

FCC ID: 2A4J2-SER

RF Exposure Evaluation

Limits

The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)			
	(A) Limits	for Occupational/Controlled	Occupational/Controlled Exposures				
0.3–3.0	614	1.63	*(100)	6			
3.0–30	1842/f	4.89/f	*(900/f ²)	6			
30–300	61.4	0.163	1.0	6			
300–1500			f/300	6			
1500–100,000			5	6			
	(B) Limits for	(B) Limits for General Population/Uncontrolled Exposure					
0.3–1.34	614	1.63	*(100)	30			
1.34–30	824/f	2.19/f	*(180/f ²)	30			
30–300	27.5	0.073	0.2	30			
300–1500			f/1500	30			
1500–100,000			1.0	30			

f = frequency in MHz

Friis transmission formula: $Pd = (Pout*G)/(4*pi*r^2)$

Where

Pd = power density in mW/cm², **Pout** = output power to antenna in mW;

G = gain of antenna in linear scale, **Pi** = 3.1416;

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

FCC ID: 2A4J2-SER

Test Result of RF Exposure Evaluation

The source of the evaluation data results is based on the test report ET-24010085E01/02/03/04 BT Antenna gain=3.04dBi, 2.4G WIFI Antenna gain=2.91dBi 5G WIFI Antenna gain=2.79dBi FOR BLE

Mode	Output power (dBm)	Output power (mW)	Numeric antenna gain	Power Density at R=20cm (mW/cm²)	Limit (mW/cm²)	Result
GFSK	3.85	2.43	2.01	0.001	1.0	PASS

FOR 2.4GWIFI

Mode	Output power (dBm)	Output power (mW)	Numeric antenna gain	Power Density at R=20cm (mW/cm²)	Limit (mW/cm²)	Result
802.11b	13.66	23.23	1.95	0.009	1.0	PASS

FOR 5.2GWIFI

Mode	Output power (dBm)	Output power (mW)	Numeric antenna gain	Power Density at R=20cm (mW/cm²)	Limit (mW/cm²)	Result
802.11a	9.02	7.98	1.90	0.003	1.0	PASS

FOR 5.8GWIFI

Mode	Output power (dBm)	Output power (mW)	Numeric antenna gain	Power Density at R=20cm (mW/cm²)	Limit (mW/cm²)	Result
802.11ac20	9.91	9.79	1.90	0.004	1.0	PASS

If BLE and 2.4G WIFI work simultaneously

BLE+2.4G the total power density is 0.001/1+0.009/1=0.01<1.

If BLE and 2.4G WIFI work simultaneously

BLE+2.4G the total power density is 0.001/1+0.003/1=0.004<1.

If BLE and 2.4G WIFI work simultaneously

BLE+2.4G the total power density is 0.001/1+0.004/1=0.005<1.

Maximum power density=0.01 <1. Then SAR evaluation is not require.