | 19             | 35                   | 6.04           |
| 10                  | 19             | 27                   | 4.66           |
| 0                   | 19             | 68                   | 11.73          |
| -10                 | 19             | 36                   | 6.21           |
| -20                 | 19             | 42                   | 7.25           |
| -30                 | 19             | 55                   | 9.49           |

# 80<u>2.11ac80</u>

|             | Reference Frequency(                                       | Middle Channel): 5775MHz         |             |
|-------------|------------------------------------------------------------|----------------------------------|-------------|
| Environment | Environment<br>Temperature<br>(°C) Power Supplied<br>(VDC) | Frequency Measure with 10minutes |             |
|             |                                                            | Frequency Error(KHz)             | Error (ppm) |
| 50          | 19                                                         | 42                               | 7.27        |
| 40          | 19                                                         | 39                               | 6.75        |
| 30          | 19                                                         | 63                               | 10.91       |
| 20          | 19                                                         | 49                               | 8.48        |
| 10          | 19                                                         | 32                               | 5.54        |
| 0           | 19                                                         | 46                               | 7.97        |
| -10         | 19                                                         | 45                               | 7.79        |
| -20         | 19                                                         | 69                               | 11.95       |
| -30         | 19                                                         | 27                               | 4.68        |



# So, Frequency Stability Versus Input Voltage is:



802.11a

| Reference Frequency(Middle Channel): 5785 MHz |                         |                                  |             |
|-----------------------------------------------|-------------------------|----------------------------------|-------------|
| Environment                                   | Power Supplied<br>(VDC) | Frequency Measure with 10minutes |             |
| Temperature<br>(°C)                           |                         | Frequency Error(KHz)             | Error (ppm) |
|                                               | 19                      | 35                               | 6.05        |
| 20                                            | 16.15                   | 46                               | 7.95        |
|                                               | 21.85                   | 32                               | 5.53        |

# 802.11n\_HT20

| Reference Frequency(Middle Channel): 5785 MHz |                         |                                  |             |
|-----------------------------------------------|-------------------------|----------------------------------|-------------|
| Environment<br>Temperature<br>(°C)            | Power Supplied<br>(VDC) | Frequency Measure with 10minutes |             |
|                                               |                         | Frequency Error(KHz)             | Error (ppm) |
| 20                                            | 19                      | 63                               | 10.89       |
|                                               | 16.15                   | 49                               | 8.47        |
|                                               | 21.85                   | 44                               | 7.61        |

# 80<u>2.11n\_HT40</u>

| Reference Frequency(Middle Channel): 5795 MHz |                         |                                  |             |
|-----------------------------------------------|-------------------------|----------------------------------|-------------|
| Environment<br>Temperature<br>(°C)            | Power Supplied<br>(VDC) | Frequency Measure with 10minutes |             |
|                                               |                         | Frequency Error(KHz)             | Error (ppm) |
| 20                                            | 19                      | 38                               | 6.56        |
|                                               | 16.15                   | 44                               | 7.59        |
|                                               | 21.85                   | 45                               | 7.77        |

# 80<u>2.11ac80</u>

| Reference Frequency(Middle Channel): 5775 MHz |                         |                                  |             |
|-----------------------------------------------|-------------------------|----------------------------------|-------------|
| Environment<br>Temperature<br>(°C)            | Power Supplied<br>(VDC) | Frequency Measure with 10minutes |             |
|                                               |                         | Frequency Error(KHz)             | Error (ppm) |
|                                               | 19                      | 62                               | 10.74       |
| 20                                            | 16.15                   | 48                               | 8.31        |
|                                               | 21.85                   | 52                               | 9.00        |







# **11.ANTENNA REQUIREMENT**

# Standard requirement: FCC Part15 C Section 15.203

# 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

### EUT Antenna:

The antenna is integrated Antenna, the best case gain of the antenna is 4.22dBi Max, reference to the appendix II for details









Project No.: ZKT-220218L0837E-3 Page 71 of 71

# **12. TEST SETUP PHOTO**

Reference to the appendix I for details.

# **13. EUT CONSTRUCTIONAL DETAILS**

Reference to the appendix II for details.

**\*\*\*\*\*\* END OF REPORT \*\*\*\*\*** 



