

FCC Part 22H, Part 24E

TEST REPORT

For

Jiangsu Lynkworld IOT Technology Co., Ltd.

18th Floor No.1 Building Gusu Cloud Park Gusu District Suzhou China

FCC ID: 2A4FJLW1G-5CL

Report Type: Original Report	Product Name: GNSS/GSM TERMINAL
Report Producer : <u>Coco Lin</u>	<u> </u>
Report Number : <u>RXZ22062</u>	9001RF01
Report Date : <u>2022-08-19</u>	
Reviewed By: <u>Andy Shih</u>	Non2y. Shih
Prepared By: Bay Area Co (New Taipei Lab	mpliance Laboratories Corp.
70, Lane 169, Se	c. 2, Datong Road, Xizhi Dist.,
New Taipei City Tel: +886 (2) 264	22183, Taiwan, R.O.C. 17 6898
Fax: +886 (2) 264	
www.bacl.com.tv	W

Revision History

Revision	No.	Report Number	Issue Date	Description	Author/ Revised by
0.0	RXZ220629001	RXZ220629001RF01	2022.08.19	Original Report	Coco Lin

TABLE OF CONTENTS

General Information	4
Product Description for Equipment under Test (EUT)	
Objective	
Related Submittal(s)/Grant(s)	
Test Methodology Statement	
Measurement Uncertainty	
Test Facility	
System Test Configuration	
Description of Test Configuration	7
Equipment Modifications	
EUT Exercise Software	
Support Equipment List and Details	
External Cable List and Details	
Summary of Test Results	8
Test Equipment List and Details	9
FCC §1.1310, §1.1307(b)(3)(i) – RF Exposure	10
FCC §2.1047 - MODULATION CHARACTERISTIC	12
FCC § 2.1046, § 22.913 (A) & § 24.232 (C) - RF Output Power	13
FCC §2.1049, §22.917, §22.905 & §24.238 – Occupied Bandwidth	15
Applicable Standard	
Block Diagram of Test Setup	
Test Procedure	
Test Results	
FCC§2.1051, §22.917(a) & §24.238(a) – Spurious Emissions At Antenna Terminals	21
Applicable Standard	
Block Diagram of Test Setup	
Test Procedure	
Test Results	
FCC§2.1053, §22.917 & §24.238 – Spurious Radiated Emissions	
Applicable Standard	
Test Procedure	
Block Diagram of Test Setup	
FCC§22.917(a) & §24.238(a) – Band Edges	50
Applicable Standard	
Block Diagram of Test Setup	
Test Procedure	
Test Results	
FCC §2.1055, §22.355 & §24.235 – FREQUENCY STABILITY	
Applicable Standard	
Block Diagram of Test Setup	
Test Procedure Test Results	
	55

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. Page 3 of 55 (New Taipei Laboratory)

General Information

Applicant	Jiangsu Lynkworld IOT Technology Co., Ltd.
	18th Floor No.1 Building Gusu Cloud Park Gusu District Suzhou China
Manufacturer	Jiangsu Lynkworld IOT Technology Co., Ltd.
	18th Floor No.1 Building Gusu Cloud Park Gusu District Suzhou China
Brand(Trade) Name	N/A
Product (Equipment)	GNSS/GSM TERMINAL
Main Model Name	LW2G-5CL
Series Model Name	LW2G-4C, LW2G-4CL, LW2G-5C, LW2G-4Z, LW2G-4ZL,
Series Model Maine	LW2G-5Z, LW2G-5ZL, BTT100
Model Discrepancy	Please review the series of declaration letters
Fragueney Denge	Cellular: 824.2 - 848.8 MHz (GPRS)
Frequency Range	PCS: 1850.2 - 1909.8 MHz (GPRS)
Modulation Technique	GMSK
Antenna Specification	Celluar 850 Brand: Lynkworld. Model: LW2G-4C PCB Antenna Gain : -2.02 dBi PCS 1900 Brand: Lynkworld. Model: LW2G-4C PCB Antenna Gain : -2.16 dBi
Output Voltage	 AC Type Adapter By AC Power Cord PoE DC Type: 12-24Vdc , Battery: 3.7Vdc DC Power Supply
	 External from USB Cable External DC Adapter
Received Date	External from USB Cable External DC Adapter Jul. 04, 2022

Product Description for Equipment under Test (EUT)

*All measurement and test data in this report was gathered from production sample serial number:

RXZ220629001-01~04 (Assigned by BACL, New Taipei Laboratory).

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Objective

This report is prepared on behalf of Jiangsu Lynkworld IOT Technology Co., Ltd. in accordance with Part 2, Part 22-Subpart H and Part 24-Subpart E of the Federal Communication Commission's rules.

Related Submittal(s)/Grant(s)

N/A

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2-Subpart J as well as the following parts:

Part 22 Subpart H – Public Mobile Services

Part 24 Subpart E – Personal Communications Services

Applicable Standards: ANSI C63.26-2015.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Statement

Decision Rule: No, (The test results do not include MU judgment)

It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory).

Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

The determination of the test results does not require consideration of the uncertainty of the measurement, unless the assessment is required by customer agreement, regulation or standard document specification. Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is not responsible for the authenticity of the information provided by the applicant that affects the test results.

No.:RXZ220629001RF01

wieasurement Uncertainty			
Param	eter	Uncertainty	
RF output powe	er, conducted	+/- 0.9 dBm	
Frequency	stability	+/- 0.02 MHz	
Occupied B	andwidth	+/- 0.35 MHz	
Unwanted Emissi	ons, conducted	+/- 2.16 dBm	
Durining	30 MHz~1GHz	+/- 5.22 dB	
Emissions, radiated	1 GHz~18 GHz	+/- 6.12 dB	
Tautateu	18 GHz~40 GHz	+/- 4.99 dB	
Temper	ature	+/- 1.27 °C	
Humi	dity	+/- 3 %	

Measurement Uncertainty

Environmental Conditions

Test Site	Test Date	Temperature (°C)	Relative Humidity (%)	ATM Pressure (hPa)	Test Engineer
Radiation Spurious Emissions	2022/7/18~2022/07/20	23.5~27.7	47~67	1010	Andy.Cheng
Conducted Spurious Emissions	2022/7/18~2022/07/19	26.5~26.7	40~42	1010	Andy.Cheng
Emission Bandwidth	2022/07/18	26.7	42	1010	Andy.Cheng
Maximum Output Power	2022/07/18	26.7	42	1010	Andy.Cheng
Band Edge	2022/07/18	26.7	42	1010	Andy.Cheng
Frequency stability	2022/07/18	26.7	42	1010	Andy.Cheng

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) to collect test data is located on

70, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 22183, Taiwan, R.O.C.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3732) and the FCC designation No.TW3732 under the Mutual Recognition Agreement (MRA) in FCC Test.

System Test Configuration

Description of Test Configuration

The EUT was configured for testing according to ANSI C63.26-2015.

The final qualification test was performed with the EUT operating at normal mode.

Equipment Modifications

No modification was made to the EUT.

EUT Exercise Software

N/A.

Test Mode

Pre-scan Radiated Spurious Emissions Mode 1: LW2G-5CL (Sample serial number: RXZ220616003-01). Mode 2: LW2G-5C (Sample serial number: RXZ220616003-02). Mode 3: LW2G-4CL (Sample serial number: RXZ220616003-03). Mode 4: LW2G-4C (Sample serial number: RXZ220616003-04). Worst case is the LW2G-5CL

Model : LW2G-5CL for all test item.

Other series model test Radiated Spurious Emissions below 1GHz.

Support Equipment List and Details

Description	Manufacturer	Model Number	S/N
DC Power Supply	KIKUSUI	PMC35-2	MK002127

External Cable List and Details

Description	Length	From	То
Power Cable	1m	EUT	DC Power Supply

Summary of Test Results

FCC Rules	Description of Test	Result
§1.1310, §1.1307(b)(3)(i)	RF Exposure	Compliance
§2.1046; §22.913 (a); §24.232(c)	RF Output Power	Compliance
§ 2.1047	Modulation Characteristics	Not Applicable
§ 2.1049; §22.905; §22.917; §24.238	Occupied Bandwidth	Compliance
§ 2.1051; §22.917(a); §24.238(a)	Spurious Emissions at Antenna Terminal	Compliance
§ 2.1053; §22.917(a); §24.238(a)	Field Strength of Spurious Radiation	Compliance
§22.917(a); §24.238(a)	Band Edge	Compliance
§ 2.1055; §22.355; §24.235	Frequency stability	Compliance

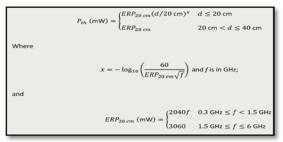
Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due Date
	Ra	adiation 3M Room	(966-A)		
Bilog Antenna with 6 dB Attenuator	SUNOL SCIENCES & MINI-CIRCUITS	JB6/UNAT-6+	A050115/15542_ 01	2022/02/14	2023/02/13
Bilog Antenna with 6 dB Attenuator	Sunol Sciences & EMEC	JB3 &EM- ATT18-6-NN	A061204 /ATT- 09-003	2022/2/16	2023/2/15
Horn Antenna	EMCO	SAS-571	1983	2022/5/25	2023/5/24
Horn Antenna	EMCO	SAS-571	1020	2022/5/25	2023/5/24
Horn Antenna	ETS-Lindgren	3116	62638	2021/8/11	2022/8/10
Preamplifier	Sonoma	310N	130602	2022/6/8	2023/6/7
Preamplifier	A.H. system Inc.	PAM-0118P	466	2021/11/4	2022/11/3
Microware Preamplifier	EM Electronics Corporation	EM18G40G	60656	2021/12/27	2022/12/26
Spectrum Analyzer	Rohde & Schwarz	FSV40	101435	2021/12/27	2022/12/26
EMI Test Receiver	Rohde & Schwarz	ESR7	101419	2021/11/9	2022/11/8
Sweep Signal Generator	Agilent	MXG N5183A	MY50140407	2021/12/27	2022/12/26
Micro flex Cable	UTIFLEX	UFB197C-1- 2362-70U-70U	225757-001	2022/1/24	2023/1/23
Coaxial Cable	COMMATE	PEWC	8Dr	2021/12/24	2022/12/23
Coaxial Cable	UTIFLEX	UFB311A-Q- 1440-300300	220490-006	2022/1/24	2023/1/23
Coaxial Cable	JUNFLON	J12J102248-00-В- 5	AUG-07-15-044	2021/12/24	2022/12/23
Cable	EMC	EMC105-SM- SM-10000	201003	2022/1/24	2023/1/23
Coaxial Cable	ROSNOL	K1K50-UP0264- K1K50-450CM	160309-1	2022/1/24	2023/1/23
Coaxial Cable	ROSNOL	K1K50-UP0264- K1K50-50CM	15120-1	2022/1/18	2023/1/17
Software	Audix	e3	18621a bacl	N.C.R	N.C.R
		Conducted Roc	om		
Spectrum Analyzer	Rohde & Schwarz	FSV40	101140	2022/2/18	2023/2/17
Cable	UTIFLEX	UFA210A	9435	2021/10/5	2022/10/4
Attenuator	MINI-CIRCUITS	BW-S10W5+	1419	2022/2/11	2023/2/10
Power Splitter	Mini-Circuits	ZFRSC-183-S+	S F448201614	2022/6/23	2023/6/22
Wideband Radio Communcation Tester	Rohde & Schwarz	CMW500	149170	2022/5/9	2023/5/8
Temp & Humidity Chamber	BACL	BTH-150	30028	2022/1/25	2023/1/24

*Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to the SI System of Units via the R.O.C. Center for Measurement Standards of the Electronics Testing Center, Taiwan (ETC) or to another internationally recognized National Metrology Institute (NMI), and were compliant with the current Taiwan Accreditation Foundation (TAF) requirements.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 9 of 55

FCC §1.1310, §1.1307(b)(3)(i) – RF Exposure


Applicable Standard

According to subpart 1.1310 and subpart §1.1307(b)(3)(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

For single RF sources (*i.e.*, any single fixed RF source, mobile device, or portable device, as defined in paragraph (b)(2) of this section): A single RF source is exempt if:

(A) The available maximum time-averaged power is no more than 1 mW, regardless of separation distance. This exemption may not be used in conjunction with other exemption criteria other than those in paragraph (b)(3)(ii)(A) of this section. Medical implant devices may only use this exemption and that in paragraph (b)(3)(ii)(A);

(B) Or the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold *Pth* (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). *Pth* is given by:

(C) Or using Table 1 and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. For the exemption in Table 1 to apply, R must be at least $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

	ngle RF Sources Subject to Routine tal Evaluation
RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	1,920 R ² .
1.34-30	3,450 R ² /f ² .
30-300	3.83 R ² .
300-1,500	0.0128 R ² f.
1,500-100,000	19.2R ² .

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 10 of 55

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) No.:RXZ220629001RF01

The sequence to apply for single portable RF sources includes the following steps:

1) determination of 1 mW blanket exemption under § 1.1307(b)(3)(i)(A)

- 2) determination of exemption under the MPE-based § 1.1307(b)(3)(i)(C) if 1) is not met
- 3) determination of exemption under the SAR-based § 1.1307(b)(3)(i)(B) if both 1) and 2) are not met

RF Exposure Evaluation Result:

	Tur	e-up Con	ducted Po	wer	Time based Average Power				
Mode	(dBm)				(dBm)				
	1 slot	2 slot	3 slot	4 slot	1 slot	2 slot	3 slot	4 slot	
GPRS 850	32.5	31	28.6	27.5	23.5	25	24.34	24.5	
GPRS 1900	28.5	27	24.5	22.5	19.5	21	20.24	19.5	

Project info

Band	Freq	Turn-up Power	Ant Gain	Distances	Turn-up Power	ERP	ERP
MH	(MHz)	(dBm)	(dBi)	(mm)	(mW)	(dBm)	(mW)
GPRS 850	849	25	-2.02	200	316.23	20.83	121.06
GPRS 1900	1910	21	-2.16	200	125.89	16.69	46.67

§ 1.1307(b)(3)(i)(A) methid os not applicable.

§ 1.1307(b)(3)(i)(C)

Band	Freq (MHz)	λ/2π (mm)	ERP Limit (mW)	Ratio	Result Option C
GPRS 850	849	56.24	434.69	0.73	exempt
GPRS 1900	1910	25	768.00	0.16	exempt

The minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates

ERP (watts) is no more than the calculated value prescribed for that frequency

R must be at least $\lambda/2\pi$

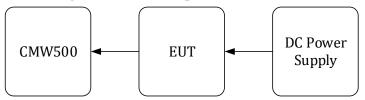
 λ is the free-space operating wavelength in meters

Result: The EUT meets exemption requirement- RF exposure evaluation greater than **20cm** distance.

FCC §2.1047 - MODULATION CHARACTERISTIC

According to FCC § 2.1047(d), Part 22H & 24E, there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

FCC § 2.1046, § 22.913 (A) & § 24.232 (C) - RF Output Power Applicable Standard


According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

According to FCC §2.1046 and §24.232 (C), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

According to §24.232 (d) Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

According to FCC §2.1046 and §27.50 (d), (4) Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP. Fixed stations operating in the 1710-1755 MHz band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in these bandsmust employ a means for limiting power to the minimum necessary for successful communications.

Block Diagram of Test Setup

Test Procedure

For Conducted method:

The RF output of the transmitter was connected to the CMW500 through sufficient attenuation

For ERP measurement:

ERP can be calculated by below formula from KDB 412172 D01.

 $EIRP=P_T + G_T - L_C$

 P_T = transmitter output power, in dBm.

 G_T = gain of the transmitting antenna, in dBi (EIRP).

 L_C = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

ERP = EIRP - 2.15 dB.

Test Results

Modo		Channal	Frequency	Burst	Limit			
Mode	Condition	Channel	(MHz)	1 slot	2 slot	3 slot	4 slot	(dBm)
	128	824.2	31.78	30.65	28.42	27.13		
GPRS	GPRS Normal	190	836.6	31.84	30.75	28.50	27.05	38.45
		251	848.8	32.01	30.83	28.49	27.22	

Cellular Band (Part 22H)

PCS Band (Part 24E)

Test		Channal	Frequency	Burst	Limit			
Mode	Condition	Channel	(MHz)	1 slot	2 slot	3 slot	4 slot	(dBm)
	512	1850.2	28.47	26.73	24.49	22.23		
GPRS	GPRS Normal	661	1880.0	27.75	25.69	23.55	22.18	33
		810	1909.8	27.46	25.00	22.96	22.05	

ERP/EIRP

Cellular Band (Part 22H)

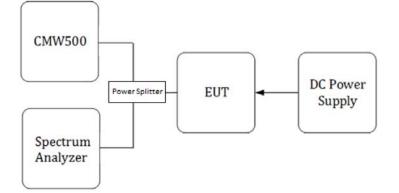
Antenna (dB		-2.	02	Antenna G (dBd):	_417		_41			Lc (dB):		0	
Mode	Tes Condit		C	Channel		Frequency (MHz)		Maximum Average Output Power (dBm)		imum RP 3m)	Limit (dBm)		
				128	8	24.2		31.78	27	.61			
GPRS	GPRS Normal	nal		190	8	36.6		31.84	27	.67	38.45		
				251	8	48.8		32.01	27	.84			

ERP=Conducted Power (dBm) - Lc (dB) + Antenna Gain (dBd)

PCS Band (Part 24E)

	na Gain Bi):	-2.16	Lc (dB):	0				
Mode	Test Condition	Channe	el Frequence (MHz)	Average Ou	tput Power	Maximum EIRP (dBm)	Limit (dBm)	
		512	1850.2	28.	47	26.31		
GPRS	GPRS Normal	661	661 1880.0 27		75	25.59	33	
		810	1909.8	27.	46	25.30		

EIRP=Conducted Power (dBm) - Lc (dB) + Antenna Gain (dBi)


Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 14 of 55

FCC §2.1049, §22.917, §22.905 & §24.238 – Occupied Bandwidth

Applicable Standard

FCC §2.1049, §22.917, §22.905, §24.238,

Block Diagram of Test Setup

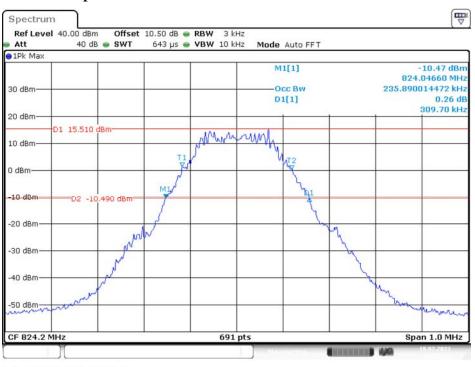
Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 1% to 5% of the anticipated emission bandwidth and the 26 dB & 99% bandwidth was recorded.

Test Results

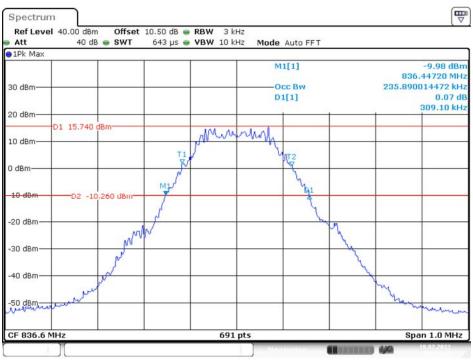
Test Mode: Transmitting Test Result: Compliant.


Please refer to the following table and plots.

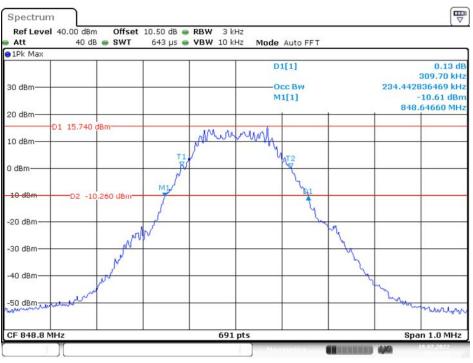
Cellular Band (Part 22H)

Mode	Frequency (MHz)	99% Occupied Bandwidth (kHz)	26 dB Emission Bandwidth (kHz)		
	824.2	235.89	309.70		
GPRS	836.6	235.89	309.10		
	848.8	234.44	309.70		

PCS Band (Part 24E)


Mode	Frequency (MHz)	99% Occupied Bandwidth (kHz)	26 dB Emission Bandwidth (kHz)		
	1850.2	231.55	309.70		
GPRS	1880.0	231.55	311.10		
	1909.8	231.55	309.70		

Cellular Band (Part 22H)

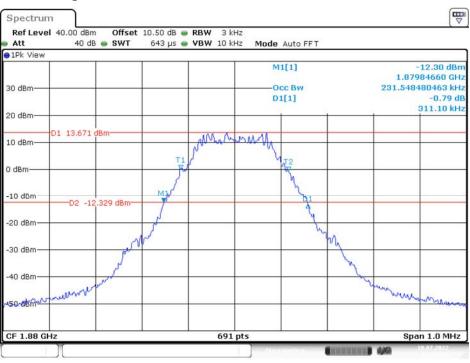


Date: 18.JUL.2022 08:22:11

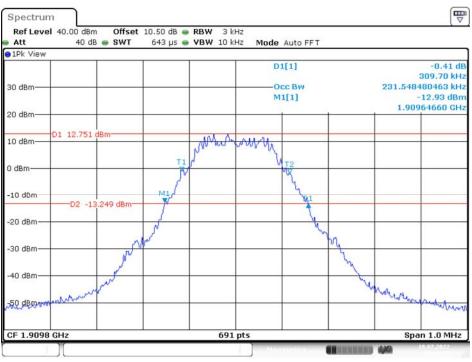

99% Occupied & 26 dB Emissions Bandwidth for GPRS Middle channel

Date: 18.JUL.2022 08:15:45

99% Occupied & 26 dB Emissions Bandwidth for GPRS High channel


Date: 18.JUL.2022 08:19:20

PCS Band (Part 24E)

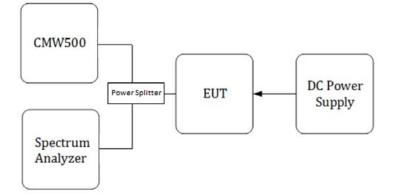

99% Occupied & 26 dB Emissions Bandwidth for GPRS Low channel

Date: 18.JUL.2022 08:48:56

99% Occupied & 26 dB Emissions Bandwidth for GPRS Middle channel

Date: 18.JUL.2022 08:52:07

99% Occupied & 26 dB Emissions Bandwidth for GPRS High channel

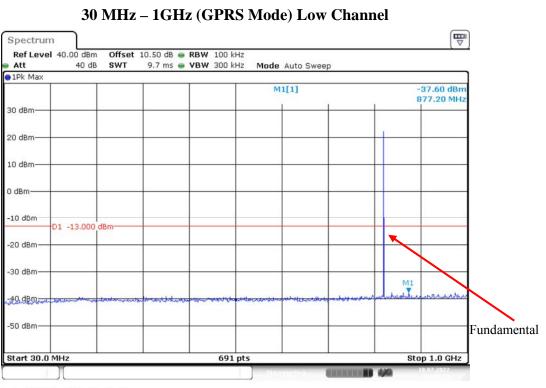

Date: 18.JUL.2022 08:56:13

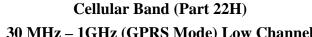
FCC§2.1051, §22.917(a) & §24.238(a) – Spurious Emissions At Antenna Terminals

Applicable Standard

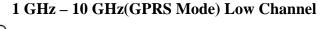
FCC § 2.1051, §22.917, § 24.238,

Block Diagram of Test Setup



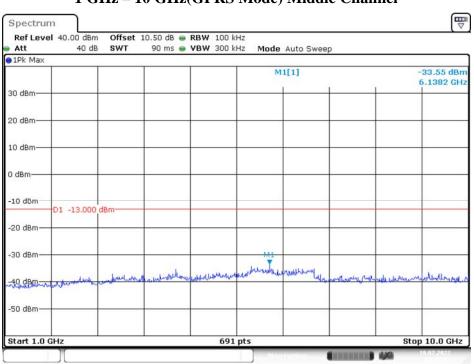

Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. Sufficient scans were taken to show any out of band emissions up to 10th harmonic. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for below 1GHz & 1MHz for above 1GHz.

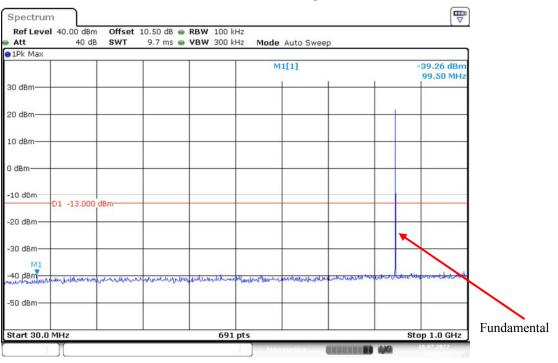

Test Results

Please refer to the following plots

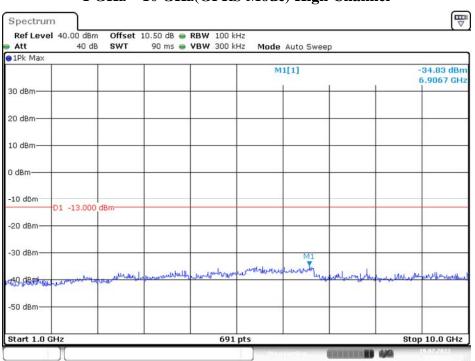
Date: 18.JUL.2022 09:06:34


34.85 dBn 5.5029 GH
agenerated and and and and and and and and and an
10.0 GHz

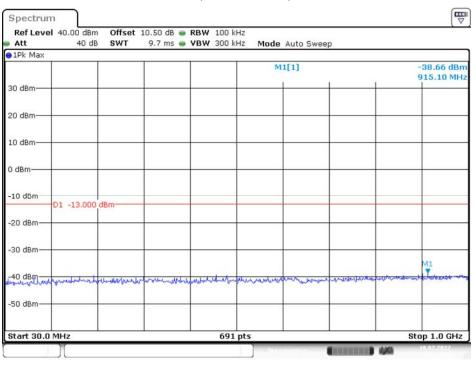
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. Page 22 of 55 (New Taipei Laboratory)


30 MHz – 1GHz (GPRS Mode) Middle Channel

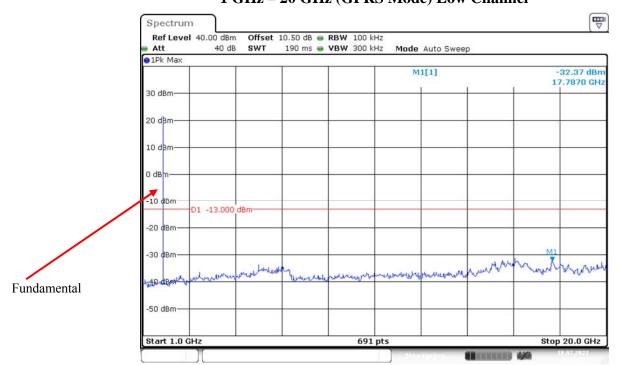
Date: 18.JUL.2022 09:09:59


1 GHz - 10 GHz(GPRS Mode) Middle Channel

Date: 19.JUL.2022 05:57:34


30 MHz – 1GHz (GPRS Mode) High Channel

Date: 18.JUL.2022 09:10:34

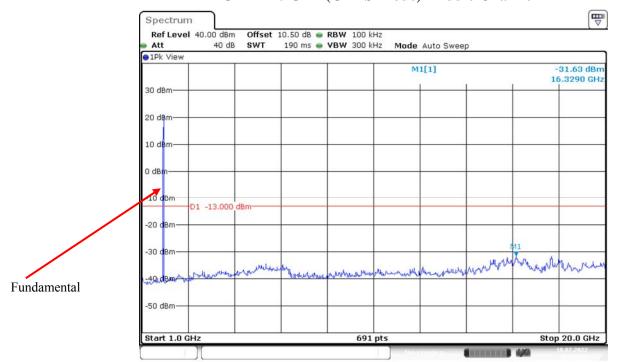

1 GHz - 10 GHz(GPRS Mode) High Channel

Date: 19.JUL.2022 05:57:44

PCS Band (Part 24E) 30 MHz – 1GHz (GPRS Mode) Low Channel

Date: 18.JUL.2022 09:13:37

1 GHz - 20 GHz (GPRS Mode) Low Channel

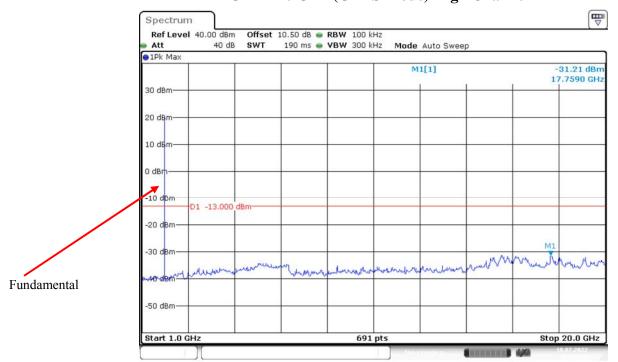

Date: 18.JUL.2022 09:23:04

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 25 of 55

Ref Leve	el 40.00 dBr 40 d		10.50 dB 👄	RBW 100 VBW 300		a Auto Swee	5		
1Pk Max	40 0	0 0111	5.7 115	1011 300	NIL MOUL	Auto Swee	ιP		
					N	41[1]			-38.62 dBn 954.40 MH
30 dBm									
20 dBm									-
10 dBm									
0 dBm									
-10 dBm	-D1 -13.000)_dBm			-				
-20 dBm—									
-30 dBm—									-
-40 dBm	human	announ Merer	under the state of the	-human and have	attonauthe	which where	aluduarow		M1
-50 dBm—									
Start 30.0) MHz			69	1 pts			st	top 1.0 GHz

30 MHz - 1GHz (GPRS Mode) Middle Channel

Date: 18.JUL.2022 09:15:25


1 GHz - 20 GHz (GPRS Mode) Middle Channel

Date: 18.JUL.2022 09:22:06

Att	40.00 dBn 40 dB		10.50 dB 👄 9.7 ms 👄	VBW 300		Auto Swee	ep				
●1Pk Max											
					м	1[1]			-39.54 dBr 631.50 MH		
30 dBm					-		1		001.00		
20 dBm											
10 dBm											
0 dBm											
-10 dBm	D1 -13.000	dBm			9		<u></u>				
-20 dBm											
-30 dBm											
-40 dBm	and a fe that where	www.	Manular	Hubernoon	welledownia	M1	- alwarter of	Jutroupato	a strange		
-50 dBm							annan Tarihi				
Start 30.0					1 pts				op 1.0 GHz		

30 MHz – 1GHz (GPRS Mode) High Channel

Date: 18.JUL.2022 09:17:02

1 GHz – 20 GHz (GPRS Mode) High Channel

Date: 18.JUL.2022 09:20:15

FCC§2.1053, §22.917 & §24.238 – Spurious Radiated Emissions

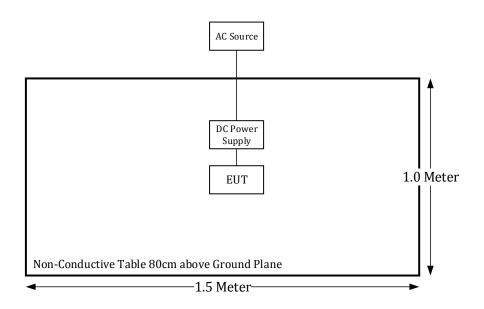
Applicable Standard

FCC § 2.1053, §22.917, § 24.238

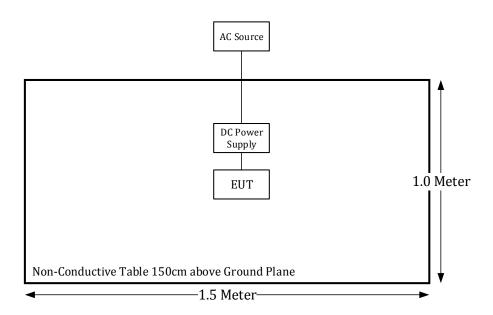
Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis. The frequency range up to tenth harmonic of the fundamental frequency was investigated. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.


ANSI C63.26-2015 the defined surrogate measurement reproduces the EUT's emission in a two-stage measurement using a well-characterized transmission path. The EUT's transmissions are replicated using alternate antenna settings and the transmit power is calculated using the known characteristics of each transmit's transmit path.

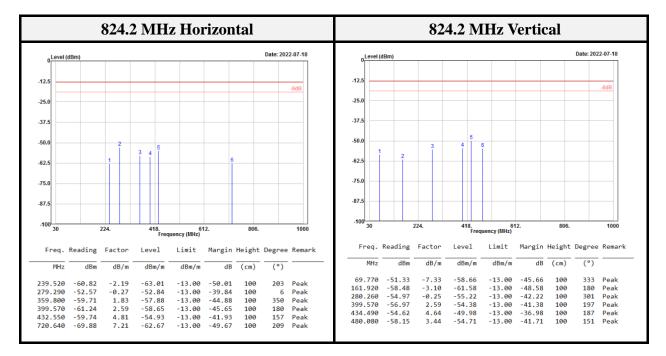
This alternative method uses the same well-characterized transmit path to establish a reference radiated power chosen by the tester to characterize the path loss from the transmit antenna to the measurement receiver. This allows calculation of correction factors that can be used to directly determine EUT emissions without having to perform two-stage measurements for each emissions.

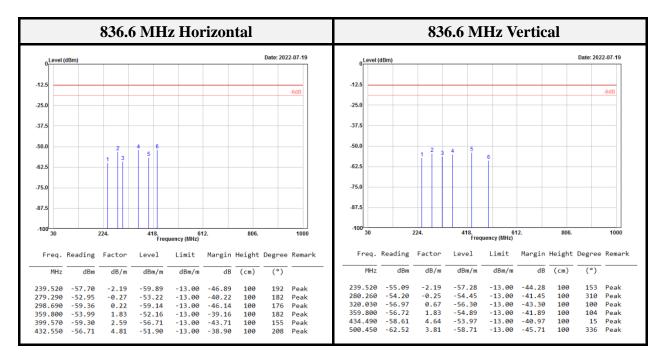

No.:RXZ220629001RF01

Block Diagram of Test Setup

Below 1GHz:

Above 1GHz:

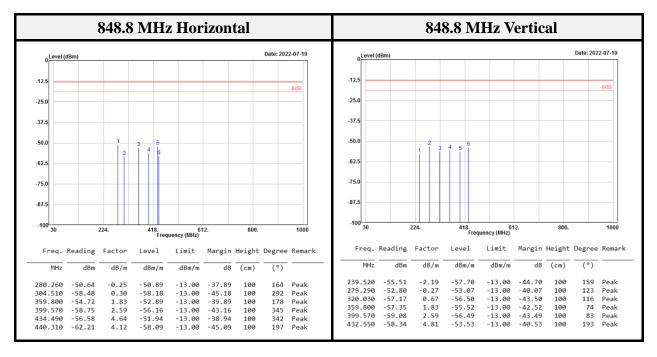

No.:RXZ220629001RF01


Test Mode: Transmitting

< LW2G-5CL >

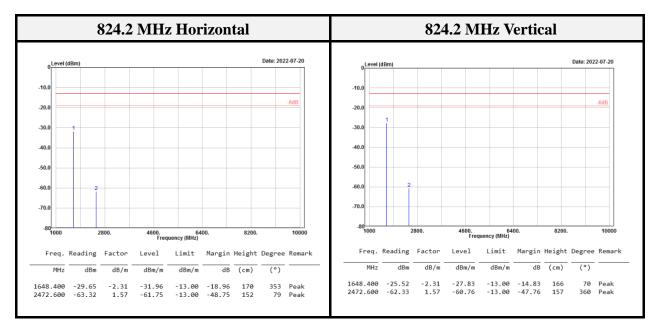
Cellular_Band

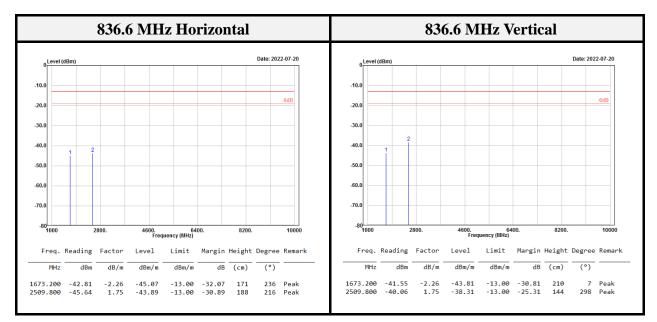
30MHz~1GHz



EUT emissions correction = Reading

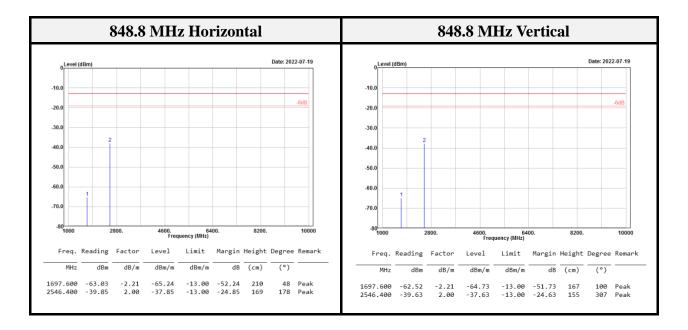
Level = Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.)


Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)


No.:RXZ220629001RF01

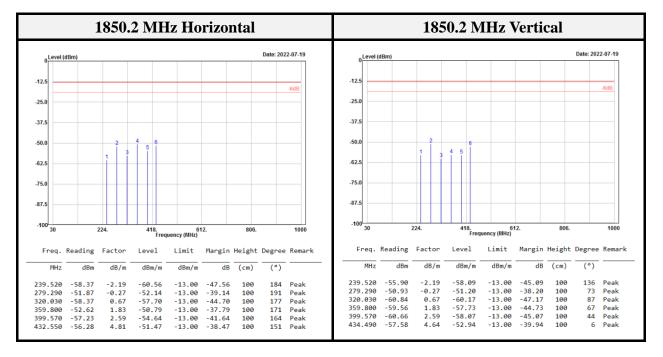
EUT emissions correction = Reading

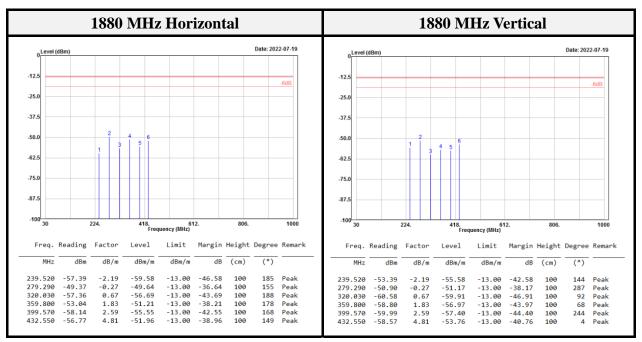
Level = Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.)



EUT emissions correction = Reading Level = Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.)

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

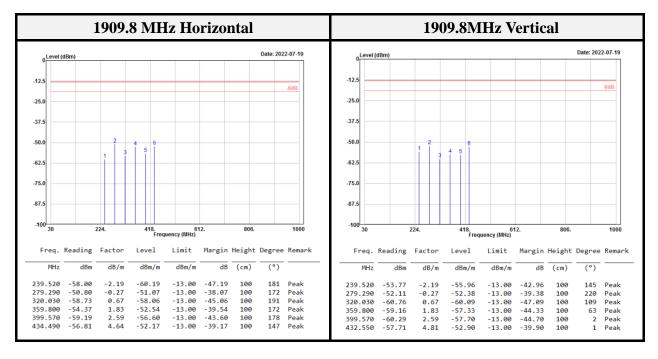

No.:RXZ220629001RF01



EUT emissions correction = Reading Level = Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.)

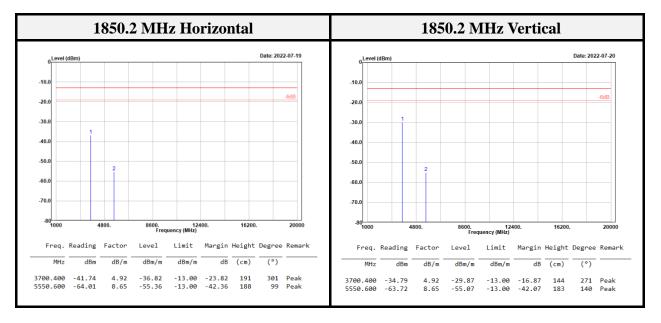
PCS_Band

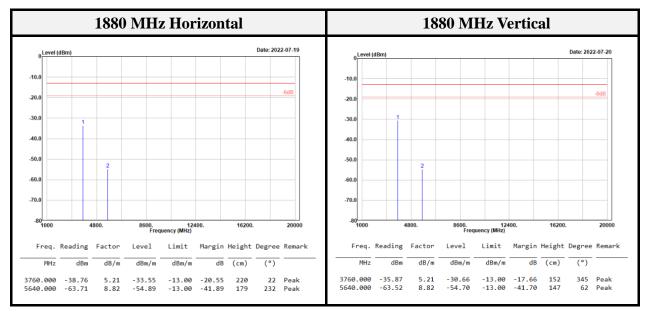
30MHz~1GHz



EUT emissions correction = Reading Level = Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.) Margin = Level – Limit.

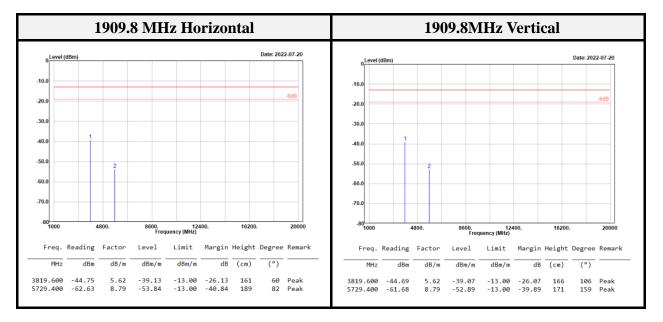
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 34 of 55 Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)


No.:RXZ220629001RF01



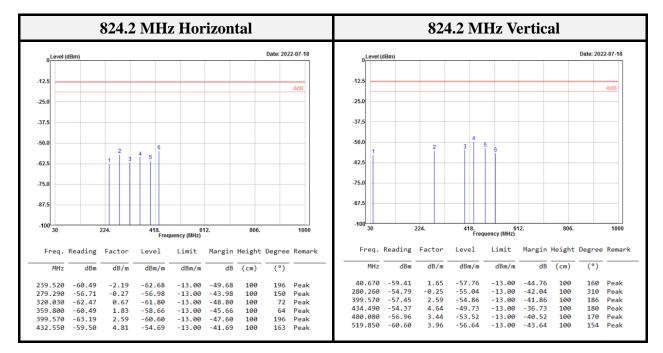
EUT emissions correction = Reading

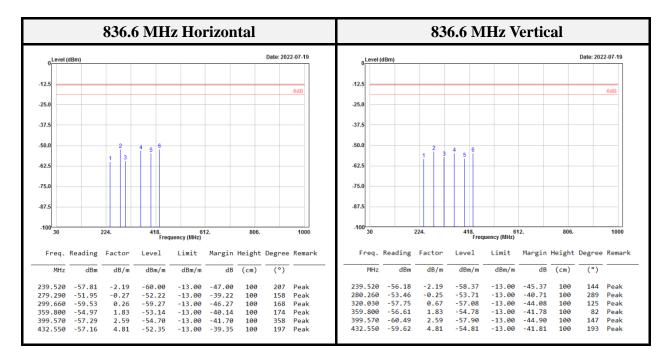
Level = Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.)


$1 GHz \sim 20 GHz$

EUT emissions correction = Reading Level = Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.) Margin = Level – Limit.

No.:RXZ220629001RF01

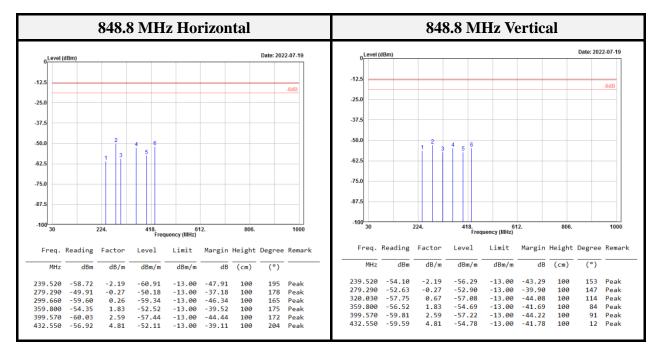

EUT emissions correction = Reading Level = Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.)


No.:RXZ220629001RF01

30MHz ~ 1GHz

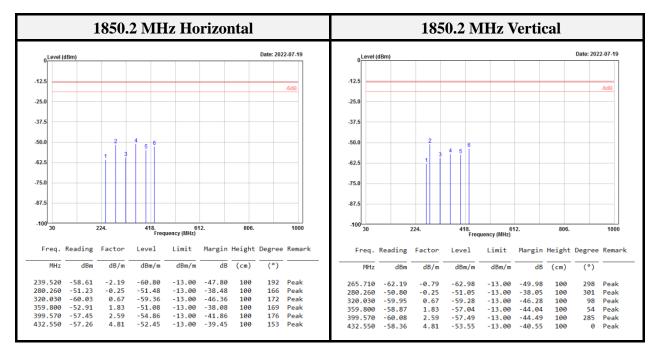
< LW2G-5C >

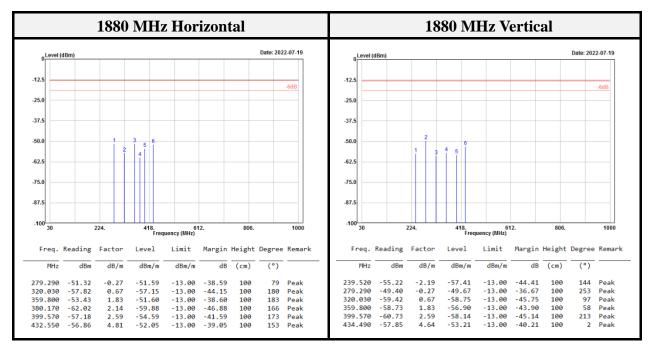
Cellular_Band



EUT emissions correction = Reading Level = Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.) Margin = Level – Limit.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 38 of 55

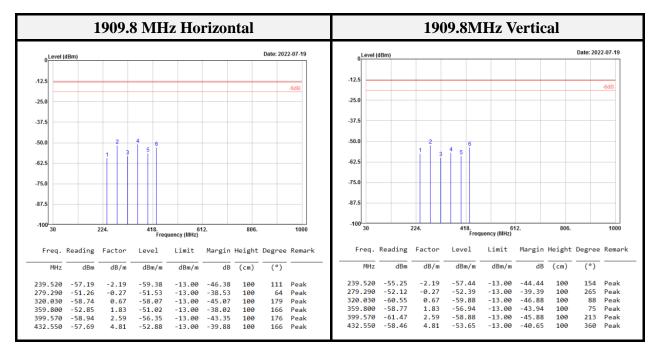

No.:RXZ220629001RF01



EUT emissions correction = Reading

Level = Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.)

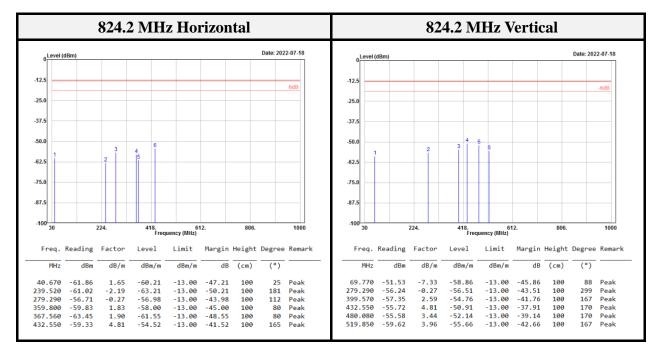
PCS_Band

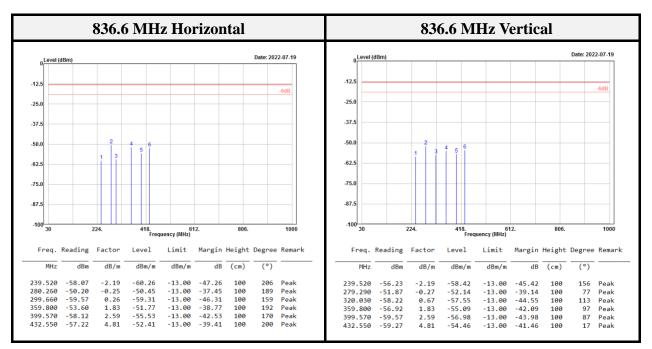


EUT emissions correction = Reading Level = Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.) Margin = Level – Limit.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 40 of 55

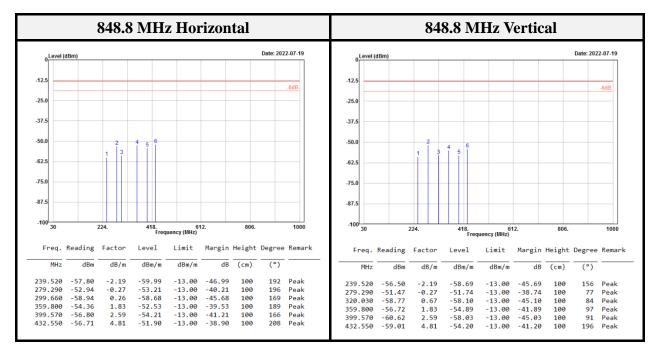
No.:RXZ220629001RF01



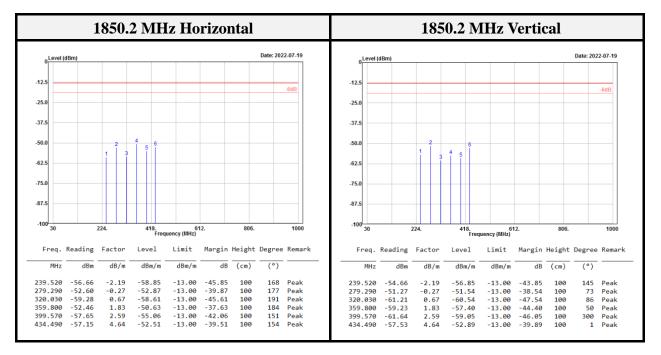

EUT emissions correction = Reading

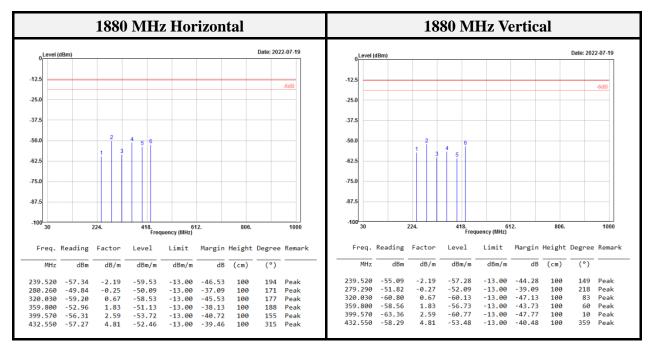
Level = Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.)

< LW2G-4CL >


Cellular_Band

EUT emissions correction = Reading Level = Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.) Margin = Level – Limit.

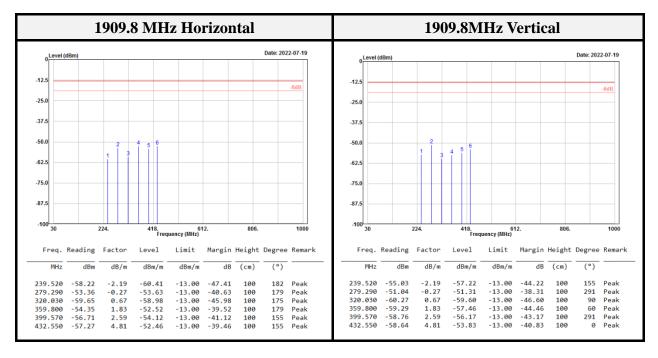

No.:RXZ220629001RF01



EUT emissions correction = Reading

Level = Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.)

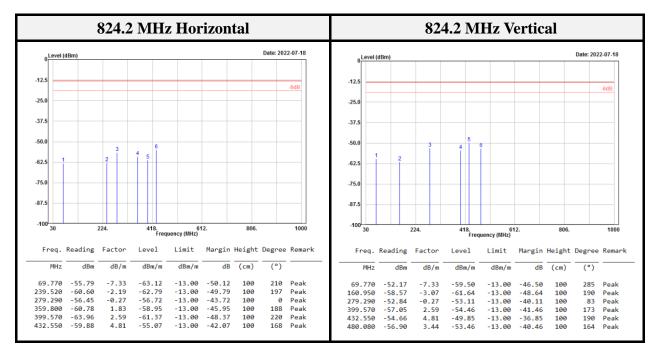
PCS_Band

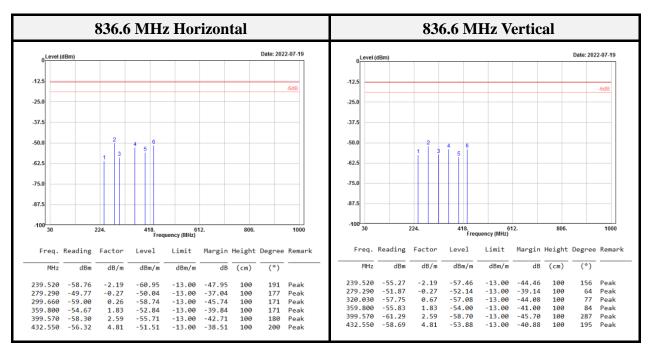


EUT emissions correction = Reading Level = Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.) Margin = Level – Limit.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 44 of 55

No.:RXZ220629001RF01

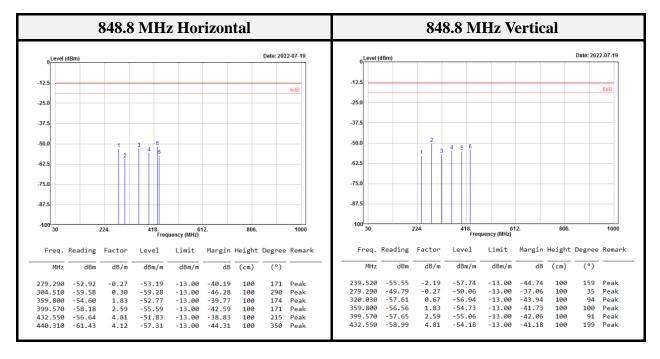



EUT emissions correction = Reading

Level = Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.)

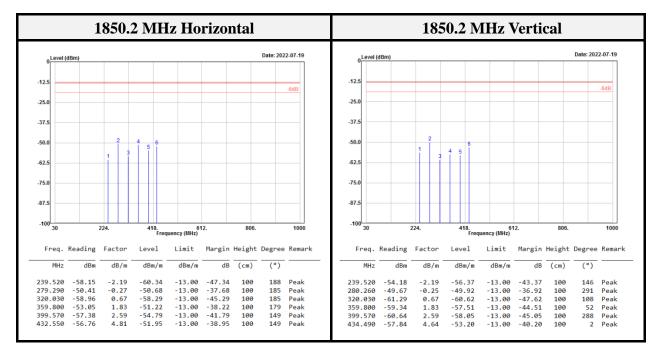
< LW2G-4C >

Cellular_Band



EUT emissions correction = Reading Level = Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.) Margin = Level – Limit.

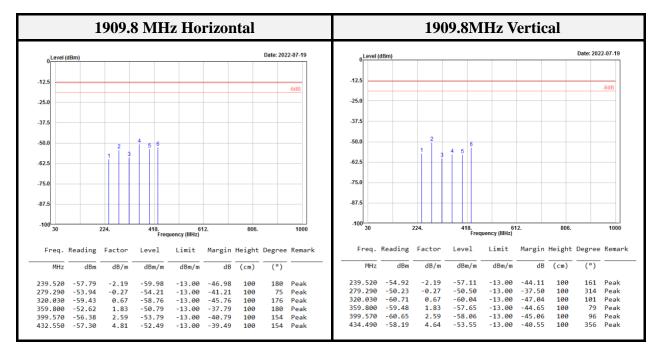
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 46 of 55


No.:RXZ220629001RF01

EUT emissions correction = Reading

Level = Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.)

PCS_Band



EUT emissions correction = Reading Level = Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.) Margin = Level – Limit.

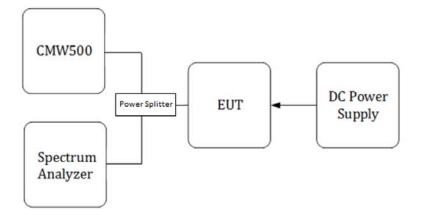
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 48 of 55

No.:RXZ220629001RF01

EUT emissions correction = Reading

Level = Level + Factor (Antenna Factor + Cable Loss – Amplifier Gain.)

FCC§22.917(a) & §24.238(a) – Band Edges

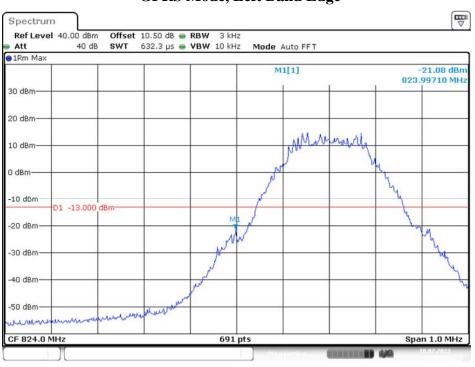

Applicable Standard

FCC §22.917, § 24.238,

According to § 22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

According to 24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

Block Diagram of Test Setup

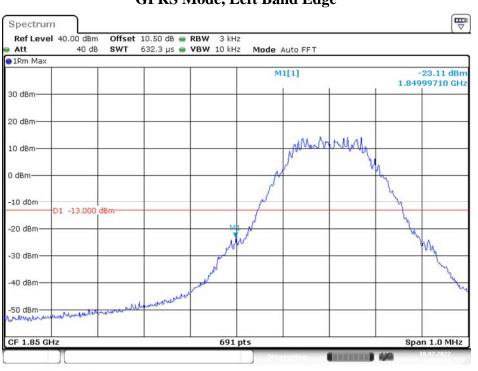

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency.

Test Results

Please refer to the following plots


Cellular Band (Part 22H) GPRS Mode, Left Band Edge

Date: 18.JUL.2022 09:48:57

Date: 18.JUL.2022 09:47:20

PCS Band (Part 24E) GPRS Mode, Left Band Edge

Date: 18.JUL.2022 09:50:52

GPRS Mode, Right Band Edge

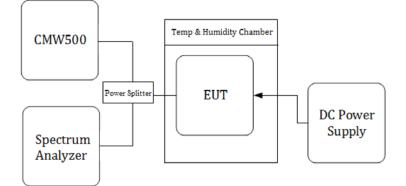
Date: 18.JUL.2022 09:52:34

FCC §2.1055, §22.355 & §24.235 – FREQUENCY STABILITY

Applicable Standard

FCC § 2.1055 (a)(d), §22.355, §24.235

According to FCC §2.1055, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.


According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table below:

Frequency Range (MHz)	Base, fixed (ppm)	Mobile > 3 watts (ppm)	Mobile ≤ 3 watts (ppm)	
25 to 50	20.0	20.0	50.0	
50 to 450	5.0	5.0	50.0	
450 to 512	2.5	5.0	5.0	
821 to 896	1.5	2.5	2.5	
928 to 929.	5.0	N/A	N/A	
929 to 960.	1.5	N/A	N/A	
2110 to 2220	10.0	N/A	N/A	

Frequency Tolerance for Transmitters in the Public Mobile Services

According to §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

Block Diagram of Test Setup

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set from 85% to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

Test Results

Cellular Band (Part 22H) **GPRS**

Middle Channel, fo=836.6MHz						
Temperature	Voltage Supplied	Frequency Error	Frequency Error	Limit		
(°C)	(Vdc)	(Hz)	(ppm)	(ppm)		
-30		9.1	0.0109	±2.5		
-20		11	0.0131	±2.5		
-10		8.6	0.0103	±2.5		
0		10.9	0.013	±2.5		
10	3.7	11.4	0.0136	±2.5		
20		9.2	0.011	±2.5		
30		11.8	0.0141	±2.5		
40		10.4	0.0124	±2.5		
50		12.17	0.0145	±2.5		
20	V min= 3.1	14.36	0.0172	±2.5		
20	V max= 4.3	16	0.0191	±2.5		

PCS Band (Part 24E)

GPRS

Middle Channel,fo=1880MHz						
Temperature	Voltage Supplied	Frequency Error	Frequency Error	Result		
(°)	(Vdc)	(Hz)	(ppm)			
-30	3.7	80	0.0426	Pass		
-20		76	0.0404	Pass		
-10		71	0.0378	Pass		
0		75	0.0399	Pass		
10		78	0.0415	Pass		
20		68	0.0362	Pass		
30		80	0.0426	Pass		
40		72	0.0383	Pass		
50		88	0.0468	Pass		
20	V min= 3.1	73	0.0388	Pass		
20	V max= 4.3	77	0.041	Pass		

----- END OF REPORT -----

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. Page 55 of 55 (New Taipei Laboratory)