

FCC Part 22H, Part 24E

TEST REPORT

For

Jiangsu Lynkworld IOT Technology Co., Ltd.

18th Floor No.1 Building Gusu Cloud Park Gusu District Suzhou China

FCC ID: 2A4FJLW2G-12F

Report Type: Original Report	Product Type: GNSS/GSM Terminal				
Report Producer : <u>Nar</u>	1a Hsu				
Report Number : <u>RLK</u>	220308004RF01				
Report Date : <u>2022-04</u>	-01				
Reviewed By: <u>Andy St</u>	nih Kr27. Shih				
Prepared By:					
Bay Area Compliance Lab	oratories Corp.(Linkou Laboratory)				
No. 6, Wende 2Rd., Guisha	an Dist., Taoyuan City 33382,				
Taiwan (R.O.C.)					
Tel: +886 (3)3961072; Fax:	Tel: +886 (3)3961072; Fax: +886 (3) 3961027				
www.bacl.com.tw					

Revision History

Revision	No.	Report Number	Issue Date	Description	Author/ Revised by
0.0	RLK220308004	RLK220308004RF01	2022.04.01	Original Report	Nana Hsu

TABLE OF CONTENTS

General Information	4
Product Description for Equipment under Test (EUT)	4
Objective	
Related Submittal(s)/Grant(s)	5
Test Methodology	5
Statement	
Measurement Uncertainty	
Test Facility	
System Test Configuration	7
Description of Test Configuration	7
Equipment Modifications	
EUT Exercise Software	7
Support Equipment List and Details	
External Cable List and Details	
Block Diagram of Test Setup	8
Summary of Test Results	9
Test Equipment List and Details	10
FCC §1.1310, § 2.1091 - Maximum Permissible Exposure (MPE)	12
FCC §2.1047 - MODULATION CHARACTERISTIC	. 14
FCC § 2.1046, § 22.913 (A) & § 24.232 (C) - RF Output Power	. 15
FCC §2.1049, §22.917, §22.905 & §24.238 – Occupied Bandwidth	. 18
Applicable Standard	. 18
Test Procedure	. 18
Test Results	. 18
FCC§2.1051, §22.917(a) & §24.238(a) – Spurious Emissions At Antenna Terminals	. 25
Applicable Standard	. 25
Test Procedure	
Test Results	26
FCC§2.1053, §22.917 & §24.238 – Spurious Radiated Emissions	. 38
Applicable Standard	38
Test Procedure	38
FCC§22.917(a) & §24.238(a) – Band Edges	. 65
Applicable Standard	65
Test Procedure	
Test Results	
FCC §2.1055, §22.355 & §24.235 – FREQUENCY STABILITY	
Applicable Standard	
Test Procedure	
Test Results	. /1

General Information

	or Equipment under Test (EUT)
Applicant	Jiangsu Lynkworld IOT Technology Co., Ltd.
	18th Floor No.1 Building Gusu Cloud Park Gusu District Suzhou China
Manufacturer	Jiangsu Lynkworld IOT Technology Co., Ltd.
	18th Floor No.1 Building Gusu Cloud Park Gusu District Suzhou China
Brand(Trade) Name	N/A
Product (Equipment)	GNSS/GSM Terminal
Main Model Name	LW2G-12F
Series Model Name	LW2G-6A, LW2G-6C, LW2G-12B, LW2G-12C
Model Discrepancy	Please review the series of declaration letters
Frequency Range	Cellular: 824.2 - 848.8 MHz (GSM/GPRS) PCS: 1850.2 - 1909.8 MHz (GSM/ GPRS)
Modulation Technique	GMSK
Antenna Specification	GSM 850 Brand: Jiangsu Lynkworld IOT Technology Co., Ltd. model: LW2G PCB Antenna Gain : 2.0 dBi GSM 1900 Brand: Jiangsu Lynkworld IOT Technology Co., Ltd. model: LW2G PCB Antenna Gain : 3.0 dBi
Output Voltage	 AC Type Adapter By AC Power Cord PoE DC Type: 9-90Vdc , Battery: 3.7Vdc DC Power Supply External from USB Cable External DC Adapter
Received Date	Mar 08, 2022
Date of Test	Mar 11, 2022 ~ Mar. 21, 2022

Product Description for Equipment under Test (EUT)

* All measurement and test data in this report was gathered from production sample serial number: RLK220308004-

01~ RLK220308004-05 (Assigned by BACL, Linkou Laboratory)

Bay Area Compliance Laboratories Corp. (Linkou Laboratory)

Objective

This report is prepared on behalf of *Jiangsu Lynkworld IOT Technology Co., Ltd.* in accordance with Part 2, Part 22-Subpart H and Part 24-Subpart E of the Federal Communication Commission's rules.

Related Submittal(s)/Grant(s)

N/A

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2-Subpart J as well as the following parts:

Part 22 Subpart H – Public Mobile Services

Part 24 Subpart E – Personal Communications Services

Applicable Standards: ANSI C63.26-2015.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Statement

Decision Rule: No, (The test results do not include MU judgment)

It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory).

Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

The determination of the test results does not require consideration of the uncertainty of the measurement, unless the assessment is required by customer agreement, regulation or standard document specification. Bay Area Compliance Laboratories Corp. (Linkou Laboratory) is not responsible for the authenticity of the information provided by the applicant that affects the test results.

No.: RLK220308004RF01

Measurement Uncertainty

Param	ieter	Uncertainty
RF output powe	er, conducted	+/- 0.74 dB
Frequency	stability	+/- 0.02 MHz
Occupied B	andwidth	+/- 0.94 MHz
Unwanted Emissi	ons, conducted	+/- 2.57 dB
	30 MHz~1GHz	+/- 1.36 dB
Emissions, radiated	1 GHz~18 GHz	+/- 2.3 dB
	18 GHz~40 GHz	+/- 2.23 dB
Temper	rature	+/- 1.71 °C
Humi	dity	+/- 3 %

Environmental Conditions

Test Site	Test Date	Temperature (°C)	Relative Humidity (%)	ATM Pressure (hPa)	Test Engineer
Radiation Spurious Emissions	2022/3/18~2022/3/21	20.0~21.5	63~64	1010	Allen Cheng
Conducted Spurious Emissions	2022/03/11	20.5	68	1010	
Emission Bandwidth	2022/03/11	20.5	68	1010	
Maximum Output Power	2022/03/11	20.5	68	1010	David Lee
Band Edge	2022/03/11	20.5	68	1010	
Frequency stability	2022/03/11	20.5	68	1010	

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Linkou Laboratory) to collect test data is located on

No.6, Wende 2Rd., Guishan Dist., Taoyuan City 33382, Taiwan (R.O.C.).

Bay Area Compliance Laboratories Corp. (Linkou Laboratory) is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3546) and the FCC designation No.TW3546 under the Mutual Recognition Agreement (MRA) in FCC Test.

System Test Configuration

Description of Test Configuration

The EUT was configured for testing according to ANSI C63.26-2015.

The final qualification test was performed with the EUT operating at normal mode.

Equipment Modifications

No modification was made to the EUT.

EUT Exercise Software

N/A.

Test Mode

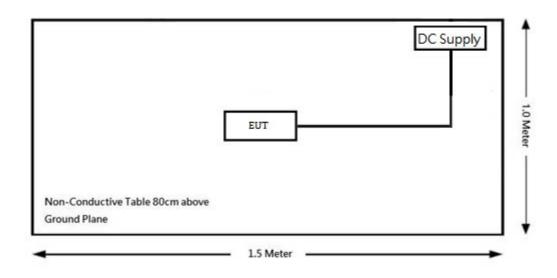
Pre-scan Radiated Spurious Emissions Mode 1: LW2G-12F (Sample serial number: RLK220308004-01). Mode 2: LW2G-6A (Sample serial number: RLK220308004-02). Mode 3: LW2G-6C (Sample serial number: RLK220308004-03). Mode 4: LW2G-12B (Sample serial number: RLK220308004-04). Mode 5: LW2G-12C (Sample serial number: RLK220308004-05). Worst case is the LW2G-12F (Sample serial number: RLK220308004-01).

Model : LW2G-12F for all test item.

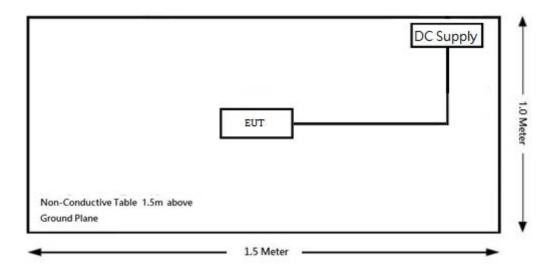
Other series model test Radiated Spurious Emissions below 1GHz.

Support Equipment List and Details

Description	Manufacturer	Model Number	S/N
DC Power Supply	KIKUSUI	PWR400M	SJ002716


External Cable List and Details

N/A


Bay Area Compliance Laboratories Corp. (Linkou Laboratory) No.: RLK220308004RF01

Block Diagram of Test Setup

For Radiated Emissions (Below 1GHz).

For Radiated Emissions (Above 1GHz).

Summary of Test Results

FCC Rules	Description of Test	Result
§1.1310 ,§ 2.1091	Maximum Permissible Exposure (MPE)	Compliance
§2.1046; §22.913 (a); §24.232(c)	RF Output Power	Compliance
§ 2.1047	Modulation Characteristics	Not Applicable
§ 2.1049; §22.905; §22.917; §24.238	Occupied Bandwidth	Compliance
§ 2.1051; §22.917(a); §24.238(a)	Spurious Emissions at Antenna Terminal	Compliance
§ 2.1053; §22.917(a); §24.238(a)	Field Strength of Spurious Radiation	Compliance
§22.917(a); §24.238(a)	Band Edge	Compliance
§ 2.1055; §22.355; §24.235	Frequency stability	Compliance

Test Equipment List and Details

Description	Description Manufacturer		Serial Number	Calibration Date	Calibration Due Date
		Radiated Room	(966-A)		
Bilog Antenna & 6 dB Attenuator	SUNOL SCIENCES & EMCI	JB3 & N-6-06	A111513 & AT- N0668	2021/03/30	2022/03/29
Bilog Antenna & 6 dB Attenuator	SUNOL SCIENCES & EMCI	JB3 & N-6-06	A071318 & AT- N0670	2021/08/3	2022/8/2
Horn Antenna	ETS-Lindgren	3115	109141	2021/07/12	2022/07/11
Horn Antenna	ETS-Lindgren	3115	00085775	2021/09/08	2022/09/07
Horn Antenna	ETS-Lindgren	3160-09	123852	2021/07/13	2022/07/12
Horn Antenna	ETS-Lindgren	3160-09	00123853	2021/9/8	2022/9/7
Preamplifier	A.H. Systems	PAM-0118P	478	2021/05/12	2022/05/11
Preamplifier	A.H. Systems	PAM-1840VH	174	2021/03/22	2022/03/21
ESR EMI Test Receiver	Rohde & Schwarz	ESR3	102448	2021/09/28	2022/09/27
Signal and Spectrum Analyzer	Rohde & Schwarz	FSV40	101434	2021/05/12	2022/05/11
MXG Analog Signal Generator	AGILENT	N5183A	MY50140330	2021/12/15	2022/12/14
Wideband Radio Communication Tester (with CA)	Rohde & Schwarz	CMW 500	107105	2022/03/08	2023/03/07
Microflex Cable	MTJ	00000-MT26A- 100	H0919	2021/08/07	2022/08/06
Microflex Cable	EMCI	EMC106-SM- SM-2000	180515	2021/08/07	2022/08/06
Microflex Cable	UTIFLEX	UFA210A-1- 3149-300300	MFR 64639 232490-001	2021/08/07	2022/08/06
Coaxial Cable 5C- 2V (1.5M)	РХ	P5C-2P-1.5M	PTP246-01	2021/11/05	2022/11/04
Coaxial Cable 5C- 2V (3M)	HER YING	RG-10-3M	LKTE059	2021/11/05	2022/11/04
RF Cable	EMCI	EMCCFD300- BM-BM-8000	180526		2022/08/16
Reference Cable	MTJ	MT40S	620620-MT40S- 100	2021/12/22	2022/12/21
Band-stop filter	Chengdu E- Microwave Inc.	OBF-ZP-1850- 1910-NF	OE01201055	2021/03/12	2022/03/11

Bay Area Compliance Laboratories Corp. (Linkou Laboratory)

No.: RLK220308004RF01

Band-stop filter	XB TECHNOLOGY	XBLBQ-DZA111	200121-3-18	2021/03/12	2022/03/11
Turn Table	Chaintek	T-200-S-1	003501	N.C.R	N.C.R
Antenna Tower	Chaintek	MBD-400-1	003504	N.C.R	N.C.R
Controller	Chaintek	3000-1	003507	N.C.R	N.C.R
Software	Audix	e3 v9	E3LK-01	N.C.R	N.C.R
		Conducted R	Room		
Spectrum Analyzer	Rohde & Schwarz	FSU40	102248	2021/09/09	2022/09/08
RF Cable	EMCI	EMCCFD300- BM-BM-8000	180526	2021/08/17	2022/08/16
Attenuator	HAEFELY TEST AG	PAT50A & PAT1000	187177 & 187176	2021/10/20	2022/10/19
Power Splitter	Mini-Circuits	ZFRSC-183-S+	S F448201614	2021/6/23	2022/6/22
Multimeter	Fluke	114	28810152WS	2022/2/9	2023/2/8
Constant Temperature and Humidity Chamber	BACL	BTH-408-60	30073	2021/10/01	2022/09/30
Wideband Radio Communication Tester (with CA)	Rohde & Schwarz	CMW 500	107105	2022/03/08	2023/03/07

*Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to the SI System of Units via the R.O.C. Center for Measurement Standards of the Electronics Testing Center, Taiwan (ETC) or to another internationally recognized National Metrology Institute (NMI), and were compliant with the current Taiwan Accreditation Foundation (TAF) requirements.

FCC §1.1310, § 2.1091 - Maximum Permissible Exposure (MPE)

Applicable Standard

According to subpart 1.1310, 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

(B) Limits for General Population/Uncontrolled Exposure							
Frequency Range (MHz)							
0.3–1.34	614	1.63	*(100)	30			
1.34–30	824/f	2.19/f	*(180/f ²)	30			
30–300	27.5	0.073	0.2	30			
300-1500	/	/	f/1500	30			
1500-100,000	/	/	1.0	30			

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 =$ power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

MPE evaluation:

Mode	Frequency Range	Ante	nna Gain		ie-up t Power	Evaluation Distance	Power Density	MPE Limit
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm2)	(mW/cm2)
GSM 850	824-249	2	1.585	25.00	316.228	20	0.100	0.55
GPRS 850	824-249	2	1.585	25.00	316.228	20	0.100	0.55
GSM 1900	1850 - 1910	3	1.995	19.50	89.125	20	0.035	1
GPRS 1900	1850 - 1910	3	1.995	20.00	100.000	20	0.040	1

Bay Area Compliance Laboratories Corp. (Linkou Laboratory)

No.: RLK220308004RF01

GSM 850: Maximum Tune-up output power with 1 slot is 34.00 dBm, so the max tune-up time based Ave. power compared to slot Ave. power is 25.00 dBm.

GPRS 850: Maximum Tune-up output power with 1 slot is 34.00 dBm, 2 slots is 31.00 dBm, 3 slots is 29.00 dBm, 4 slots is 28.00 dBm, so the max tune-up time based Ave. power compared to slot Ave. power are 25.00 dBm.

GSM 1900: Maximum Tune-up output power with 1 slot is 28.50 dBm, so the max tune-up time based Ave. power compared to slot Ave. power is 19.50 dBm .

GPRS 1900: Maximum Tune-up output power with 1 slot is 28.00 dBm, 2 slots is 26.00 dBm, 3 slots is 24.00 dBm, 4 slots is 23.00 dBm, so the max tune-up time based Ave. power compared to slot Ave. power are 20.00 dBm .

Number of Time slot	1	2	3	4
Duty Cycle	1:8	1:4	1:2.66	1:2
Time based Ave. power compared to slotted Ave. power	-9 dB	-6 dB	-4.26 dB	-3 dB

Result: MPE evaluation meets the requirements of the 20cm standard.

FCC §2.1047 - MODULATION CHARACTERISTIC

According to FCC § 2.1047(d), Part 22H & 24E, there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

FCC § 2.1046, § 22.913 (A) & § 24.232 (C) - RF Output Power Applicable Standard

According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

According to FCC §2.1046 and §24.232 (C), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

According to §24.232 (d) Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

According to FCC §2.1046 and §27.50 (d), (4) Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP. Fixed stations operating in the 1710-1755 MHz band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in these bandsmust employ a means for limiting power to the minimum necessary for successful communications.

Test Procedure

For Conducted method:

The RF output of the transmitter was connected to the CMW500 through sufficient attenuation

For ERP measurement:

ERP can be calculated by below formula from KDB 412172 D01. EIRP= $P_T + G_T - L_C$ P_T = transmitter output power, in dBm. G_T = gain of the transmitting antenna, in dBi (EIRP). L_C = signal attenuation in the connecting cable between the transmitter and antenna, in dB. ERP = EIRP - 2.15 dB.

No.: RLK220308004RF01

Bay Area Compliance Laboratories Corp. (Linkou Laboratory)

Test Results

Mode	le Test Condition		Frequency	Average Output Power	Limit				
Wide	Test Condition	Channel	(MHz)	(dBm)	(dBm)				
		128	824.2	33.44					
GSM	Normal	190	836.6	33.55	38.45				
		251	848.8	33.47					

Cellular Band (Part 22H)

Test			Frequency	Burst	Burst Average Output Power (dBm)				
Mode	Condition	Channel	(MHz)	1 slot	2 slot	3 slot	4 slot	(dBm)	
		128	824.2	33.55	30.84	28.39	27.49		
GPRS	Normal	190	836.6	33.62	30.95	28.35	27.38	38.45	
		251	848.8	33.73	30.74	28.54	27.58		

PCS Band (Part 24E)

Mode	Test Condition		Frequency	Average Output Power	Limit
Wide	Test Condition	Channel	(MHz)	(dBm)	(dBm)
		512	1850.2	28.38	
GSM	Normal	661	1880.0	28.31	33
		810	1909.8	28.44	

Mada			Frequency	Burst	Limit			
Mode	Condition	Channel	(MHz)	1 slot	2 slot	3 slot	4 slot	(dBm)
		512	1850.2	27.60	25.35	23.54	22.54	
GPRS	Normal	661	1880.0	27.45	25.58	23.31	22.58	33
		810	1909.8	27.51	25.42	23.58	22.74	

ERP/EIRP

	Antenna Gain (dBi): 2		2		2		2		Antenna G (dBd):		-0.15	С	able Loss (dB):		0.5		
	Mada	Tes	st	C	The served	F	requency	Average	e Output	Maxi	imum	Limi	it				
	Mode	Mode Condition C		Channel		(MHz)	Power	(dBm)	ERP	(dBm)	(dBn	1)					
					128		824.2	33	.44	32	.79						
	GSM	Norr	nal		190		836.6	33	.55	32	.90	38.4	5				
					251		848.8	33	.47	32	.82						

Cellular Band (Part 22H)

ERP=Conducted Power (dBm) - Cable loss (dB) + Antenna Gain (dBd)

PCS Band (Part 24E)

	na Gain Bi):	3	Ca	ble Loss (dB):	0	.5			
Mode	Test	Channel		Freque	ency	Avera	ge Output	Maximum	Limit
Widde	Condition	Channel	Channel		z)	Pow	er (dBm)	EIRP (dBm)	(dBm)
		512		1850	.2	2	28.38	30.88	
GSM	Normal	661		1880	.0	2	28.31	30.81	33
		810		1909	.8	2	28.44	30.94	

Note: EIRP=Conducted Power (dBm) - Cable loss (dB) + Antenna Gain (dBi)

Peak-to-average ratio (PAR)

Cellular Band (Part 22H)

mode	Channel	PAR (dB)	PAR Limit (dB)
	Low	1.35	≤ 13
GSM	Middle	1.41	≤ 13
	High	1.28	≤ 13

PCS Band (Part 24E)

mode	Channel	PAR (dB)	PAR Limit (dB)	
	Low	1.38	≤ 13	
GSM	Middle	1.37	≤13	
	High	1.45	≤13	

FCC §2.1049, §22.917, §22.905 & §24.238 – Occupied Bandwidth

Applicable Standard

FCC §2.1049, §22.917, §22.905, §24.238,

Test Procedure

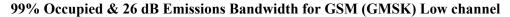
The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

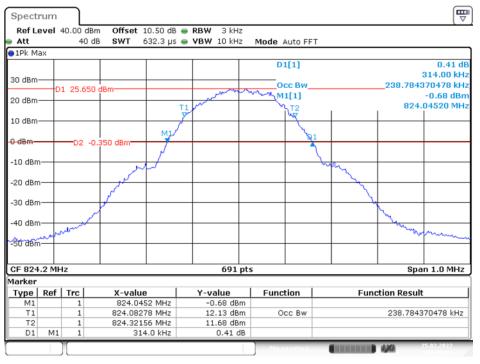
The resolution bandwidth of the spectrum analyzer was set at 1% to 5% of the anticipated emission bandwidth and the 26 dB & 99% bandwidth was recorded.

Test Results

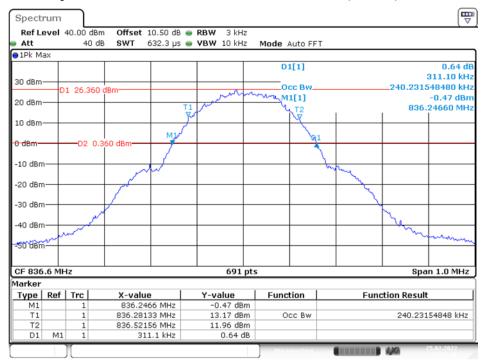
Test Mode: Transmitting Test Result: Compliant.

Please refer to the following table and plots.

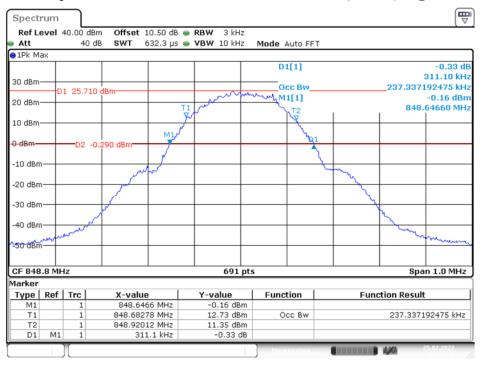

Cellular Band (Part 22H)


Mode	Frequency (MHz)	99% Occupied Bandwidth (MHz)	26 dB Emission Bandwidth (MHz)
	824.2	0.239	0.314
GSM(GMSK)	836.6	0.240	0.311
	848.8	0.237	0.311
	824.2	0.239	0.310
GPRS (GMSK)	836.6	0.239	0.313
	848.8	0.237	0.310

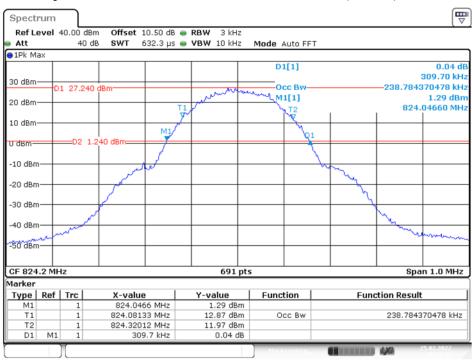
PCS Band (Part 24E)


Mode	Frequency (MHz)	99% Occupied Bandwidth (MHz)	26 dB Emission Bandwidth (MHz)
	1850.2	0.236	0.313
GSM(GMSK)	1880.0	0.237	0.314
	1909.8	0.239	0.313
	1850.2	0.236	0.314
GPRS (GMSK)	1880.0	0.237	0.314
	1909.8	0.240	0.305

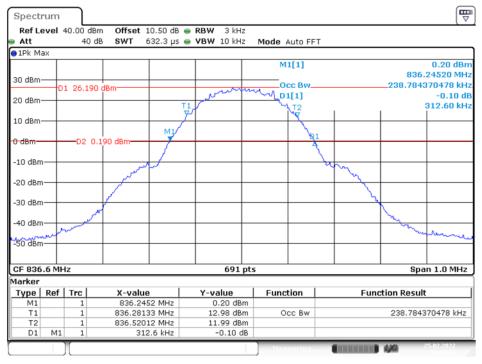
Cellular Band (Part 22H)



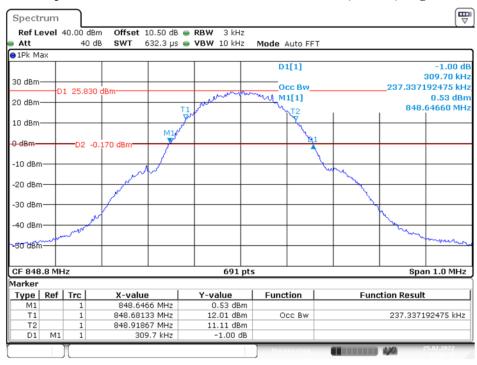
Date: 10.MAR.2022 14:20:49


99% Occupied & 26 dB Emissions Bandwidth for GSM (GMSK) Middle channel

Date: 10.MAR.2022 14:24:10


99% Occupied & 26 dB Emissions Bandwidth for GSM (GMSK) High channel

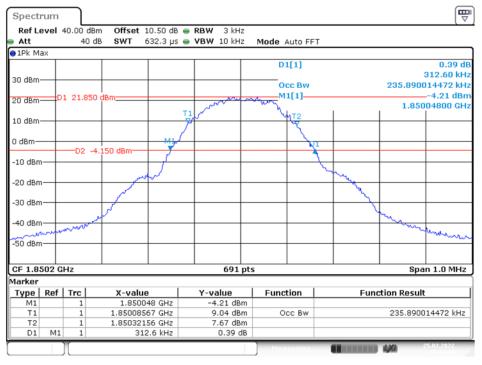
Date: 10.MAR.2022 14:27:28


99% Occupied & 26 dB Emissions Bandwidth for GPRS (GMSK) Low Channel

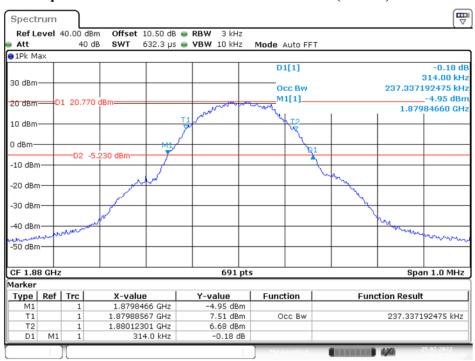
Date: 10.MAR.2022 13:38:26

99% Occupied & 26 dB Emissions Bandwidth for GPRS (GMSK) Middle Channel

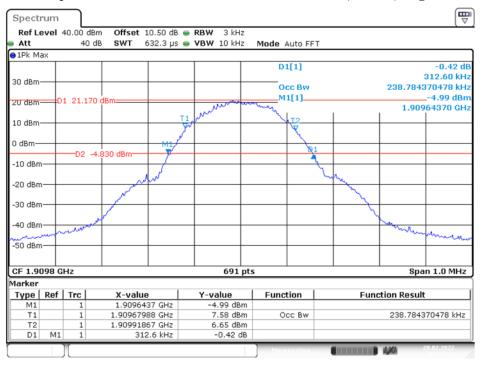
Date: 10.MAR.2022 13:42:59



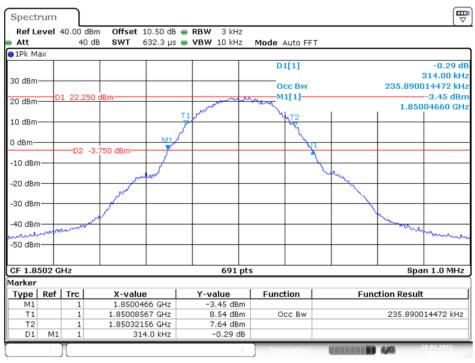
99% Occupied & 26 dB Emissions Bandwidth for GPRS (GMSK) High Channel


Date: 10.MAR.2022 13:46:29

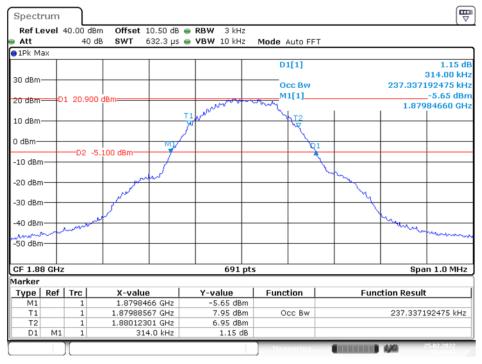
PCS Band (Part 24E)



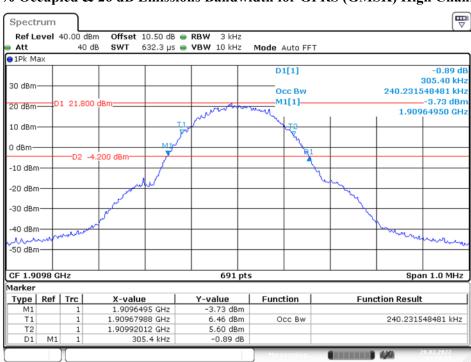
Date: 10.MAR.2022 16:21:58


99% Occupied & 26 dB Emissions Bandwidth for GSM (GMSK) Middle channel

Date: 10.MAR.2022 16:25:10


99% Occupied & 26 dB Emissions Bandwidth for GSM (GMSK) High channel

Date: 10.MAR.2022 16:28:29


99% Occupied & 26 dB Emissions Bandwidth for GPRS (GMSK) Low Channel

Date: 10.MAR.2022 15:02:06

99% Occupied & 26 dB Emissions Bandwidth for GPRS (GMSK) Middle Channel

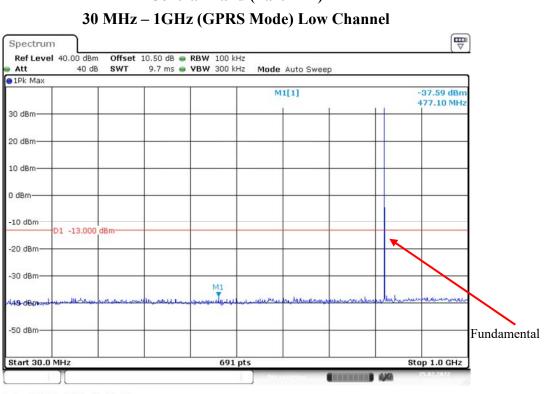
Date: 10.MAR.2022 15:05:22

99% Occupied & 26 dB Emissions Bandwidth for GPRS (GMSK) High Channel

Date: 10.MAR.2022 15:10:44

FCC§2.1051, §22.917(a) & §24.238(a) – Spurious Emissions At Antenna Terminals

Applicable Standard

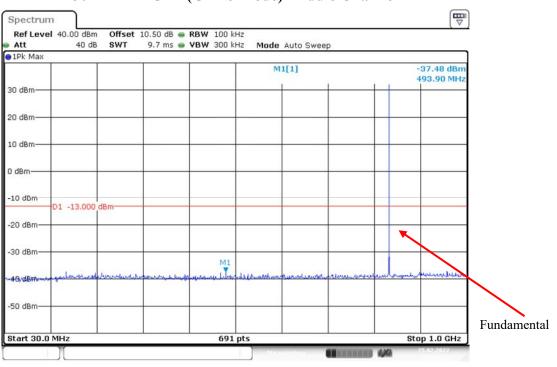

FCC § 2.1051, §22.917, § 24.238,

Test Procedure

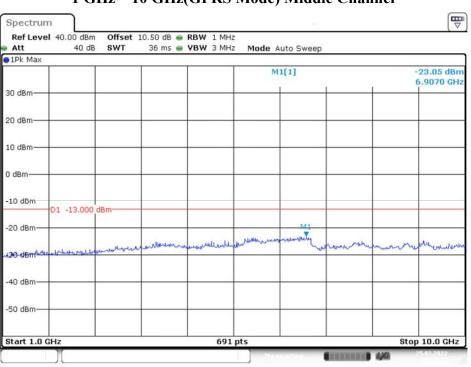
The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. Sufficient scans were taken to show any out of band emissions up to 10th harmonic. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for below 1GHz & 1MHz for above 1GHz.

Test Results

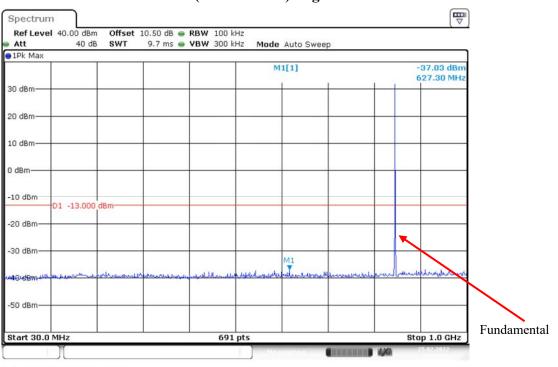
Please refer to the following plots


Cellular Band (Part 22H)

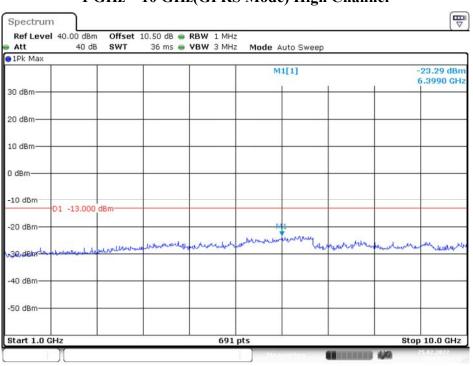
Date: 10.MAR.2022 13:28:08


1 GHz - 10 GHz(GPRS Mode) Mode Low Channel

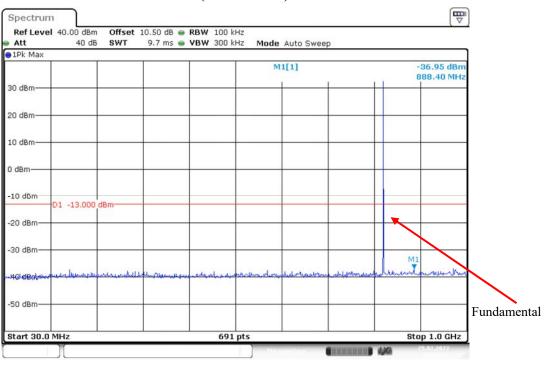
Date: 10.MAR.2022 13:18:18


30 MHz – 1GHz (GPRS Mode) Middle Channel

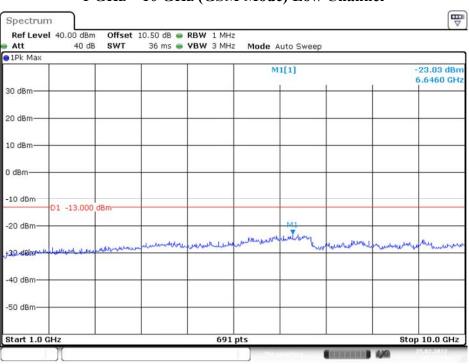
Date: 10.MAR.2022 13:31:34


1 GHz - 10 GHz(GPRS Mode) Middle Channel

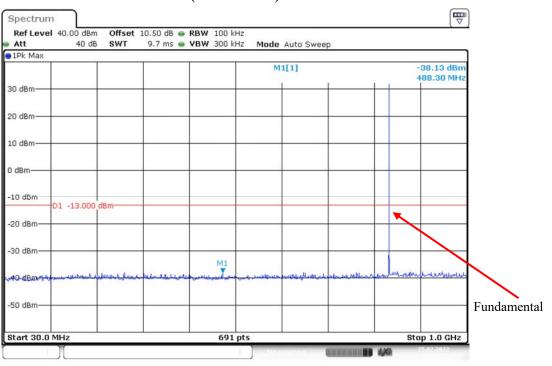
Date: 10.MAR.2022 13:20:33


30 MHz – 1GHz (GPRS Mode) High Channel

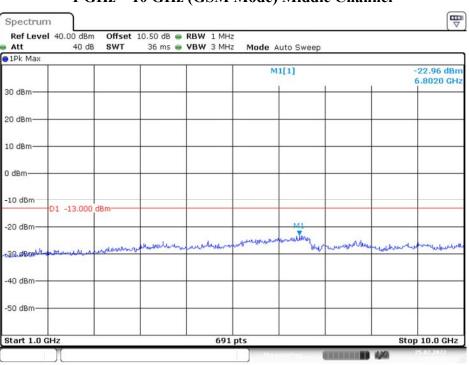
Date: 10.MAR.2022 13:35:09


1 GHz - 10 GHz(GPRS Mode) High Channel

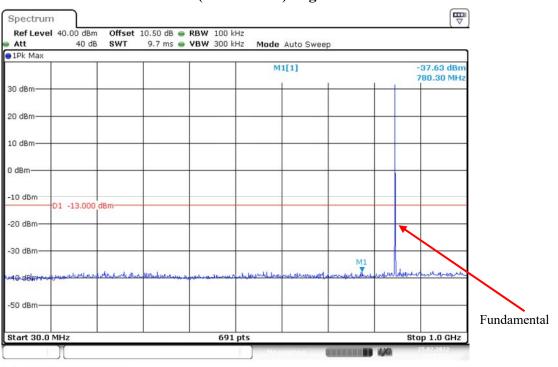
Date: 10.MAR.2022 13:24:40


30 MHz - 1GHz (GSM Mode) Low Channel

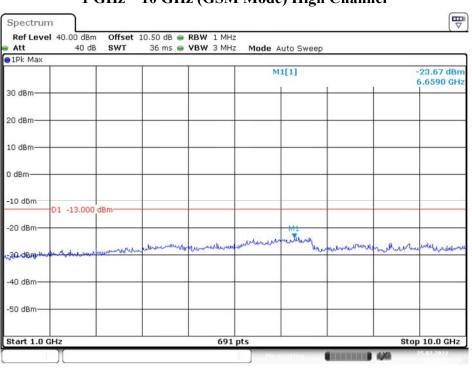
Date: 10.MAR.2022 14:08:28


1 GHz – 10 GHz (GSM Mode) Low Channel

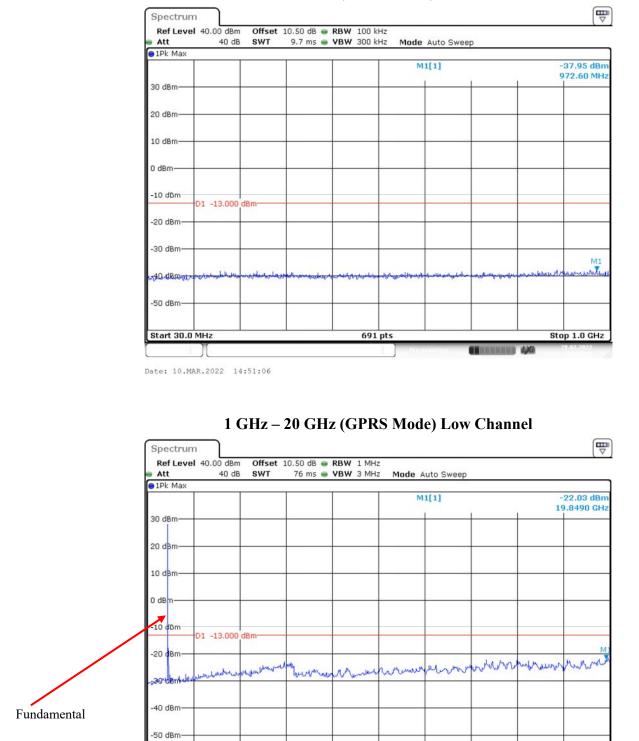
Date: 10.MAR.2022 13:58:09


30 MHz – 1GHz (GSM Mode) Middle Channel

Date: 10.MAR.2022 14:12:08


1 GHz – 10 GHz (GSM Mode) Middle Channel

Date: 10.MAR.2022 14:02:09


30 MHz – 1GHz (GSM Mode) High Channel

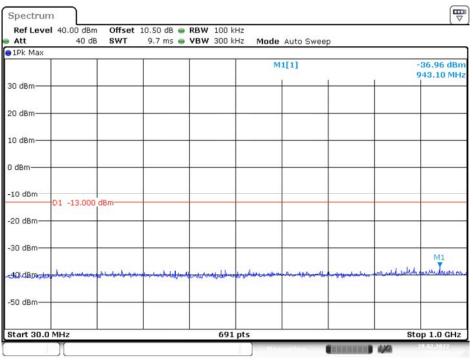
Date: 10.MAR.2022 14:15:33

1 GHz - 10 GHz (GSM Mode) High Channel

Date: 10.MAR.2022 14:05:43

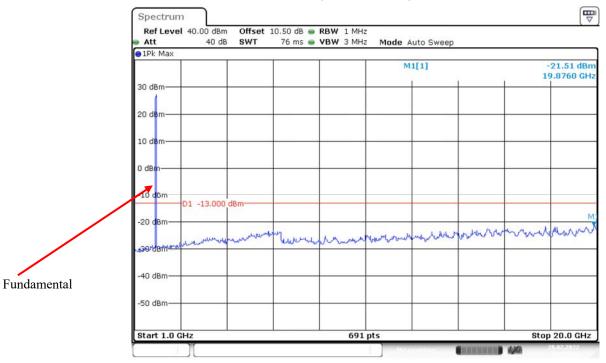
PCS Band (Part 24E) 30 MHz – 1GHz (GPRS Mode) Low Channel

Date: 10.MAR.2022 14:37:02

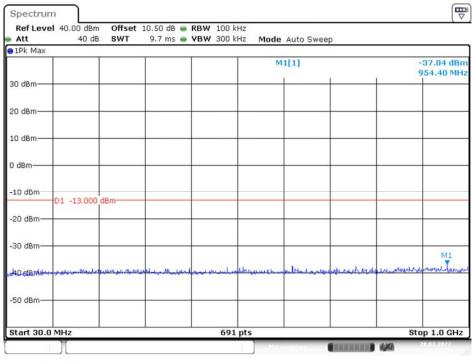

Start 1.0 GHz

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Page

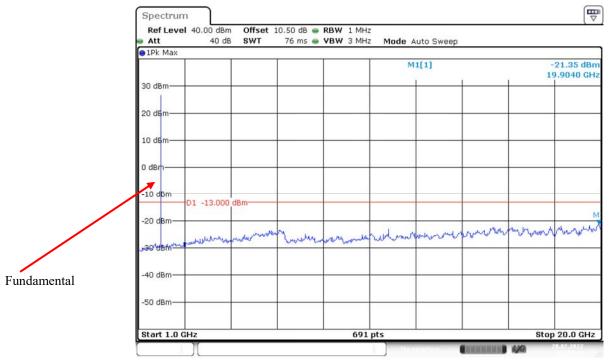
691 pts


Page 32 of 72

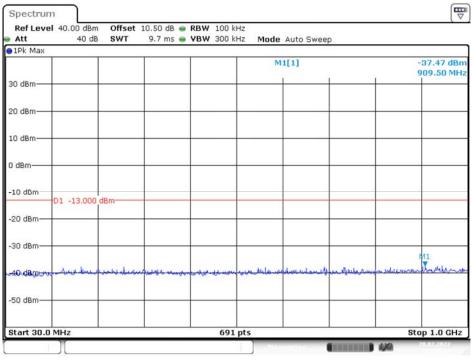
Stop 20.0 GHz


30 MHz - 1GHz (GPRS Mode) Middle Channel

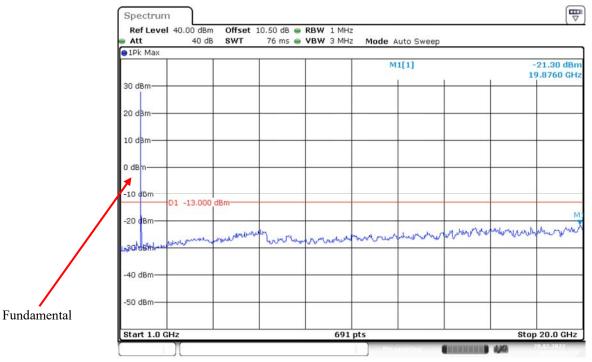
Date: 10.MAR.2022 14:54:20


1 GHz – 20 GHz (GPRS Mode) Middle Channel

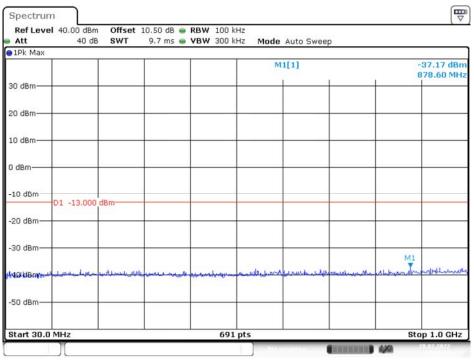
Date: 10.MAR.2022 14:41:35


30 MHz – 1GHz (GPRS Mode) High Channel

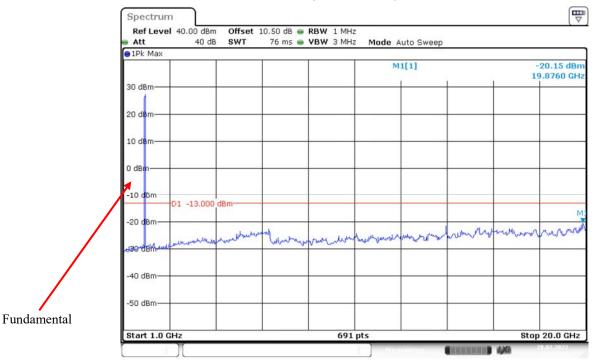
Date: 10.MAR.2022 14:57:33


1 GHz – 20 GHz (GPRS Mode) High Channel

Date: 10.MAR.2022 14:44:53


30 MHz - 1GHz (GSM Mode) Low Channel

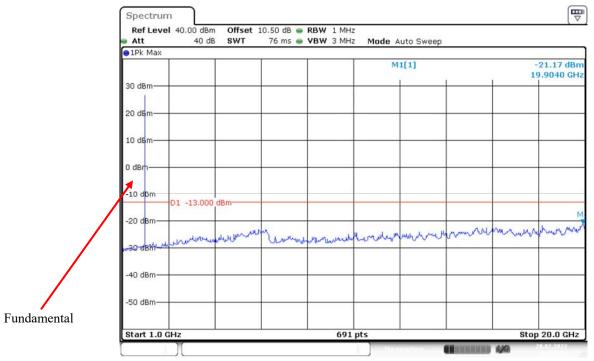
Date: 10.MAR.2022 16:04:43


1 GHz - 20 GHz (GSM Mode) Low Channel

Date: 10.MAR.2022 15:57:56

30 MHz – 1GHz (GSM Mode) Middle Channel

Date: 10.MAR.2022 16:11:34


1 GHz – 20 GHz (GSM Mode) Middle Channel

Date: 10.MAR.2022 16:01:04

Ref Level Att	40.00 dBm 40 dB		10.50 dB 👄 9.7 ms 👄	RBW 100 VBW 300		Auto Sweep	ē.		
1Pk Max									
					M	1[1]			-37.28 dBn 628.70 MH
30 dBm									
20 dBm									
10 dBm									
0 dBm			-						
-10 dBm	D1 -13.000	dBm							
-20 dBm									
-30 dBm						M1			
AQLOBH			materia	un and a strange a star	and the shall	-	had warded	boothdreven	unormal marketing
-50 dBm									
Start 30.0	MHz			69:	Lpts			Ste	op 1.0 GHz

30 MHz – 1GHz (GSM Mode) High Channel

Date: 10.MAR.2022 16:18:36

1 GHz - 20 GHz (GSM Mode) High Channel

Date: 10.MAR.2022 16:04:17

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Page 37 of 72

FCC§2.1053, §22.917 & §24.238 – Spurious Radiated Emissions

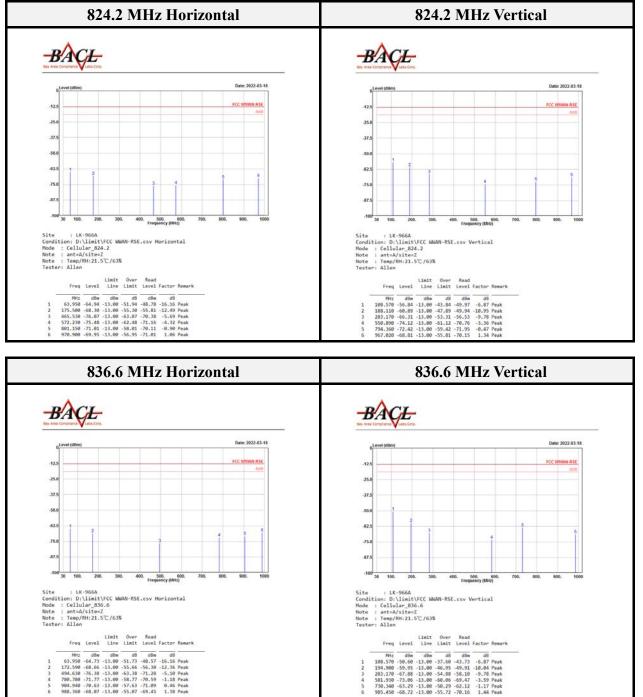
Applicable Standard

FCC § 2.1053, §22.917, § 24.238

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis. The frequency range up to tenth harmonic of the fundamental frequency was investigated. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.


ANSI C63.26-2015 the defined surrogate measurement reproduces the EUT's emission in a two-stage measurement using a well-characterized transmission path. The EUT's transmissions are replicated using alternate antenna settings and the transmit power is calculated using the known characteristics of each transmit's transmit path.

This alternative method uses the same well-characterized transmit path to establish a reference radiated power chosen by the tester to characterize the path loss from the transmit antenna to the measurement receiver. This allows calculation of correction factors that can be used to directly determine EUT emissions without having to perform two-stage measurements for each emissions. Test Mode: Transmitting

<LW2G-12F>

Below 1G

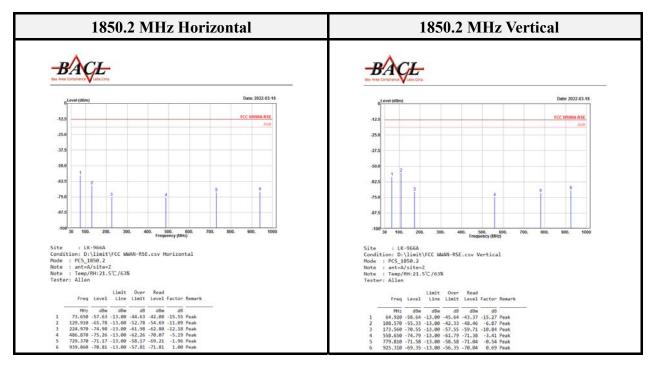
Cellular Band

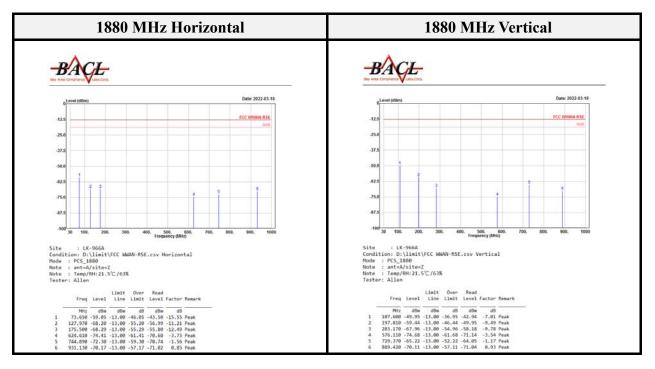
EUT emissions correction = Read Level

Level = Read Level + Factor (Antenna Factor + Cable Loss - Amplifier Gain.)

Over Limit = Level – Limit Line.

No.: RLK220308004RF01

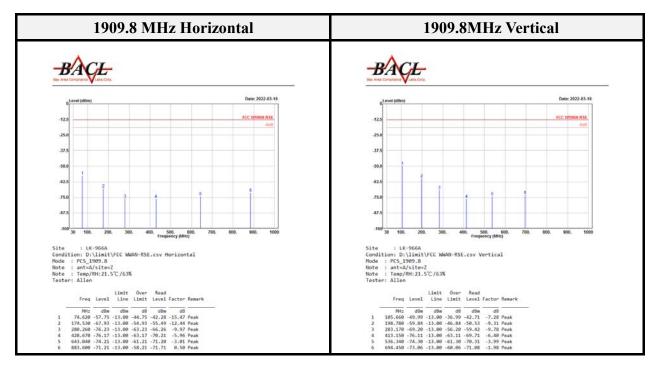

EUT emissions correction = Read Level


Level = Read Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.)

Over Limit = Level – Limit Line.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. Page 40 of 72 (Linkou Laboratory)

PCS_Band



EUT emissions correction = Read Level Level = Read Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.)

Over Limit = Level – Limit Line.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Page 41 of 72

No.: RLK220308004RF01

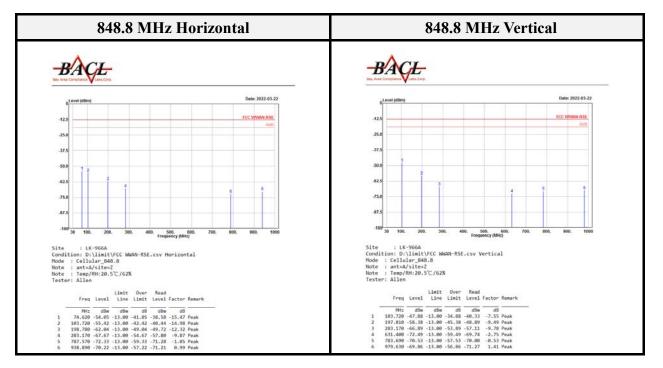
EUT emissions correction = Read Level

Level = Read Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.)

Over Limit = Level – Limit Line.

<LW2G-6A>

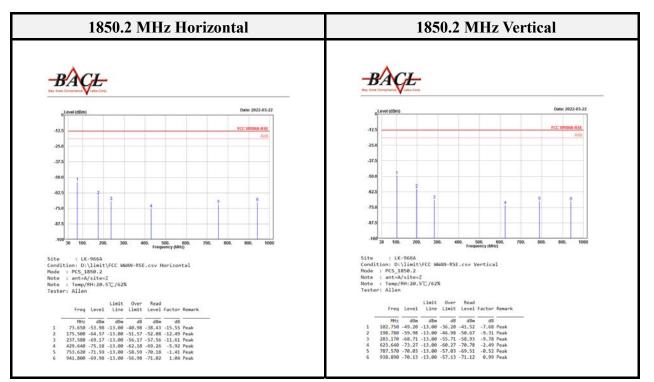
Below 1G

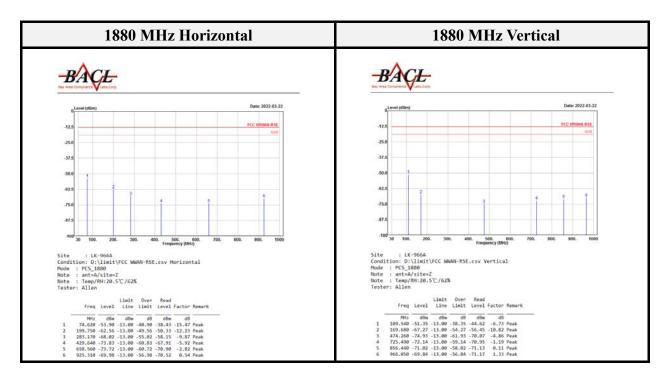

Cellular Band

EUT emissions correction = Read Level Level = Read Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.) Over Limit = Level – Limit Line.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Page 43 of 72

No.: RLK220308004RF01

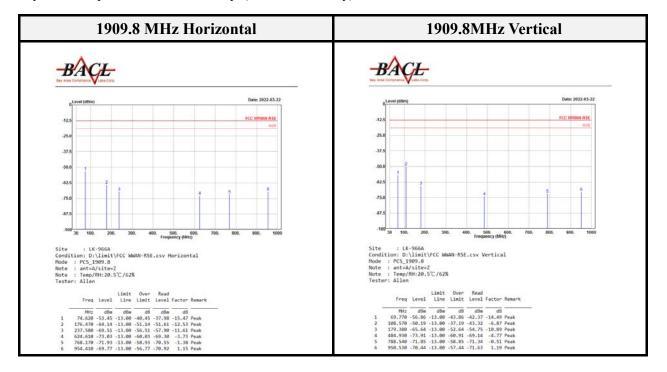

EUT emissions correction = Read Level


Level = Read Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.)

Over Limit = Level – Limit Line.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Page 44 of 72

PCS_Band



EUT emissions correction = Read Level Level = Read Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.) Over Limit = Level – Limit Line.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Page 45 of 72

No.: RLK220308004RF01

EUT emissions correction = Read Level

Level = Read Level + Factor (Antenna Factor + Cable Loss - Amplifier Gain.)

Over Limit = Level – Limit Line.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Page 46 of 72

<LW2G-6C>

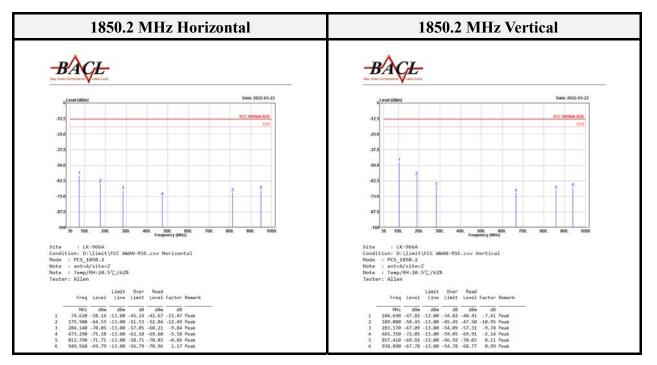
Below 1G

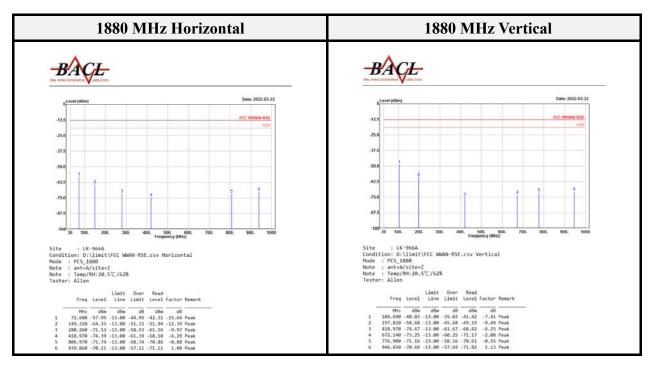
Cellular Band

EUT emissions correction = Read Level Level = Read Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.) Over Limit = Level – Limit Line.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Page 47 of 72

No.: RLK220308004RF01

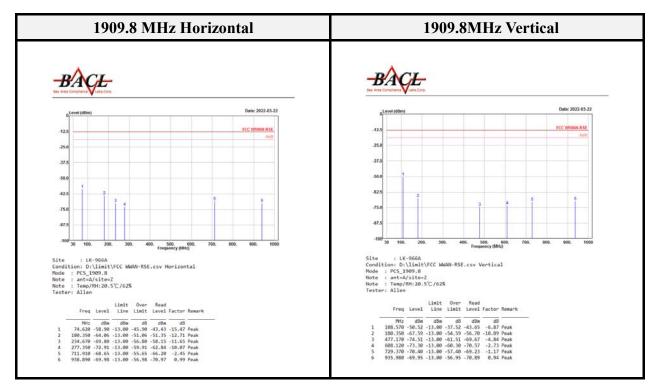

EUT emissions correction = Read Level


Level = Read Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.)

Over Limit = Level – Limit Line.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory)

PCS_Band



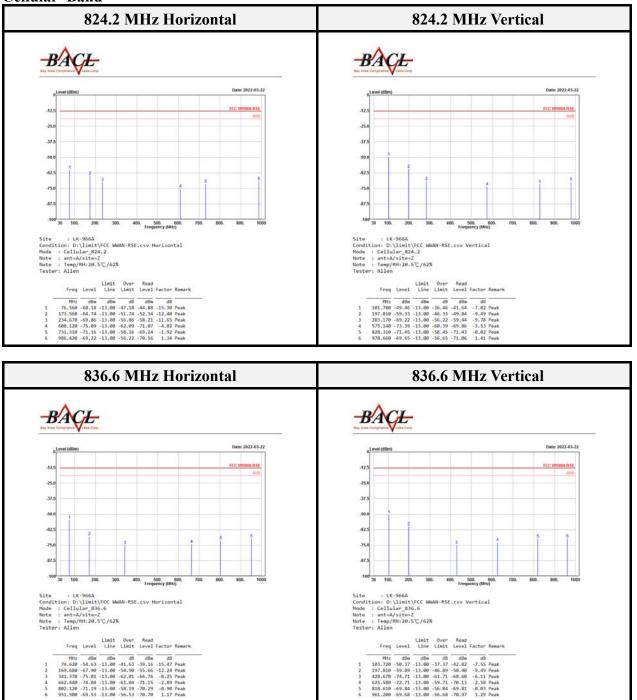
EUT emissions correction = Read Level Level = Read Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.) Over Limit = Level – Limit Line.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Page 49 of 72

No.: RLK220308004RF01

EUT emissions correction = Read Level

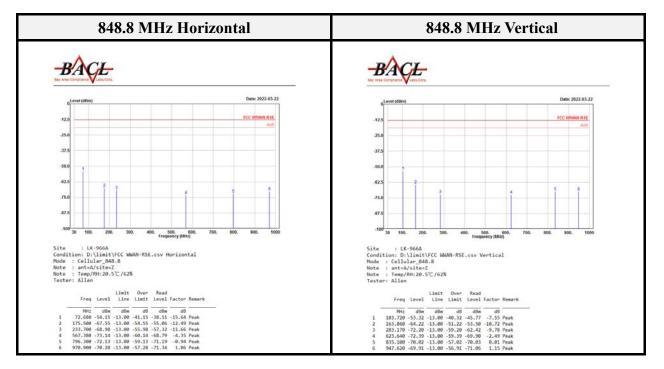
Level = Read Level + Factor (Antenna Factor + Cable Loss - Amplifier Gain.)


Over Limit = Level – Limit Line.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Page 50 of 72

<LW2G-12B>

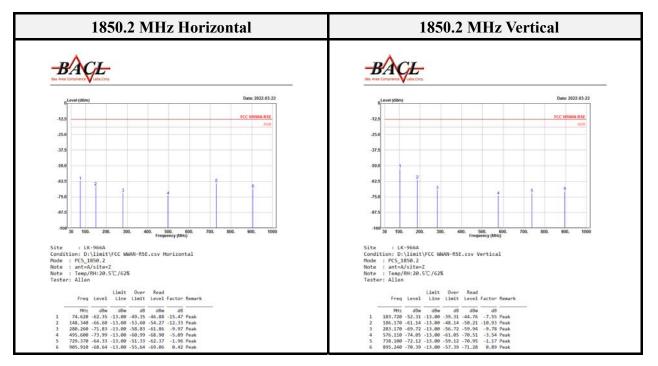
Below 1G

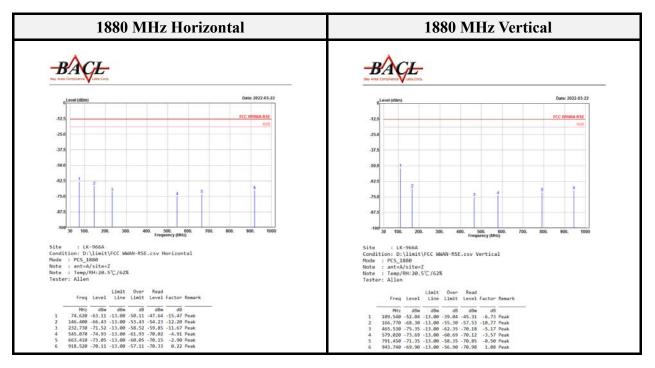

Cellular Band

EUT emissions correction = Read Level Level = Read Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.) Over Limit = Level – Limit Line.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Page 51 of 72

No.: RLK220308004RF01

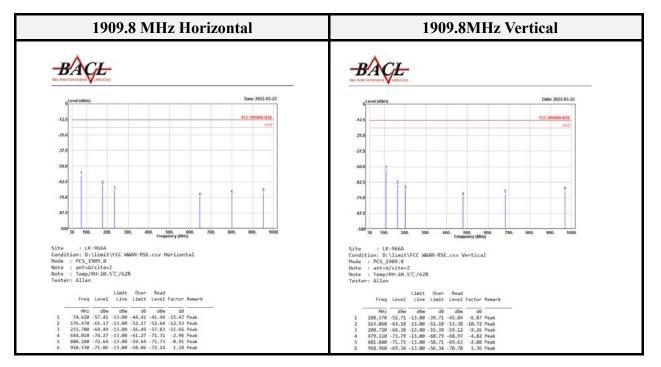



EUT emissions correction = Read Level

Level = Read Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.)

Over Limit = Level – Limit Line.

PCS_Band



EUT emissions correction = Read Level Level = Read Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.) Over Limit = Level – Limit Line.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Page 53 of 72

No.: RLK220308004RF01

EUT emissions correction = Read Level

Level = Read Level + Factor (Antenna Factor + Cable Loss - Amplifier Gain.)

Over Limit = Level – Limit Line.

<LW2G-12C>

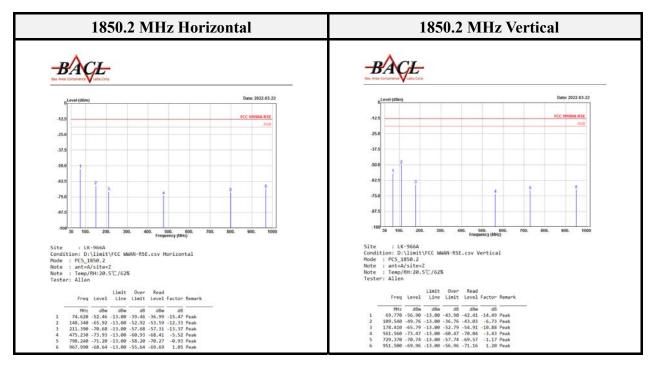
Below 1G

Cellular Band

EUT emissions correction = Read Level Level = Read Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.) Over Limit = Level – Limit Line.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Page 55 of 72

No.: RLK220308004RF01

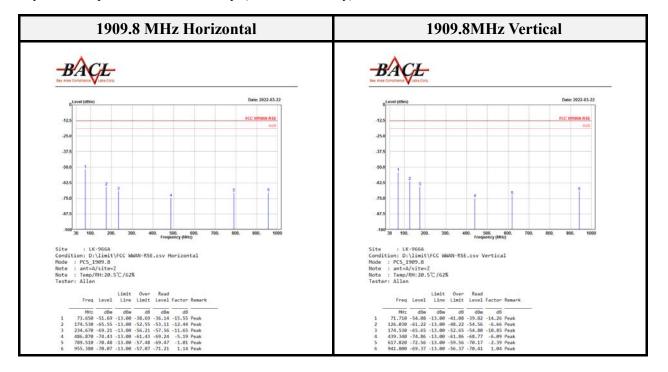

EUT emissions correction = Read Level

Level = Read Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.)

Over Limit = Level – Limit Line.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. Page 56 of 72 (Linkou Laboratory)

PCS_Band



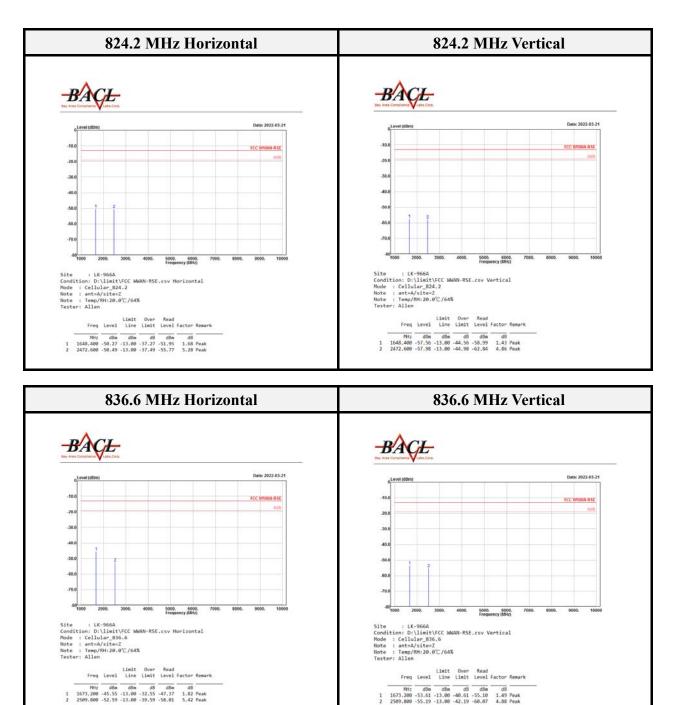
EUT emissions correction = Read Level

Level = Read Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.) Over Limit = Level – Limit Line.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Page 57 of 72

No.: RLK220308004RF01

EUT emissions correction = Read Level


Level = Read Level + Factor (Antenna Factor + Cable Loss - Amplifier Gain.)

Over Limit = Level – Limit Line.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory)

Cellular_Band

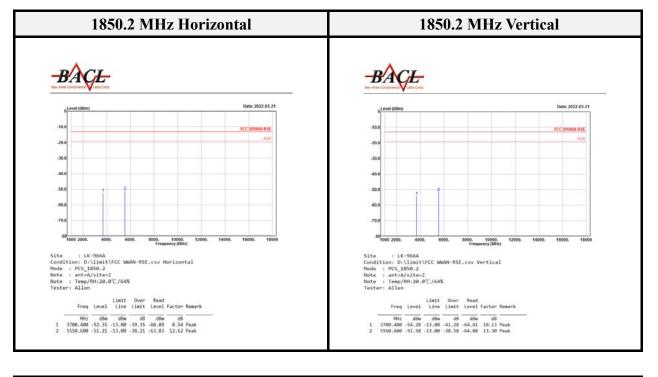
$1 GHz \sim 10 GHz$

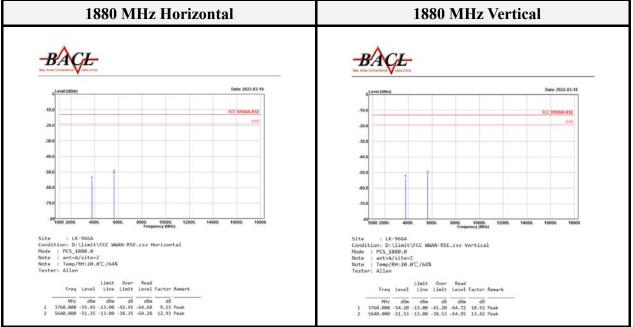
EUT emissions correction = Read Level

Level = Read Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.) Over Limit = Level – Limit Line.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Page 59 of 72

EUT emissions correction = Read Level

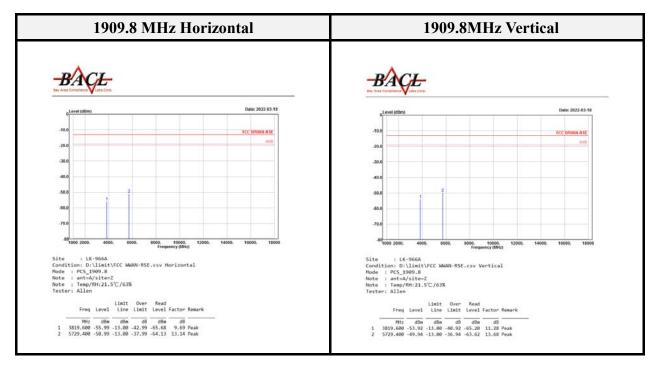

Level = Read Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.)


Over Limit = Level – Limit Line.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory)

PCS_Band

$1 GHz \sim 18 GHz$

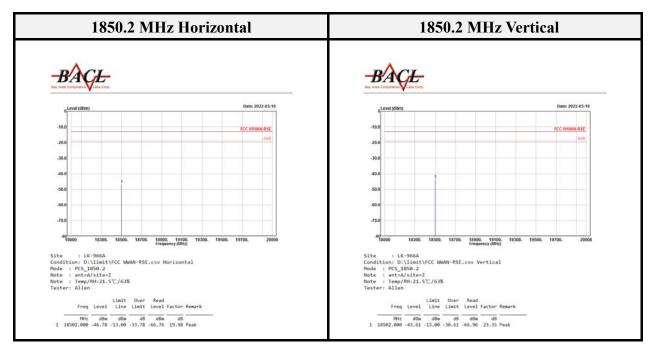


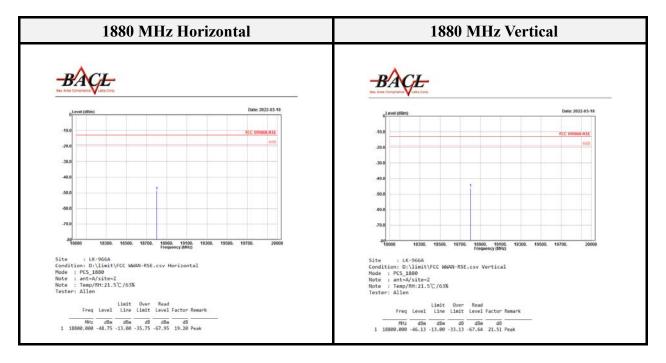
EUT emissions correction = Read Level

Level = Read Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.) Over Limit = Level – Limit Line.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Page 61 of 72

No.: RLK220308004RF01

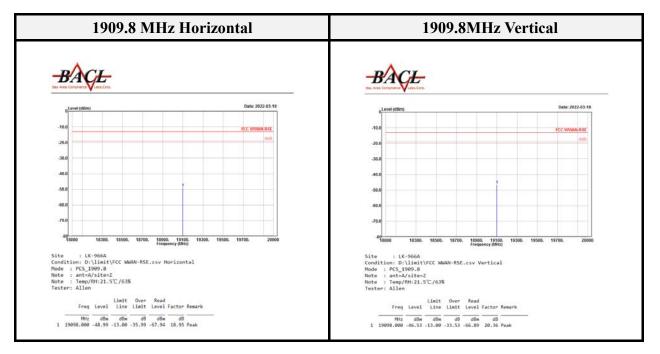



EUT emissions correction = Read Level

Level = Read Level + Factor (Antenna Factor + Cable Loss - Amplifier Gain.)

Over Limit = Level – Limit Line.

$18 GHz \sim 20 GHz$



EUT emissions correction = Read Level Level = Read Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.) Over Limit = Level – Limit Line.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Page 63 of 72

No.: RLK220308004RF01

EUT emissions correction = Read Level

Level = Read Level + Factor (Antenna Factor + Cable Loss - Amplifier Gain.)

Over Limit = Level – Limit Line.

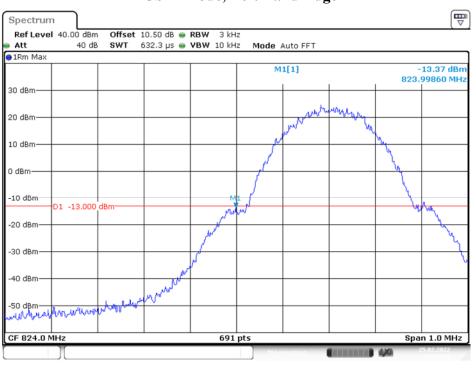
FCC§22.917(a) & §24.238(a) – Band Edges

Applicable Standard

FCC §22.917, § 24.238,

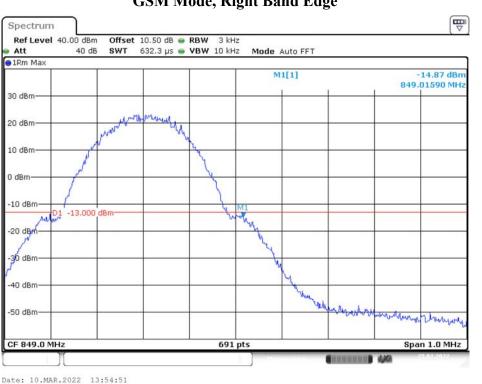
According to § 22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

According to 24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

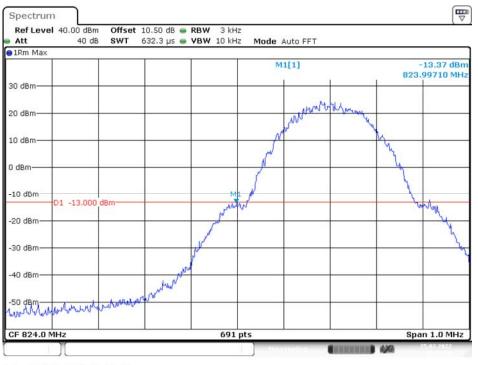

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

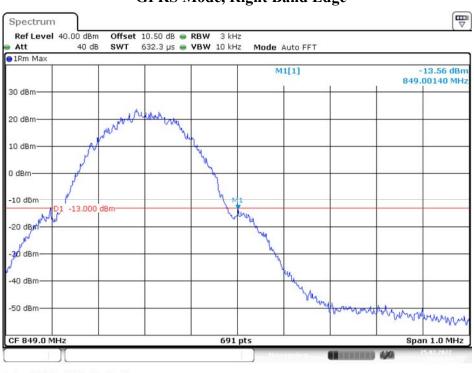
The center of the spectrum analyzer was set to block edge frequency.


Test Results

Please refer to the following plots

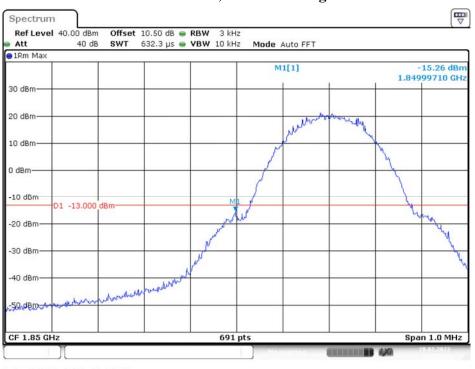

Cellular Band (Part 22H) GSM Mode, Left Band Edge

Date: 10.MAR.2022 13:50:33

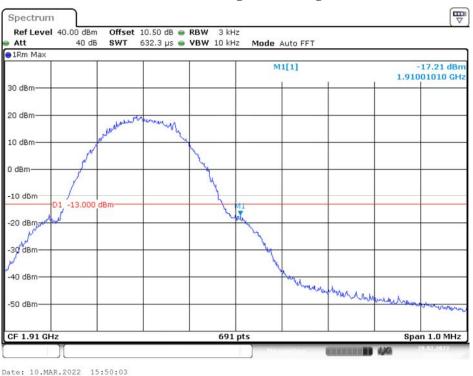

GSM Mode, Right Band Edge

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Page 6

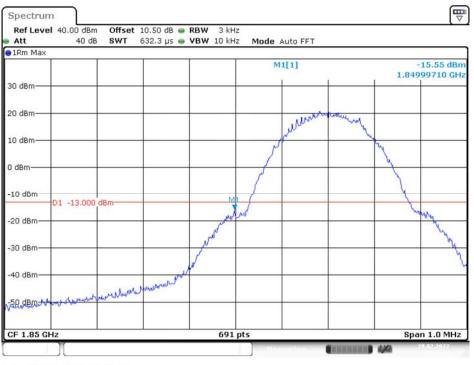
GPRS Mode, Left Band Edge


Date: 10.MAR.2022 13:13:38

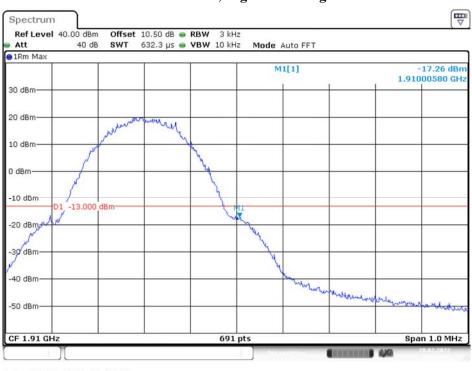
GPRS Mode, Right Band Edge


Date: 10.MAR.2022 13:15:36

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Page 67 of 72


PCS Band (Part 24E) GSM Mode, Left Band Edge

Date: 10.MAR.2022 15:53:22


GSM Mode, Right Band Edge

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Page 68 of 72

GPRS Mode, Left Band Edge

Date: 10.MAR.2022 14:30:49

GPRS Mode, Right Band Edge

Date: 10.MAR.2022 14:34:16

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory)

FCC §2.1055, §22.355 & §24.235 – FREQUENCY STABILITY

Applicable Standard

FCC § 2.1055 (a)(d), §22.355, §24.235

According to FCC §2.1055, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table below:

Frequency Range (MHz)	Base, fixed (ppm)	Mobile > 3 watts (ppm)	Mobile ≤ 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

Frequency Tolerance for Transmitters in the Public Mobile Services

According to §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set from 85% to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

Test Results Cellular Band (Part 22H) GSM

Middle Channel, fo=836.6MHz					
Temperature	Voltage Supplied	Frequency Error	Frequency Error	Limit	
(°C)	(Vdc)	(Hz)	(ppm)	(ppm)	
-30		15	0.0179	±2.5	
-20		16	0.0191	±2.5	
-10		18	0.0215	±2.5	
0		17	0.0203	±2.5	
10	3.7	18	0.0215	±2.5	
20		16	0.0191	±2.5	
30		15	0.0179	±2.5	
40		19	0.0227	±2.5	
50		12	0.0143	±2.5	
25	V min= 3.33	17	0.0203	±2.5	
25	V max= 4.07	16	0.0191	±2.5	

Middle Channel, fo=836.6MHz					
Temperature	Voltage Supplied	Frequency Error	Frequency Error	Limit	
(°C)	(Vdc)	(Hz)	(ppm)	(ppm)	
-30		18	0.0215	±2.5	
-20		15	0.0179	±2.5	
-10		19	0.0227	±2.5	
0		13	0.0155	±2.5	
10	12	12	0.0143	±2.5	
20		17	0.0203	±2.5	
30		16	0.0191	±2.5	
40		13	0.0155	±2.5	
50		20	0.0239	±2.5	
25	V min= 9	15	0.0179	±2.5	
25	V max= 90	16	0.0191	±2.5	

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Page 7

Middle Channel,fo=1880MHz					
Temperature	Voltage Supplied	Frequency Error	quency Error Frequency Error		
(°C)	(Vdc)	(Hz)	(ppm)	Result	
-30		21	0.0112	Pass	
-20		23	0.0122	Pass	
-10		25	0.0133	Pass	
0		24	0.0128	Pass	
10	3.7	26	0.0138	Pass	
20		22	0.0117	Pass	
30		19	0.0101	Pass	
40		24	0.0128	Pass	
50		25	0.0133	Pass	
25	V min= 3.33	19	0.0101	Pass	
25	V max= 4.07	21	0.0112	Pass	

Cellular Band (Part 24E) GSM

Middle Channel,fo=1880MHz					
Temperature	Voltage Supplied	Frequency Error	Frequency Error	Result	
(°C)	(Vdc)	(Hz)	(ppm)	Kesuit	
-30		26	0.0138	Pass	
-20		23	0.0122	Pass	
-10		27	0.0144	Pass	
0	12	21	0.0112	Pass	
10		29	0.0154	Pass	
20		25	0.0133	Pass	
30		24	0.0128	Pass	
40		21	0.0112	Pass	
50		26	0.0138	Pass	
25	V min= 9	20	0.0106	Pass	
25	V max= 90	22	0.0117	Pass	

----- END OF REPORT -----

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Linkou Laboratory) Page