

TEST REPORT

Applicant Name: ZHENGZHOU DEWENWILS NETWORK TECHNOLOGY CO., LTD Address: No.2602, 26th Floor, Block B, Dongfang Building No. 198-19 Songshan

South Road, Erqi District, Zhengzhou, China

Report Number: RA230506-24405E-RF

FCC ID: 2A4G9-014

Test Standard (s) FCC Part 15.247

Sample Description

Product: Wi-Fi Low Voltage Landscape Transformer

Model No.: TD-120-12WF-1 WiFi, TD-200-12WF-1WiFi, TD-300-12WF-1 WiFi

Trade Mark: **Jewenwils** edishinë

Date Received: 2023-05-06

Date of Test: 2023-05-22 to 2023-06-20

Report Date: 2023-06-20

Test Result: Pass*

Prepared and Checked By: Approved By:

Dave Liang Candy, Ci

Dave Liang Candy Li

EMC Engineer EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk " \star ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk **. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
Tel: +86 755-26503290
Fax: +86 755-26503290
Web: www.atc-lab.com

^{*} In the configuration tested, the EUT complied with the standards above.

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
GENERAL INFORMATION	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
TEST METHODOLOGY	5 6
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
DUTY CYCLE	8
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	10
TEST EQUIPMENT LIST	11
FCC §1.1310 & §2.1091-RF EXPOSURE	12
TEST RESULT:	12
FCC §15.203-ANTENNA REQUIREMENT	13
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a)-AC LINE CONDUCTED EMISSIONS	14
APPLICABLE STANDARD	
EUT SETUP.	
EMI TEST RECEIVER SETUP	14
TEST PROCEDURE	
FACTOR & OVER LIMIT CALCULATION	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARDEUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
FACTOR & OVER LIMIT/MARGIN CALCULATION	
TEST DATA	
FCC §15.247(a) (2)-6 dB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH	50
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(b) (3)-MAXIMUM CONDUCTED OUTPUT POWER	
APPLICABLE STANDARD	
TEST PROCEDURE TEST DATA	
FCC §15.247(d)-100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	
APPLICABLE STANDARD	
TEST PROCEDURE	
1201 2/11/1	

FCC §15.247(e)-POWER SPECTRAL DENSITY	53
APPLICABLE STANDARD	53
TEST PROCEDURE	53
Test Data	54
APPENDIX Wi-Fi	55
APPENDIX A: 6DB EMISSION BANDWIDTH	55
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	62
APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER	69
APPENDIX D: POWER SPECTRAL DENSITY	70
APPENDIX E: BAND EDGE MEASUREMENTS	77
APPENDIX F: DUTY CYCLE	
APPENDIX BLE	86
APPENDIX A: 6DB EMISSION BANDWIDTH	86
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	88
APPENDIX C: MAXIMUM CONDUCTED PEAK OUTPUT POWER	90
APPENDIX D: POWER SPECTRAL DENSITY	92
APPENDIX E: BAND EDGE MEASUREMENTS	
APPENDIX F: DUTY CYCLE	

Report No.: RA230506-24405E-RF

DOCUMENT REVISION HISTORY

Revision Number Report Number		Description of Revision	Date of Revision
0	RA230506-24405E-RF	Original Report	2023-06-20

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	Wi-Fi Low Voltage Landscape Transformer		
Tested Model	TD-120-12WF-1 WiFi		
Multiple Model	TD-200-12WF-1WiFi, TD-300-12WF	7-1 WiFi	
Model Difference	Please refer to DOS Letter		
Frequency Range	BLE: 2402-2480MHz Wi-Fi: 2412-2462MHz		
Maximum Conducted Peak Output Power	BLE 1M: 3.14dBm		
Maximum Canduated Avances	Wi-Fi		
Maximum Conducted Average Output Power	14.51dBm(802.11b)	12.88dBm(802.11n20)	
Sulput I Swei	13.07dBm(802.11g)	11.67dBm(802.11n40)	
Modulation Technique	BLE: GFSK Wi-Fi: DSSS, OFDM		
Antenna Specification*	1.5dBi(provided by the applicant)		
Voltage Range	AC120V 60Hz		
Sample serial number	CE&RE test: 25J6-1 for model TD-120-12WF-1 WiFi 25J6-2 for model TD-200-12WF-1 WiFi 25J6-3 for model TD-300-12WF-1 WiFi RF Conducted Test: 25J6-5 for TD-120-12WF-1 WiFi (Assigned by ATC, Shenzhen)		
Sample/EUT Status	Good condition		

Report No.: RA230506-24405E-RF

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices, and KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty	
Occupied Cha	nnel Bandwidth	5%	
RF Fr	equency	0.082*10 ⁻⁷	
RF output po	wer, conducted	0.71dB	
Unwanted Emi	ssion, conducted	1.6dB	
AC Power Lines C	Conducted Emissions	2.74dB	
.	30MHz - 1GHz	5.08dB	
Emissions, Radiated	1GHz - 18GHz	4.96dB	
Radiated	18GHz - 26.5GHz	5.16dB	
Temperature		1°C	
Humidity		6%	
Supply voltages		0.4%	

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the Floor 1, KuMaKe Building, Dongzhou Community, Guangming Street, Guangming District, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189.

Accredited by American Association for Laboratory Accreditation (A2LA). The Certificate Number is 4297.01.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0016. The Registration Number is 30241.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For 2.4GHz Wi-Fi mode, total 11channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	/	/

802.11b, 802.11g and 802.11n-HT20 mode was tested with Channel 1, 6 and 11. 802.11n-HT40 mode was tested with Channel 3, 6 and 9.

For BLE mode, 40 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

EUT was tested with Channel 0, 19 and 39.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

Software "WiFi Test Tool v1.6.0"* was used during testing and power level as below, which provided by manufacturer.

Report No.: RA230506-24405E-RF

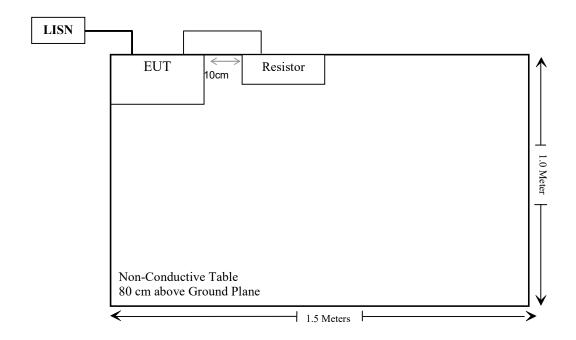
	Data Data	Power Level*		
Mode	Data Rate (Mbps)	Low Channel	Middle Channel	High Channel
802.11 b	1	21	21	21
802.11 g	6	48	48	48
802.11 n20	MCS0	48	48	48
802.11 n40	MCS0	48	48	48
BLE	1M	8	8	8

The worse-case data rates are determined to be as above for each mode based upon investigations by measuring the output power and PSD across all data rates, bandwidths and modulations.

Duty cycle

Test Result: Compliant. Please refer to the Appendix Wi-Fi and Appendix BLE.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
Unknown	Resistor (Full Load for Testing)	Unknown	Unknown

External I/O Cable

Cable Description	Length(m)	From/Port	To
Electric Wire*2	0.8	EUT	Resistor
Power Cords	1.8	LISN	EUT

Block Diagram of Test Setup

For Conducted Emission

Resistor EUT | Resistor EUT | Non-Conductive Table 80/150 cm above Ground Plane

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §1.1310 & §2.1091	RF Exposure	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth & Occupied Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Conducted Emission Test						
Rohde & Schwarz	EMI Test Receiver	ESCI	100784	2022/11/25	2023/11/24	
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2022/11/25	2023/11/24	
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2022/12/07	2023/12/06	
Unknown	RF Coaxial Cable	No.17	N0350	2022/11/25	2023/11/24	
	Conducted E	mission Test Soft	tware: e3 191218 ((V9)		
		Radiated Emiss	ions Test			
Rohde & Schwarz	Test Receiver	ESR	102725	2022/11/25	2023/11/24	
Rohde & Schwarz	Spectrum Analyzer	FSV40	101949	2022/11/25	2023/11/24	
SONOMA INSTRUMENT	Amplifier	310 N	186131	2022/11/08	2023/11/07	
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2022/11/08	2023/11/07	
Quinstar	Amplifier	QLW-184055 36-J0	15964001002	2022/11/08	2023/11/07	
Schwarzbeck	Bilog Antenna	VULB9163	9163-194	2023/02/14	2026/02/13	
Schwarzbeck	Horn Antenna	BBHA9120D	837	2023/02/22	2026/02/21	
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2022/12/26	2025/12/25	
Unknown	RF Coaxial Cable	No.10	N050	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.11	N1000	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.12	N040	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.13	N300	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.14	N800	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.15	N600	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.16	N650	2022/11/25	2023/11/24	
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2022/11/25	2023/11/24	
Wainwright	Band Reject Filter	WRCG2400/2 485-2375/251 0-60/11SS	10	2022/11/25	2023/11/24	
	Radiated En	nission Test Softv	ware: e3 191218 (V	V9)		
		RF Conducte	d Test			
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2022/11/25	2023/11/24	
Rohde & Schwarz	Open Switch and Control Unit	OSP120 + OSP-B157	101244 + 100866	2022/11/25	2023/11/24	
Agilent	USB wideband power sensor	U2021XA	MY54250003	2022/6/27	2023/06/26	
WEINSCHEL	10dB Attenuator	5324	AU 3842	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.31	RF-03	Each time		

^{*} Statement of Traceability: Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1310 & §2.1091-RF EXPOSURE

Applicable Standard

According to KDB 447498 D04 Interim General RF Exposure Guidance v01, clause 2.1.4 -MPE-Based Exemption:

Report No.: RA230506-24405E-RF

An alternative to the SAR-based exemption is provided in § 1.1307(b)(3)(i)(C), for a much wider frequency range, from 300 kHz to 100 GHz, applicable for separation distances greater or equal to $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. The MPE-based test exemption condition is in terms of ERP, defined as the product of the maximum antenna gain and the delivered maximum time-averaged power. For this case, a RF source is an RF exempt device if its ERP (watts) is no more than a frequency-dependent value, as detailed tabular form in Appendix B. These limits have been derived based on the basic specifications on Maximum Permissible Exposure (MPE) considered for the FCC rules in § 1.1310(e)(1).

Table to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation

RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	1,920 R ² .
1.34-30	3,450 R ² /f ² .
30-300	3.83 R ² .
300-1,500	0.0128 R ² f.
1,500-100,000	19.2R ² .

f = frequency in MHz;

R = minimum separation distance from the body of a nearby person (appropriate units, e.g., m);

Test Result:

For worst case:

Mode	Frequency Range	requency Range Tune-up Output Power		Antenna Gain		ERP		Evaluation Distance	ERP Limit
	(MHz)	(dBm)	(mW)	(dBi)	(dBd)	(dBm)	(mW)	(cm)	(mW)
BLE	2402-2480	3.5	2.24	1.5	-0.65	2.85	1.93	20	768
2.4G WIFI	2412-2462	15	31.62	1.5	-0.65	14.35	27.23	20	768

Note 1: The tune-up power was declared by the applicant.

Note 2: 0dBd=2.15dBi.

Note 3: The BT and Wi-Fi cannot transmit at same time.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant.

FCC §15.203-ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

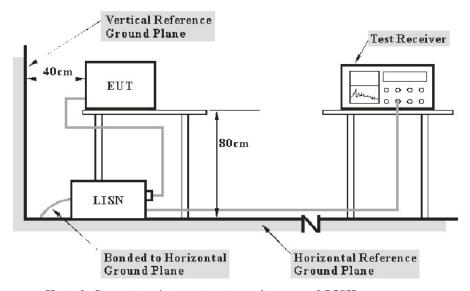
Report No.: RA230506-24405E-RF

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.
- c. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has one external antenna arrangement, which used a unique coupling to the EUT and the antenna gain is 1.50dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliant.

FCC §15.207 (a)-AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Over limit Calculation

The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Report No.: RA230506-24405E-RF

Factor = LISN VDF + Cable Loss

The "Over limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

Test Data

Environmental Conditions

Temperature:	23°C
Relative Humidity:	49%
ATM Pressure:	101.0 kPa

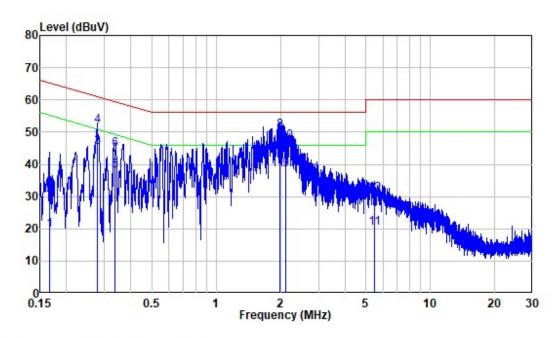
The testing was performed by Jerry Wu on 2023-05-22 and 2023-06-07.

EUT operation mode: Transmitting

BLE: (Worst case for High channel)

Model: TD-120-12WF-1 WiFi

AC 120V/60 Hz, Line


Site : Shielding Room

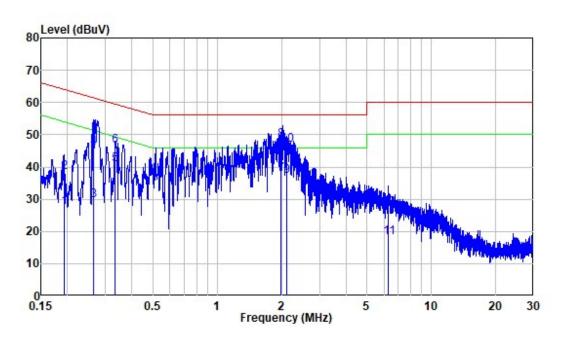
Condition: Line

Job No. : RA230506-24405E-RF Mode : BLE Transmitting Note : TD-120-12WF-1 WiFi

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
8	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.191	10.29	20.41	30.70	53.99	-23.29	Average
2	0.191	10.29	30.03	40.32	63.99	-23.67	QP
3	0.280	10.31	34.98	45.29	50.82	-5.53	Average
4	0.280	10.31	42.54	52.85	60.82	-7.97	QP
5	0.338	10.33	29.19	39.52	49.24	-9.72	Average
6	0.338	10.33	36.15	46.48	59.24	-12.76	QP
7	1.989	10.39	27.41	37.80	46.00	-8.20	Average
8	1.989	10.39	39.57	49.96	56.00	-6.04	QP
9	2.114	10.41	24.99	35.40	46.00	-10.60	Average
10	2.114	10.41	34.78	45.19	56.00	-10.81	QP
11	5.465	10.46	9.01	19.47	50.00	-30.53	Average
12	5.465	10.46	19.58	30.04	60.00	-29.96	QP

AC 120V/60 Hz, Neutral

Site : Shielding Room

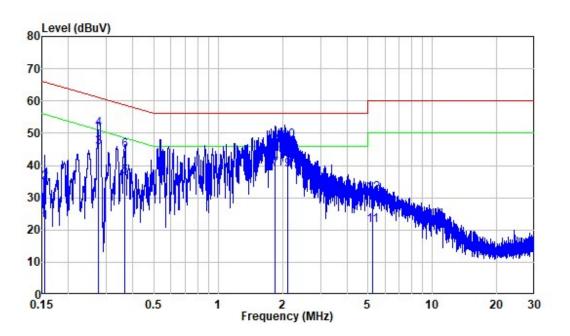

Condition: Neutral

Job No. : RA230506-24405E-RF Mode : BLE Transmitting Note : TD-120-12WF-1 WiFi

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
-	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.166	10.32	9.32	19.64	55.16	-35.52	Average
2	0.166	10.32	20.05	30.37	65.16	-34.79	QP
3	0.279	10.37	34.79	45.16	50.85	-5.69	Average
4	0.279	10.37	41.56	51.93	60.85	-8.92	QP
5	0.336	10.36	27.70	38.06	49.31	-11.25	Average
6	0.336	10.36	34.26	44.62	59.31	-14.69	QP
7	1.983	10.59	29.38	39.97	46.00	-6.03	Average
8	1.983	10.59	39.69	50.28	56.00	-5.72	QP
9	2.120	10.58	27.76	38.34	46.00	-7.66	Average
10	2.120	10.58	36.48	47.06	56.00	-8.94	QP
11	5.458	10.47	9.72	20.19	50.00	-29.81	Average
12	5.458	10.47	20.28	30.75	60.00	-29.25	QP

Model: TD-200-12WF-1 WiFi

AC 120V/60 Hz, Line


Site : Shielding Room

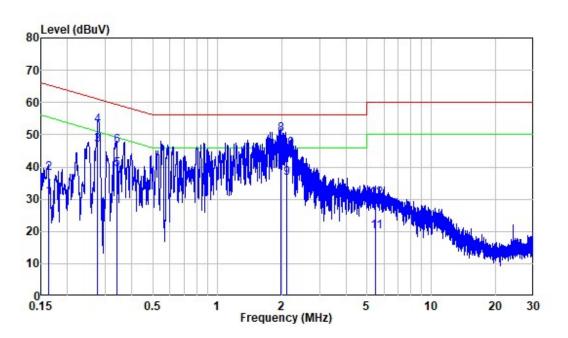
Condition: Line

Job No. : RA230506-24405E-RF Mode : BLE Transmitting Note : TD-200-12WF-1 WiFi

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	-
1	0.193	10.29	17.21	27.50	53.89	-26.39	Average
2	0.193	10.29	28.04	38.33	63.89	-25.56	QP
3	0.265	10.31	19.15	29.46	51.27	-21.81	Average
4	0.265	10.31	35.48	45.79	61.27	-15.48	QP
5	0.335	10.32	30.44	40.76	49.34	-8.58	Average
6	0.335	10.32	36.19	46.51	59.34	-12.83	QP
7	1.974	10.39	27.21	37.60	46.00	-8.40	Average
8	1.974	10.39	38.02	48.41	56.00	-7.59	QP
9	2.120	10.41	26.59	37.00	46.00	-9.00	Average
10	2.120	10.41	36.42	46.83	56.00	-9.17	QP
11	6.298	10.43	7.54	17.97	50.00	-32.03	Average
12	6.298	10.43	16.67	27.10	60.00	-32.90	QP

AC 120V/60 Hz, Neutral

Site : Shielding Room

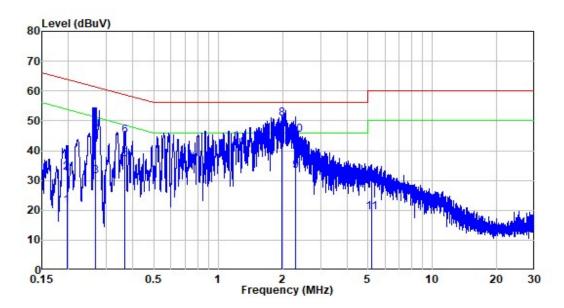

Condition: Neutral

Job No. : RA230506-24405E-RF Mode : BLE Transmitting Note : TD-200-12WF-1 WiFi

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
- 83	MHz	dB	dBuV	dBuV	dBuV	dB	-
1	0.154	10.28	11.98	22.26	55.76	-33.50	Average
2	0.154	10.28	24.34	34.62	65.76	-31.14	QP
3	0.276	10.37	35.13	45.50	50.92	-5.42	Average
4	0.276	10.37	41.07	51.44	60.92	-9.48	QP
5	0.367	10.36	26.28	36.64	48.57	-11.93	Average
6	0.367	10.36	34.45	44.81	58.57	-13.76	QP
7	1.851	10.57	28.36	38.93	46.00	-7.07	Average
8	1.851	10.57	35.55	46.12	56.00	-9.88	QP
9	2.120	10.58	28.13	38.71	46.00	-7.29	Average
10	2.120	10.58	37.09	47.67	56.00	-8.33	QP
11	5.239	10.46	10.87	21.33	50.00	-28.67	Average
12	5.239	10.46	20.93	31.39	60.00	-28.61	QP

Model: TD-300-12WF-1 WiFi

AC 120V/60 Hz, Line


Site : Shielding Room

Condition: Line

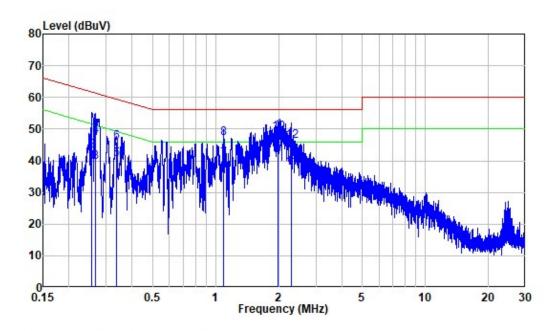
Job No. : RA230506-24405E-RF Mode : BLE Transmitting Note : TD-300-12WF-1 WiFi

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
- E	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.163	10.28	20.31	30.59	55.33	-24.74	Average
2	0.163	10.28	27.76	38.04	65.33	-27.29	QP
3	0.277	10.31	36.43	46.74	50.91	-4.17	Average
4	0.277	10.31	42.40	52.71	60.91	-8.20	QP
5	0.339	10.33	28.91	39.24	49.24	-10.00	Average
6	0.339	10.33	36.08	46.41	59.24	-12.83	QP
7	1.988	10.39	27.84	38.23	46.00	-7.77	Average
8	1.988	10.39	39.75	50.14	56.00	-5.86	QP
9	2.119	10.41	26.03	36.44	46.00	-9.56	Average
10	2.119	10.41	35.15	45.56	56.00	-10.44	QP
11	5.495	10.46	9.52	19.98	50.00	-30.02	Average
12	5.495	10.46	19.82	30.28	60.00	-29.72	QP

AC 120V/60 Hz, Neutral

Site : Shielding Room

Condition: Neutral

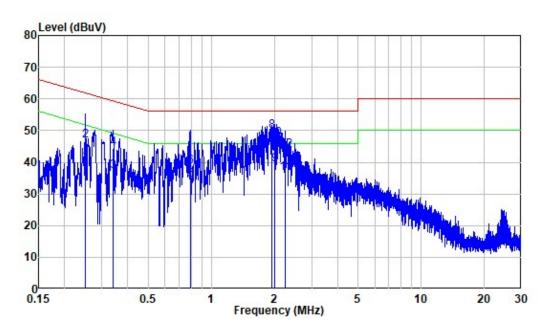

Job No. : RA230506-24405E-RF Mode : BLE Transmitting Note : TD-300-12WF-1 WiFi

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.196	10.38	10.95	21.33	53.78	-32.45	Average
2	0.196	10.38	22.27	32.65	63.78	-31.13	QP
3	0.268	10.38	21.08	31.46	51.16	-19.70	Average
4	0.268	10.38	36.35	46.73	61.16	-14.43	QP
5	0.367	10.36	26.72	37.08	48.56	-11.48	Average
6	0.367	10.36	34.55	44.91	58.56	-13.65	QP
7	1.987	10.59	29.25	39.84	46.00	-6.16	Average
8	1.987	10.59	40.24	50.83	56.00	-5.17	QP
9	2.303	10.57	22.76	33.33	46.00	-12.67	Average
10	2.303	10.57	34.72	45.29	56.00	-10.71	QP
11	5.187	10.46	8.73	19.19	50.00	-30.81	Average
12	5.187	10.46	17.92	28.38	60.00	-31.62	QP

2.4G WIFI: (worst case 802.11b, Middle channel)

Model: TD-120-12WF-1 WiFi

AC 120V/60 Hz, Line


Site : Shielding Room

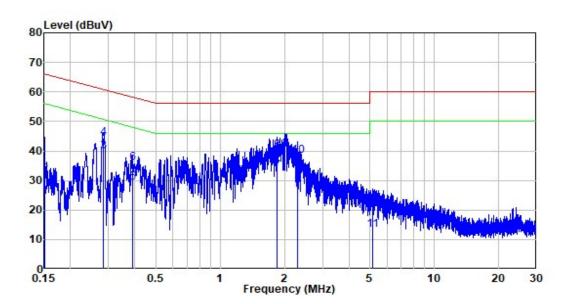
Condition: Line

Job No. : RA230506-24405E-RF Mode : 2.4G WIFI Transmitting Note : TD-120-12WF-1 WiFi

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
-	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.256	10.30	29.24	39.54	51.57	-12.03	Average
2	0.256	10.30	32.94	43.24	61.57	-18.33	QP
3	0.266	10.31	29.30	39.61	51.24	-11.63	Average
4	0.266	10.31	37.30	47.61	61.24	-13.63	QP
5	0.336	10.32	30.06	40.38	49.31	-8.93	Average
6	0.336	10.32	35.57	45.89	59.31	-13.42	QP
7	1.090	10.36	30.00	40.36	46.00	-5.64	Average
8	1.090	10.36	36.80	47.16	56.00	-8.84	QP
9	1.978	10.39	31.26	41.65	46.00	-4.35	Average
10	1.978	10.39	38.50	48.89	56.00	-7.11	QP
11	2.297	10.43	27.22	37.65	46.00	-8.35	Average
12	2.297	10.43	35.75	46.18	56.00	-9.82	QP

AC 120V/60 Hz, Neutral

Site : Shielding Room

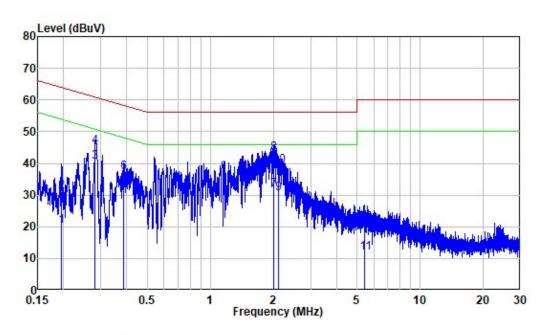

Condition: Neutral

Job No. : RA230506-24405E-RF
Mode : 2.4G WIFI Transmitting
Note : TD-120-12WF-1 WiFi

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
- E	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.250	10.38	29.43	39.81	51.74	-11.93	Average
2	0.250	10.38	36.33	46.71	61.74	-15.03	QP
3	0.340	10.37	26.65	37.02	49.20	-12.18	Average
4	0.340	10.37	33.91	44.28	59.20	-14.92	QP
5	0.792	10.43	24.00	34.43	46.00	-11.57	Average
6	0.792	10.43	28.30	38.73	56.00	-17.27	QP
7	1.944	10.58	32.35	42.93	46.00	-3.07	Average
8	1.944	10.58	39.29	49.87	56.00	-6.13	QP
9	2.004	10.60	28.79	39.39	46.00	-6.61	Average
10	2.004	10.60	36.79	47.39	56.00	-8.61	QP
11	2.250	10.57	25.85	36.42	46.00	-9.58	Average
12	2.250	10.57	33.16	43.73	56.00	-12.27	QP

Model: TD-200-12WF-1 WiFi

AC 120V/60 Hz, Line


Site : Shielding Room

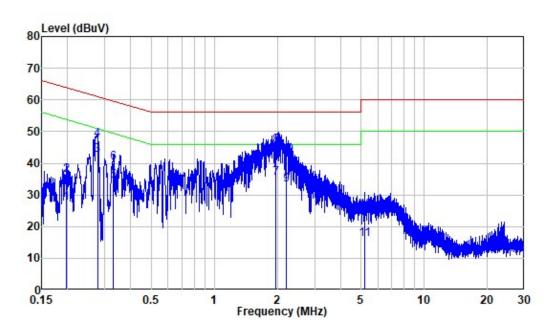
Condition: Line

Job No. : RA230506-24405E-RF
Mode : 2.4G WIFI Transmitting
Note : TD-200-12WF-1 WiFi

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
83	MHz	dB	dBuV	dBuV	dBuV	dB	-
1	0.151	10.27	14.16	24.43	55.93	-31.50	Average
2	0.151	10.27	21.85	32.12	65.93	-33.81	QP
3	0.286	10.31	29.67	39.98	50.64	-10.66	Average
4	0.286	10.31	34.14	44.45	60.64	-16.19	QP
5	0.388	10.34	18.90	29.24	48.10	-18.86	Average
6	0.388	10.34	25.58	35.92	58.10	-22.18	QP
7	1.839	10.39	22.90	33.29	46.00	-12.71	Average
8	1.839	10.39	29.69	40.08	56.00	-15.92	QP
9	2.295	10.43	17.54	27.97	46.00	-18.03	Average
10	2.295	10.43	28.00	38.43	56.00	-17.57	QP
11	5.136	10.46	2.89	13.35	50.00	-36.65	Average
12	5.136	10.46	11.59	22.05	60.00	-37.95	QP

AC 120V/60 Hz, Neutral

Site : Shielding Room

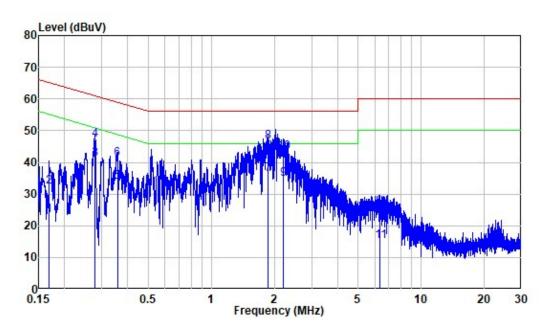

Condition: Neutral

Job No. : RA230506-24405E-RF
Mode : 2.4G WIFI Transmitting
Note : TD-200-12WF-1 WiFi

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	-
1	0.196	10.38	9.95	20.33	53.79	-33.46	Average
2	0.196	10.38	20.73	31.11	63.79	-32.68	QP
3	0.283	10.37	30.15	40.52	50.74	-10.22	Average
4	0.283	10.37	34.89	45.26	60.74	-15.48	QP
5	0.387	10.37	20.92	31.29	48.13	-16.84	Average
6	0.387	10.37	26.89	37.26	58.13	-20.87	QP
7	2.000	10.59	20.96	31.55	46.00	-14.45	Average
8	2.000	10.59	32.64	43.23	56.00	-12.77	QP
9	2.119	10.58	19.78	30.36	46.00	-15.64	Average
10	2.119	10.58	28.61	39.19	56.00	-16.81	QP
11	5.447	10.47	1.45	11.92	50.00	-38.08	Average
12	5.447	10.47	10.55	21.02	60.00	-38.98	QP

Model: TD-300-12WF-1 WiFi

AC 120V/60 Hz, Line


Site : Shielding Room

Condition: Line

Job No. : RA230506-24405E-RF
Mode : 2.4G WIFI Transmitting
Note : TD-300-12WF-1 WiFi

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
-	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.197	10.29	17.20	27.49	53.74	-26.25	Average
2	0.197	10.29	25.83	36.12	63.74	-27.62	QP
3	0.277	10.31	32.11	42.42	50.90	-8.48	Average
4	0.277	10.31	37.05	47.36	60.90	-13.54	QP
5	0.331	10.32	24.05	34.37	49.43	-15.06	Average
6	0.331	10.32	29.88	40.20	59.43	-19.23	QP
7	1.958	10.39	24.79	35.18	46.00	-10.82	Average
8	1.958	10.39	35.15	45.54	56.00	-10.46	QP
9	2.201	10.41	22.90	33.31	46.00	-12.69	Average
10	2.201	10.41	32.12	42.53	56.00	-13.47	QP
11	5.201	10.47	5.67	16.14	50.00	-33.86	Average
12	5.201	10.47	14.74	25.21	60.00	-34.79	QP

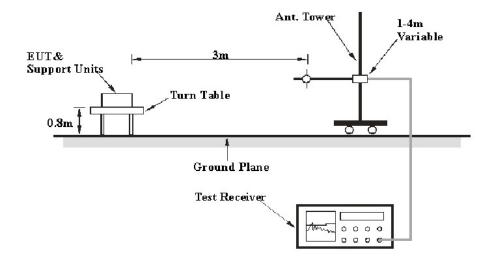
AC 120V/60 Hz, Neutral

Site : Shielding Room

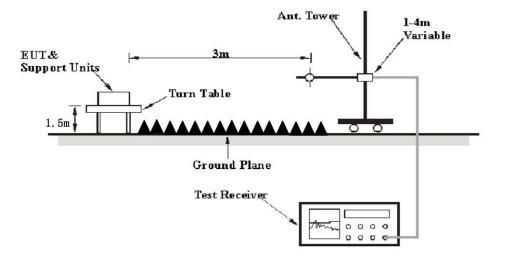
Condition: Neutral

Job No. : RA230506-24405E-RF Mode : 2.4G WIFI Transmitting Note : TD-300-12WF-1 WiFi

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
\$ -	MHz	dB	dBuV	dBuV	dBuV	dB	-
1	0.169	10.32	13.07	23.39	55.02	-31.63	Average
2	0.169	10.32	22.12	32.44	65.02	-32.58	QP
3	0.279	10.37	30.80	41.17	50.85	-9.68	Average
4	0.279	10.37	36.87	47.24	60.85	-13.61	QP
5	0.356	10.37	23.58	33.95	48.81	-14.86	Average
6	0.356	10.37	30.57	40.94	58.81	-17.87	QP
7	1.867	10.57	25.56	36.13	46.00	-9.87	Average
8	1.867	10.57	35.79	46.36	56.00	-9.64	QP
9	2.212	10.57	24.01	34.58	46.00	-11.42	Average
10	2.212	10.57	32.53	43.10	56.00	-12.90	QP
11	6.365	10.50	4.51	15.01	50.00	-34.99	Average
12	6.365	10.50	14.32	24.82	60.00	-35.18	QP


FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Report No.: RA230506-24405E-RF

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
	1MHz	3 MHz	/	PK
Above 1 GHz	1MHz	10 Hz Note 1	/	Average
	1MHz	>1/T Note 2	/	Average

Note 1: when duty cycle is no less than 98% Note 2: when duty cycle is less than 98%

If the maximized peak measured value complies with the limit, then it is unnecessary to perform QP/Avera ge measurement.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Factor & Over Limit/Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "Over Limit/Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

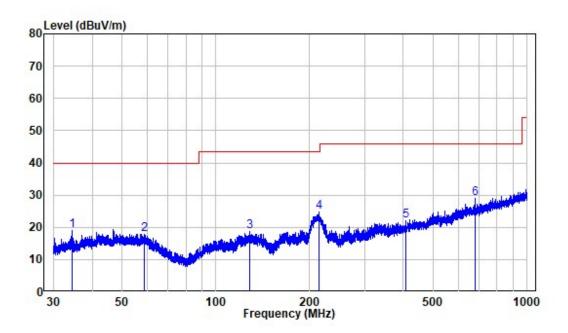
Test Data

Environmental Conditions

Temperature:	23-24 °C
Relative Humidity:	54-56 %
ATM Pressure:	101.0 kPa

The Below 1G testing was performed by Jason Liu on 2023-05-29 and 2023-06-07. The Above 1G testing was performed by Jeef Huang on 2023-05-30 and 2023-06-06.

EUT operation mode: Transmitting (Pre-scan in the X, Y and Z axes of orientation, the worst case X-axis of orientation was recorded)

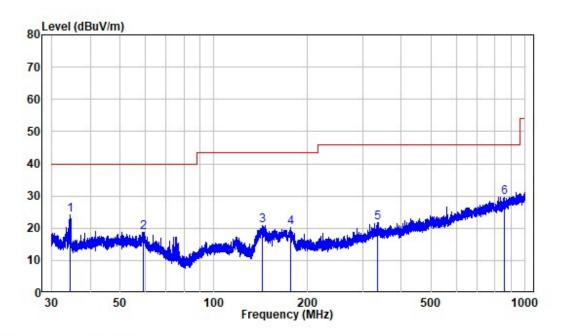

Report No.: RA230506-24405E-RF

30MHz-1GHz:

BLE (worst case, High channel)

Model: TD-120-12WF-1 WiFi

Horizontal


Site : chamber

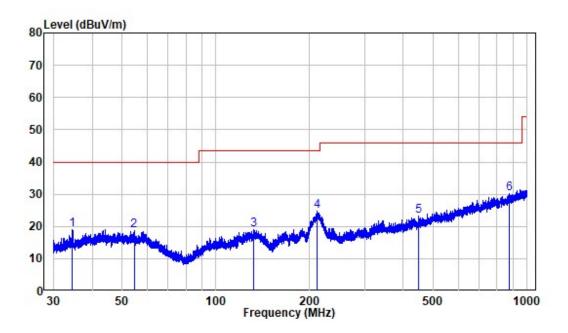
Condition: 3m HORIZONTAL

Job No. : RA230506-24405E-RF Test Mode: BLE Transmitting Note : TD-120-12WF-1 WiFi

	Freq	Factor			Limit Line		Remark
87	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	-
1	34.472	-11.71	30.73	19.02	40.00	-20.98	Peak
2	58.793	-10.19	28.12	17.93	40.00	-22.07	Peak
3	128.450	-14.75	33.54	18.79	43.50	-24.71	Peak
4	214.139	-11.71	36.36	24.65	43.50	-18.85	Peak
5	406.979	-6.57	28.56	21.99	46.00	-24.01	Peak
6	678.769	-1.52	30.47	28.95	46.00	-17.05	Peak

Vertical

Site : chamber Condition: 3m VERTICAL


Job No. : RA230506-24405E-RF Test Mode: BLE Transmitting Note : TD-120-12WF-1 WiFi

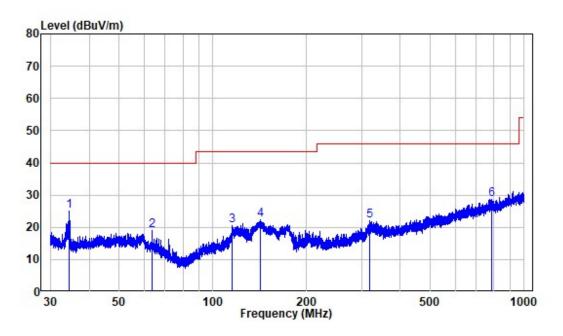
	Freq	Factor			Limit Line		Remark
- E	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	-
1	34.563	-11.68	35.92	24.24	40.00	-15.76	Peak
2	59.310	-10.36	29.21	18.85	40.00	-21.15	Peak
3	143.075	-15.52	36.24	20.72	43.50	-22.78	Peak
4	176.888	-13.03	33.12	20.09	43.50	-23.41	Peak
5	335.594	-7.59	29.41	21.82	46.00	-24.18	Peak
6	860.035	0.27	29.44	29.71	46.00	-16.29	Peak

Report No.: RA230506-24405E-RF

Model: TD-200-12WF-1 WiFi

Horizontal

Site : chamber


Condition: 3m HORIZONTAL

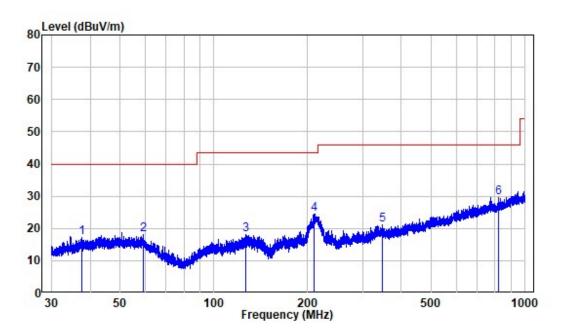
Job No. : RA230506-24405E-RF Test Mode: BLE Transmitting

Note : 200W

	Freq	Factor			Limit Line		Remark
16	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	34.502	-11.70	30.86	19.16	40.00	-20.84	Peak
2	54.547	-10.31	28.98	18.67	40.00	-21.33	Peak
3	132.105	-14.98	33.89	18.91	43.50	-24.59	Peak
4	211.619	-11.80	36.41	24.61	43.50	-18.89	Peak
5	447.394	-5.63	28.93	23.30	46.00	-22.70	Peak
6	877.937	1.21	28.96	30.17	46.00	-15.83	Peak

Vertical

Site : chamber Condition: 3m VERTICAL


Job No. : RA230506-24405E-RF Test Mode: BLE Transmitting

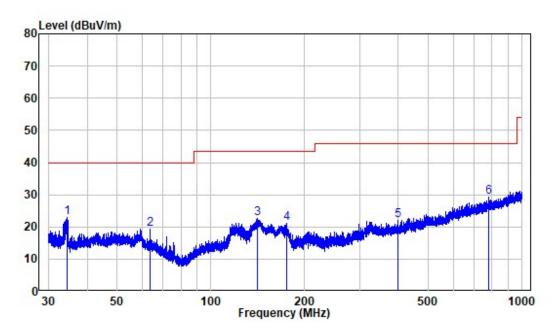
Note : 200W

	Freq	Factor			Limit Line		
100	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	<u> </u>
1	34.487	-11.70	36.86	25.16	40.00	-14.84	Peak
2	63.675	-12.04	31.01	18.97	40.00	-21.03	Peak
3	115.422	-12.74	33.18	20.44	43.50	-23.06	Peak
4	141.702	-15.53	37.85	22.32	43.50	-21.18	Peak
5	319.097	-8.50	30.45	21.95	46.00	-24.05	Peak
6	784.062	0.00	28.65	28.65	46.00	-17.35	Peak

Model: TD-300-12WF-1 WiFi

Horizontal

Site : chamber


Condition: 3m HORIZONTAL

Job No. : RA230506-24405E-RF Test Mode: BLE Transmitting

Note : 300W

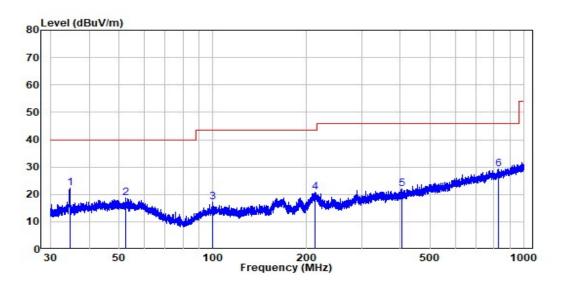
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	37.548	-10.90	28.01	17.11	40.00	-22.89	Peak
2	59.155	-10.32	28.56	18.24	40.00	-21.76	Peak
3	126.439	-14.47	32.49	18.02	43.50	-25.48	Peak
4	209.405	-11.86	36.39	24.53	43.50	-18.97	Peak
5	348.027	-7.27	28.39	21.12	46.00	-24.88	Peak
6	818.834	-0.06	29.79	29.73	46.00	-16.27	Peak

Vertical

Site : chamber Condition: 3m VERTICAL

Job No. : RA230506-24405E-RF Test Mode: BLE Transmitting

Note : 300W


	Freq	Factor			Limit Line		
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	34.472	-11.71	34.77	23.06	40.00	-16.94	Peak
2	63.563	-12.00	31.46	19.46	40.00	-20.54	Peak
3	141.330	-15.51	38.23	22.72	43.50	-20.78	Peak
4	175.114	-13.11	34.25	21.14	43.50	-22.36	Peak
5	399.380	-6.74	28.85	22.11	46.00	-23.89	Peak
6	782.345	0.02	29.21	29.23	46.00	-16.77	Peak

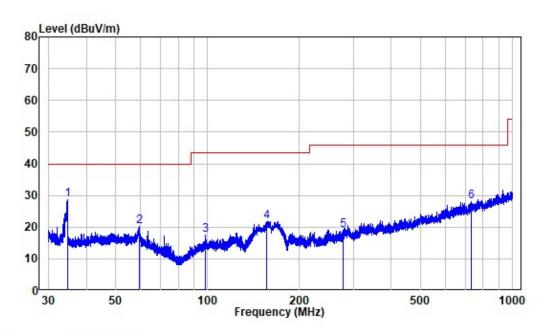
Report No.: RA230506-24405E-RF

2.4G WIFI (worst case 802.11b, Middle channel)

Model: TD-120-12WF-1 WiFi

Horizontal

Site : chamber


Condition: 3m HORIZONTAL

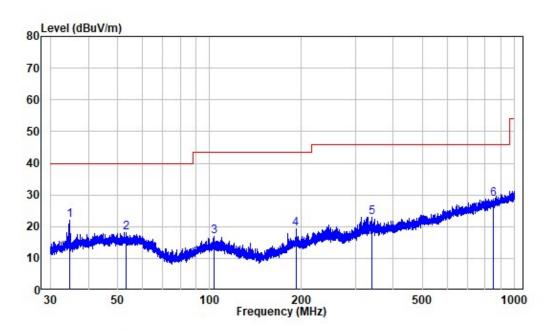
Job No. : RA230506-24405E-RF Test Mode: 2.4G WIFI Transmitting

Note : TD-120-12WF-1 WiFi

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	34.639	-11.66	33.97	22.31	40.00	-17.69	Peak
2	52.322	-10.03	28.79	18.76	40.00	-21.24	Peak
3	99.746	-11.85	28.92	17.07	43.50	-26.43	Peak
4	212.549	-11.76	32.59	20.83	43.50	-22.67	Peak
5	403.781	-6.73	28.76	22.03	46.00	-23.97	Peak
6	824.958	0.07	29.06	29.13	46.00	-16.87	Peak

Vertical

Site : chamber Condition: 3m VERTICAL


Job No. : RA230506-24405E-RF

Test Mode: 2.4G WIFI Transmitting
Note : TD-120-12WF-1 WiFi

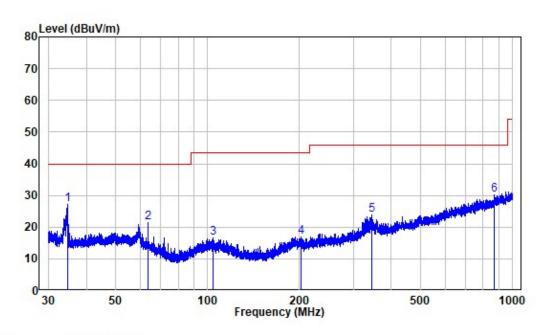
	Freq	Factor			Limit Line		Remark
- 10	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1		-11.64	40.18	28.54	40.00	-11.46	Peak
2		-10.46	30.80	20.34	40.00	-19.66	Peak
3	98.573	-12.12	29.66	17.54	43.50	-25.96	Peak
4	155.979	-14.82	36.65	21.83	43.50	-21.67	Peak
5	278.189	-9.70	28.82	19.12	46.00	-26.88	Peak
6	729.998	-0.91	28.87	27.96	46.00	-18.04	Peak

Model: TD-200-12WF-1 WiFi

Horizontal

Site : chamber

Condition: 3m HORIZONTAL

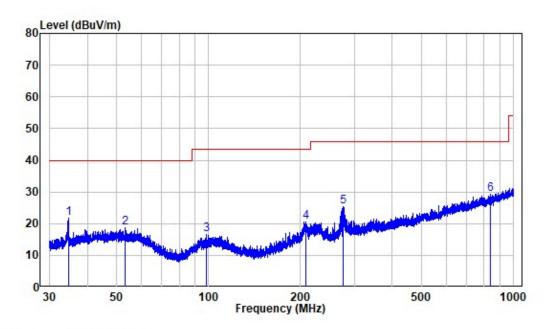

Job No. : RA230506-24405E-RF

Test Mode: 2.4G WIFI Transmitting

Note : TD-200-12WF-1 WiFi

	Freq	Factor			Limit Line		Remark
- 20-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	-
1	34.669	-11.65	33.80	22.15	40.00	-17.85	Peak
2	53.271	-10.21	28.45	18.24	40.00	-21.76	Peak
3	103.715	-11.72	28.62	16.90	43.50	-26.60	Peak
4	191.661	-11.30	30.54	19.24	43.50	-24.26	Peak
5	340.036	-7.43	30.45	23.02	46.00	-22.98	Peak
6	850.662	0.36	28.25	28.61	46.00	-17.39	Peak

Vertical


Site : chamber Condition: 3m VERTICAL

Job No. : RA230506-24405E-RF
Test Mode: 2.4G WIFI Transmitting
Note : TD-200-12WF-1 WiFi

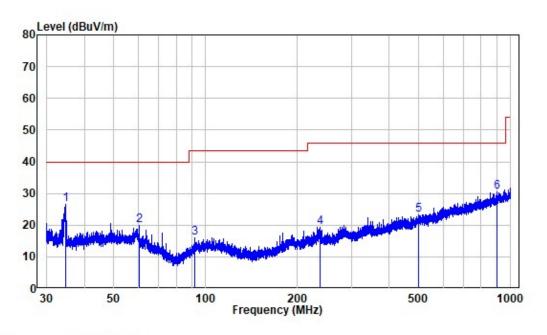
	Freq	Factor			Limit Line		Remark
- 85	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	-
1	34.669	-11.65	38.95	27.30	40.00	-12.70	Peak
2	63.703	-12.05	33.39	21.34	40.00	-18.66	Peak
3	104.125	-11.75	28.23	16.48	43.50	-27.02	Peak
4	201.746	-11.55	28.51	16.96	43.50	-26.54	Peak
5	345.898	-7.23	31.06	23.83	46.00	-22.17	Peak
6	868.369	0.89	29.23	30.12	46.00	-15.88	Peak

Model: TD-300-12WF-1 WiFi

Horizontal

Site : chamber

Condition: 3m HORIZONTAL


Job No. : RA230506-24405E-RF

Test Mode: 2.4G WIFI Transmitting

Note : TD-300-12WF-1 WiFi

	Freq	Factor			Limit Line		Remark
- E	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	34.669	-11.65	33.42	21.77	40.00	-18.23	Peak
2	53.341	-10.23	28.85	18.62	40.00	-21.38	Peak
3	98.487	-12.14	28.74	16.60	43.50	-26.90	Peak
4	207.577	-11.84	32.50	20.66	43.50	-22.84	Peak
5	276.003	-9.84	35.16	25.32	46.00	-20.68	Peak
6	842.130	0.33	28.90	29.23	46.00	-16.77	Peak

Vertical

Site : chamber Condition: 3m VERTICAL

Job No. : RA230506-24405E-RF
Test Mode: 2.4G WIFI Transmitting
Note : TD-300-12WF-1 WiFi

	Freq	Factor			Limit Line		Remark
83	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	34.699	-11.64	38.18	26.54	40.00	-13.46	Peak
2	60.598	-10.87	30.68	19.81	40.00	-20.19	Peak
3	92.220	-13.23	29.37	16.14	43.50	-27.36	Peak
4	236.645	-10.95	30.24	19.29	46.00	-26.71	Peak
5	497.677	-4.35	27.54	23.19	46.00	-22.81	Peak
6	900.542	1.38	29.02	30.40	46.00	-15.60	Peak

1-25 GHz: Worst case for Model of TD-300-12WF-1 WiFi

BLE:

Frequency	Recei	ver	Turntable Angle	Rx An	tenna	Factor	Absolute Level	Limit	Margin
(MHz)	Reading	PK/AV	Degree	Height	Polar	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
	(dBuV)	110/110	Degree	(m)	(H/V)				
BLE 1M, Low Channel									
2310	46.05	PK	241	1.4	Н	-10.36	35.69	74	-38.31
2310	46.04	PK	65	2.0	V	-10.36	35.68	74	-38.32
2390	59.88	PK	175	1.4	Н	-10.71	49.17	74	-24.83
2390	55.2	PK	88	1.2	V	-10.71	44.49	74	-29.51
4804	47.25	PK	125	1.3	Н	-6.11	41.14	74	-32.86
4804	46.81	PK	314	1.4	V	-6.11	40.7	74	-33.3
			BLE	E 1M, Mid	dle Chan	nel			
4880	47.19	PK	233	1.1	Н	-5.9	41.29	74	-32.71
4880	47.8	PK	247	1.3	V	-5.9	41.9	74	-32.1
			BL	E 1M, Hig	gh Chann	el			
2483.5	62.48	PK	63	1.5	Н	-10.55	51.93	74	-22.07
2483.5	51.79	PK	22	1.4	V	-10.55	41.24	74	-32.76
2500	57.51	PK	148	2.1	Н	-10.42	47.09	74	-26.91
2500	52.03	PK	222	1.6	V	-10.42	41.61	74	-32.39
4960	49.7	PK	256	1.2	Н	-5.47	44.23	74	-29.77
4960	48.98	PK	17	2.1	V	-5.47	43.51	74	-30.49

Wi-Fi:

VV 1-1/1.									
Frequency	Receiver		Turntable	Rx Antenna		Factor	Absolute Level	Limit	Margin
(MHz)	Reading (dBuV)	PK/AV	Angle Degree	Height (m)	Polar (H/V)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
			8	302.11B, Lo	w Channel				
2310	55.27	PK	141	1.8	Н	-10.36	44.91	74	-29.09
2310	55.83	PK	208	1.9	V	-10.36	45.47	74	-28.53
2390	62.35	PK	293	1.5	Н	-10.71	51.64	74	-22.36
2390	55.89	PK	167	1.3	V	-10.71	45.18	74	-28.82
4824	49.11	PK	10	2.2	Н	-6.11	43.00	74	-31.00
4824	49.49	PK	336	2.1	V	-6.11	43.38	74	-30.62

Report	No.:	RA23	0506-	-24405E-	RF
--------	------	------	-------	----------	----

Frequency	Rece	eiver	Turntable	Rx Ar	ntenna	Factor	Absolute Level	Limit	Margin
(MHz)	Reading (dBuV)	PK/AV	Angle Degree	Height (m)	Polar (H/V)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
			80)2.11B, Mid	dle Channel				
4874	53.27	PK	30	1.5	Н	-5.94	47.39	74	-26.61
4874	51.25	PK	323	2.2	V	-5.94	45.37	74	-28.63
				11B, High	Channel				
2483.5	64.43	PK	350	1.1	Н	-10.55	53.88	74	-20.12
2483.5	56.74	PK	181	1.8	V	-10.55	46.19	74	-27.81
2485.12	73.14	PK	162	1.8	Н	-10.54	62.60	74	-11.40
2485.12	59.3	AV	162	1.8	Н	-10.54	48.76	54	-5.24
2500	56.93	PK	243	1.3	Н	-10.42	46.51	74	-27.49
2500	54.97	PK	259	2.0	V	-10.42	44.55	74	-29.45
4924	48.58	PK	166	1.9	Н	-5.67	42.91	74	-31.09
4924	47.7	PK	336	2.0	V	-5.67	42.03	74	-31.97
			8	302.11G, Lo	w Channel				
2310	55.2	PK	63	1.4	Н	-10.36	44.84	74	-29.16
2310	55.32	PK	294	1.8	V	-10.36	44.96	74	-29.04
2390	76.89	PK	62	1.8	Н	-10.71	66.18	74	-7.82
2390	59.06	AV	62	1.8	Н	-10.71	48.35	54	-5.65
2390	62.53	PK	161	1.2	V	-10.71	51.82	74	-22.18
4824	48.32	PK	79	1.4	Н	-6.09	42.23	74	-31.77
4824	47.83	PK	331	1.3	V	-6.09	41.74	74	-32.26
			80)2.11G, Mid	dle Channel		1	1	
4874	48.35	PK	69	1.8	Н	-5.94	42.47	74	-31.53
4874	49.6	PK	51	2.0	V	-5.94	43.72	74	-30.28

Frequency	Rece	eiver	Turntable	Rx Ar	ntenna	Factor	Absolute	Limit	Margin (dB)
(MHz)	Reading (dBuV)	PK/AV	Angle Degree	Height (m)	Polar (H/V)	(dB/m)	Level (dBuV/m)	(dBuV/m)	
			8	302.11G, Hig	gh Channel				
2483.5	75.51	PK	51	2.0	Н	-10.55	64.96	74	-9.04
2483.5	60.38	AV	51	2.0	Н	-10.55	49.83	54	-4.17
2483.5	60.34	PK	199	1.9	V	-10.55	49.79	74	-24.21
2485.62	79.66	PK	345	2.0	Н	-10.54	69.12	74	-4.88
2485.62	58.45	AV	345	2.0	Н	-10.54	47.91	54	-6.09
2500	57.68	PK	215	1.2	Н	-10.42	47.26	74	-26.74
2500	55.76	PK	215	1.2	V	-10.42	45.34	74	-28.66
4924	47.34	PK	296	1.6	Н	-5.67	41.25	74	-32.75
4924	47.76	PK	172	1.1	V	-5.67	41.67	74	-32.33
	1		80	02.11N20, L	ow Channel	1	1	1	
2310	55.65	PK	62	1.8	Н	-10.36	45.29	74	-28.71
2310	55.94	PK	228	1.6	V	-10.36	45.58	74	-28.42
2390	75.31	PK	79	1.4	Н	-10.71	64.60	74	-9.40
2390	55.67	AV	79	1.4	Н	-10.71	44.96	54	-9.04
2390	59.79	PK	339	2.0	V	-10.71	49.08	74	-24.92
4824	47.49	PK	69	1.8	Н	-6.09	41.40	74	-32.60
4824	48.03	PK	110	1.7	V	-6.09	41.94	74	-32.06
			802	2.11N20, Mi	ddle Channe	el		1	
4874	49.3	PK	344	1.7	Н	-5.94	43.42	74	-30.58
4874	48.95	PK	199	1.9	V	-5.94	43.07	74	-30.93
			80)2.11N20, H	igh Channel				
2483.5	77.01	PK	199	1.9	Н	-10.55	66.46	74	-7.54
2483.5	56.86	AV	199	1.9	Н	-10.55	46.31	54	-7.69
2483.5	64.93	PK	296	1.6	V	-10.55	54.38	74	-19.62
2483.5	43.18	AV	296	1.6	V	-10.55	32.63	54	-21.37
2500	57.38	PK	172	1.1	Н	-10.42	46.96	74	-27.04
2500	55.91	PK	172	1.1	V	-10.42	45.49	74	-28.51
4924	49.25	PK	202	1.5	Н	-5.67	43.68	74	-30.32
4924	50.22	PK	72	2.1	V	-5.67	44.65	74	-29.35

SHEHZHEH AC	Curate reem	Tology co., i	<u>-tu.</u>			Пероге	NO RAZ3030	0-244031 111	
Frequency	Rece	eiver	Turntable	Rx An	ntenna	Factor	Absolute	Limit	Margin
(MHz)	Reading (dBuV)	PK/AV	Angle Degree	Height (m)	Polar (H/V)	(dB/m)	Level (dBuV/m)	(dBuV/m)	(dB)
			80	02.11N40, L	ow Channel				
2310	55.42	PK	224	1.9	Н	-10.36	45.06	74	-28.94
2310	55.73	PK	133	1.5	V	-10.36	45.37	74	-28.63
2390	80.09	PK	224	1.9	Н	-10.71	69.38	74	-4.62
2390	60.43	AV	224	1.4	Н	-10.71	49.72	54	-4.28
2390	70.63	PK	288	1.9	V	-10.71	59.92	74	-14.08
2390	49.96	AV	288	1.9	V	-10.71	39.25	54	-14.75
4844	45.81	PK	51	1.8	Н	-6.09	39.72	74	-34.28
4844	48.13	PK	167	1.7	V	-6.09	42.04	74	-31.96
			802	2.11N40, Mi	ddle Channe	el			
4874	44.62	PK	230	2.0	Н	-5.94	38.74	74	-35.26
4874	45.37	PK	186	1.2	V	-5.94	39.49	74	-34.51
			80)2.11N40, H	igh Channel	l			
2483.5	76.9	PK	300	1.7	Н	-10.55	66.35	74	-7.65
2483.5	48.29	AV	300	1.7	Н	-10.55	37.74	54	-16.26
2483.5	69.31	PK	318	1.5	V	-10.55	58.76	74	-15.24
2500	71.68	PK	181	2.1	Н	-10.42	61.26	74	-12.74
2500	39.89	AV	181	2.1	Н	-10.42	29.47	54	-24.53
									†

Report No.: RA230506-24405E-RF

Note:

2500

4904

4904

57.98

46.9

44.41

Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

PK

PK

PK

Absolute Level (Corrected Amplitude) = Factor + Reading

Margin = Absolute Level (Corrected Amplitude) – Limit

The other spurious emission which is in the noise floor level was not recorded.

258

152

53

For above 1GHz, the test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, so just peak value was recorded.

1.5

2.1

1.6

V

Η

V

-10.42

-5.78

-5.78

47.56

41.23

38.74

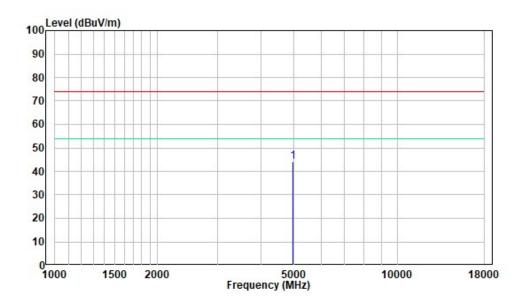
74

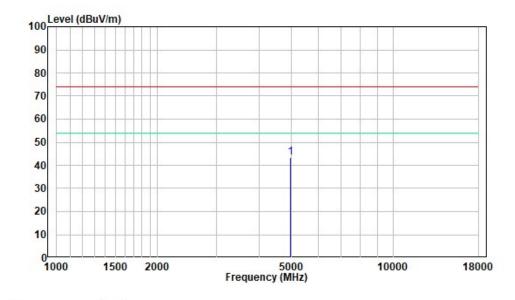
74

74

-26.44

-32.77

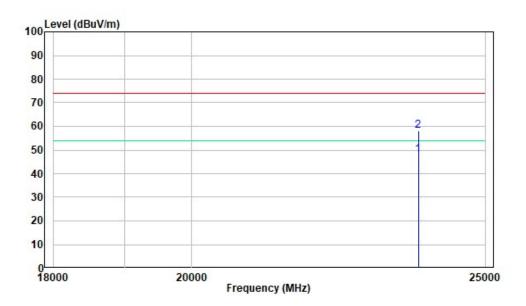

-35.26

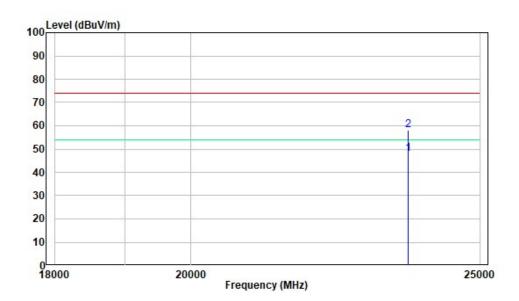

BLE

1 GHz - 18 GHz: (Pre-Scan plots)

High Channel (worst case)

Horizontal

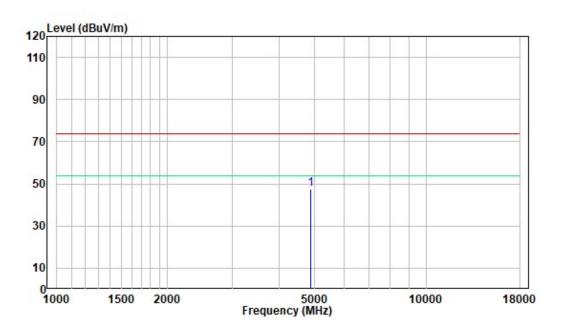


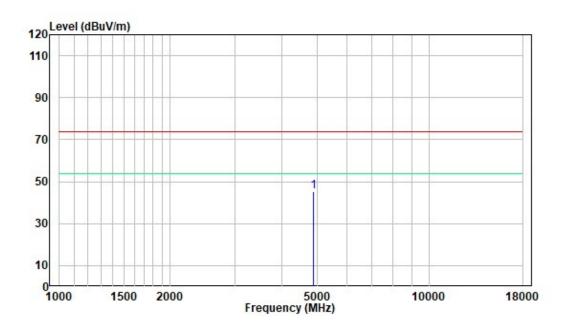


18-25GHz: (Pre-Scan plots)

High Channel (worst case)

Horizontal

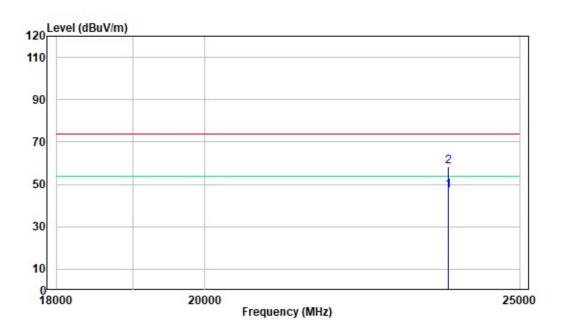


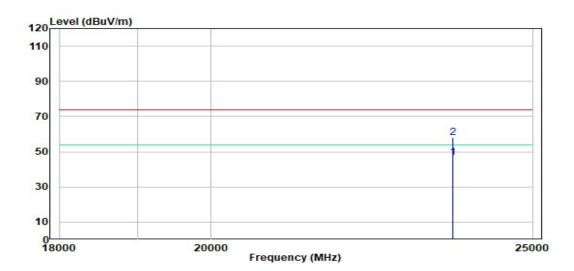

WIFI

1-18 GHz: (Pre-scan plots)

802.11 b Middle Channel (Worst case)

Horizontal





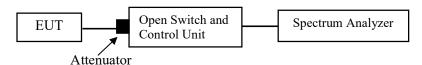
18 -25GHz: (Pre-scan plots)

802.11 b Middle Channel (Worst case)

Horizontal

FCC §15.247(a) (2)-6 dB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH

Applicable Standard


Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: RA230506-24405E-RF

Test Procedure

According to ANSI C63.10-2013, section 11.8 and section 6.9

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	25°C
Relative Humidity:	44-47%
ATM Pressure:	101.0 kPa

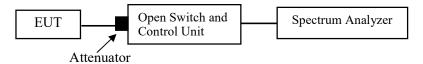
The testing was performed by Matt Liang from 2023-06-02 to 2023-06-20 for Wi-Fi and on 2023-06-06 for BLE.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix Wi-Fi and Appendix BLE.

FCC §15.247(b) (3)-MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard


According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: RA230506-24405E-RF

Test Procedure

According to ANSI C63.10-2013, section 11.9.1.1 for BLE mode According to ANSI C63.10-2013, section 11.9.2.3.2 for Wi-Fi mode

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	25°C	
Relative Humidity:	44-47%	
ATM Pressure:	101.0 kPa	

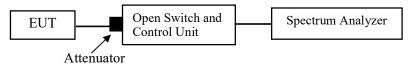
The testing was performed by Matt Liang on 2023-06-02 for Wi-Fi and on 2023-06-06 for BLE.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix Wi-Fi and Appendix BLE.

FCC §15.247(d)-100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Report No.: RA230506-24405E-RF


Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

According to ANSI C63.10-2013, section 11.11

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	24-25°C	
Relative Humidity:	44-48%	
ATM Pressure:	101.0 kPa	

The testing was performed by Matt Liang on 2023-06-02 for Wi-Fi and on 2023-06-06 for BLE.

EUT operation mode: Transmitting

Test Result: Compliant.

Conducted Band Edge Result:

Please refer to the Appendix Wi-Fi and Appendix BLE.

FCC §15.247(e)-POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: RA230506-24405E-RF

Test Procedure

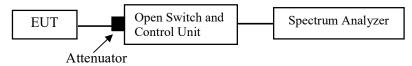
According to ANSI C63.10-2013, section 11.10.2

Method PKPSD (peak PSD)

The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- d) Set the VBW \geq [3 \times RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

According to ANSI C63.10-2013, section 11.10.3


Method AVGPSD-1: (for duty cycle \geq 98%)

- 1. Use this procedure when the maximum conducted average output power in the fundamental emission is used to demonstrate compliance and with continuous transmission (or at least 98% duty cycle).
- 2. Set the RBW to: $3kHz \le RBW \le 100 kHz$.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to at least 1.5 times the OBW.
- 5. Detector = power averaging (rms) or sample detector (when rms not available).
- 6. Sweep time = auto couple.
- 7. Ensure that the number of measurement points in the sweep $\geq [2 \cdot \text{span} / \text{RBW}]$.
- 8. Employ trace averaging (rms) mode over a minimum of 100 traces.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds requirement specified by regulatory agency, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).

According to ANSI C63.10-2013, section 11.10.5

Method AVGPSD-2: (for duty cycle < 98% and constant duty cycle)

- 1. Use this procedure when the maximum conducted average output power in the fundamental emission is used to demonstrate compliance and the continuous transmission (or at least 98% duty cycle) cannot be achieved but exhibit a constant duty cycle during the measurement duration.
- 2. Measure the duty cycle (D) of the transmitter output signal as described in C63.10-2013 Clause 11.6.
- 3. Set the RBW to: 3kHz≤RBW≤100 kHz.
- 4. Set the VBW $\geq 3 \times RBW$.
- 5. Set the span to at least 1.5 times the OBW.
- 6. Detector = power averaging (rms) or sample detector (when rms not available).
- 7. Sweep time = auto couple.
- 8. Ensure that the number of measurement points in the sweep \geq [2 *span / RBW].
- 9. Do not use sweep triggering; allow sweep to "free run."
- 10. Employ trace averaging (rms) mode over a minimum of 100 traces.
- 11. Use the peak marker function to determine the maximum amplitude level.
- 12. Add [10 log (1 / D)], where D is the duty cycle measured in step 2), to the measured PSD to compute the average PSD during the actual transmission time.
- 13. If measured value exceeds requirement specified by regulatory agency, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).

Test Data

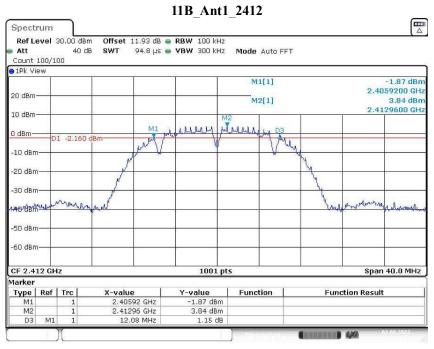
Environmental Conditions

Temperature:	25°C	
Relative Humidity:	44-47%	
ATM Pressure:	101.0 kPa	

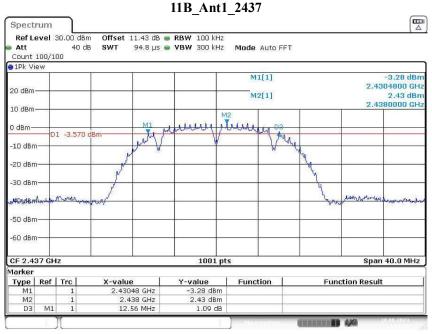
The testing was performed by Matt Liang on 2023-06-02 for Wi-Fi and on 2023-06-06 for BLE.

EUT operation mode: Transmitting

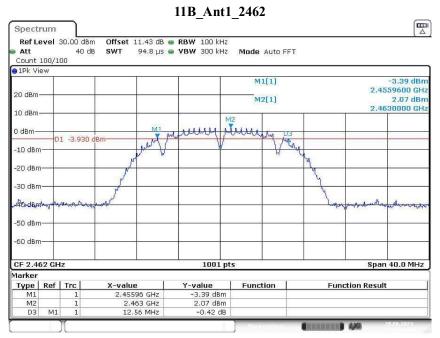
Test Result: Compliant. Please refer to the Appendix Wi-Fi and Appendix BLE.

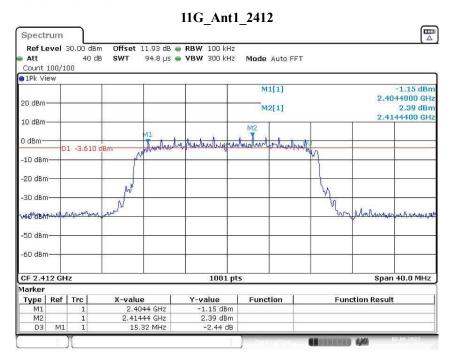

APPENDIX Wi-Fi

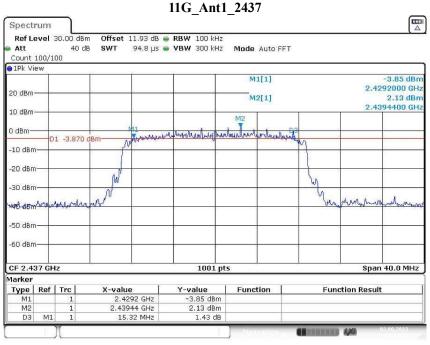
Appendix A: 6dB Emission Bandwidth

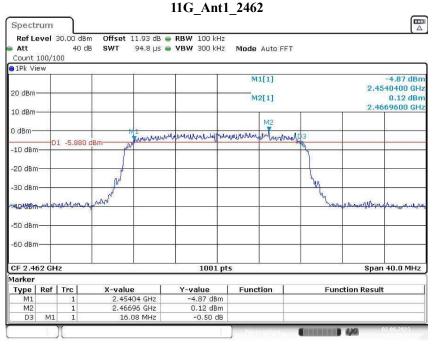

Test Result

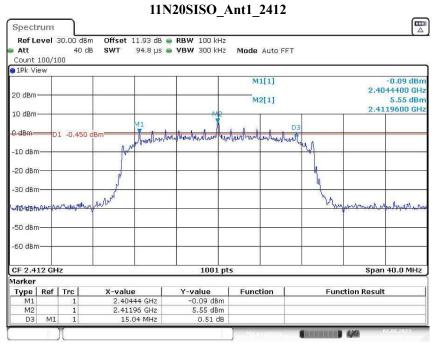
Test Mode	Antenna	Channel [MHz]	DTS BW [MHz]	Limit[MHz]	Verdict
11B	Ant1	2412	12.08	0.5	PASS
		2437	12.56	0.5	PASS
		2462	12.56	0.5	PASS
11G	Antl	2412	15.32	0.5	PASS
		2437	15.32	0.5	PASS
		2462	16.08	0.5	PASS
11N20SISO	Ant1	2412	15.04	0.5	PASS
		2437	15.12	0.5	PASS
		2462	15.04	0.5	PASS
11N40SISO	Ant1	2422	35.12	0.5	PASS
		2437	35.04	0.5	PASS
		2452	35.04	0.5	PASS

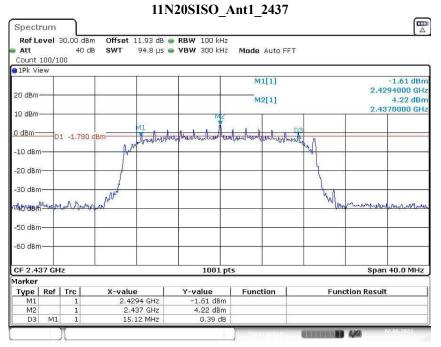

Test Graphs

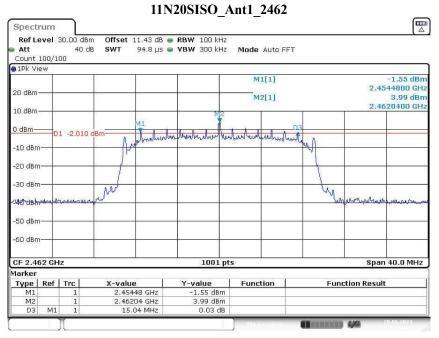

Date: 2.JUN.2023 19:29:10

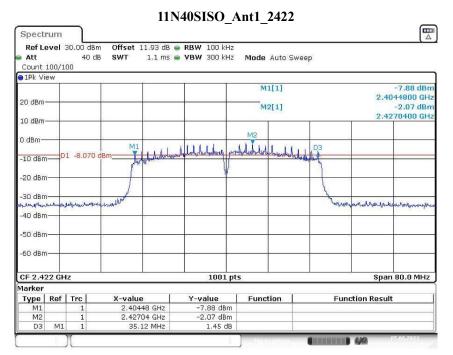

Date: 20.JUN.2023 17:54:09


Date: 20.JUN.2023 17:54:38


Date: 2.JUN.2023 19:32:55


Date: 2.JUN.2023 19:34:31


Date: 2.JUN.2023 19:37:15


Date: 2.JUN.2023 19:40:46

Date: 2.JUN.2023 19:43:22

Date: 20.JUN.2023 17:56:29

Date: 5.JUN.2023 16:21:06