TCT通测检测 TESTING CENTRE TECHNOLOGY							
TEST REPORT							
FCC ID:: 2A4DZ-TSB4250							
Test Report No::	TCT220225E032						
Date of issue:	/lar. 09, 2022						
Testing laboratory: :	SHENZHEN TONGCE TE	HENZHEN TONGCE TESTING LAB					
Testing location/ address:	TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District Shenzhen, Guangdong, 518103, People's Republic of China						
Applicant's name::	/ITA EXPEDITIONS LLC						
Address:	3821 Bedford Avenue, Brooklyn, New York 11229, United States						
Manufacturer's name :	MITA EXPEDITIONS LLC						
Address:	3821 Bedford Avenue, Brooklyn, New York11229, United States						
Standard(s):	FCC CFR Title 47 Part 15	Subpart C					
Product Name::	MagBoost Portable Charg	er 5K Ring	(\mathcal{G})				
Trade Mark:	TECHSMARTER						
Model/Type reference :	TSB4250						
Rating(s):	Rechargeable Li-ion Batte	ry DC 3.7V					
Date of receipt of test item	Feb. 25, 2022						
Date (s) of performance of test:	Feb. 25, 2022 - Mar. 09, 2022						
Tested by (+signature) :	Rleo LIU	Aleo Circon	ICF IS				
Check by (+signature) :	Beryl ZHAO	Bayle	CT)				
Approved by (+signature):	Tomsin	10ms ms					

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1. Gene 1.1. E	eral Proc	luct Info	rmation	0			
		-					
2. Test	Result S	Summary	y				4
3.1. T	est enviro	onment ar	nd mode				5
3.2. D	escriptio	n of Supp	ort Units.				5
4. Facil	ities and	d Accred	litations				6
						()	
5.1. A 5.2. C 5.3. R Append	antenna re conducted adiated S dix A: Ph	equiremer I Emissio Spurious E Notograp	nt n Emission	Measurem st Setup	ent		7

1. General Product Information

1.1.EUT description

Product Name:	MagRoost Portable Charger 5K Ping	
	MagBoost Portable Charger 5K Ring	(G)
Model/Type reference:	TSB4250	
Sample Number:	TCT220225E032-0101	
Operation Frequency:	113.14kHz – 141.82kHz	\mathfrak{O}
Modulation Technology:	Load modulation	
Max. Wireless Output Power:	15W	
Antenna Type:	Inductive loop coil Antenna	
Rating(s):	Rechargeable Li-ion Battery DC 3.7V	

Report No.: TCT220225E032

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2.Model(s) list

None.				
			Page	3 of 31

2. Test Result Summary

	Requiremen	t	CFR 47 S	ection		Result	
Antenna requirement AC Power Line Conducted Emission		§15.2	03	K)	PASS	N.	
		§15.20	⁰⁷		PASS		
0,	Spurious Emiss	sion	§15.209	(a)(f)		PASS	
	ASS: Test item meet Fail: Test item does n						
	l/A: Test case does r he test result judgme			rd.			

General Information 3.

3.1. Test environment and mode

Operating Env	vironment:
---------------	------------

Condition	Conducted Emission	Radiated Emission				
Temperature:	25.0 °C	24.7 °C				
Humidity:	55 % RH	53 % RH				
Atmospheric Pressure:	1010 mbar	1010 mbar				
Test Mode:						

AC mode	Keep the EUT in max. wireless output power(15W)
Internal Battery Mode	Keep the EUT in max. wireless output power(15W)

The sample was placed 0.8m above the ground plane for the measurement from 9KHz to 30MHz in 3m chamber. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Mobile Phone	SAMSUNG	SM-G9350	R28HA2E R3GT	
Adapter	EP-TA20CBC	R37HAEY0DT1RT3	/	SAMSUNG

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended

use.

3. Both AC mode and internal battery mode have been tested, only worse case is reported

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

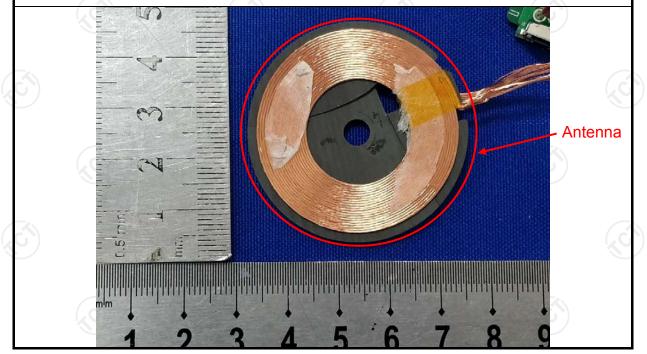
4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement


- Standard requirement: FCC Part
 - FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is inductive loop coil antenna which permanently attached.

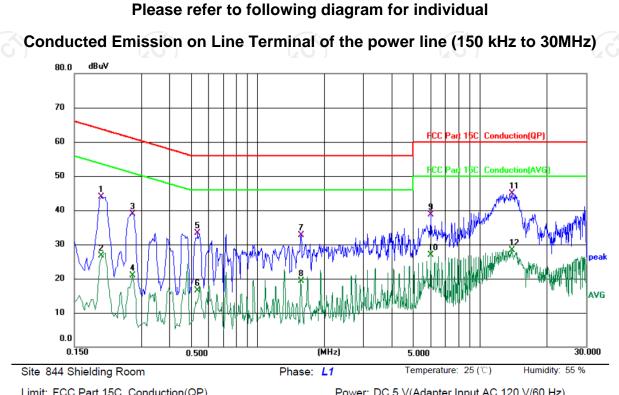
5.2. Conducted Emission

5.2.1. Test Specification

2.1. Test Specification							
Test Requirement:	FCC Part15 C Section	15.207					
Test Method:	ANSI C63.10:2013						
Frequency Range:	150 kHz to 30 MHz						
Receiver setup:	RBW=9 kHz, VBW=30	W=9 kHz, VBW=30 kHz, Sweep time=auto					
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (Quasi-peak 66 to 56* 56 60	dBuV) Average 56 to 46* 46 50				
		nce Plane	1207				
Test Setup:	40cm E.U.T Adap Test table/Insulation plan Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	ne	AC power				
Test Mode:	AC Mode		C.				
Test Procedure:	 AC Mode 1. The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 						

Report No.: TCT220225E032

Page 8 of 31

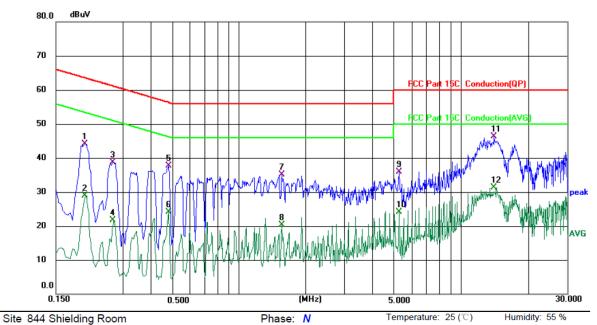

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)							
Equipment	Manufacturer	Model	Serial Number	Calibration Due			
EMI Test Receiver	R&S	ESCI3	100898	Jul. 07, 2022			
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Mar. 11, 2022			
Line-5	ТСТ	CE-05	N/A	Jul. 07, 2022			
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A			

Page 9 of 31

5.2.3. Test data

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1980	34.31	9.58	43.89	63.69	-19.80	QP	
2	0.1980	17.20	9.58	26.78	53.69	-26.91	AVG	
3	0.2740	29.58	9.34	38.92	61.00	-22.08	QP	
4	0.2740	11.50	9.34	20.84	51.00	-30.16	AVG	
5	0.5380	24.06	9.20	33.26	56.00	-22.74	QP	
6	0.5380	7.34	9.20	16.54	46.00	-29.46	AVG	
7	1.5700	23.29	9.39	32.68	56.00	-23.32	QP	
8	1.5700	10.00	9.39	19.39	46.00	-26.61	AVG	
9	6.0220	29.06	9.56	38.62	60.00	-21.38	QP	
10	6.0220	17.35	9.56	26.91	50.00	-23.09	AVG	
11 *	13.9860	35.22	9.64	44.86	60.00	-15.14	QP	
12	13.9860	18.62	9.64	28.26	50.00	-21.74	AVG	


Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V) = Receiver reading$ Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor \, (dB)$ Limit $(dB\mu V) = Limit$ stated in standard Margin (dB) = Measurement (dB μ V) – Limits (dB μ V) Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Page 10 of 31

Report No.: TCT220225E032

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

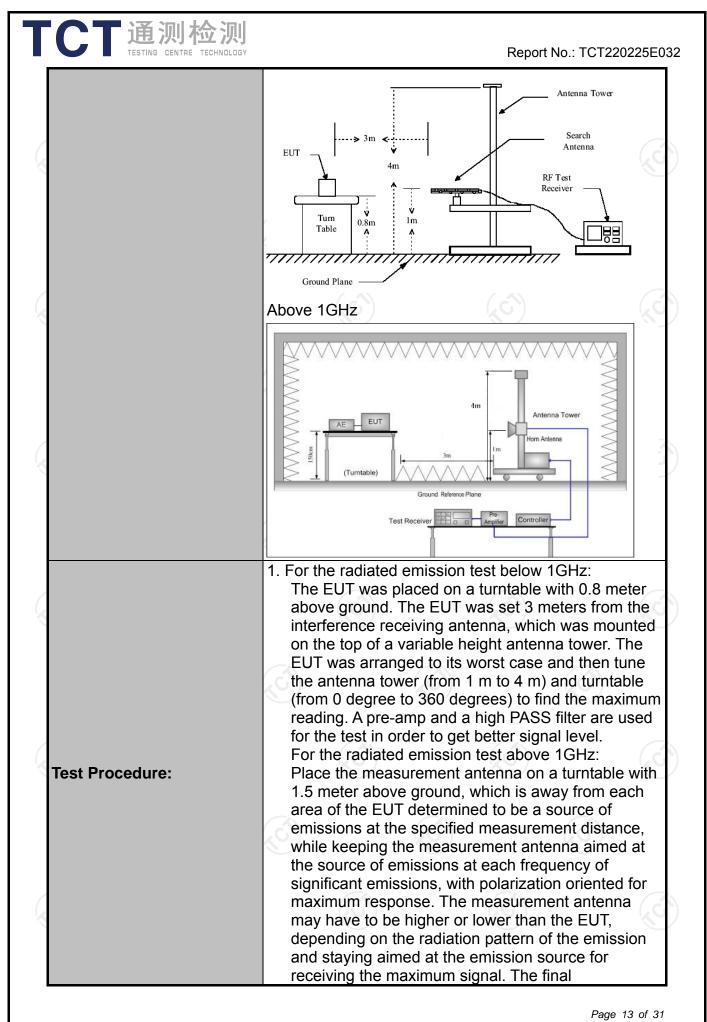
Limit: FC	C Part 15	C Conduct	ion(QP)		Power: DC 5 V(Adapter Input AC 120 V/60 Hz)						
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over					
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment			
1	0.2020	34.53	9.50	44.03	63.53	-19.50	QP				
2	0.2020	19.36	9.50	28.86	53.53	-24.67	AVG				
3	0.2700	29.44	9.34	38.78	61.12	-22.34	QP				
4	0.2700	12.36	9.34	21.70	51.12	-29.42	AVG				
5	0.4819	28.52	9.23	37.75	56.31	-18.56	QP				
6	0.4819	14.84	9.23	24.07	46.31	-22.24	AVG				
7	1.5620	25.77	9.35	35.12	56.00	-20.88	QP				
8	1.5620	11.01	9.35	20.36	46.00	-25.64	AVG				
9	5.2660	26.46	9.49	35.95	60.00	-24.05	QP				
10	5.2660	14.68	9.49	24.17	50.00	-25.83	AVG				
11 *	14.1300	36.62	9.66	46.28	60.00	-13.72	QP				
12	14.1300	21.70	9.66	31.36	50.00	-18.64	AVG				

Note:

TCT通测检测 TESTING CENTRE TECHNOLOGY

> Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

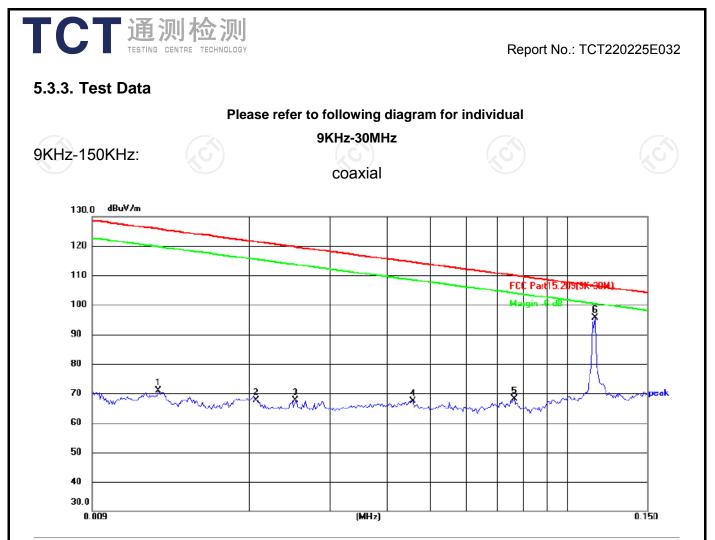
> > Page 11 of 31


5.3. Radiated Spurious Emission Measurement

5.3.1. Test Specification

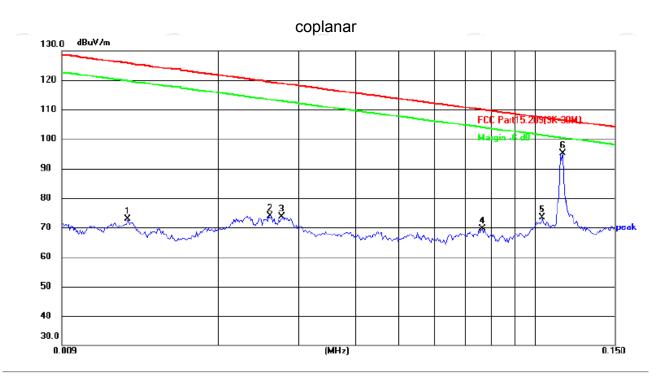
TCT 通测检测 TESTING CENTRE TECHNOLOGY

FCC Part15	C Sectior	n 15.209 🛛			
ANSI C63.10): 2013				
9 kHz to 25 (GHz	3			
3 m	X			S I	
Horizontal &	Vertical				
Refer to item	n 3.1	(\mathbf{c}	(
Frequency 9kHz- 150kHz	Detector Quasi-peal	RBW k 200Hz	VBW 1kHz	Remark Quasi-peak Va	
150kHz- 30MHz	Quasi-peal	k 9kHz	30kHz	Quasi-peak Va	
30MHz-1GHz			300KHz	Quasi-peak Va	
Above 1GHz	-	1MHz 1MHz	3MHz 10Hz	Peak Value Average Valu	
Frequen	5)	Field Stre	ength	Measuremen Distance (mete	
		2400/F(I	(Hz)	300	
			KHz)	30	
				30	
				3	
				3	
				3	
Frequency			Measurer Distan (meter	ce Detecto	
Above 1GHz	,	500	3	Average	
		5000	1	Peak	
	2				
	stance = 3m			Computer	
	1)_ г	Pre -A	Amplifier	
0.8m	D Turn table	Im Im			
	Group	d Plane	ĸ	leceiver	
30MHz to 1GHz					
	ANSI C63.10 9 kHz to 25 0 3 m Horizontal & Refer to item Frequency 9kHz- 150kHz 150kHz- 30MHz-1GHz Above 1GHz Frequency 0.009-0.4 0.490-1.1 1.705-3 30-88 88-210 216-96 Above 9 Frequency Above 1GHz	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 3.1 Frequency Detector 9kHz-150kHz Quasi-pea 30MHz-10Hz Quasi-pea 30MHz-1GHz Quasi-pea 30MHz-1GHz Quasi-pea Above 1GHz Peak Frequency 0.009-0.490 0.490-1.705 1.705-30 30-88 88-216 216-960 Above 960 Frequency Fie Above 1GHz Fie For radiated emission Distance = 3m U U U 0.3mter = 3mt U 0.3mter = 3mt	9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 3.1	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 3.1 Frequency Detector RBW VBW 9kHz-150kHz Quasi-peak 200Hz 1kHz 150kHz- Quasi-peak 9kHz 30kHz 30MHz 16Hz Quasi-peak 9kHz 30kHz 30MHz-1GHz Quasi-peak 120KHz 300KHz 30MHz-1GHz Quasi-peak 120KHz 300KHz 4bove 1GHz Peak 1MHz 10Hz Frequency Field Strength (microvolts/meter) 0.009-0.490 2400/F(KHz) 1.705-30 30 30 30 30 30-30-88 100 88-216 150 216-960 200 Above 960 500 Above 1GHz 500 3 3 Frequency Field Strength (microvolts/meter) Distance Above 1GHz 500 3 3 For radiated emissions below 30MHz Distance - 3m Measure Distance - 3m Image: Above 1GHz 1m 1m 1m Image: Above 1m	



	measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m
	 above the ground or reference ground plane. 2. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 3. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 4. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test mode:	Refer to section 3.1 for details
Remark:	All Modes had been tested and the Battery Mode is the worse mode which was reported only.
Test results:	PASS

5.3.2. Test Instruments

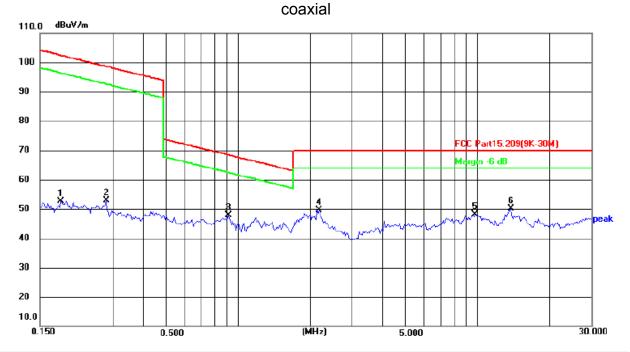

	Radiated En	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7 🎸	100197	Jul. 07, 2022
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 07, 2022
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Mar. 11, 2022
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Apr. 08, 2022
Pre-amplifier	HP	8447D 🕙	2727A05017	Jul. 07, 2022
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023
Antenna Mast	Keleto	RE-AM	N/A	N/A
Coaxial cable	SKET	RC_DC18G-N	N/A	Apr. 08, 2022
Coaxial cable	SKET	RC-DC18G-N	N/A	Apr. 08, 2022
Coaxial cable	SKET	RC-DC40G-N	N/A	Jul. 07, 2022
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

Page 15 of 31

Site _imit:	: FC	C Part15.209(9)	<-30M)		Polariza Power:			Temperature: 24(℃) Humidity: 52 %		
N	0.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	1	0.0125	50.11	20.80	70.91	125.67	-54.76	peak	Р	
2	2	0.0206	46.90	20.74	67.64	121.33	-53.69	peak	Р	
3	3	0.0252	46.91	20.72	67.63	119.58	-51.95	peak	Р	
4	ł	0.0456	46.50	20.79	67.29	114.43	-47.14	peak	Р	
5	5	0.0763	47.38	20.84	68.22	109.95	-41.73	peak	Р	
6	*	0.1149	75.11	20.52	95.63	106.40	-10.77	peak	Р	

Page 16 of 31

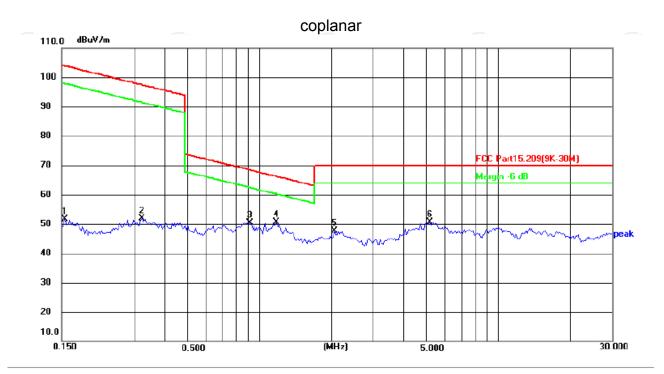
TCT通测检测 TESTING CENTRE TECHNOLOGY


Site				Polariza	tion: Copla	anar	Temperature: 24(°C)			
Limit: FC	CC Part15.209(9)	<-30M)		Power:	DC 5 V(Ada) 120 V/	C Humidity: 52 %				
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
1	0.0125	52.11	20.80	72.91	125.67	-52.76	peak	Ρ		
2	0.0258	53.18	20.71	73.89	119.37	-45.48	peak	Ρ		
3	0.0275	52.89	20.69	73.58	118.82	-45.24	peak	Р		
4	0.0763	48.88	20.84	69.72	109.95	-40.23	peak	Р		
5	0.1038	52.59	20.74	73.33	107.28	-33.95	peak	Р		
6 *	0.1149	74.61	20.52	95.13	106.40	-11.27	peak	Р		

Page 17 of 31

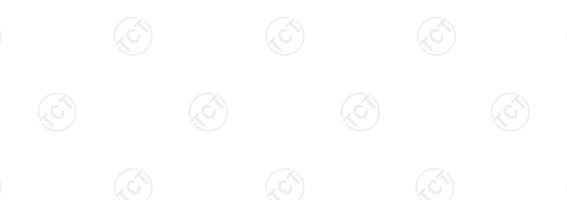
150KHz-30MHz:

TCT通测检测 TESTING CENTRE TECHNOLOGY



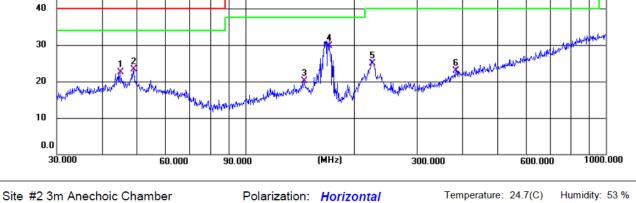
S	Site				Polarization: Coaxial					: 24("C)	
L	imit: FC	C Part15.209(9K	-30M)		Power:	DC 5 V(Adap 120 V/	ter Input AC	: Humi	dity:	52 %	
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
	1	0.1836	32.09	20.62	52.71	102.33	-49.62	peak	Р		
	2	0.0007	21.02	20.04	E0 76	00 55	45 70	nook	D		

							•		
2	0.2837	31.82	20.94	52.76	98.55	-45.79	peak	Р	
3	0.9153	25.49	22.42	47.91	68.39	-20.48	peak	Р	
4	2.1901	24.68	24.96	49.64	70.00	-20.36	peak	Р	
5	9.8163	27.46	20.63	48.09	70.00	-21.91	peak	Р	
6 *	13.7980	30.46	19.59	50.05	70.00	-19.95	peak	Р	


Page 18 of 31

Report No.: TCT220225E032

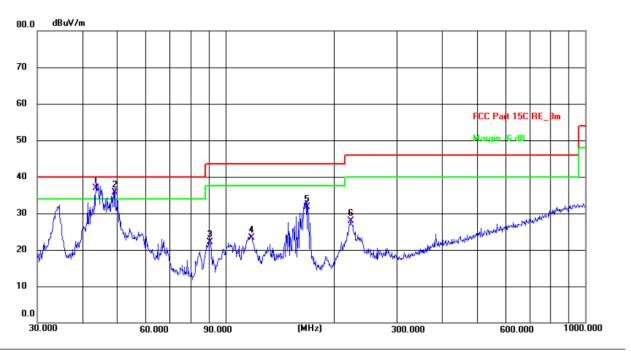
TCT 通测检测 TESTING CENTRE TECHNOLOGY


Site				Polarizati	on: Coplar	Temperature: 24("C)			
Limit: FCC	C Part15.209(9K-	30M)		Power:	DC 5 V(Adapt 120 V/	Humidity: 52 %			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	0.1547	31.20	20.53	51.73	103.81	-52.08	peak	Р	
2	0.3261	30.73	21.09	51.82	97.34	-45.52	peak	Р	
3	0.9153	27.99	22.42	50.41	68.39	-17.98	peak	Р	
4 *	1.1814	27.78	22.92	50.70	66.18	-15.48	peak	Р	
5	2.0765	22.92	24.74	47.66	70.00	-22.34	peak	Р	
6	5.1847	19.50	31.06	50.56	70.00	-19.44	peak	Р	

Page 19 of 31

TCT 通测检测 TBOMHz-1GHz Horizontal:

50

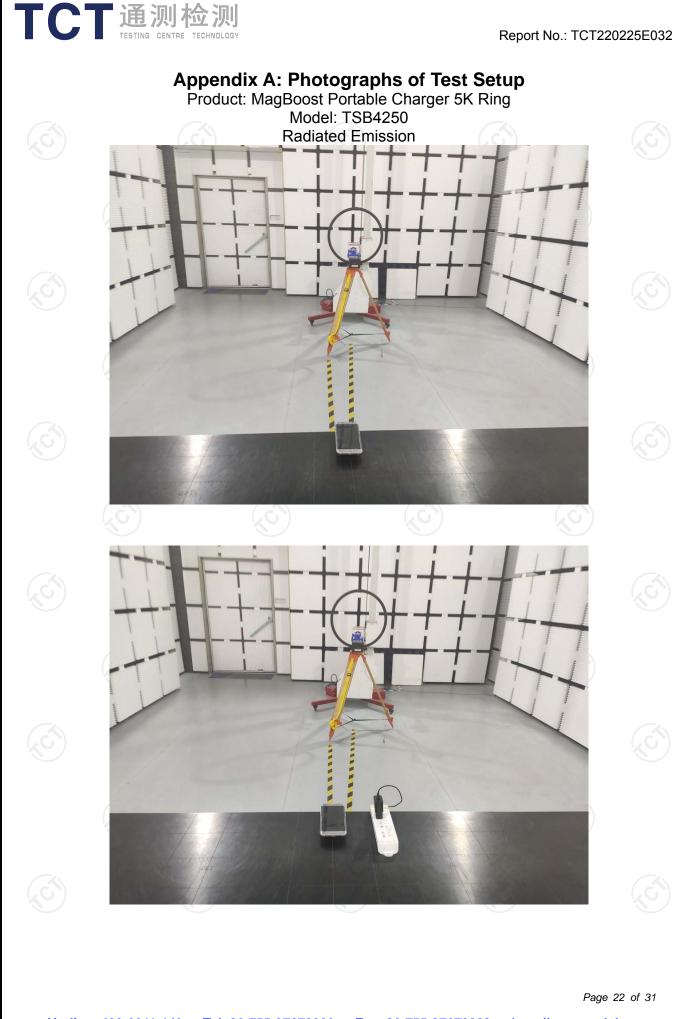


Limit:	FCC Part 150	RE_3m		Power: DC 5 V(Adapter Input AC 120 V/60 Hz)						
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
1	44.9006	8.63	13.89	22.52	40.00	-17.48	QP	Ρ		
2	49.1865	9.43	13.78	23.21	40.00	-16.79	QP	Ρ		
3	145.3506	6.76	13.29	20.05	43.50	-23.45	QP	Ρ		
4 *	170.7926	17.53	12.27	29.80	43.50	-13.70	QP	Ρ		
5	224.5193	13.17	11.73	24.90	46.00	-21.10	QP	Ρ		
6	383.9318	6.21	16.69	22.90	46.00	-23.10	QP	Ρ		

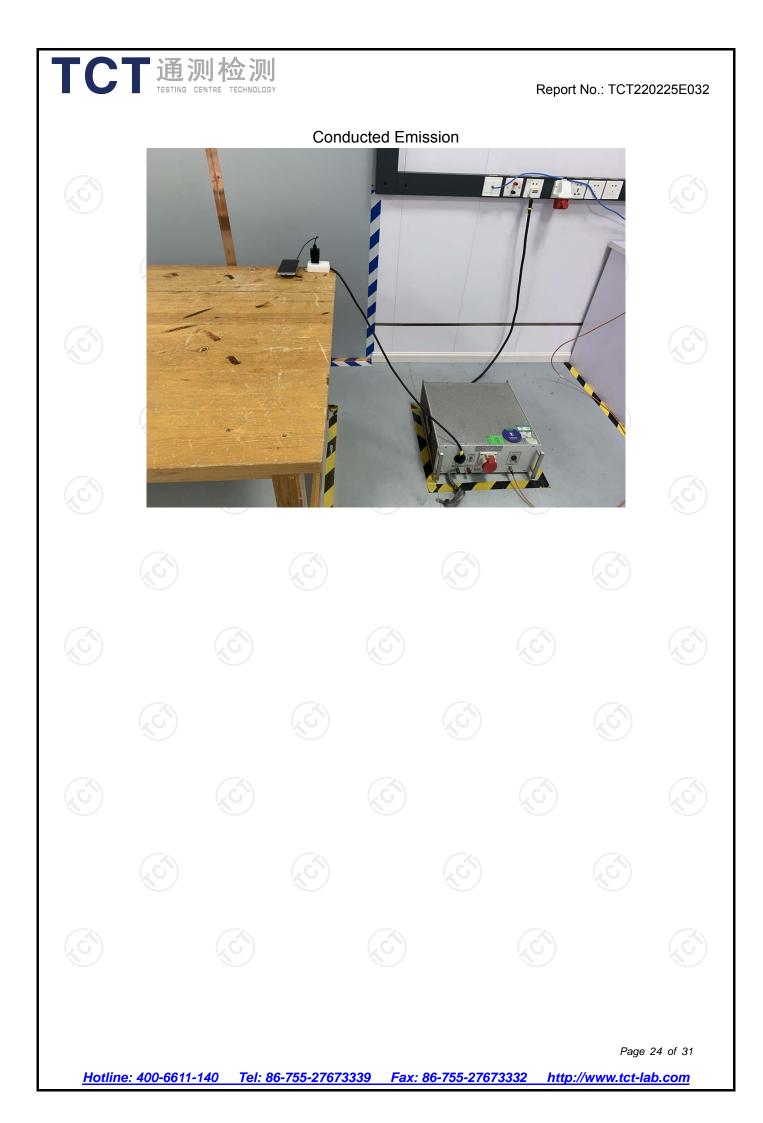
Page 20 of 31

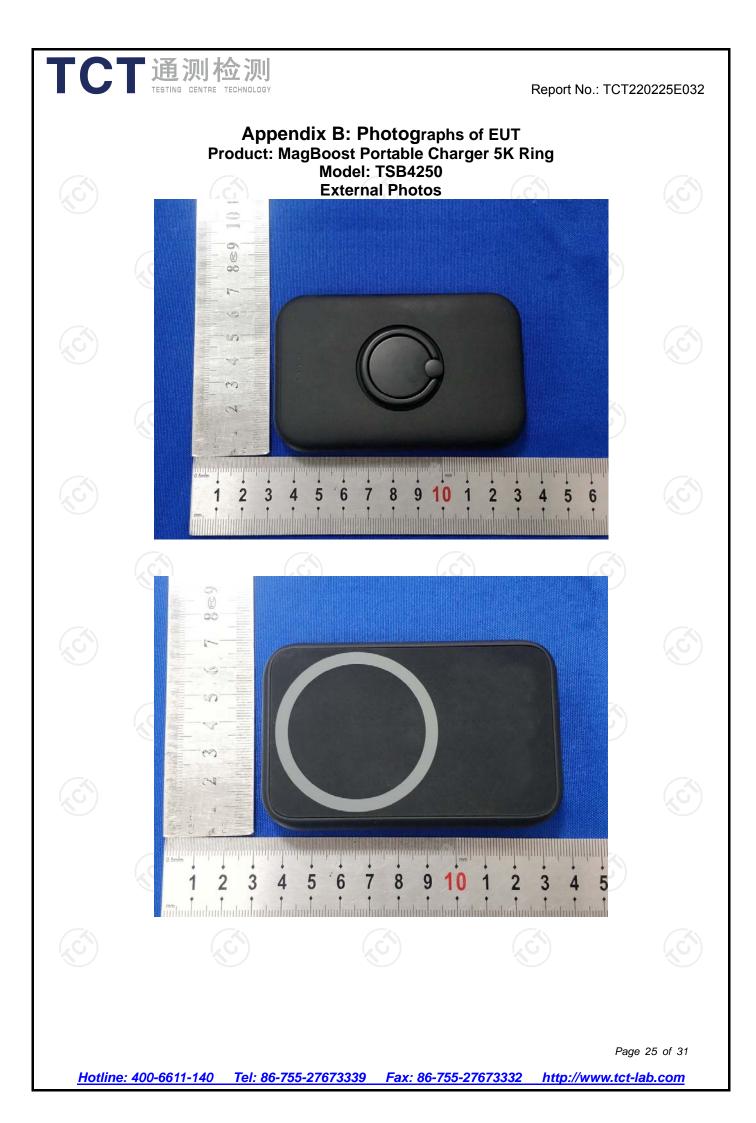
FCC Part 15C RE_8m

Vertical:

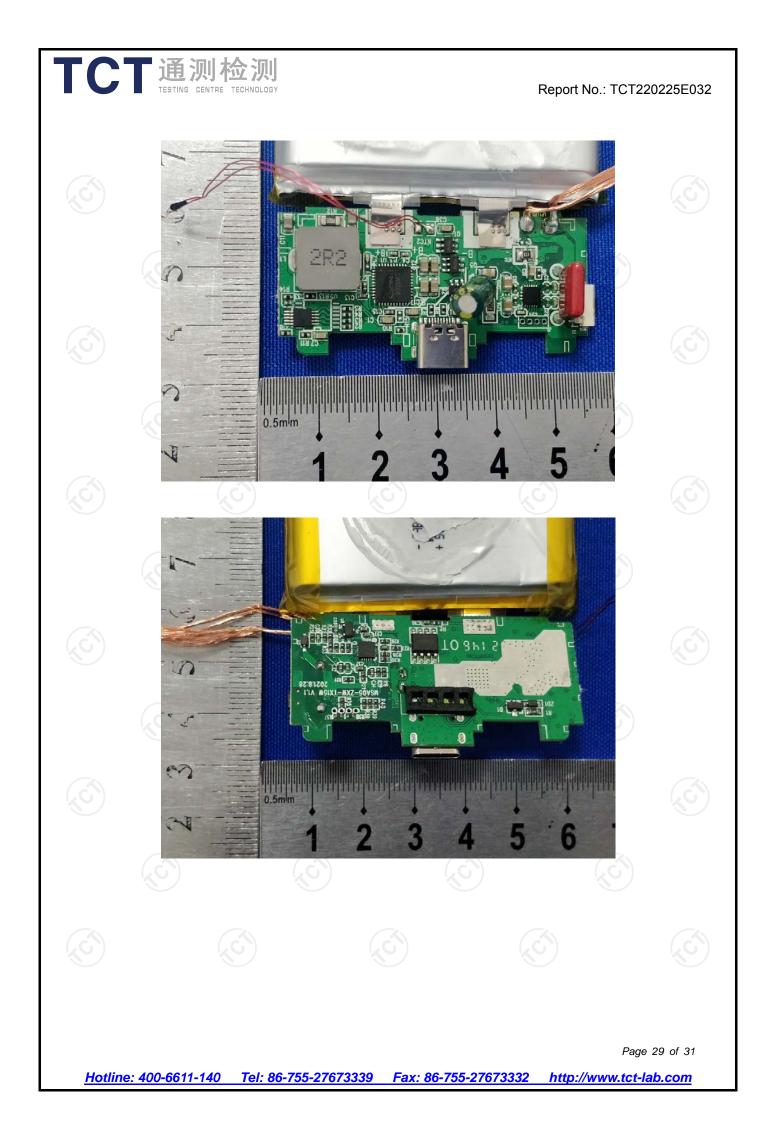

Site #	Site #2 3m Anechoic Chamber				Polarization: Vertical				emperature: 24.7(C) Humidity: 53 %
Limit:	FCC Part 150	RE_3m		Power: DC 5 V(Adapter Input AC 120 V/60 Hz)					
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	43.6584	22.98	13.92	36.90	40.00	-3.10	QP	Ρ	
2 !	49.3594	22.01	13.79	35.80	40.00	-4.20	QP	Ρ	
3	90.5374	12.90	9.30	22.20	43.50	-21.30	QP	Ρ	
4	117.7725	11.62	11.78	23.40	43.50	-20.10	QP	Ρ	
5	167.8243	19.21	12.59	31.80	43.50	-11.70	QP	Ρ	
6	222.9502	16.27	11.63	27.90	46.00	-18.10	QP	Ρ	

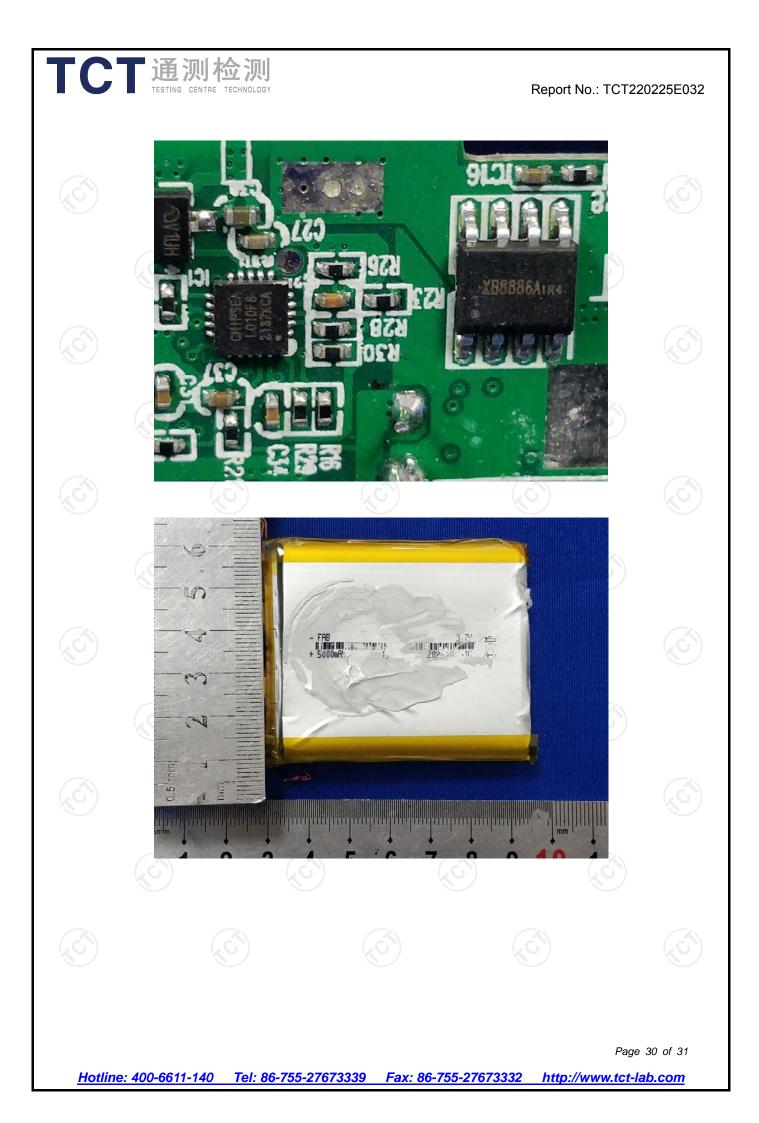
Note:

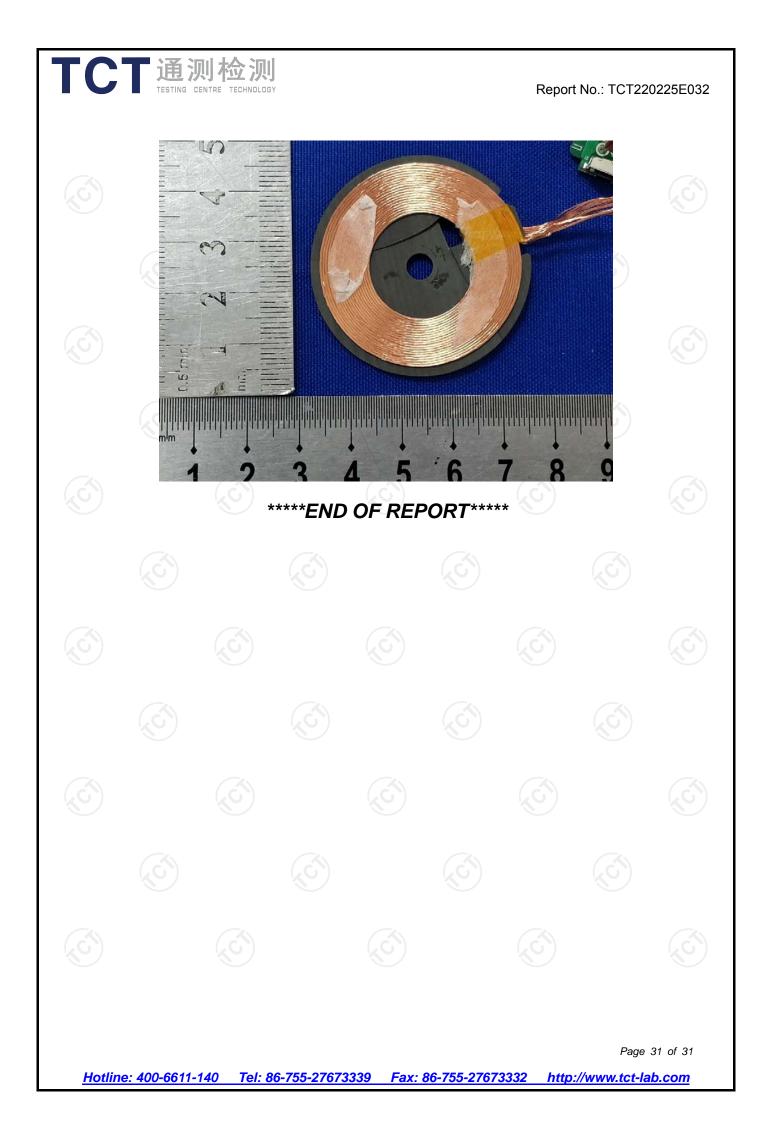

Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier



Report No.: TCT220225E032







Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

